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Sex differences in the genetic regulation of
the human plasma proteome

Mine Koprulu 1,2, EleanorWheeler2, Nicola D. Kerrison 2, Spiros Denaxas3,4,5,6,
Julia Carrasco-Zanini 1,2, Chloe M. Orkin 7,8, Harry Hemingway 3,4,6,
Nicholas J. Wareham 2, Maik Pietzner 1,2,9 & Claudia Langenberg 1,2,9

Mechanisms underlying sex differences in the development and prognosis of
many diseases remain largely elusive. Here, we systematically investigated sex
differences in the genetic regulation of plasma proteome (>5800 protein
targets) across two cohorts (30,307 females; 26,058 males). Plasma levels of
two-thirds of protein targets differ significantly by sex. In contrast, genetic
effects on protein targets are remarkably similar across sexes, with only 103
sex-differential protein quantitative loci (sd-pQTLs; for 2.9% and 0.3% of pro-
tein targets from antibody- and aptamer-based platforms, respectively). A
third of those show evidence of sexual discordance, i.e., effects observed in
one sex only (n = 30) or opposite effect directions (n = 1 for CDH15). Phenome-
wide analyses of 365 outcomes in UK Biobank did not provide evidence that
the identified sd-pQTLs accounted for sex-differential disease risk. Our results
demonstrate similarities in the genetic regulation of protein levels by sex with
important implications for genetically-guided drug target discovery and
validation.

Many aspects of human development and health, including the age of
onset, prevalence, and severity of many diseases differ between
sexes1–6, but the underlying mechanisms or extent to which genetic
factors contribute to any differences remain largely unknown7–9.

The recent advancements and dropping costs of omics technol-
ogies have now made it feasible to apply them to large scale studies,
providing a previously unprecedented molecular view into states of
health and disease. Previous efforts have investigated the extent of
sex-differences in relation to gene expression quantitative trait loci
(eQTLs)10 through a sex-stratified approach. However, the sex differ-
ential genetic regulation of the proteome has been limited to ad hoc
investigations of protein quantitative trait loci identified in sex-
combined analysis11,12, where sex-differential or sex-discordant effects
might be masked, and systematic efforts are lacking. Understanding

genetically driven sex-differences at the molecular level, specifically
proteins as the biologically active entity between the genome and the
phenome, is important for basic and translational genetic research,
including genetically anchored drug target discovery and validation.

The large sample size of the Fenland study (sex combined sample
size =8348) and UK Biobank (sex combined sample size =48,017)
together with broad proteomic coverage across two technologies
enabled systematic investigation of sex differences in the genetic reg-
ulation of plasma proteins. We contrast sex-differential protein abun-
dance with sex-specific genetic regulation for 4775 unique proteins,
targeted by 4979 unique aptamers (measured with SomaLogic) in 4403
females and 3945males (aged 29–64) from the Fenland study11 and 2923
unique proteins, targeted by 2923 unique antibody assays (measured
with Olink) among 25,904 females and 22,113 males (aged 49–60) from
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UK Biobank13 (Supplementary Data 1) with 1838 proteins being targeted
by both platforms by 1991 unique protein combinations.

We defined ‘female’ and ‘male’ sex by matching the recorded sex
and sex chromosomes (XX for females and XY for males) for both
studies. The recorded sex contained amixture of self-reported sex and
sex throughmedical records, and it was not possible to distinguish sex
from gender. We acknowledge the importance of distinguishing
between sex and gender in research and that chromosomal make-up
does not always alignwith self-identifiedgender. For thepresent study,
we therefore define ‘sex’ as the chromosomal make up of participants
and do notmake any inference about gender and such should also not
be made from the results of our study.

