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TRAPT: a multi-stage fused deep learning
framework for predicting transcriptional
regulators based on large-scale
epigenomic data

Guorui Zhang 1,2,3,7, Chao Song 1,2,4,5,7, Mingxue Yin1,2,3,7, Liyuan Liu1,2,3,
Yuexin Zhang1,2, Ye Li1,2,3, Jianing Zhang1,2, Maozu Guo 6,8 &
Chunquan Li1,2,3,4,5,8

It is challenging to identify regulatory transcriptional regulators (TRs), which
control gene expression via regulatory elements and epigenomic signals, in
context-specific studies on the onset and progression of diseases. The use of
large-scale multi-omics epigenomic data enables the representation of the
complex epigenomic patterns of control of the regulatory elements and the
regulators. Herein, we propose Transcription Regulator Activity Prediction
Tool (TRAPT), a multi-modality deep learning framework, which infers reg-
ulator activity by learning and integrating the regulatory potentials of target
gene cis-regulatory elements and genome-wide binding sites. The results of
experiments on 570 TR-related datasets show that TRAPT outperformed state-
of-the-art methods in predicting the TRs, especially in terms of forecasting
transcription co-factors and chromatin regulators. Moreover, we successfully
identify key TRs associated with diseases, genetic variations, cell-fate deci-
sions, and tissues. Our method provides an innovative perspective on identi-
fying TRs by using epigenomic data.

The intricate patterns of gene regulation are programmed bymultiple
upstream transcriptional regulators (TRs), such as transcription fac-
tors (TFs), transcription co-factors (TcoFs), and chromatin regulators
(CRs), that canmediate the regulatory signals between promoters and
distal enhancers1. The onset of diseases is often associated with aber-
rant patterns of gene expression, underscoring the importance of
identifying the TRs that control key programs of gene expression.

Advancements in ChIP-seq and ATAC-seq techniques have enabled the
clear illustration of cis- and trans-regulatory landscapes. The binding
affinities of genomic TRs in conjunction with epigenetic information,
such as histonemodifications and chromatin openness, determine the
cell-specific regulatory activities of TRs2. Moreover, numerous studies
have shown that TFs bind to specific cis-regulatory sequences within
the genome, including enhancers and promoters, to modulate the
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expression of their target genes3,4. Given the complexity of gene reg-
ulation, using a large amount of epigenomic data to identify the
upstream synergistic regulatory features of genes is imperative for
predicting TRs. A vast amount of epigenomic data, including ATAC-
seq, DNase-seq, and ChIP-seq, have been accumulated due to rapid
advances in high-throughput sequencing technologies. A major chal-
lenge in this context is to comprehensively collect and process these
datasets from various sources. Furthermore, datasets from different
origins encounter significant issues, including interference by noise,
batch effects, and data redundancy. Consequently, it remains chal-
lenging to integrate these datasets, capture useful representations,
and filter out noise.

A number of methods have been proposed to infer upstream TRs
by using functional gene sets, including Enrichr5, TFEA.ChIP6, ChEA37,
MAGIC8, i-cisTarget9, BART10, andLisa11. Enrichr, TFEA.ChIP, ChEA3, and
MAGIC use gene sets as inputs to predict TRs through enrichment
analysis. These approaches involve statistical testing based on overlaps
between the target genes of TRs and the input genes. Although they are
capable of quick analyzes, they do not incorporate detailed informa-
tion on cis-regulatory elements (CREs). As transcription factors func-
tion by binding to regulatory elements, information on the cis-
regulatory profile is crucial for accurately inferring the regulators.
i-cisTarget matches the CREs on the genome to predict TF activity
through enrichment analysis. Unlike methods relying solely on gene
sets, i-cisTarget uses CREs to more accurately simulate TF binding.
However, this algorithm uses only CREs associated with the input gene
set, which is inadequate for simulating the cis-regulatory profile of the
entire genome.BART solves theproblemof incomplete coverageof the
cis-regulatory profile by inferring it from a large amount of H3K27ac
ChIP-seq data through the regression-based MARGE12 algorithm. Lisa,
known as “MARGE second generation,” enhances prediction accuracy
by incorporating DNase-seq data alongside H3K27ac ChIP-seq data to
infer gene-related cis-regulatory profiles. AlthoughBART and Lisa solve
the problem of incomplete coverage of the cis-regulatory profile
(ICCP), there is an inherent bias in TR binding that we refer to as
transcriptional regulator binding preference (TRBP). Essentially, TRs
are predisposed to associate with regions of active chromatin. More
importantly, all currently available methods are limited to inferring
upstream regulatory elements by using gene sets, but no technique is
available for deducing the genome-wide binding sites of the TRs. There
is anurgentneed todevelopapproaches that consider thebidirectional
regulatory relationships of cis-regulatory elements.

The use of epigenomic multi-omics data is fraught with com-
plexity, including the presence of cross-model talk and noise. Pre-
valent algorithms use only traditional regression-basedmethods, such
as Lisa, and ignore the effects of cross-model talk and noise when
integrating multi-omics data. Moreover, the relationships between
multi-omics data are not linear, but form a complex network. Deep
learning algorithms have achieved considerable success in solving
these specific biological problems13,14. The initial step in applying data-
driven deep learning approaches involves the extensive collection and
processing of epigenetic data. In pastwork, we have developed several
epigenetic regulatory databases, including TcoFBase15, CRdb16, TFTG17,
SEdb18, and ATACdb19, that can extend the scope of epigenomic data.
The transcription regulation databases TcoFBase, CRdb, and TFTG
contain a large amount of data on transcription regulators, while SEdb
and ATACdb, as epigenomic databases, contain the most compre-
hensive data on enhancers and chromatin accessibility. By integrating
a large amount of epigenomic resources, we have constructed the
most comprehensive epigenomic feature library available. Integrating
such rich epigenomic data with cutting-edge deep learning techniques
provided an unprecedented opportunity to unravel the complex
landscapes of the epigenome.

In this study, we propose a data-inspired deep learning frame-
work, called the TRAPT, that can leverage large-scale epigenomic

datasets to assimilate advanced models of knowledge distillation and
graph convolutional neural networks. We designed a multi-stage
fusion-based deep learning approach to simultaneously integrate sig-
nals from the target gene cis-regulatory elements within the gene sets
and the genome-wide binding sites of TRs, with the aim of obtaining
the optimal representation of TR activity and predicting the key TRs
for gene sets with context-specific regulation. To assess the effec-
tiveness of our method, we predicted transcription factors, co-factors,
and chromatin regulators on up to 570 TR knockdown/knockout
datasets from the KnockTF20 database. Benchmark tests were con-
ducted against established tools, such as Lisa, BART, i-cisTarget, and
ChEA3, and their results showed that TRAPT outperformed them in
terms of predicting TR activity. We also leveraged TRAPT in a study on
Alzheimer’s disease to successfully identify the key relevant TRs, such
as REST. We ultimately applied TRAPT to datasets on human cell
development and normal human tissues. It successfully predicted the
critical regulatory factors controlling cell-fate decisions as well as
tissue-specific regulators. It is easy to use, and can be accessed either
through an online interface (https://bio.liclab.net/TRAPT) or via local
installation (https://github.com/TOSTRING-Z/TRAPT).

Results
Overview of TRAPT
TRAPT is a multi-omics framework of integration that is designed for
inferring TR activity from a set of queried genes. In simple terms, the
model takes interest genes as input and outputs the activity score for
each TR (Fig. 1a and Supplementary Fig. 1a). TRAPT applies a multi-
stage fusion-based strategy to address the issues of TRBP and ICCP,
which correspond to the prediction of downstream regulatory
potential (D-RP) for transcription regulators (TRs) based on their
genome-wide binding sites and upstream regulatory potential (U-RP)
for target genes derived from their cis-regulatory elements (definitions
of upstream and downstream are provided in Supplementary
Note A.9). Therefore, we divide themodel into the following key steps:
(1) calculating the epigenomic regulatory potential (Epi-RP) and tran-
scriptional regulator regulatory potential (TR-RP) (Figs. 1b), (2) pre-
dicting the D-RP of each TR with respect to the genes (Figs. 1c), (3)
predicting the context-specific U-RP of the queried gene set (Figs. 1d),
and (4) using the predicted regulatory potential from steps 2 and 3 to
estimate the activity of TRs (Fig. 1e, f). To predicting the D-RP is a time-
consuming task that does not involve calculations related to the user’s
input gene set. Thus, with amodular approach, TRAPTdoes not repeat
steps 1 and 2; instead, the pre-constructed Epi-RP, TR-RP, and D-RP
serve as inputs for the subsequent modules (Supplementary Fig. 1a).
We now elaborate on the details of each of the above steps.

In the first step, to calculate the regulatory potential of the epi-
genomes and TRs, we first collected over 20,000 datasets of epige-
nomic samples, including 1329 ATAC-seq, 1465 H3K27ac ChIP-seq, and
17,227 TR ChIP-seq datasets, and then subjected them to rigorous
preprocessing. We then computed regulatory potential (RP) for each
gene using large-scale epigenome data and a background knowledge
library of TRs. A uniform weight decay strategy was applied to the
epigenomic data, while a context-specific weight decay approach was
implemented for individual TRs to capture their distinct regulatory
patterns and scopes (see the Methods section) (Fig. 1a). We compared
our findings with those of Chen et al., who classified TRs into long- and
short-range categories (SupplementaryData 7), and found a significant
overlap between the types of TRs identified in our analysis and those
discovered by them21 (Supplementary Figs. 1f, g). All the RPs were
integrated into two distinct components, Epi-RP and TR-RP, which
served as the input in step 2.

