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Weyl phonons: the connectionof topology and
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Topology and chirality of fermionic quasi-
particles have enabled exciting discoveries,
including quantum anomalous Hall liquids and
topological superconductivity. Recently, topo-
logical and chiral phonons emerge as new and
fast-evolving research directions. While these
concepts are separately developed, they are
intimately connected in the context of Weyl
phonons. The couplings between chiral and
topological phononswith various electronic and
magnetic quasiparticles are predicted to give
rise to new quantum states and giantmagnetism
with fundamental and applicational interests,
ranging from quantum information science to
dark matter detectors.

Unlike electrons, phonons are charge-neutral, spin-zero, and orbi-
tal-free, which makes the means of modulating phonons very lim-
ited. Thus, introducing both topological and chiral degrees of
freedom is helpful and vital to understand phonon-involved physi-
cal processes and applications. Topological phonons are novel
collective lattice excitations that carry nontrivial topological
invariants and pseudospin tectures1–3, as shown in Fig. 1. Chiral
phonons refer to phonon modes that have finite angular momen-
tum (AM) and are widely present in non-centrosymmetric
materials4–8. In this comment, we overview theoretical under-
standings of topological and chiral phonons and elucidate the
fundamental connection between topology and chirality in the
context of Weyl phonons. We discuss recent experimental progress
related to topological and chiral phonons and open questions and
future research directions.

An overview of topological and chiral phonons
Topological phonons. Like topological electronic quasiparticles,
topological phonons are characterized by topological invariants
that are intimately related to crystalline symmetries. For instance,
topological nodal-line phonons, which are characterized by the
geometrical Berry phase, can emerge when crystals preserve mirror
(R)/inversion (P) symmetry1. Weyl phonons, on the other hand,
emerges in non-centrosymmetric structures and are described by
the Chern number (C)2,3. As an example, we consider the following

effective two-orbital Hamiltonian:
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whereω= e
2πi
3 ,A is a real constant andB is a complex constant. Theqx/y/z

are pseudo-momentum of phonons. This Hamiltonian is defined as a
square root of the dynamical matrix, with its eigenvalues ψ± being the
phonon polarization vector, εq, ± , and its eigenvalues being the
frequencies of the phonons. Equation (1) describes the lattice
dynamics in the vicinity of a twofold degenerate high symmetry point
that respects chiral cubic symmetries and time-reversal symmetry (see
Fig. 1). The topological number C = ±4 can then be derived from the
eigen vectors, ψ ± , of Eq. (1) and represent twofold quadruple Weyl
phonons3,4.

Chiral phonons. Chiral phonons, also referred to as circularly polar-
ized phonons, initially mean phonons with nonzero AM5,6, lq, σ :

lq,σ = ðεyq, σMεq, σÞ_ ð2Þ

where εq,σ is the polarization vector for phononmode σ atmomentum
q, ðMiÞjk = ð�iÞεijk

N
In×n (i,j,k = x,y,z) is a product of the generator of

SO(3) rotation and theunitmatrix for a unit cell withn atoms, and εijk is
the Levi-Civita symbol. From a symmetry point of view, chiral phonons
with finite AM are widely present in crystals, unless certain symmetries
restrict the AM to be zero, such as mirror, spatial inversion, or time-
reversal symmetry.

Phonon modes with bCn-symmetry. Although AM is a fundamentally
important concept with significant macroscopic consequences, it is
usually not conserved in microscopic quasiparticle scattering pro-
cesses. Instead, the pseudo-angular momentum (PAM), lphq , has been
introduced in systems with rotational or screw rotational
symmetries7–11:

bCnuq = e
�2πi

n �lphq uq ð3Þ

uq = εqe
iðRl �q�ωtÞ ð4Þ

where bCn is the rotation or screw rotation operator and uq is the
phonon Bloch wave function at q. Since lphq originates from phase
factors acquired by discrete bCn symmetry, the phonon PAM can only
be defined at rotation-invariant momenta, and it is conserved
modulo n.
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Connections between topological and chiral phonons. Topological
and Weyl phonons are prevalent in materials, particularly in chiral
crystals. Symmetries of the system constrain phononmodes, thereby
determining topological and chiral properties. Here we use Weyl
phonons to draw the connection between these independently
developed fields. Consider Eq. (1) as an example, the eigen vector ψ±

can be analytically derived in the twofold quadruple Weyl system
BaPtGe that features chiral lattice motions3,4, as shown in Fig. 1.
Indeed, this connection is general for non-centrosymmetric materi-
als, where topological phonons are Weyl phonons with nonzero AM.
Namely, Weyl phonons are characterized by the Chern number,
which is an integral of the Berry curvature. Since the Berry curvature
has the same symmetry with the phonon AM, the nonzero Chern
number implies that the phonon AM should be nonzero around the
Weyl point. Therefore, Weyl phonons are a special type of chiral
phonons, as highlighted in Fig. 1. Since phonons can be chiral even
away from point or line degeneracies, chiral phonons are not
necessarily topological.