Results
Substantial differences between the female and male plasma
proteome
Most protein targets (n =4025 proteins targets out of 5823 included in
this study, 69.1%) showed significant sex differences (phet < 1.01 × 10−5 for
aptamer-based and phet < 1.71 × 10−5 for antibody-based platform,
respectively; see Methods) in their plasma abundance in at least one
cohort, including 768 (41.7%) overlapping targets with directionally
concordant effects between sexes (Fig. 1, Supplementary Data 2 and
Supplementary Fig. 1). Results exemplified largedifferences between the
sexes, with a slightly larger number of protein targets showing higher
levels in males compared to females across both technologies (62.1 %
[n= 1283] and 63.8% [n = 1851] for antibody- and aptamer-based tech-
nologies, respectively; Fig. 1 and Supplementary Data 2). Adjustment for
hormone replacement therapy/oral contraception or known sex-
differential participant characteristics such as body mass index, low-
density lipoprotein cholesterol (LDL) levels, alanine transaminase (ALT)
levels, smoking status and the frequency of alcohol consumption atte-
nuated only a moderate number of significant differences (15.3%
[n=616] for hormone replacement therapy/oral contraception and
20.5% [n =827] for known sex-differential characteristics listed above,
respectively; Supplementary Data 2). Proteins with the largest differ-
ences reflected sex-specific biology, e.g., specific expression in female-
or male-specific tissues, such as prostate-specific antigen14 (beta [95%
confidence interval (CI)] = 1.56 [1.53–1.58], p= 2.31 × 10−2823, UniProt:
P07288), prokineticin 1 (beta [95% CI] = 1.25 [1.24–1.26], p= 1.97 × 10−7019,
UniProt: P58294), or follicle stimulating hormone (beta [95% CI] = −1.22
[−1.21 to−1.23],p= 1.7 × 10−6862, UniProt: P01215), while someothers likely
reflected the effect of sex-differences in body composition on plasma
abundance of specific protein targets, such as leptin15,16 or
adiponectin16–18. We also observed strong sex-differences in established
cardiovascular diagnostic markers such as NT-proBNP (beta [95% CI] =
−0.78 [−0.74 to−0.82],p= 3.33 × 10−338, UniProt: P16860) and troponinT
(beta [95% CI] = 0.83 [0.79–0.87], p=9.86 × 10−388, UniProt: P45379).

Males and females do not only differ by disease onset and sever-
ity, but also in drug response and a higher frequency of adverse drug
reactions is observed in females compared to males19. We identified a
total of 129 proteins that are the targets of already approved drugs or
drugs in early clinical trials20 and showed significant differences
between sexes in plasma abundance that were directionally consistent
across cohorts. For example, fibrinolytic agents, such as Tenecteplase
or Urokinase, that target plasmin (beta [95% CI] = −0.21 [−0.19 to
−0.23], p = 3.83 × 10−94, UniProt: P00747) have been described to be
differentially effective in female and male patients in post stroke
therapy21. Althoughplasmaprotein levels are not the primary target for
most of those drugs, our results can potentially help understanding
sex-differential drug effects.

Genetic regulation of plasma proteins is largely comparable
across the sexes
We next performed sex-stratified genome-proteome-wide association
studies to systematically identify sex-differential protein quantitative

trait loci—‘sd-pQTLs’ (Supplementary Data 3 and 4), defined as statisti-
cally significant differences in the association of the variant with the
abundance of a given protein target between the sexes. We identified a
large number of pQTLs (p< 5× 10−8) in each sex (nfemales = 7424,
nmales = 6546 pQTLs aptamer-based and nfemales = 18,307, nmales = 14,305
pQTLs for antibody-based technology; Supplementary Fig. 2). Impor-
tantly, we observed that around 15% of pQTLs identified in females
(n = 1149/7424) or males (n=976/6546) for aptamer-based technology
and around 7% of pQTLs identified in females (n= 1332/18307) or males
(n =995/14305) for antibody-based technology were not significant
(p< 5× 10−8) in the sex-combined analyses, as their effect were likely
masked in the sex-combined analyses. Despite the large number of
pQTLs identified in each sex, only very few pQTLs showed significant
differences in effects between males and females (i.e., sex-differential
effects), with 15 (phet < 1.01 × 10−11) and 88 (phet < 1.71 × 10−11) sd-pQTLs
being identified for aptamer and antibody-based platforms, respectively
(Supplementary Data 3 and 4).

The sd-pQTLs fell into three broad categories: (i) 72 sd-pQTLs
were significant in both sexes with the same direction of effect yet
differingmagnitudes, (ii) 30 sd-pQTLs were only significant in one sex,
and (iii) one sd-pQTL was significant in both sexes but with opposite
effect directions. We refer to the latter two categories as ‘sex-dis-
cordant’ but acknowledge that sd-pQTLs of this category might reach
significance in the opposite sex in yet larger studies while still being
characterized by substantial effect size differences. In general, identi-
fied examples were predominantly (n = 72; 69.9%) sex differential
rather than sex-discordant (i.e., only evident in one sex or different
effect directions between sexes). In addition, most sd-pQTLs residde
close to the cognate gene (cis-pQTLs; n = 72 across technolo-
gies, 69.9%).