The second step focuses on integrating Epi-RP and TR-RP to
predict the TR-context-specific D-RP of each TR. The main challenge
lies in integrating the differential omics predictions of TR with the
relationships to epigenomic samples, as well as aggregating the
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Fig. 1 | Overview TRAPT. a The simplified flowchart of TRAPT indicates that the
process of model inference comprises three components: an input gene set, an
inference by the model, and TR activity as the output. TRAPT only requires a gene
set as input and provides results through online or offlinemethods, with the online
service providing enhanced features of visualization. b The TR-RP regulatory
potential model was used to calculate the TR-RP matrix, and the epigenome-RP
regulatory potential model was used to compute the Epi-RP matrix. c TRAPT pre-
dicts the regulatory potential associatedwith the genome-wide binding sites of the
TRs. The inputs to TRAPT consist of preprocessed TR-RP and Epi-RP matrices,
which are integrated to form a regulatory potential matrix and an adjacency graph.
We first used a conditional variational autoencoder as the teacher network to learn
the latent representation h. Subsequently, a graph variational autoencoder was
applied as the student network to reconstruct the TR-epigenome adjacency graph,
enabling it to learn its own network structure and latent feature representation
from the teacher network. Finally, we performed an aggregation operation using

the reconstructed TR-epigenome adjacency graph and the input Epi-RP matrix to
obtain the matrix of the regulatory potential associated with the genome-wide
binding sites of the TRs. d TRAPT predicts the upstream regulatory potential
associated with the query gene. First, epigenomic samples are grouped based on
their correlation with the query gene vector. Then, the teacher model extracts
featuremaps to guide the studentmodel in selecting non-redundant samples using
SGL constraints. Finally, a nonlinear neural network model is retrained to generate
anupstream regulatorypotentialmatrix. eThepredictedmatricesof the regulatory
potential associated with the genome-wide binding sites of the TRs, the regulatory
potential of the target gene cis-regulatory elements, and the TR regulatory
potential are integrated through matrix operations to obtain the I-RPmatrix. f The
AUC scoreof each TR sample in the I-RPmatrixwasfirst computedwith thequeried
gene set. The TR AUC scores from all epigenetic groups were integrated to derive
the final activity score for each TR.
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regulatorypotential signals corresponding to the epigenomic samples.
Given the excellent performance of graph convolutional neural net-
works in network optimization and node information aggregation.
Therefore, we reformulated the regulatory potential prediction pro-
blem into anetwork optimization task.With the input of the Epi-RP and
TR-RP matrices generated in step 1, the k-nearest neighbors (kNN)22

algorithmwas applied to construct a heterogeneous network between
the TRs and epigenomic samples (e.g., CD4 + , CD8+ H3K27ac/ATAC-
seq samples), which served as the initial epigenomic regulatory net-
work (ERN). The edges in this network represented the potential tis-
sue/cell type-specific associated regulation. This network is then
optimized through a multi-modal knowledge distillation model,
referred to as the D-RP model. Based on the network, we developed a
multi-modal epigenome guided knowledge distillation model, named
the D-RP model, to optimize the initial ERN and aggregate the epige-
netic regulatory potential score. Specifically, the constructed reg-
ulatory potential matrix was input into the teacher model, a
conditional variational autoencoder (CVAE), to learn distributionally
smoothed joint embeddings of TR and epigenome samples by inte-
grating multi-modal features. Concurrently, the constructed ERN was
used as input for the studentmodel. Themodel employed a variational
graph autoencoder (VGAE) to learn low-noise, cross-modal, and dis-
tributionally unified representations. During training, the student
model’s parameters were constrained by the teacher model’s omics
discrimination knowledge, enabling the student model to further
smooth its shallow embedding representations (Supplementary
Fig. 3d). This constrained learning approach enhances the model’s
robustness against overfitting and strengthens its generalization abil-
ity. The output of this step is the D-RP matrix, which represents the
aggregated activity of regulatory elements near gene regions.

Inspired by an effective strategy that select important epigenomic
samples fromdata containingnoise and integrating them11,12, in the third
step, we developed the U-RP model, a knowledge distillation model
constrained by low-dimensional epigenomic embeddings, to infer the
regulatory potential of target gene cis-regulatory elements. The U-RP
model takes the Epi-RP matrix and a queried gene set as inputs. The
teacher model generates robust low-order representations of epige-
nomic data, while the student model learns these representations with
constrained weights, enabling the selection of key epigenomic
samples23. During training, the teacher model extracts regulatory
potential features associated with the queried genes, providing soft
labels for the student model. Subsequently, the student model per-
forms key epigenomic samples selection by learning these soft labels
using a network architecture equipped with sparse group lasso (SGL)24.
By grouping the matrix of regulatory potentials based on the SGL
according to its relevance to the queried genes, the student model
imposed sparsity-related constraints both within and between groups.
Sampleswithin a group representedprofiles of highly similar regulatory
elements that may contain highly redundant samples. Unlike most lin-
ear methods of epigenomic sample selection, the U-RP model
employed a nonlinear deep learning strategy, incorporating sample
similarity constraints to reduce redundancy. This enabled precise
selection of non-redundant, non-linearly combined epigenomic sam-
ples. The selected samples’ RP was used to construct a multi-layer
neural network, with the fitted potential serving as the U-RP model’s
output. The output of this step is the U-RP vector, which contains
context-dependent information about chromatin accessibility (ATAC)
and activity states (H3K27ac) associated with the queried genes.

The final step integrates the outputs of the D-RP and U-RPmodels
to estimate TR activity. The input for this step includes the TR-RP
matrix, D-RPmatrix and U-RP vector. We then obtained the integrated
regulatory potential (I-RP) of both modalities through the element-
wise addition of the normalized TR-RP matrix to the D-RP matrix, fol-
lowed by its element-wise multiplication with the U-RP vector. We
subsequently quantified the association between each TR within both

modalities and the set of queried genes by using the area under the
ROC curve (AUC)10. Finally, The RP scores of the corresponding TRs
from both modalities were merged to obtain the final, combined RP
score. In summary, TRAPT integrated the regulatory potential of
genome-wide binding sites of TRs and the regulatory potential of
target gene cis-regulatory elements to infer the key TRs that regulate
the queried gene set.

TRAPT demonstrates state-of-the-art performance on bench-
mark datasets
The performance of TRAPT was assessed using the “Target TR rank”
metric, which evaluates the algorithm’s ability to predict the ranking of
transcriptional regulators based on their regulated gene sets. For
instance, when analyzing differentially expressed genes in a GATA6
knockout experiment, a higher ranking for GATA6 indicates better
algorithm performance. To conduct a comprehensive evaluation, we
integrated 570 TR knockdown/knockout datasets from the KnockTF
database (Supplementary Note A.1 and Supplementary Data 5). After
performing quality control, processing, and differential expression
analysis, the top-ranking upregulated and downregulated genes were
selected from each RNA-seq dataset as inputs to TRAPT. The perfor-
mance was then evaluated by analyzing the ranking of the target
transcriptional regulators.

We compared TRAPT with several methods that use gene sets as
inputs, including Lisa, BART, and i-cisTarget, which uses TR-ChIP-seq
data as the background. Moreover, we evaluated the conventional
method of enrichment analysis, ChEA3, which primarily uses TR-
related gene sets as its background (Supplementary Data 6). We
comprehensively assessed the performance of the models by using
various criteria, including the numbers of the top-10 and top-N TFs
recovered, and their overall performance in terms of TF recovery.
TRAPT delivered results thatwere 13% better than those of the second-
bestmethod (i.e., Lisa) in terms of the number of top-10 TFs recovered
(Fig. 2a). Compared with the classic i-cisTarget method, its perfor-
mance in predicting the top-10 TFs improved by over 200%.Moreover,
TRAPT was significantly superior to conventional approaches to
enrichment, such as ChEA3, which underscores the advantages of
models predicated on the binding of transcription regulators. We
subsequently calculated the number of correctly predicted TFs from
cutoff ranks 1 to 10 at various thresholds, and assessed the perfor-
mance of the models by using the AUC (Fig. 2a). TRAPT clearly deliv-
ered the best predictive performance (AUC, 0.643). Additionally, the
mean reciprocal rank (MRR)25 results (Fig. 2a) showed that the overall
performance of TRAPT (MRR, 0.067) was superior to that of Lisa by
18% (MRR, 0.057), and to that of BART by 76% (MRR, 0.038). These
results demonstrated TRAPT’s superior ability to predict TFs.

While previousmethods have primarily focused on predicting the
activity of TFs, the targeted collection of high-quality ChIP-seq data for
transcriptionTcoFs andCRs inour approach (see theMethods section)
enabled TRAPT to provide a more comprehensive prediction of var-
ious types of TRs. To conduct a deeper comparison, we evaluated the
performance of the methods across TF, TcoF, and CR subsets. We
found that TRAPT significantly outperformed currently available
methods in predicting the TcoFs and CRs (Fig. 2b, c). We observed a
significant decline in Lisa’s performance in predicting TcoFs compared
with its performance in TF prediction (where it was second best;
Figs. 2b and Supplementary Data 8). This occurred possibly because
Lisa contains extensive data onTFs andCRs, but is lacking inTcoFdata.
Moreover, TRAPT’s performance in predicting chromatin regulators
far surpassed that of Lisa (Fig. 2c). Its significant advantages in pre-
dicting TFs, CRs, and TcoFs was attributed to its use of a multi-stage
strategy of fusion aswell as its extensive library of TRs and epigenomic
backgrounds.

TRAPT’s superior performance was not solely due to its use of
additional background data on TRs. To illustrate this, we provided
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TRAPT as well as competing methods (Lisa and BART) with the same
background data on TRs from the Cistrome database, and used
KnockTF data as the benchmark. TRAPT outperformed Lisa by 30%
and BART by 85.7% in terms of overall performance, even when using
the same background data (Fig. 2e). Additional experimental analyzes
were conducted on the TRAPT–Cistrome strategy to reinforce our
conclusions. Specifically, we assessed the performance of TRAPT
across three categories: TF, CR, and TcoF. TRAPT outperformed Lisa
by 30.8% and BART by 115.7% in the top-10 ranking of TFs based on
AUC scores (Supplementary Fig. 2b). We evaluated the overall per-
formance of TRAPT for CR and TcoF, on which it surpassed Lisa by
198.4% and BART by 50.7%, respectively (Supplementary Fig. 2b). We

also validated the methods using Lisa’s benchmark dataset and the
same background data as the competing methods. The results also
showed that TRAPT delivered the best performance (Fig. 2f).