Furthermore, it has been shown that3 Weyl phonons can be clas-
sified based on the (screw) rotational symmetries bCn= 3, 4, 6, which also
determines the phonon PAM (see Eq. (3)). Therefore, the Chern num-
bers C of Weyl phonons can be derived from the PAM of the degen-
erated phonon modes12,13. This mapping is, however, symmetry-
dependent.

Experimental evidenceof topological phonons and chiral phonons.
Topological phonons were first revealed using inelastic X-ray scatter-
ing (IXS)14. By quantitatively comparing the IXS-determined phonon
dynamical structure factor, S Q,ωð Þ, and density functional theory
calculated S Q,ωð Þ, the double Weyl phonons, hence chiral phonons as
described in the previous section, are established in the P-breaking
crystal FeSi14. Observations of truly chiral phonons were also reported
in Raman and resonant inelastic x-ray scatterings7,8,14,15. The topologi-
cally trivial chiral phonons in 2D transition metal dichalcogenides
WSe2 were first reported by using the circular dichroism (CD) in the
transient infrared spectroscopy16.

Outlook
Topological edge modes. Topological phonons can give rise to edge
modes, such as the predicted double helicoidal surface phononmodes
in transitionmetalmonosilicides, and theflat surfacephononmodes in
MoB2 and high-Tc conventional superconductor MgB2. Experimental
observation of these novel topological edge modes will be important
for the understanding of topological bosonic excitations and related
physical consequences. When the time-reversal symmetry is broken,
quantum Hall analogous edge modes can be obtained17. These topo-
logically protected edge modes can be potentially applied to thermal
diodes, thermal transistors, and other thermal devices.

Phonon angular momentum. The AM of chiral phonons has been
proposed for potential applications in quantum information science
and microelectronics, such as the phonon Einstein-de Haas effect18,
which can transduce thermal energy to rigid-body kinetic energy and
serve as thermo-motors and thermo-switch, and also a new approach
for high-precision dark matter detectors via interacting with dark
matters19. Chiral phonon also drives novel quantum states and phe-
nomena, such as transverse Peierls transition20, axionic charge density
waves21, superconductivity22, spin Seeback effect23, giant phonon
magnetism24–26, etc.

Phonons that are both topological and chiral. When a phonon
exhibits characteristics of being both topological and chiral, its appli-
cations also encompass those in separate fields. For example, in Weyl
phonon systems, the chiral fermions can also appear, based on the
electronic wavefunctions at the Fermi surface. Thus, the phonon
modes can also couple with chiral fermions, such as CoSi, and give rise
to non-linear Hall effect or novel spectroscopic response. Exploration
of the Weyl phonon-triggered unusual quantum states will be a highly
interesting research direction. Previous studies have shown the rela-
tionship between the pseudospin and the Chern number3,4. The
understanding of the connection between spin/orbital AM texture and
topology of phononsmay open a new route to control andmanipulate
topological and chiral phonons.

≠ ≠

Fig. 1 | Chiral and topological phonons in quantum materials. Topological
phonons are characterized by nontrivial topological invariants, associated with
nontrivial pseudospin texture around the band degeneracies and topological sur-
face states2,3. Chiral phonons are described by phonon modes with finite AM,
associated with circular atomic motions in the real space, thus also referred to as
circularly polarized phonons. These two concepts are fundamentally connected in
3D non-centrosymmetric materials. The left panels show the spiral surface state,
the pseudospin texture, and the band dispersion of the twofold quadruple Weyl

phonon with C = +4. Right panels show that in the vicinity of twofold quadruple
Weyl point, the corresponding latticemotion is chiral with finite AM3,4. The general
relation between Weyl and chiral phonons are highlighted in the middle panel. In
non-centrosymmetricmaterials,Weyl phonons are a special typeof chiral phonons.
Chiral phonons are, however, not necessarily topological. The coupling between
chiral and topological phonons with electronic and magnetic excitations can give
rise to unusual quantum phenomena, such as chiral superconductivity, chiral
density waves, magnetism, and unconventional transport properties.
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Conclusion
Topological and chiral phonons are fast-developing research fields
with intriguing potential for both fundamental research and applica-
tions. Beyond the experimental verifications, the exploration of
topological and chiral phonon-driven quantum phenomena is an
exciting research frontier, such as chiral charge density waves27,
ultrafast demagnetization28, etc. While numerous novel physical
properties have been reported, a comprehensive understanding of
novel phenomena, such as giant phonon magnetism and thermal Hall
effect, remains elusive, presenting a fundamental obstacle for further
applications. The integration of theory, electronic structure
databases29–31, phonon databases32,33, andmachine learning techniques
may offer a promising avenue for overcoming those fundamental
challenges.
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