Strong sex-differential pQTLs have roles in reproduction but
also beyond
We observed no enrichment of sd-pQTLs on the X-chromosome or
among druggable targets (p > 0.05). We did not observe a clear bias
towards protein encoding gene expression explicitly in reproductive
tissues or breast for the proteins for which at least one cis or trans sd-
pQTL was identified10,22. Overall, 31 sd-pQTLs showed sex-discordant
effects, with strong evidence of an effect in one but not the other sex
(p > 5 × 10−8) for all, except for cadherin-15 (CDH15) where the cis sd-
pQTL (rs113693994) was significant in both males and females yet
showed opposite effect directions. Some of the sex-discordant pQTLs
mapped to proteins with established roles in only one of the sexes. For
example, we identified cis sd-pQTLs for pregnancy zone protein (PZP)
that replicated across both technologies. The cis-sd-pQTL for PZP was
significant only in females in the aptamer-based technology and with
an almost three times higher effect size in females in the antibody-
based technology. (Fig. 2 and Supplementary Data 3 and 4). Likewise,
two protein targets with sd-pQTLs that were significant in males only
(prostate and testis expressed protein 4 [PATE4, rs499684] and
Kunitz-type protease inhibitor 3 [SPIT3, rs6032259]) have been
reported to be involved in male fertility (Fig. 2 and Supplementary
Data 3). PATE4 has a reported function as a factor contributing to the
copulatory plug formation in male fecundity in mouse models23 and is
predominantly expressed in prostate and testis24. Similarly, SPIT3,
encoded by SPINT3, is reported to be predominantly expressed in
epididymis although the mouse orthologue of this gene was reported
to be dispensable for fertility25,26. Although their sex-specific biological
function was not clear, we also identified sd-pQTLs with consistent
effect direction for neural cell adhesion molecule 1 (NCAM-1),
oxytocin-neurophysin 1 (NEU1) and ectonucleotide pyrophosphatase/
phosphodiesterase family member 7 (ENPP7) that replicated across
both platforms (Fig. 2 and Supplementary Data 3 and 4).

For six proteins, insulin-like 3 (INSL3), acrosomal vesicle protein
1 (ACRV1), tetraspanin 8 (TSPAN8), apolipoprotein E (APOE),
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carboxypeptidase E (CPE) and CDH15, we identifiedmore than one sd-
pQTL, further supporting a sex-differential or −discordant genetic
regulation (Supplementary Data 4) for these proteins. While sex-
differential effects for INSL3 and ACRV1 might be explained by almost
exclusive expression in male tissues, like testis, effects for the other
three examples are less clear and might even differ by locus. For
example, the cis-sd-pQTL rs429358>C for APOE encodes the ε4-allele
associated with higher risk of late-onset Alzheimer’s disease and the
stronger effect in females is in line with a higher prevalence of Alz-
heimer’s disease among them27. In contrast, the male-specific effect of
the trans-sd-pQTL for APOE (rs964184) maps to a region on chromo-
some 11 strongly associated with lipid metabolism and harbouring
multiple apolipoproteins, more likely reflecting its role as a carrier for
lipoproteins.

We observed two trans sd-pQTLs for INSL3 both of which were
only significant in males (Supplementary Data 4). INSL3 is a small
peptide from the insulin-like hormone superfamily. In the human
foetus, INSL3 is produced by foetal Leydig cells after gonadal sex
determination around weeks 7 to 8 post coitum and has an important
role in testis descent. In line with its foetal role, damaging variants in
INSL3 have been reported to cause autosomal dominant
cryptorchidism28. INSL3 is also producedby the ovarian follicular theca
cells in females which is known as the Leydig cell counterpart in the
females, with the INSL3 knockoutmouse displaying phenotypes which

suggest a role in the number of healthy growing follicles29,30. In adults,
its expression was reported to peak around early adulthood and show
a gradual decrease throughout life afterwards whereas in females the
levels are reported to be impacted diseases which impact the number
of growing follicles such as polycystic ovary syndrome or
menopause29,30. In line with the reported functions, INSL3 is reported
to be expressed only in testis and ovary with a much lower level of
expression in ovary compared to testis24.

For ACVR1C, we observed two sex-discordant pQTLs where the
cis-sd-pQTL for ACRV1 was only significant in females and trans-sd-
pQTL was significant in only males, potentially with reverse mechan-
isms of impact (i.e., one pQTL acting to decrease whereas the other
acting to increase the levels of ACRV1). ACRV1 is exclusively expressed
in testis24 and has a function during spermatogenesis31.