We subsequently used target genes derived from differential
expression and the binding of TFs, respectively, to explore the per-
formance of different methods across various protein families. When
using data on the target genes from TR knockout/knockdown and TR
ChIP-seq, the results showed significant discrepancies for certain
protein families (Fig. 2d and Supplementary Fig. 2a). For example, the
performance on the TR knockdown/knockout datasets was notably
superior for CP2- and RXR-like families compared with that on the
datasets of TFbinding,while the opposite outcomeswereobserved for
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Fig. 2 | Evaluation of TRAPT and competing methods on TR knockdown/
knockout and TF binding datasets. a (1) The number of TFs accurately identified
by different methods, where the x-axis represents the number of target TFs ranked
within predictions of the top 10 by each method, and the y-axis represents the
different methods considered: TRAPT, Lisa, BART, i-cisTarget, and ChEA3. (2) Line
graph depicting the accurate prediction of TFs in knockdown/knockout experi-
ments by various computationalmodels, where the x-axis represents the number of
target TFs ranked within predictions of the top N by each method. The upper-left
corner shows the area under the curve (AUC) for each method. (3) Bar graph
showing the MRR scores of the TFs, with higher scores reflecting superior perfor-
mance. b, c Subsequent panels maintain the formats of the panels (a), and extend
the analysis to TcoFs and CRs to demonstrate the predictive capability and

accuracy of each method. d The MRR scores for protein families from the TR
knockdown/knockout datasets, with red indicating the upregulated set and blue
denoting thedownregulatedset. The intensity of each color signifies themagnitude
of the score. eAssessment of the performance of threemethodsonTR target genes
from the KnockTF benchmark dataset (n = 1140), by using only the TR background
library derived fromCistrome. fAssessment of the performance of fivemethodson
TR target genes from the Lisa benchmark dataset (n = 124), using only the TR
background libraryderived fromCistrome. The boxplot illustrates the scaled ranks
of the target TRs according to different models. Middle line inside each box
represents themedian, upper and lower bounds of the box represent the third and
first quartiles, respectively. P-values are calculated by the two-sided T-test without
adjustments.
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families such as zf-C2H2, IRF, THR-like, and CSD. This difference was
likely due to secondary transcriptional effects that occurred as a result
of perturbations to the TRs, which were not directly linked to the
original TFs26. The results also indicated the potential for substantial
impacts from secondary effects. Finally, a potential issue thatmayarise
due to the vast amount of TR and epigenomic data was the slow speed
of the algorithm.We benchmarked the runtimes of the TRAP, Lisa, and
BART tools to account for this (Supplementary Fig. 1d). TRAPT sur-
passed the Lisa and BART algorithms in terms of speed, particularly in
predicting the activity of individual TRs (Supplementary Fig. 1e).

Multi-stage fusion strategy boosts prediction of transcriptional
regulators
We conducted extensive ablation tests to investigate the potential
benefits of a multi-stage fusion-based strategy for predicting TRs. The
U-RP model simulated the regulatory potential of target gene cis-
regulatory elements to capture their context-specific epigenetic state.
When the U-RP model was removed from our method, there was a
significant decline in the overall performance of themethod (Figs. 3a, b
and Supplementary Fig. 3f). This showed that the U-RP model reason-
ably represented the epigenetic state of the set of input genes. The
D-RPmodel predicted the epigenomic profile corresponding to the TR,
and considers the TR’s preference for the genome under specific
conditions. Our approach was unique in that it considered the activity
of TR-related genome-wide binding sites. By combining the regulatory
potential of TRs with that of the elements to which they bind, our
method provided a comprehensive context-specific insight into TR
function. To test its usefulness, we removed the D-RP model, and
subsequently observed a significant decline in the overall performance
of the method (Fig. 3a). This further demonstrated that accounting for
the activity of regulatory elements in TR binding was highly effective in
improving predictive performance. Furthermore, we were able to dis-
cern the regulatory preferences of each TRby calculating the ratio of its
binding to distal enhancers. We thus developed specific regulatory
potential models for each TR to describe their regulatory patterns
(Supplementary Note A.6). Upon removing the TR-specific model of
the regulatory potential, the overall performance of the basic model of
regulatory potential declined in comparison with that of the specific
model of regulatory potential (Figs. 3d and Supplementary Fig. 2d).

TRAPT integrates multiple epigenomic features to predict the
final TR activity. To gain a deeper understanding of the capabilities of
each epigenomic module within TRAPT, we evaluated its predictive
performance on target TRs. The results showed that the TRAPT-
H3K27ac and TRAPT-ATAC epigenetic models exhibited superior
predictive power for the upregulated and downregulated sets,
respectively (Fig. 3g). Moreover, a significant drop in overall perfor-
mancewas observedwhen all epigeneticmodules were removed, such
that only the peak-in-promotermodel remained (Fig. 3g, h). Moreover,
the overall performance of the model declined as each epigenetic
modulewas gradually removed (Fig. 3h). Thesefindings suggested that
TRAPT effectively integrated features from different epigenomic
modules to deliver unbiased predictive performance. In further abla-
tion experiments, we found that compared to the results obtained
without knowledge distillation (NKD), the model using knowledge
distillation (KD) demonstrated an improvement of 5.4% on the
KnockTF benchmark dataset (Fig. 3c) and an improvement of 7.9% on
the Lisabenchmarkdataset (Fig. 3e). For the local performancemetrics
in predicting the top ten TRs, the KD group significantly outperformed
theNKDgroup, with anAUC score exceeding that of the NKDgroupby
8 percentage points (Fig. 3e). By dividing the data into training and
validation sets for the D-RP and U-RP models, a rapid decrease in the
losses on both sets was observed (Supplementary Fig. 2c and Sup-
plementary Fig. 3a), with and without knowledge distillation. Mean-
while, the D-RP student model converged more quickly with
knowledge distillation and achieved higher final accuracy

(Supplementary Fig. 3b). These results demonstrated that the use of
knowledge distillation did not lead to model overfitting.

We inputted the TR-RP and Epi-RP matrices to generate a ground
network of TRs and epigenomes by using the kNN algorithm. The D-RP
model was designed to optimize the links between the TRs and epi-
genomes based on the observed links, while also restoring missing
links. We thus evaluated the D-RP model based on its capacity for link
prediction. The observed links were divided into training, validation,
and test sets to simulate themissing links. By training themodel on the
training set and then checking the recovery ofmissing links on the test
set, the ability of the D-RP model to infer the relationship between the
TRs and epigenomes were evaluated. We observed that the losses
incurred by both the teacher and student networks on the validation
set decreased rapidly during training (Supplementary Fig. 3a), and
their values of the area under the receiver operating characteristic
(auROC) curve and the area under the precision-recall curve (auPRC)
finally reached 0.81 and 0.84 on the test set, respectively (Supple-
mentary Fig. 3c). Given the potential for a significant number of false-
negative connections in empirical scenarios, we masked varying pro-
portions of links to evaluate the stability of the model under different
conditions of missing data. The results demonstrated that as the
number of masked edges increased (up to a maximum of 15%),
the recovery-related performance of the model remained robust, with
the auPRC exceeding 0.82 and the average precision (AP) exceeding
0.8 (Supplementary Fig. 3e). The recovery-related effect of the model
was thus satisfactory, and reflected the stability of the D-RP model in
caseofmissingdisturbances.We subsequently tested theperformance
of the U-RP model. It is designed to predict cis-regulatory profiles
based on the queried gene sets and the Epi-RP matrix. We observed a
rapid decline in the loss of the U-RP model on both the training and
validation sets, regardless of whether knowledge distillation was used
(Supplementary Fig. 2c andSupplementary Fig. 3a). A key challenge for
the U-RP model is to select important epigenomic samples from
redundant data, as they are expected to best represent the epigenetic
state of the current context-dependent gene set. To address this
challenge,we computed theperformanceof themodel under different
scenarios of sample selection. We observed that the rate of improve-
ment in its performance significantly decreased when 10 features were
chosen. This finding aligns with the conclusions of past research12

(Supplementary Fig. 3g).
Finally, we compared the performance of TRAPT on upregulated

and downregulated gene sets, and found that its predictions were
better for downregulated than upregulated sets (Fig. 3f). This result
indirectly proved that transcriptional activators were more common
than transcriptional repressors7 (Supplementary Fig. 3g). We also
found thatmost TRs either acted as either transcriptional activators or
repressors,with a few, such as CTCF, NANOG, FOXA1, and ESR1, having
dual functions (Fig. 3i). In conclusion, TRAPT accurately predicted
transcriptional activators, repressors, and dual functions.

TRAPT predicts key transcriptional regulators in the ESR1
knockdown study
ESR1 is a key transcriptional factor associated with the ER-positive
subtype of breast cancer, and significantly influences its development
and progression by mediating the aberrant expression of numerous
downstream risk-related genes. To validate TRAPT’s ability to identify
key TRs in disease, we applied it to a gene set derived from human
MCF7 ER+ breast cancer cells subjected to siRNA-mediated ESR1
knockdown.When given the differential gene set before and after ESR1
knockdown (Supplementary Fig. 4a, Supplementary Note A.2 and
Supplementary Data 9), TRAPT accurately predicted the transcription
factor ESR1 as occupying rank 1 in the downregulated gene set and
rank 17 in the upregulated gene set (Fig. 4a). This result highlights
ESR1’s dual role in both activating and repressing genes in breast
cancer27. Moreover, TRAPT identified the other top-ranking ESR1
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associated with cancer-related transcription factors, transcription co-
factors, and chromatin regulators such as FOXA1, EP300, and MED1
(Figs. 4d and Supplementary Fig. 4b). For example, GATA3 is a deter-
minant transcription factor in mammary luminal cell fate28. The pio-
neer factor FOXA1 influences the onset and progression of breast
cancer by modulating genomic accessibility29. The histone acetyl-
transferase EP300 acetylates ESR1, enhancing the expression of ESR1

target genes in breast cancer cells30. Furthermore, the top-ranking TRs
from the STRING31 database were involved in high-frequency interac-
tions with one another (Fig. 4b). The co-expression analysis of the
TCGA32 breast cancer dataset also revealed a strong relationship
among the TRs (Figs. 4c, Supplementary Note A.3 and Supplementary
Data 10), particularly GATA3, FOXA1, and ESR1. We also detected the
same phenomenon in an analysis of GTEx breast tissue samples
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(Supplementary Fig. 4c and Supplementary Note A.3). Overall, TRAPT
successfully identified ESR1 and associated transcription cofactors and
chromatin regulators, as well as the potential interactions between
these proteins and their genomic binding patterns, to validate the
efficacy of TRAPT.