We identified three sd-pQTLs for TSPAN8, all of which were
significant in both sexes. The cis sd-pQTL was stronger in males
compared to females whereas the two trans sd-pQTLs were stronger
in females. TSPAN8 belongs to transmembrane 4 superfamily and
has been associated with different carcinomas32–35. Although there
were no direct links between TSPAN8 and sex-specific pathways,
interestingly, SRY-Box Transcription Factor 9 (SOX9), which plays an
important role in sex determination, was identified as a key tran-
scriptional regulator of TSPAN8 in metastasis by pancreatic ductal
adenocarcinoma36.

Significantly higher levels in males

Significantly higher levels in females
No significant difference by sex

Significant difference in one of the technologies Significant differences in both of the technologies
Significant and directionally consistent differences in both of the technologiesNo significant differences in any of the technologies
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Fig. 1 | Sex differences in the abundance of 5823 unique proteins measured by
4979 unique aptamers and 2923 unique antibody assays. Linear regression
models were used to test the association of sex with the protein abundance in each
cohort. The protein targets were ordered by their effect size inmales. Top panel: The
top panel shows the proteins for which the plasma abundance significantly differed
by sex in at least one technology (phet < 1.01 × 10−5 for aptamer-based and
phet < 1.71 × 10−5 for antibody-based technology were used as Bonferroni-corrected
thresholds respectively). The proteins were coloured blue if they had significantly
higher levels inmales and red if they had higher levels in females. If the protein target

was significant in both of the technologies, the effect size estimate from the more
significant study was displayed. The dark grey vertical lines represent the 95% con-
fidence intervals for the effect size estimates. Bottom panel: The bars in the bottom
panel represent the proteins which were targeted by both aptamer-based and
antibody-based platforms. The lines were coloured lighter green if the finding was
significant and directionally consistent in both technologies, yellow if the findingwas
significant but not directionally consistent across technologies, lilac if the findingwas
only significant in one of the technologies and black if the finding was not significant
in any of the technologies. Results can be found in Supplementary Data 2.
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Fig. 2 | Forest plot ofall identified sex-differential proteinquantitative trait loci
(sd-pQTLs) from both aptamer- (phet < 1.01 × 10−11) and antibody-based
(phet < 1.71 × 10−11) technologies.The bottompanel presents sex-discordant pQTLs
(not significant (p < 5 × 10−8) in one sex or has opposing effect directions), whereas
the top panel presents the remaining sex-differential pQTLs. The significant
(p < 5 × 10−8) pQTLs in each sex are represented by filled circles and non-significant
ones are represented by hollow circles. Linear regression models were used to

identify pQTLs in each sex in each cohort. Horizontal lines represent 95% con-
fidence interval for the effect size estimate of each finding. The sample sizes and
detailed summary statistics for each of the findings can be found in Supplementary
Data 3 and 4. Proteins with an asterisk (*) were measured using the aptamer-based
technology, otherwise using antibody-based technology. MAF minor allele
frequency.
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The cis-sd-pQTL (rs113693994, betafemales[95% CI] = −0.16 [−0.12
to −0.19], pfemales = 9.8 × 10−20, betamales[95% CI] = 0.25 [0.21–0.28],
pmales = 9.32 × 10−35) for CDH15 was the only example observed in this
study where a pQTL was significant in both sexes but with opposite
effect directions. It is therefore a pQTL that has not been identified in a
sex-combined study (betasex_combined[95% CI] = 0.02 [−0.01–0.04],
psex_combined = 0.23). The sex-differential genetic regulation for CDH15
plasma levels was further supported by a male-specific trans-pQTL
(rs4860987). CDH15 acts a cell adhesion molecule that is involved
in facilitating cell-cell adhesion and preserving tissue integrity and
is highly expressed in brain and muscle24. While a sex-differential
regulation at the cis-locus remains elusive, the trans-sd-pQTL
(rs4860987) maps into a region harbouring several uridine dipho-
sphoglucuronosyltransferases involved in the clearance of, among
others, steroid hormones and has further been reported to associate
with sex-hormone binding globulin levels37 possibly suggesting a sex-
hormone dependencyof CDH15 plasma level regulation. Similarly, CPE
which acts as an exopeptidase essential for the activation of peptide
hormones (e.g., insulin) and neurotransmitters had both a cis and a
trans sd-pQTL with both sd-pQTLs having stronger effects in males
compared to females (Supplementary Data 4). CPE has been impli-
cated to have a role in osteoclast differentiation. Cpe knockout mice
displayed low bonemineral diversity, increased osteoclastic activity as
well as being obese and displaying a diabetic phenotype38,39. However,
neither CDH15 nor CPE have a clearly established sex-specific function
or disease associations to date, although the fact that these two pro-
teins have both cis and trans sex-specific genetic regulation might
suggest their potential involvement in a sex-specific biological
function.

Phenotypic follow-up of sd-pQTLs
We next conducted phenome-wide association analyses (PheWAS) to
identify potential sex-differential phenotypic consequences of sd-
pQTLs across 365 diseases with more than 2500 cases in UK Biobank.
We identified 82 unique significant variant-outcome associations
(Bonferroni corrected significance threshold of p < 1.59 × 10−6 and
p < 9.13 × 10−6 for antibody- and aptamer-based technologies, respec-
tively, corrected for the number of unique variants and disease out-
comes) between sd-pQTLs and disease risk in at least one sex. Despite
numerous significant associations of sd-pQTLs with disease outcomes
in at least one sex (Fig. 3), noneof the associations passedour stringent
multiple testing threshold to declare significance for heterogeneity
between sexes (Supplementary Data 5 and 6) (Bonferroni corrected
significance threshold of phet < 1.59 × 10−6 and phet < 9.13 × 10−6 for
antibody- and aptamer-based technologies, respectively, corrected for
the number of unique variants and disease outcomes). In general, this
leaves the downstream physiological or pathological consequences of
the identified sd-pQTLs yet to be determined (Fig. 3). We note, how-
ever, that we observed nominal significant support (phet = 1 × 10−3) for
the cis-sd-pQTL for APOE on a sex-differential risk on dementias,
replicating previous findings of a higher risk among women carrying
the ε4-allele40 (Supplementary Data 6).

Discussion
Biological sex is an important, yet historically neglected modifier of
disease risk and progression. Our knowledge about the mechanisms
through which the sex differences act remains relatively limited, with
the majority of research focussing on the effects of sex hormones or
proteins encoded on the X-chromosome. While these are important
factors that account for some of the differences between the sexes,
there is a need to systemically better understand differences that
potentially translate into sex-differential disease risk.

In this study, we observed substantial variation between the
female and male plasma proteome, including over 4000 proteins
targets being differentially expressed between sexes. We demonstrate

that only few (<3%) of those show evidence of sex-differential regula-
tion through germline genetic variants. Our study highlights two
important conclusions. Firstly, the fact that we observe sd-pQTLs for a
very small percentage of protein targets despite large differences in
plasma protein levels emphasizes that other intrinsic (e.g., hormone
profiles) and extrinsic mechanisms (e.g., sex-differential lifestyle and
risk-factor profiles) are also likely to strongly influence the observed
sex differences. This finding is in line with what has been reported for
sex-differences observed for complex diseases, sex-differential genetic
loci being identified for only a small proportion of common diseases8.
Secondly, our results suggest that the use of pQTLs in biomedical
research, specifically for drug target discovery and causal inference
will—with few exceptions—likely generate findings that are gen-
eralisable across sexes for the studied protein targets. However, future
studies should continue to evaluate sex differences as increasedpower
could or broader proteomic coverage potentially uncover additional
examples with biologically relevant sex-discordant effects.

Our findings are in line with previous sex-stratified analyses of
tissue-specific gene-expression10, including the observation that most
sd-pQTLs act in a sex-differential rather than sex-discordantmanner. It
has been recently demonstrated that trait variance difference between
sexes can predominantly be explained by sex-differential ‘amplifica-
tion effect’ as an aggregated effect across the genome (i.e., same effect
direction yet differentmagnitudes of strength between sexes)41, which
might be one explanation for the very few locus-specific effects we
observed here. Alternatively, there might also be higher order inter-
actions of genomic loci with sex hormones that determine gene
expression.

Although only few, we did identify some sex-discordant genetic
effects, with some reflecting sex-specific biology (e.g., PATE4, SPIT3,
PZP) that might be acting via steroid hormone responsive elements.
Some of the other effectsmight possibly be the result fromdifferential
environmental exposures between the sexes, as suggested pre-
viously for genetic variants affecting the risk for gout that may act
through differential alcohol consumption42,43.

The restriction to proteins measured in plasma represents a
notable limitation of our study, as sex-differential proteogenomic
effects within tissues may not be systematically reflected in plasma via
secretion, natural cell turnover, or leakage. We obtained some evi-
dence that larger sample sizes (as seen with higher number of sd-
pQTLs identified in UK Biobank) can identify a greater number of
significant sd-pQTLs, but most act as weak modifiers of strong overall
effects at protein encoding loci, and larger studies may possibly reveal
even more subtle differences in regulation for the previously targeted
proteins. Our studywas performed amongmiddle-agedparticipants of
European ancestry, hence, it is important to scale this study to differ-
ent ancestries from across the lifespan to better understand genetic
factors mediating the sex-differential proteome.