The D-RP score reflects the epigenetic status of the TR. We com-
bined it with the regulatory potential of the TR to better represent its
activity. In theory, representations of TRs that incorporate epigenetic
information should be able to clearly distinguish between the genes
that they regulate. To validate this, we categorized the D-RP scores of
the identified TRs into the queried genes and a background gene set.
The top-ranking TRs, including the transcription factor ESR1 as well as
its associated co-factors and chromatin regulators, scored significantly
higher on the queried gene set than on the background gene set. ESR1
was themost significant among the TRs in both theATAC andH3K27ac
contexts (ATAC: p = 3.3e-38, H3K27ac: p = 8.6e-34), indicating thatTRAPT
effectively captured the epigenetic information of ESR1 in cancer.
Moreover, the importance of other top-ranking TRs decreased with
descending rank, including for NCOA3, NIPBL, and FOXA1 (Figs. 4e and
Supplementary Fig. 4d). Notably, HDGF was at the bottom of the
predictive rankings, with significantly lower importance compared to
other TRs (ATAC: p-value = 0.449, H3K27ac: p-value = 0.046). These
findings showed that the D-RP scores of TRs could be used to accu-
rately discriminate between the genes that they regulate. To further
validate the predictive capability of the interpolated I-RP scores, we
constructed activity profiles of both interpolated andnon-interpolated
TRs. We observed that the top-ranking TRs with high I-RP scores yiel-
ded stronger signals for the corresponding queried gene sets (Fig. 4g).

ESR1 is capable of binding to enhancer elements that regulate
distal target genes, such as ERα-occupied super-enhancers (ERSEs)33,
and TRAPT leverages distal information through specializedmodels of
regulatory potential. To further investigate and predict the char-
acteristics of genomic binding of the TRs, we categorized the enhan-
cers near the queried genes into distal and proximal enhancers, and
plotted the profile of the enhancer of eachpredictedTR. Thepredicted
TRs upstreambound significantlymore often in enhancer regions near
the queried genes than in the background enhancer regions (Fig. 4f).
Conversely, the predicted downstream HDGF bound less often in
enhancer regions near the queried genes than in the background
enhancer regions. Our analysis demonstrated a strong preference for
GATA3 (proximal p-value = 9.7e-120 <distal p-value = 1.4e-62) and FOXA1
(proximal p-value = 2.0e-51 <distal p-value = 5.4e-22) to bind proximally
to the genes, while ESR1 and EP300 did not exhibit a comparable
preference. Finally, we visualized the tracks near several significantly
downregulated, differentially expressed genes for ESR1, GATA3,
FOXA1, EP300, and HDGF (Fig. 4h). All the predicted upstream TRs
exhibited conspicuous patterns of binding near the genes, and tracks
of the top 10 predicted epigenomic samples highlighted a significant
enrichment in regulatory elements near the ESR1 binding sites.

Moreover, similar patterns of genomic binding in the top predicted
TRs, while no such pattern was evident in HDGF, which was predicted
to be at the bottom (Fig. 4f). These findings further substantiated the
reliability of TRAPT in predicting TFs as well as the associated tran-
scriptional co-factors and chromatin regulators.

TRAPT predicts functional transcriptional regulators in post-
GWAS analysis of Alzheimer’s disease
Genetic variations at specific DNA positions within the binding sites of
TFs can alter their binding affinity, influencing gene expression and
cellular processes. In light of this, we applied TRAPT to cases of Alz-
heimer’s disease (AD) with the aimof identifying the key TRs impacted
by the causal variants. To this end, we used gene sets associated with
ADaspredictedbyMAGMA34, a tool designed to infer disease gene sets
from GWAS-based summary statistics as inputs to our algorithm
(Supplementary Data 11). We then conducted a binding analysis of the
disease-associated TRs predicted by TRAPT, with the significant causal
variants detected through fine mapping based on the GWAS (Fig. 5a).
Integrating GWAS data with TRAPT’s predictions enabled us to
demonstrate its ability to identify key TRs impacted by causal variants.

Specifically, we retrieved a GWAS dataset from causaldb35, con-
sisting of a sample of a European population (n = 408,942)36, as the
input for the fine mapping. We subsequently performed co-
localization analysis on the disease-associated TRs and the predicted
causal variants (Figs. 5a, Supplementary Note A.4 and Supplementary
Data 3). Of the 305 SNPs bound by the top 25 predicted TRs of TRAPT,
68.2% belonged to AD-related causal variants (hypergeometric test
p-value = 2.5e-12). Conversely, of the 106 SNPs bound by the bottom 25
TRs, fewer than half were causal variants (hypergeometric test
p-value = 0.971) (Fig. 5b). This indicated that TRAPT’s higher-ranked
TRs were more closely associated with AD. To further investigate the
relationship between individual TRs and AD, we conducted a more
detailed co-localization analysis of the binding of each AD-related TR
to the causal variants (Fig. 5c). The results revealed that the top-
ranking TRs, such as SPI1, RELA, and REST, generally had a higher
binding affinity for causal variants than for background variants. For
example, SPI1, ranked first according to the predictions made by
TRAPT, intersected with 71 causal variants and only 24 background
variants (hypergeometric testp-value = 3.6e-4). RELA, ranked secondby
TRAPT, intersected with 75 causal variants and only 33 background
variants (hypergeometric test p-value = 2.7e-3; Supplementary Data 2).
We observed that the top-ranking TRs generally exhibited stronger
associations with AD-related causal variants. To assess this observa-
tion, we developed a statistical test based on the GSEA37 algorithm to
verify the reliability of the predicted top-ranking TRs from a statistical
perspective (see the Methods section). We found that the top-ranking
TRs were significantly enriched (Fig. 5d; p-value = 2e-3), demonstrating
that TRs that were ranked higher were more likely to bind to causal
variants than those that were ranked lower.

Fig. 3 | Evaluation of the performance of TRAPT in TR knockdown/knockout
experiments on differential gene sets from the KnockTF database. a The bar
chart represents MRR scores of themodel after eachmodule was removed. Higher
scores reflect better performance.bThe groupedbar chart shows the first, five, and
10 highest-ranking TRs that were correctly predicted.We progressively removedU-
REA, D-RP, and the specific TR-RP model to assess the impact of each module on
model performance. c The bar chart represents MRR scores of TRAPT, where
“TRAPT-KD” refers to the use of knowledge distillation and “NKD” refers to the
model without knowledge distillation. d The number of target TRs accurately
identified among the top 10 using the specific and basic regulatory potential
models. e Evaluation of the performance of the KD-TRAPT model and the NKD-
TRAPT model using Lisa benchmark data. f Sunburst chart displaying the MRR
scores of all TRs in the upregulated and downregulated gene sets. The top-ranking
TR is highlighted. g The scatter plot, where the size of the points represents the
normalized MRR scores of target TRs. The right side displays the normalized MRR

scores for the upregulated and downregulated groups in the TRAPT-H3K27ac
epigenetic model and the TRAPT-ATAC epigenetic mode. The left side of the plot
shows the normalized MRR scores of TRAPT along with the peaks in the promoter
model for the upregulated and downregulated groups. Red and blue dashed lines
correspond to the upregulated and downregulated sets, respectively. The gray
dashed line indicates the baseline reference,while points overlappingwith the lines
represent consistent performance between the two methods. h Bar chart repre-
senting MRR scores of the model after the removal of each epigenetic feature. The
last bar represents the peak-in-promoter model once all epigenetic modules of
TRAPT had been removed. i Scatter plot illustrating the predicted ranking of the
TRs. The left side represents upregulated gene sets while the right side represents
downregulated gene sets. CTCF, NANOG, FOXA1, and ESR1 had high ranks in both
the upregulated and downregulated gene sets, indicating their potential dual
functions as transcriptional activators and repressors.
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To identify the disease-associated causal variants bound by TRs
predicted by TRAPT and explore their potential associations, we then
analyzed the co-localization between the causal variants and the pre-
dicted binding sites of the TRs. We retained the overlapping causal
variants and ranked them based on FINEMAP38 scores. Of the 1,000
causal variants selected, 208 were associated with TR binding, with
rs10119 ranking as the top variant (Fig. 5c). Functional annotation
analysis using VARAdb39 revealed that rs10119 was regulated by mul-
tiple super-enhancers covering several important genes nearby,
including APOE, TOMM40, and APOC1, and was a risk-related SNP for
AD.We subsequently analyzed the co-localization between rs10119 and

the predicted TRs. Notably, we observed binding in nine of the top-
ranking 25 TRs in the 1 kB regionupstreamanddownstreamof rs10119,
whereas the lower-ranked TRs did not exhibit any binding in these
regions (Fig. 5e). A previous study has thoroughly validated the effect
of REST, a transcription factor, as a universal featureof normal aging in
human cortical and hippocampal neurons. It can also protect neurons
fromoxidative stress and amyloid β-protein toxicity.We observed that
REST ranked high in TRAPT’s predictions, and previous studies have
demonstrated its crucial role in AD development. It inhibits genes that
promote cell death and AD pathology, while inducing the expression
of genes associated with stress response40. TRAPT identified top-
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ranking TRs like SPI1, STAT1, RELA, HDAC2, JUND, and HNF4A, which
are causally associated with AD41–44. We found that rs10119 was located
exactly at a critical position in the chromatin loop structure, withmany
important TRs predicted by TRAPT binding in the upstream and
downstream. Notably, we observed a substantial number of binding
sites of our predicted TRs at TOMM40, APOC1, APOE, and CEACAM16
(Fig. 5f and Supplementary Fig. 5b). These genes are known to sig-
nificantly influence the onset of AD45–48. Meanwhile, we analyzed AD-
related H3K27ac ChIP-seq datasets49 to show that the binding peaks of
the TRs near the rs10119 locus significantly overlapped with the
H3K27ac profiles selected by the model, and notably overlapped with
the H3K27ac profiles associated with AD. The model-selected samples
were not from AD, indicating that in the absence of epigenomic data
from the same disease context, it chooses samples with similar epi-
genetic signals as substitutes. This demonstrated the potential of
TRAPT for application to diseases that it has not previously encoun-
tered. Moreover, several predicted TRs were closely associated with
epigenetics, including HDAC2 and ZBTB33 (also known as Kaiso).
Finally, we additionally analyzed another high-scoring causal variant,
rs75627662, and observed extensive binding of top-ranked predicted
TRs (Supplementary Fig. 5a).