Although we aimed to account for known variables that differ by
sex in our non-genetic analyses, we acknowledge that this approach
might overlook potential cofounders for particular proteins that was
difficult to account for in this systematic effort. Given the incomplete
proteomic coverage (n = 4775 and n = 2923 unique proteins targeted
by aptamer- and antibody-based platforms respectively, within a
spectrum of over 20,000 proteins without taking post-translational
modifications or different isoforms into account) as well as limited
coverage of the genomic variant spectrum (i.e., rare variants, poten-
tially ancestry-specific effects or detailed X-chromosome inactivation
models that we were not able to investigate), future studies might
uncover new sd-pQTL signals as genomic and proteomic coverage
continues to improve. It is also important to note that inconsistencies
between platforms could be due to a wide range of reasons including
but not limited to: (i) differences in power between the different
cohorts, (ii) differences in cohort-related participant and sample
characteristics, (iii) technological differences between the platforms
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Fig. 3 | Phenotypic follow up of the identified sd-pQTLs with 365 disease out-
comes with more than 2500 cases in UK Biobank. Logistic regression models
were used to calculate associations between genetic variants anddisease outcomes
in each sex. A Miami plot of association of 100 unique variants driving 103 sex-
differential pQTLs (sd-pQTLs) with 365 disease outcomes among females on the
top and among males at the bottom panel. x-axis contains each of the sd-pQTL—
disease outcome pairs, ordered by their phecodes within each disease category.
The associations have been coloured by disease categories. The horizontal dashed

line represents a suggestive significance threshold of (p < 1 × 10−5).BComparison of
odds ratios for the sd-pQTL—disease associations which meet the suggestive sig-
nificance threshold (p < 1 × 10−5) in males or females. The diagonal dashed line
represents the equality line (x = y).C Comparison of −log10transformed P values for
the sd-pQTL—disease associations which meet the suggestive significance thresh-
old (p < 1 × 10−5) in males or females. The diagonal dashed line represents the
equality line (x = y).
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(e.g., targeting different isoforms, differing epitope effects on the
assay binding).

Our study demonstrates mostly consistent genetic regulation of
plasma proteins across the sexes based on two large studies with dif-
ferent technologies. The few exceptions could likely be explained by
specific expression of protein targets in male/female tissues, potential
relation to the effect of steroid hormonesor differential environmental
exposure. Our results that collectively add to an emerging body of
literature, that strong differences in health between the sexes later in
life cannot be fully explained by sex-differential or even sex-discordant
effects of genetic susceptibility in individual genetic loci.

Methods
Study participants
The Fenland study44 is a population-based cohort of 12,435 partici-
pants of generally white-European ancestry, born between 1950 and
1975 who underwent detailed phenotyping at the baseline visit from
2005 to 2015. Participants were recruited from general practice sur-
geries in the Cambridgeshire region in the UK. The participants were
excluded from the study if they were (i) clinically diagnosed with dia-
betes mellitus or a psychotic disorder, or (ii) pregnant or lactating, (iii)
unable to walk unaided, or (iv) had a terminal illness. The study was
approved by the Cambridge Local Research Ethics Committee (NRES
Committee − East of England, Cambridge Central, ref. 04/Q0108/19)
and all participants provided written informed consent.

This study used the largest subset of individuals from the Fenland
study (Supplementary Data 1). 8348 samples with both genotype
information and proteomics measurements were taken forward for
analyses after excluding ancestry outliers, related individuals or sam-
pleswhich have failed proteomicsQC. The sampleswerewell-balanced
in terms of the participants from each sex: 4403 (52.7%) females and
3945 (47.3%)males were included in the study. Sex variable in Fenland
study was based on general practitioners (GP) records. We only
included participants with matching entries for the recorded sex and
sex chromosomes (XX for females and XY for males). Individuals
without matching entries were excluded from the study as a part of
quality control as a mismatch can be indicative of issues with geno-
typing protocol.

UK Biobank is a large-scale, population-based cohort with deep
genetic and phenotypic data with the full cohort consisting of
approximately 500,000participants13. The participants were recruited
across centres in United Kingdom and were aged 40 to 69 years at the
time of recruitment13. Ethics approval for the UK Biobank study was
obtained from the North West Centre for Research Ethics Committee
(11/NW/0382)13 and all participants provided informed consent. This
study used the subset of European-ancestry individuals from UK Bio-
bank where both genotype and proteomics measurements were
available after excluding ancestry outliers or sampleswhichhave failed
genomic or proteomics QC (n = 48,017). 25,904 (53.9%) females and
22,113 (46.1%) males were included in the study (Supplementary
Data 1). Sex in UK Biobank had two definitions, one was based on sex
chromosomes (field 22001) and the other was contained a mixture of
the sex the NHS had recorded for the participant and self-reported sex
(field 31). We only included participants with matching entries for the
recorded sex (from medical records or self-reported) and sex chro-
mosomes (XX for females and XY for males) as a mismatch can be
indicative of issues with genotyping protocol.