TRAPT identifies transcriptional regulators associated with cell
fate and tissue identity
TRs are crucial for coordinating gene expression programs, driving
cell-fate decisions, and orchestrating intricate biological processes
during cell differentiation and development. The binding affinity of
TRs to proximal or distal cis-regulatory elements of downstream
marker genes plays a crucial role in maintaining cell identity. To
highlight TRAPT’s applicability to cell development, we determined its
ability to capture key regulators for marker gene sets of a single cell
dataset. Briefly, we reprocessed scRNA-seq data on human hemato-
poietic stem cells50 (Supplementary Note A.5), visualized the first two
principal components (Fig. 6a), and identified marker TRs between
lineages of differentiation by using the classic model of landscapes of
hematopoietic differentiation (Figs. 6b and Supplementary Fig. 6a).
We then used TRAPT to identify the top five driving regulatory factors
for different cell-fate directions of commitment (Fig. 6c). A total of 42
TRs were identified as potential key regulators of blood cell differ-
entiation. To validate the advanced predictive ability of our tools, a
systematic analysis of these 42 TRs was conducted. Notably, 29 are
known to play regulatory roles in hematopoietic lineage development
(Supplementary Table 1), with 10 TRs (log2FC >0.5 and FDR <0.05)
exhibiting patterns of differential expression across differentiated
lineages in the scRNA-seq dataset (Fig. 6c). The remaining significant
portion of the TRs, while not classified as differentially expressed TRs,
still played a critical role in the process of differentiation. Furthermore,
we observed multiple TRs appearing across various lineages of dif-
ferentiation, including EP300, SMAD1, LYL1, SPI1, LMO2, and TAL1

(Supplementary Fig. 6b). In addition, some TRs were found exclusively
in single lineage branches. For example, STAT4 was identified in the
LMPs−NK cell lineage branch as a known gene-regulating intracellular
signal. Deleting STAT4 in NCR1-expressing cells results in impaired
terminal differentiation of NK cells51. TCF4 is a key transcription factor
in the LMPs-pDC lineage branch, crucial for pDC development52. We
also applied TRAPT to human embryonic stem cells53. Following
dimension reduction and clustering, the cells were categorized into six
main subgroups (Supplementary Fig. 6c). We identified marker genes
for each differentiated cluster and the undifferentiated H1 and H9
clusters. Using TRAPT, we analyzed these genes and identified the key
TRs for cell-fate decisions in each differentiated cluster. (Supplemen-
tary Fig. 6d). In the differentiation of H1 into trophoblast-like cells (TB
cells), such TRs as GATA3, TFAP2A, and GATA2 exhibited higher
activity. Notably, GATA2 andGATA3 have been shown to be selectively
expressed in trophoblast progenitor cells during early mouse devel-
opment, and directly regulate key genes54. TRs like GATA6, SMAD2,
and EOMES showed elevated activity in the differentiation of H1 into
definitive endoderm cells (DE cells). Previous studies have revealed
that GATA6 works with EOMES and SMAD2 to regulate the gene reg-
ulatory network associated with human definitive endoderm55. TRAPT
accurately identified driver regulators of cell-fate decisions, with a
majority of these being cell-lineage-specific TRs that have been vali-
dated in the literature.

Subsequently, we analyzed RNA-seq data from 30 distinct normal
human tissues retrieved from GTEx56, and used limma57 to identify the
top 500 differentially expressed genes for each tissue (Supplementary
Note A.5), and used them to predict the key TRs. Most regulators of
tissue-specific markers were predicted as expected. For instance,
MED1, TBX5, and GATA4 were enriched in the heart tissue. MED1 plays
an important role in super-enhancer formation and maintenance,
while GATA4 broadly occupies cardiac super-enhancers along with
TBX5 to determine cardiomyocyte contractility, calcium handling, and
metabolic activity58. AR, FOXA1, andHOXB13were identified as the top
three TRs in the prostate, which is consistent with the role of FOXA1
and HOXB13 in regulating normal AR transcription during prostate
epithelial development, as well as their involvement in oncogenic AR
transcription during prostate carcinogenesis59. Furthermore, certain
tissues shared TRs, such as PPARG and CEBPA in the breast and adi-
pose tissues60,61, and TP63 and GRHL2 in the skin, esophagus, and
vagina tissues62–64, suggesting similarities in predominant cell types
across these tissues. We then integrated the predicted scores of the
top 10 TRs from each tissue for hierarchical clustering. Intriguingly,
TRAPT identified similarities between tissues (Fig. 6c). For instance,
the breast and adipose tissues formed a cluster owing to their pre-
dominant composition of adipocytes. The tissues from the uterus,
ovary, and cervix formed a cluster because their surface and interior
were covered by epithelial cells. We also generated a list of the 10most
important predicted TRs for each tissue type (Supplementary Data 4).

Fig. 4 | Illustration of the TRAPT framework by using downregulated genes
from ESR1 knockout experiments in cases of gastric cancer and MCF7 breast
cancer. a Scatter plot displaying values of the average normalized activities of 1358
TRs for the upregulated and downregulated gene sets. The size of each data point
represents the magnitude of the average normalized activity, while the colors
represent different categories of TRs: TFs (blue), TcoFs (green), and CRs (yellow).
b This network diagram was derived from predictions of protein–protein interac-
tions in the STRING database. The size of nodes represents their degrees, and the
thickness of edges represents the probability of interaction. c This heat map was
derived from results of the co-expression analysis of TCGA breast cancer, with the
depth of the colors indicating the degree of correlation. d Bar chart showing the
normalized activity scores of the TRs. ESR1, GATA3, FOXA1, and EP300were among
the top 10 TRs, while HDGF was ranked last. ESR1 had the highest score.
eComparison of D-RP scores between the queried (n = 494) and background genes

(n = 25646), revealing significant differences for all TRs except HDGF. Middle line
inside each box represents the median, upper and lower bounds of the box
represent the third and first quartiles, respectively. P-values are calculated by the
two-sided Mann-Whitney U test without adjustments. f Aggregated profiles of
enhancer marks. Except for HDGF, the marks of all TRs near the queried gene were
significantly higher than those near the background gene. P-values are calculated
by the two-sided Kolmogorov-Smirnov test without adjustments. g Heat maps of
the activity matrix before and after integrating REA scores, demonstrating the
differentiation between the queried and background gene sets. We randomly
selected 10,000 genes for visualization. hGenome browser displaying the tracks of
ESR1, GATA3, FOXA1, EP300, and HDGF near the genes ESR1, GREB1, TFF1, and
CCND1. We selected the tracks of the 10 epigenomic samples with the largest
weights in the reconstructed network for ESR1, shown as ATAC (blue) and H3K27ac
(green) tracks.
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In conclusion, TRAPT efficiently predicted key TRs in the context
of cell fate and across 30 human normal tissues, verifying its ability to
process gene sets obtained from multiple phenotypes or conditional
data, such as cohort-related data. A substantial number of these

predicted TRs have been experimentally shown to have specific roles
in these tissues, further verifying TRAPT’s reliability. TRAPT was a
useful instrument for exploring and understanding the functions of
key TRs in human physiological processes.
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Fig. 6 | Identification by TRAPT of transcriptional regulators associated with
cell fate and tissue identity. a Visualization of principal component analysis (PCA)
derived from scRNA-seq data. b Classic model of the landscape of hematopoietic
differentiation. c Heat map displaying the MRR scores of lineage-specific tran-
scriptional regulators obtained by TRAPT across directions of cell differentiation.
dHeatmap showing the top 100TRs according toMRR scores, predicted byTRAPT

across 30 human tissues. The right side shows the top 10 TRs predicted for each of
the 30 tissues by TRAPT. The TRs for each tissue are ranked in descending order by
theirMRR scores, with different colors denoting distinct tissues. The TRs in varying
colors below the heatmap represent tissue-specific TRs from the top-10 predicted
TRs. The smaller heat maps below highlight important TRs within their respective
tissues.
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Discussion
Transcriptional regulators are essential for modulating gene expres-
sion patterns, coordinating the activation and repression of genes to
maintain cellular homeostasis and guide developmental processes.
Importantly, TR-mediated gene programs have a distinct epigenetic
landscape and act as switches in changes of cell states and disease
phenotypes1,65. However, accurately predicting upstream TRs for any
given gene set with biological meaning (i.e., differentially expressed
genes or marker genes in single cell studies) remains challenging due
to a lack of epigenomic data on TRs inmany cell types. To address this
issue, we proposed a deep learning framework, called TRAPT, that
leverages two-stage knowledge distillation to extract the activity
embedding of regulatory elements. TRAPT can predict the key TRs for
context-dependent gene sets by integrating data from over 20,000
large-scale epigenomes and a comprehensive background knowledge
library of TRs. TRAPT significantly improves the accuracy of TR pre-
dictions on large-scale benchmarkdatasets andoutperforms prevalent
methods such as Lisa, BART, i-cisTarget, and ChEA3 in predicting the
overall ranking of TRs. We also used it to successfully identify key TRs
associated with diseases, genetic variations, cell-fate decisions, and
different types of tissues.

Current methods of TR prediction can be classified into twomain
categories. Thefirst category consists of gene set-basedmethods, such
as Enrichr, TFEA.ChIP, ChEA3, and MAGIC, which use TR-related gene
sets as background data and apply statistical tests like the hypergeo-
metric distribution to calculate TR importance. However, these
methods cannot accurately simulate the binding of TRs and CREs. The
second category, including i-cisTarget, BART, and Lisa, addresses this
issue by simulating TR binding with CREs near genes to predict their
activity. Nonetheless, these methods still have limitations, primarily
their neglect of the binding preferences of TRs. TRAPT represents a
third category of techniques that integrate the cis-regulatory elements
of gene set with the genome-wide binding sites of TRs. Based on 570
TR-related datasets from knockout/silencing experiments and multi-
ple criteria of evaluation, we found that TRAPT, as a method in the
third category, significantly outperformed all other methods in pre-
dicting the overall ranking of the TRs. TRAPT’s significant advantage in
predicting transcription factors, chromatin regulators, and transcrip-
tion co-factors is attributed to its multi-stage fusion strategy and a
comprehensive background library of TRs. Our method had the fol-
lowing advantages: (1) TRAPT used multi-stage fusion to simulta-
neously address the issue of incomplete coverage of the cis-regulatory
profile and TRBP-related problems. (2) Tomitigate the effects of noisy
data, TRAPT applied a feature-based offline framework of knowledge
distillation66 in two stages. During the prediction of D-RP, we intro-
duced VGAE, employing a reparameterization trick to project node
representations into a uniform latent distribution form. By further
incorporating CVAE as a teacher network, we leveraged its advantage
in smoothing the latent space distribution to constrain the initial
embeddings of VGAE, effectively reducing the disparities in the dis-
tribution of aggregated node features. In the prediction step of the U-
RP, the teacher network extracted low-dimensional embedded repre-
sentations of complex epigenomic information related to the queried
gene set and guided the student network in selecting the optimal
epigenetic sample set. The KD model was robust to noisy data, and
significantly enhanced the capability to predict TR activity. It simul-
taneously maintained the speed of the algorithm even when the
amount of TR data was more than twice that covered by the state-of-
the-art algorithm with the highest coverage (Supplementary
Figs. 1b, c). (3) We proposed leveraging graph theory to address the
challenge of predicting the regulatory potential of the TRs at their
genome-wide binding sites, whichwas particularlywell suited for small
epigenomic datasets. To explore the potential advantages of a multi-
stage fusion strategy and knowledge distillation for the prediction of
TRs, we conducted extensive ablation tests. We observed a significant

decline in overall model performance when the U-RP and D-RPmodels
were removed. Similarly, the overall performance of themodel notably
declined when knowledge distillation was eliminated. We evaluated
the D-RP model from the perspective of link prediction. It demon-
strated its capability to reconstruct previously unseen links on the test
datasets. Moreover, the D-RP model maintained stable performance
even when various proportions of links were masked. These results
indicated that it optimized the epigenetic regulatory network.

Using 570 TR-related datasets, TRAPT outperformed state-of-the-
art methods in inferring transcription regulators, especially in pre-
dicting transcription co-factors and chromatin regulators. We also
verified that TRAPT maintained its superior performance even when
ignoring the influence of background data. Our results revealed that
the chromatin regulators, transcription co-factors, and transcription
factors exhibited significant differences in genomic binding pre-
ferences (Supplementary Fig. 7d), highlighting the need to consider
different types of TRs in research. TRAPT successfully identified ESR1
as top-ranking, along with associated transcription co-factors and
chromatin regulators like EP300, in the ESR1 knockout experiment.We
found that the top-ranking TRs exhibited significantly higher scores on
the queried gene set. Notably, ESR1, through its binding to both distal
and proximal enhancers, emerged as the most prominent TR in both
the ATAC and H3K27ac contexts. This finding highlights the D-RP
model’s representation module in TRAPT effectively captured the
epigenetic information related to ESR1 in the context of cancer. TRAPT
also identified TRs causally related to AD near rs10119, with higher-
rankedTRsmore likely locatednear causal SNPs.Weultimately applied
TRAPT to datasets of human hematopoietic stem cells, human
embryonic stem cells, and normal human tissues. It was able to suc-
cessfully predict the critical regulatory factors controlling cell fate,
including STAT4, TCF4, and GATA, as well as tissue-specific regulators
such as MED1, TBX5, and GATA4.

TRAPT provided an informative perspective on integrating the
epigenetic landscape of TRs. However, its performance was still con-
strained by the number of epigenomic samples. To date, TRAPT
encompasses 17,227 TRs (Supplementary Data 1), 1,329 ATAC-seq
samples, and 1,465 H3K27ac samples. Although it uses a comprehen-
sive epigenomic dataset as the background, this does not ensure each
TR can be paired with corresponding epigenomic samples. Tran-
scription factors recruit co-factors to perform their functions, where
the affinity of the co-factors can either enhance or reduce that of the
transcription factors, depending on whether the former is acting as an
activator or an inhibitor. Chromatin regulators also influence tran-
scription factor activity by modifying chromatin structure. Despite
extensive data on co-factors and chromatin regulators, the complex
effects of interactions between TRs are not fully understood. In future
work, we may consider incorporating gene regulatory networks to
simulate the complex interactions within these organisms. We believe
this will further extend the applicability of our model.

In conclusion, TRAPT applied a bidirectional strategy to integrate
the epigenetic landscape to predict key TRs, and is expected to pro-
vide instrumental guidance for future research on and related com-
putational analysis of transcriptional regulation.

Methods
Preprocessing of datasets of epigenomes and transcriptional
regulators
Gene transcription programs are primarily regulated by the biological
activities of transcription regulators, coordinated upstream epigenetic
marks, such as histone modifications, and open chromatin states,
which can establish andmaintain the transcriptional landscape of a cell
in response to various internal and external signals. Moreover, studies
have demonstrated that epigenetic marks can partially simulate the
regulatory shapes of the transcription regulators to fulfill the gaps in
their coverage. Hence, integrating large-scale epigenomic data helps
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understand the cell-specific transcription mechanism of genes. In this
study, we manually curated and processed ~20,000 raw epigenomic
data sets from multiple sources, covering over 1000 tissue and cell
types. All these datasets of epigenomes and transcriptional regulators
provided comprehensive regulatory cues to infer the patterns of gene
expression. We now detail the various methods used to process
the data.

H3K27ac ChIP-seq data. The H3K27ac ChIP-seq datasets were
obtained from SEdb2.0 in previous work by our research group.
Briefly, we manually collected 1,739 samples, including experimental
and control groups, from NCBI GEO/SRA67,68, ENCODE69, Roadmap70,
Genomics of Gene Regulation Project (GGR)69, and National Genomics
Data Center Genome Sequence Archive (NGDC GSA)68,69. We obtained
data on the peak signals of H3K27ac by using the Bowtie71 and
BEDTools72 multicov tools to process the raw data.

Data on chromatin accessibility. The datasets of chromatin accessi-
bility were obtained from ATACdb in previous work by our research
group. Briefly, we manually collected 2,723 samples to cover several
types of tissues or cells from NCBI GEO/SRA, and used the Bowtie and
BEDTools multicov tools to identify signals representing the peaks of
chromatin accessibility.

Data on transcription factors. The ChIP-seq datasets of the tran-
scription factors were obtained from TFTG in previous work by our
research group. Briefly, we manually collected 11,056 samples, cata-
loging a total of 1,218 human TFs. To provide more quality control
information regardingChIP-seq, such as the distribution of promoters,
exons, and the proportion of UDHS, we then used the ChIPseeker73 R
package and BEDTools to compute the distributions of various geno-
mic compositions and the UDHS coverage of each TF.

Data on transcription co-factors. The ChIP-seq datasets of the tran-
scription co-factorswereobtained fromtheTcoFBase inpreviouswork
by our research group. Briefly, we manually collected a list of TcoFs in
mammals from TcoF-DB v274 and AnimalTFDB 3.075. We also collected
4246 TcoF-related ChIP-seq datasets of different types of human cells
and tissues from ReMap, ENCODE, Cistrome76, and ChIP-Atlas77. We
used the liftOver78 tool from UCSC to convert all ChIP-seq peak data
into the hg38 genome assembly. The ChIPseeker R package and BED-
Tools were used to compute the distributions of various genomic
compositions and the UDHS coverage of each TcoF.

Data on chromatin regulators. The ChIP-seq datasets of the chro-
matin regulators were obtained from CRdb in previous work by our
research group (reference). Briefly, we processed 2,591 CR-associated
ChIP-seq datasets from GEO and ENCODE. We identified the binding
regions of the CRs by using Bowtie, SAMtools79, and MACS280, and
calculated the distributions of various genomic compositions, and
determined the coverage of union DNaseI hypersensitive sites (UDHS)
of each TcoF by using ChIPseeker R package and BEDTools.

The large volume of collected data likely contained redundancies
originating from the same sources. We calculated the peak correla-
tions of all TRs, and retained only one of the samples in cases of a
correlation value of one. Through this process of filtering, 17,227
unique peak files of TRs were retained (Supplementary Data 1).

In summary, TRAPT outperforms previously developed tools by
leveraging a more comprehensive and higher-quality dataset. Specifi-
cally, TRAPT comprises 17,227 transcription factor (TR) data items,
which is 2.49 times larger than Lisa’s dataset and 2.16 times larger than
BART’s. Additionally, TRAPT’s chromatin accessibility data, surpasses
the largest available datasets by 1.47 times (TRAPT: 1,329; Lisa: 904).
Similarly, theH3K27acdataset in TRAPT is 1.44 times larger than that of

Lisa, further underscoring its superior data coverage and quality
(Supplementary Figs. 1b, c).

TR and model of epigenomic regulatory potential
The regulatory potential of a gene can be determined by calculating
the activity of cis-regulatory elements (CREs) close to it12. To compute
the TR-RP matrix, we collected peak data on 17,227 TRs from CRdb,
TcoFBase, and TFTG. TRs influence gene expression by binding to
CREs located upstream or downstream of the gene. Therefore, we
focused only on CREs overlapping with TR binding sites to calculate
gene regulatory potential (Supplementary Note A.7). We applied
BEDTools to identify regions of overlap of the CREs for each TR. To
standardize the terminology, we termed these regulatory elements as
potential regulatory elements (PREs). The signal value of each PRE in a
TR sample was defined as a binary value:

PREi =
1 TRboundCREi
0 other

�
ð1Þ

By aggregating the values of signals of the PREs within a range of
100 kB upstream and downstream of the target genes, the regulatory
potential of each gene in each sample was computed to generate the
TR-RP matrix. Each row of this matrix represents a TR, and each col-
umn represents a gene. The regulatory potential of the i-th gene in the
j-th sample was defined as follows:

Rij =
1
K

X
k2Si

ωiksik ð2Þ

where ωik is the regulatory influence of the k-th PRE, located within a
range of 100 kB of the TSS of gene j, and sik is the value of the signal of
the given PRE. The weight of each PRE is defined as:

ωik =
1 x 2 0kb, 10kbð Þ
3

1 + 2e
α xk�dð Þ x 2 10kb, 100kbð Þ

(
ð3Þ

where xk is the distance between the current PRE and the TSS of the
gene, with the hyperparameter d set to 10 kB. The parameter α con-
trols the decay rate of regulatory influence:

α =
ln 2

m � 1
� �
r � d

ð4Þ

where rwas set to 100kB, andm represents theweight of theTR. In this
study, we used the “percentage of intergenic distance” calculated by
ChIPseeker as the proportion of distal enhancers, and incorporated it
as a weight parameter m in the specificity regulatory potential model
for each TR.

To compute the Epi-RP matrix (with rows representing epige-
nomic samples and columns representing genes), we utilized BAM files
from H3K27ac ChIP-seq and ATAC-seq data obtained from SEdb and
ATACdb, respectively. We then applied the BEDTools multicov tool to
count the number of reads on the PREs, and this yielded read signals
for all PREs.