Genotyping and imputation
The Fenland-OMICS samples have been genotyped using the Affymetrix
UK Biobank Axiom array. Sample-level and variant level QC criteria were
applied as described elsewhere44. In summary, the genotyped data was
imputed to the HRC (r1) panel45 using IMPUTE4 (https://jmarchini.org/
software/) for the autosomes and Sanger Imputation Server for chro-
mosome X (https://imputation.sanger.ac.uk/). The data was also

imputed to the UK10K and 1000 Genomes Project 3 panels using and
Sanger Imputation Server for both autosomes and chromosome X46.
Additional variants gained from the UK10Kp+ 1KGp3 imputation were
added to the HRC imputed dataset. For basic quality control, variants
were filtered for minor allele count (MAC) ≥ 3 using BCFtools47 and
INFO≥0.4 using QCTOOL v2.0.2 (https://www.well.ox.ac.uk/~gav/
qctool_v2/) to eliminate variants with low imputation quality.

TheUKBiobank sampleswere genotyped using the AffymetrixUK
BiLEVE or the Affymetrix UK Biobank Axiom arrays. The following QC
criteria was applied to the genotyping data (a) routine quality checks
carried out during the process of sample retrieval, DNA extraction, and
genotype calling; (b) checks and filters for genotype batch effects,
plate effects, departures from Hardy Weinberg equilibrium, sex
effects, array effects, anddiscordanceacross control replicates; and (c)
individual and genetic variant call rate filters as previously described13.
Only single nucleotide polymorphisms were included in the analyses.

Genomic build GRCh37 was used throughout this study.

Proteomic measurements
Aptamer-based platform. Fasting proteomic profiling of EDTA sam-
ples from Fenland study participants was performed by SomaLogic
Inc. using the SOMAscan proteomic assay (v4). Relative protein
abundances of 4775 human protein targets were measured by 4979
aptamers (SomaLogic V4). The quality control of the proteomic mea-
surements has been described in detail previously44. Briefly, hybridi-
zation control probes were used to generate a hybridization scale
factor to account for variation in hybridization within runs. A ratio
between each aptamer's measured value and a reference value were
computed to control for total signal differences between samples due
to variation in overall protein concentration or technical factors. The
median of these ratios was computed and applied to each dilution set
(40%, 1% and 0.005%). Samples were removed if they were deemed by
SomaLogic to have failed or did not meet our acceptance criteria of
0.25–4 for all scaling factors. In addition to passing SomaLogic QC,
aptamers were filtered to only include human protein targets for
subsequent analysis (n = 4979). Aptamers’ target annotation and
mapping to UniProt48 accession numbers as well as Entrez gene
identifiers49 wereprovidedby SomaLogic and thesewere used those to
determine genomic positions of protein encoding genes.

Antibody-based platform. The UK Biobank proteomicmeasurements
were conducted by antibody-based Olink technology, Explore 3072
platform which uses Proximity Extension Assay50. In summary, each
protein is targeted by two unique antibodies with unique compli-
mentary oligonucleotides, which only hybridize when they come into
close proximity. This is subsequently quantified by next-generation
sequencing. Normalized protein expression units, which are reported
on a log2 scale, are generated by normalization of the extension con-
trol and further normalization of the plate control. Further details
about antibody-based proteomic measurements and QC have been
described elsewhere, including the exclusion of samples due to poor
quality and selective measurements with assay warnings51.

Sex-differences in protein abundances
We assessed the differential abundance levels of the 4979 SomaLogic
V4 aptamers between sexes in Fenland study. To estimate the effect of
sex, a linear regression model was for implemented in R 3.6 for each
protein target, by using the inverse rank normalized proteomic values
and including covariates age and test site in the model. A stringent
Bonferroni-corrected significance threshold (corrected for n = 4979
aptamers; p < 1.01 × 10−5) was applied.