The computations were performed by using the same method as
above, but we set the value of m of each epigenomic sample to 0.01.
Furthermore, we used read signals instead of peak signals to compute
the gene regulatory potential.

Ultimately, we simultaneously applied logarithmic standardiza-
tion to the regulatory potential corresponding to each gene for both
TR and the epigenome:

R0
ij = log Rij + 1

� �
ð5Þ
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Predicting the regulatory potential via upstream transcriptional
regulators
We leveraged a knowledgedistillation (KD)-basedmodel in ourmodule
to guide the student model to learn multi-modal epigenomic features
and optimize the network of epigenomic relationships. KD is designed
to compress and accelerate a given model by transferring knowledge
from a complex model to a simplified one. Overfitting frequently
occurs when making inferences regarding networks of epigenomic
relationships. However, recent studies have shown that using
knowledge-based distillation significantly enhances the performance
of the student model andmitigates issues of model hallucination81. We
proposed using KD to infer the genome-wide binding sites of each TR.
Due to distribution differences between TRs and epigenomes (Sup-
plementary Figs. 9b–e), a simple merger was not feasible. To more
appropriately extract joint representations of the embeddings of the
TRs and epigenomes, we used conditional variational autoencoders60

(CVAEs) as the teacher network. CVAEs can not only master complex
data representations, but also perform well in terms of integrating
multi-modal data13. By incorporating the error in reconstruction and
terms of regularization of the latent variables during training, CVAEs
could learn to distinguish between feature representations. Themodel
was actualized by minimizing the following loss function:

L=MSE X , f Z ,Yð Þð Þ+KL q Z tð ÞjX , Y
� �

jjp Z tð ÞjX
� �h i

ð6Þ

where X 2 Rm×n (m is the number of TR and epigenome samples, and n
is the number of genes) represents the feature matrix assembled by
integrating the TR-RP and Epi-RPmatrices. Specifically, we concatenate
the two types of Epi-RP matrices (H3K27ac and ATAC) with the TR-RP
matrix by samples as the input for the model. Y 2 Rm× 2 is a one-hot
matrix that represents the labels of the two types of omics data.
Specifically, each type of epigenomic data corresponds to different
conditions. In this context, TRAPT integrates two types of omics data,
assigning a label of 0 to TR samples and a label of 1 to epigenome
samples. Ultimately, we obtain a one-hot matrix with a feature
dimension of 2. KL q �ð Þjjp �ð Þ½ � denotes the Kullback-Leibler divergence
between the reconstructed network and the (conditional) prior
network.When the featurematrix and conditionalmatrixwere inputted
to the framework, it generated a low-dimensional joint representation
of the embedding H tð Þ 2 Rm×h (where h is the dimensionality of the
hidden layer) of the TRs and epigenomic samples:

H tð Þ =Relu f X ,Yð ÞW 1ð Þ +b 1ð Þ
� �

ð7Þ

whereW 1ð Þ 2 Rn ×h and b 1ð Þ 2 R1 ×h represent the weights and biases of
the initial layer of the encoder, respectively. The complex network was
represented by the relationship between the TR and the epigenome.
Tomodel this network, we applied VGAE82 as the student network and
selected the 10 epigenomic samples closest to eachTR to construct the
adjacency matrix. We used kNN, with cosine similarity serving as the
distance metric:

Dij =

PN
k = 1XikX jkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k = 1X
2
ik

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k = 1X

2
jk

q ð8Þ

where Dij 2 Rm×m represents the cosine similarity between the i-th TR
and the j-th epigenomic sample. Specifically, the score of each edge in
the network indicates the weight of the currently identified set of
potential regulatory elements that are specific to tissue/cell types for
the TR (with each epigenomic sample corresponding to a set of reg-
ulatory elements). N is the number of genes. We fed X and A into the
model. They passed through the first layer of the GCNencoder to learn
low-dimensional nodal representationsH sð Þ 2 Rm×h. These representa-
tions capture both single-modality information and the relationship

between TRs and epigenomic samples. Given that the input was a
heterogeneous network, it did not contain any information on the
relationship of a single modality with itself. Subsequently, we used the
second layer of graph convolution to generate the mean and variance,
and, ultimately, used a reparameterization trick to derive the new
nodal feature representation Z sð Þ 2 Rm× z (where z is the dimensionality
of the hidden layer in the GCN module). The GCN is expressed as
follows:

H sð Þ =Relu GCN A,Xð Þð Þ ð9Þ

Zμ =GCN A,H sð Þ
� �

ð10Þ

Zσ2 =GCN A,H sð Þ
� �

ð11Þ

Z sð Þ =Reparametrize Zμ,Zσ2

� �
ð12Þ

Finally, the VGAE used an inner product decoder to produce a
reconstructed adjacency matrix:

A0 = Sigmoid Z sð Þ � Z sð ÞT
� �

ð13Þ

The cross-entropy loss function LC is defined as the expectation of
minimizing the discrepancy between the input and output networks:

LD = � E
X

Ai log A0
i

� �h i
ð14Þ

The loss function of distillation LD is defined as:

LD =
1
2n

jjH sð Þ � H tð Þjj ð15Þ

where jj � jj is the Euclidean norm. The final loss function L of the
student network is defined as:

L= LD + LC +KL q Z sð ÞjX ,A
� �

jjp Z sð Þ
� �h i

ð16Þ

where KL q �ð Þjjp �ð Þ½ � is the Kullback–Leibler divergence between the
reconstructed distribution and the prior Gaussian distribution. We
predict the D-RP corresponding to each TR as follows:

D� RPi =

PM
j ωijX ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

j X
2
ij

q ð17Þ

where X is derived from Epi-RP matrix, with Xij represents the
regulatory potential vector of the i-th TR corresponding to the j-th
neighboring epigenomic sample, and ωij signifies the normalized
weight of the edgeof thenetwork for the j-th epigenomic sample of the
i-th TR. M is the number of epigenomic samples. The D-RP matrix
represents the aggregated activity of the genome-wide binding sites of
the TRs near the genes, with higher values signifying a more intense
level of transcriptional activity in the vicinity of the genes.

Predicting the regulatory potential via downstream gene sets
Two primary methods were used to predict target gene cis-regulatory
elements. The first method infers regulatory elements near genes
based on distance, such as the i-cisTarget approach. The second
method used regression to select the epigenomic samples and predict
the landscape of regulatory elements across the entire genome, such
as the MARGE method. However, these methods fail to address epi-
genomic data redundancy and complex nonlinear relationships
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between samples. Inspired by this and several recent studies23,83, we
proposed a KD-based strategy to select themost probable epigenomic
samples associated with the queried gene set. Initially, we calculated
the correlation between the Epi-RP matrix and the queried gene set.
Subsequently, we ranked the epigenomic samples in descending order
basedon themagnitudes of their correlations.Due to the largenumber
of epigenomic samples,many originated from the same tissue, leading
to redundancy. To address this, we empirically partitioned the matrix
into groups of 10 samples. This grouping aimed to cluster similar
epigenomic samples and enforce sparsity within and between groups
to prevent redundancy and overfitting. The grouped Epi-RPmatrixwas
fed to the teacher network. The latter was a neural network comprising
three fully connected layers.Wepredicted the queried vector of binary
genes Z 2 Rn× 1 by using the transposed matrix X 2 Rn×d (where n
signifies the number of genes and d denotes the number of TR sam-
ples) of the Epi-RP matrix. Specifically, each row of the Epi-RP matrix
corresponds to a gene, and each column corresponds to an epige-
nomic sample, with the values in the matrix representing the reg-
ulatory potential scores (see Eq. 2 for calculation details). By
transposing the matrix, we ensure that the input and output dimen-
sions of themodel are aligned. In this process, thequeriedgene setwas
used as the positive set, and we randomly selected 6,000 background
genes as the negative set. To retain more information, we imple-
mented temperature-scaled sigmoid (TSS) as the activation function in
the output layer:

TSS xð Þ= 1
1 + e

�x
t

ð18Þ

where x denotes the input and t represents the temperature. This
functionmaps the input values to anoutput value ranging from zero to
one. As the value of the temperature gravitated toward infinity, the
output of the function approximated the output of a standard sigmoid
function. Conversely, at low temperatures, the output changes more
gradually near zero and one. The final teacher model was represented
as follows:

Y tð Þ =Relu XW 1ð Þ +b 1ð Þ
� �

ð19Þ

Z tð Þ =TSS Y tð ÞW 2ð Þ + b 2ð Þ
� �

ð20Þ

where Y tð Þ 2 Rn×h (h denotes the dimensionality of the hidden layer)
signifies the extracted feature representation of the latent cis-
regulatory profiles associated with the queried gene set. The
corresponding weight matrices and biases between each pair of layers
are W 1ð Þ 2 Rd ×h and W 2ð Þ 2 Rh×d , and b 1ð Þ 2 R1 ×h and b 2ð Þ 2 R1 ×d ,
respectively. The teacher model was trained by minimizing the
following loss function:

L=BCE Z ,Z tð Þ
� �

ð21Þ

where BCE stands for binary cross-entropy, where the teacher model
focuses on constructing the feature space and uses the fitted scores
Z tð Þ as soft labels for the student model, thereby enabling the student
model to concentrate more on the feature selection task. We trained
the student network to predict the low-dimensional feature represen-
tation extracted from the intermediate layer of the teacher network by
feeding the same data to it:

H sð Þ =Relu XW 3ð Þ +b 3ð Þ
� �

ð22Þ

Y sð Þ =Relu H sð ÞW 4ð Þ +b 4ð Þ
� �

ð23Þ

The SGL constraint is used in the first layer of the student network
to select important features of the cis-regulatory profile by “sparsify-
ing” the weight matrix through L2 regularization within groups and L1
regularization between groups:

SGL= λ1jjW 3ð Þjj1 + λ2
Xg2G
g

ffiffiffiffiffiffi
Pg

q
jjW 3ð Þ

g jj
1

ð24Þ

The distillation loss function LD is defined as follows:

LD =
1
2n

jjY sð Þ � Y tð Þjj ð25Þ

The final loss function L of the student network is defined as
follows:

L= λ1jjW 3ð Þjj1 + λ2
Xg2G
g

ffiffiffiffiffiffi
Pg

q
jjW 3ð Þ

g jj
1
+

1
2n

jjY sð Þ � Y tð Þjj ð26Þ

where λ1 and λ2 represent regularization parameters, W 3ð Þ
g is the first

layer weight of variables in group g, Pg is the number of variables in
group g, and Y sð Þ is the output of the student model. We squared and
summed the weights of the first layer W 3ð Þ 2 Rd ×h of the student net-
work as follows:

C =Diag W 3ð Þ W 3ð Þ
� �T� 	

ð27Þ

where C represents the weights of all epigenomic samples. The choice
of sample size may affect prediction results. We selected a varying
number of epigenomic samples based on the weights of the student
network model. The aim was to select the most appropriate sample
size. We conducted multiple training sessions for the model by
selecting different numbers of epigenomic samples and calculated the
auROC to assess the performance of each candidate model. We
determined that 10 epigenomic samples provided a reasonable choice
(Supplementary Fig. 2e). We then trained a neural network model (NN
model) by using the selected epigenomic samples,where the inputwas
represented by X 0 2 Rn×d0. d0 denotes the number of selected epige-
nomic samples. The output was the gene vector Z pð Þ 2 Rn × 1:

Z pð Þ = Sigmoid Relu XW 1ð Þ +b 1ð Þ
� �

W 2ð Þ +b 2ð Þ
� �

ð28Þ

We define the loss function as:

L=
1
2n

jjZ pð Þ � Z jj ð29Þ

Ultimately, we inputted X to the previously trained model to
derive the predicted gene U-RP. The U-RP vectors contain context-
dependent information derived from a specific gene set. The variation
in the values of these vectors represented the specificity of chromatin
accessibility (ATAC) and states of activity (H3K27ac) with the locations
of the genes.

Integrating regulatory potential and predicting transcriptional
regulator activity
Having obtained the bidirectional regulatory potentials, we con-
currently acquired information on the regulatory profile correspond-
ing to the genome-wide binding sites of the TRs and the regulatory
profile corresponding to the cis-regulatory elements of the queried
gene set. Our objective was to derive the integrated regulatory activity
of TRs that best represents the current state of gene transcription
regulation (Supplementary Note A.8). Accordingly, we computed the
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I-RP for each TR:

I� RPi =
R0

i

jjR0jj +D� RPi

� 	
×U� RP ð30Þ

The AUC score can accurately represent the measurement of
transcription factor enrichment9,10. By transforming the queried gene
set into binary form and computing the AUC for each TR based on its
I-RP score, we combined the activity of TRs from the H3K27ac and
ATAC epigenomes. The resulting activity score was then computed as
follows:

ASi =
XM
j = 1

AUCij

jjAUCj jj
ð31Þ

where ASi signifies the final activity of the i-th TR sample, AUCij

denotes the j-th epigenomic AUC score of the i-th TR sample, and M
represents the total number of epigenomic modalities.

Calculation of enrichment scores and significance in post-GWAS
analysis
Significance of transcriptional regulator. (1) Randomly select 1000
causal and 1000 non-causal variants to serve as the background var-
iants. Concurrently select the top and bottom 25 TRs predicted by
TRAPT. (2) Use the intersect tool in BEDTools to compute the number
of overlaps between the selected variants and the binding sites of each
TR. (3) Calculate the p-value of significance of each TR by using the
hypergeometric test:

P = 1�
Xx�1

i =0

k

i

� 	
n� k

s � i

� 	
n

s

� 	 ð32Þ

where x is the number of causal variants bound by the TR, k is the
number of variants bound by the TR, n is the number of background
variants, and s is the number of causal variants in the background.

Enrichment score (ES). (1) Rank the TRs in descending order of
activity. (2) Calculate their ES scores as follows:

ES= max scoreð Þ, scorek = scale
k
K
min logpð Þ �

Xk
i= 1

logpi

 !
ð33Þ

where k is the k-th transcriptional regulator and K is the number of
selected TRs. This score is the standard Kolmogorov-Smirnov statistic.

Estimating significance. (1) Randomly shuffle the TRs and recalculate
the enrichment score as ESNULL. (2) Repeat the shuffle 1000 times and
create a corresponding histogram of distribution of the enrichment
scores ESNULL. (3) Estimate the p-value by calculating the distribution
that is greater than the observed ES.

Comparison between TRAPT and similar TR-ranking tools
We collected an extensive array of TR knockdown/knockout datasets
fromKnockTF, and chose the top 500upregulated anddownregulated
differentially expressed genes for analysis. We also curated datasets of
TF binding from GTRD, and retained all target genes and 66 bench-
mark TF datasets from Lisa, including both upregulated and down-
regulated gene sets (Supplementary Note A.10 and Supplementary
Table 2). When comparing the datasets of TF binding, we removed
data originating from the GTRD in the background TR ChIP-seq
libraries of TRAPT. We used the offline toolkit available on the website
of the official repository of the BART algorithm (https://github.com/
zanglab/bart2). Similarly, we applied the offline toolkit accessible on

the website of the official repository of the Lisa algorithm (https://
github.com/qinqian/lisa). We used the tool for online analysis pro-
vided on the website of i-cisTarget (https://gbiomed.kuleuven.be/
apps/lcb/i-cisTarget/), and procured the results of analysis of ChEA3
via the API online interface available on its official website (https://
amp.pharm.mssm.edu/ChEA3).

Hyperparameters and training of the model
While training the teacher model of the D-RP model, we set the batch
size to 32 and the learning rate to 0.01, and trained it for 100 epochs.
For the student model, we set the learning rate to 0.01 and trained for
1000 epochs. A unified standard was used when training the teacher
model, student model, and NN model of the U-RP model, with the
batch size set to 32 and the learning rate to 0.001. The samples were
randomly shuffled and trained for a total of 16 epochs.

Ablation study
Without interfering with the overall execution of the model, we sepa-
rately removed the “U-RP model,” “D-RP model,” and “TR-RP model.”
The same strategy was applied to the “TRAPT-H3K27ac epigenetic
model,” “TRAPT-ATAC epigenetic model,” and “peak-promoter-
model.” We also conducted ablation experiments on knowledge dis-
tillation. Finally, we calculated the MRR scores of the model after each
modification to observe the decline in its performance, if any. The
objectivewas to verify the efficacyof each of its components. TheMRR
was calculated as follows:

MRR =
1
N

XN
i= 1

1
ri

ð34Þ

whereN refers to the number of predicted TRs and ri denotes the rank
of the current predicted TR.

Model stability examination
We used the network constructed by using the kNN algorithm to
generate perturbed datasets by masking 2%, 5%, 8%, 10%, 12%, and 15%
of the links within the network. These masked links were randomly
distributed to simulate real-world scenarios where interactions are
unknown. When training the model, we treated these masked positive
data as negatives. Once the training of themodel had been completed,
we calculated its average precision (AP) to evaluate its predictive
performance on the test set. This process helped simulate unknown
information in the data, and provided a comprehensive evaluation of
model performance. The AP was calculated as follows:

AP =
Xn
i= 1

Rn � Rn�1

� �
Pn ð35Þ

where Pn and Rn represent the precision and recall, respectively, as
sorted by the threshold n.

Software and web tool
TRAPT software was developed in Python 3.11, and has been uploaded
to GitHub (https://github.com/TOSTRING-Z/TRAPT) for user down-
load and use. The current iteration of TRAPT operates on a Linux-
based Apache web server (http://www.apache.org). We used Django
v4.1.3 (https://www.djangoproject.com/) for server-side scripting. The
interactive interface was designed and constructed by using Bootstrap
v4.3.1 (https://getbootstrap.com/) and jQuery v3.2.1 (http://jquery.
com). ECharts v5.4 (https://echarts.apache.org/) and DataTables
v1.13.2 (https://datatables.net/) were implemented as the frameworks
for graphical visualization, and the sqlite3 lightweight database was
deployed to store the data tables.

Furthermore, wedeveloped a correspondingweb service (https://
bio.liclab.net/TRAPT). The website was designed to accept gene sets
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input by users for analysis and allow for the easy retrieval of the ana-
lytical results. We have also included an email notification feature. The
website displays all scores of TR activity on the results page, as well as
the ranking and individual scores of each TR. It also provides details of
annotations and the relevant information on quality control for each
TR. The analysis interface provided the results of each benchmark
dataset, including the analysis of differential expression and predic-
tions of TRAPT. Moreover, we have also provided volcano plots-based
visualization through a Shiny application (https://shiny.posit.co/).
Compared with offline tools, online tools of analysis offer additional
features for browsing the results. They enabled the visualization of the
predicted 3D protein structure of each TR by leveraging predictions
made by AlphaFold84. Moreover, the online tools incorporated a gen-
ome browser85 to facilitate user interaction with the genomic tracks
associated with each TR.

Evaluation metrics
In the comparative analysis of our algorithm against other methods, we
employed three keymetrics to benchmarkperformance: theAreaUnder
the Curve (AUC) and theMean Reciprocal Rank (MRR). Briefly, we firstly
calculated and plotted the number of correctly predicted TRs across
cutoff ranks ranging from1 to 10 at various thresholds. Theperformance
was then quantified using the AUC. MRR is a metric parameter used to
measure the overall performance of ranking algorithms25.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets analyzed in this study are publicly available. The TR
knockdown/knockout datasets were obtained from KnockTF and TF
binding datasets from GTRD. The Lisa benchmark dataset can be
accessed at http://lisa.cistrome.org/new_gallery/new_gallery.html.
Moreover, the protein–protein interaction (PPI) networks were
retrieved from the STRING database (https://string-db.org/). The breast
cancer RNA-seq expression profiles are available from the TCGA
(https://portal.gdc.cancer.gov/), while the breast RNA-seq expression
profiles are available from the GTEx (https://www.gtexportal.org/home/
). The ESR1 knockdown RNA-seq datasets are available at the Gene
Expression Omnibus (GEO) repository under accession number
GSE37820. TheGWASdataset was retrieved from causaldb (http://www.
mulinlab.org/causaldb), and the Alzheimer’s disease-related H3K27ac
data are accessible under GSE65159. The human hematopoietic stem
cell dataset is available on GitHub (https://gitlab.com/cvejic-group/
integrative-scrna-scatac-human-fetal#data), the human embryonic stem
cells dataset is accessible under GSE75748, and the normal human tis-
sue expression profiles were obtained from GTEx (https://www.
gtexportal.org/home/). Source data are provided with this paper.

Code availability
TheTRAPTalgorithmwas implemented inPython. The sourcecode for
it is available at https://github.com/TOSTRING-Z/TRAPT.
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