2923 protein targets from Olink Explore 3072 platform in UK
Biobank were inverse rank normalized and subsequently restricted
cubic splines function was applied through ‘rsc’ function of ‘Hmisc’
package to regress out technical covariates such asmonth of the blood
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draw, time that blood was drawn, fasting status and sample age in R
v4.2.2. Similarly, the effect of sex in abundance levels of the 2923
protein targets from Olink Explore 3072 platform were assessed
through a linear regression model in R v4.2.2, using the inverse
rank normalized residuals and including covariates age, age2 and
proteomic batch in the model. A stringent Bonferroni-corrected sig-
nificance threshold (corrected n = 2923 assays; p < 1.71 × 10−5) was
applied.

Sensitivity analyses were performed by including (a) participants
who have undergone hormone replacement therapy or use oral con-
traception, or (b) for known sex-differential participant characteristics
which were body mass index (BMI), low density lipoprotein (LDL)
cholesterol levels, ALT levels, smoking status and the frequency of
alcohol consumption (Supplementary Data 1) and (c) for each of these
factors individually (Supplementary Data 2) as additional covariates in
the analyses. The continuous variables (BMI, LDL and ALT) were
inverse rank normalized before being included as covariates.

To annotate druggable protein targets, we have merged the pro-
tein targets covered by aptamer- and antibody-based platforms with
the list of druggable genes from Finan et al.20. based on common
Ensembl gene IDs.

Sex-stratified protein genome-wide association analysis
(pGWASs)
For the aptamer-based platform, the protein abundances for 4979
aptamers measured in Fenland study were inverse rank normalized
and regressed for the same covariates used in the proteogenomic
discovery analysis of Fenland study44, which were age, test site and the
first 10 genetic principal components. The residuals for each sex were
used in the subsequent association analyses.

The fastGWA software52 was used to perform linear regression
analysis through GCTA version 1.93.2 for the sex-stratified genome-
wide association analyses (GWASs) in each sex for each protein target.
Further variant level QC was also applied and only variants with
MAC ≥ 3, INFO ≥0.4, genotype missingness rate < 5% and MAF > 1%
were included in the downstream analyses.

For the antibody-based platform (i.e. the protein abundances for
2923 assays measured in UK Biobank), the same residuals from the
analyses of sex-differences in protein abundances (i.e., inverse rank
normalized and technical covariates regressed out) were taken for-
ward. Sex-stratified GWASs were performed using REGENIE v.3.4.153

through performing two steps, as implemented by the software. In the
first step, a whole-genome regression model is fitted for each pheno-
type to generate a covariate, which is subsequently included in the
second step to allow for computationally-efficient analyses of a large
number of phenotypes while also accounting for relatedness among
samples. For the first step, only high-quality SNVspassing the stringent
QC criteria of MAF > 1%, MAC> 100, Hardy-Weinberg equilibrium p-
value < 1 × 10−15 and genotype missingness rate < 10% were used and
SNPs were pruned for linkage-disequilibrium (LD), specified for 1000
variant windows, 100 sliding windows and r2 < 0.8 through Plink v.1.9.
Subsequently, step 2 was applied to conduct sex-stratified GWASs for
2923protein targetswith additional per-markerQCfilters ofMAC> 50,
MAF > 1% and INFO>0.4. Covariates included in the proteogenomic
discovery of UKBB cohort51, age, age2, proteomic batch, genotyping
batch and first 10 principal components were also included as cov-
ariates in the linear regression model.

Heterogeneity analysis to identify sex-differential pQTLs
We performed an inverse-variance fixed effects meta-analysis for each
protein target using female-only and male-only summary statistics
through METAL (v.2011-03-25)52 to assess the heterogeneity in the
genetic associations between sexes for each platform. Assessment of
heterogeneity of results from a meta-analysis of sex-stratified results
approximates individual level interaction tests, yet is several-foldmore

computationally and time-efficient. We additionally performed indi-
vidual level interaction tests (G*S) for all identified significant sd-pQTLs
identified in UK Biobank (n = 88) as sensitivity analyses, and observed
strong correlation of the −log10(p-values) from both approaches
(r =0.98) with no evidence of a loss in significance.

We defined sex-differential loci as those pQTLs which were sig-
nificant in at least one sex (p < 5 × 10−8) and showed statistically sig-
nificant differences in their association between sexes. We used a
proteome and genome-wide Bonferroni corrected significance
threshold (phet < 1.01 × 10−11 and phet < 1.71 × 10−11 respectively for apta-
mer- and antibody-based platforms) for heterogeneity p-value to
define sex-differential protein quantitative trait loci (i.e., sd-pQTLs).
The sex-differential pQTLswhichwere either only significant in one sex
or had opposite effect directions between sexes were further cate-
gorized as sex-discordant.

Significant genomic regions were defined by 1Mb regions
(±500Kb on either side) around any variant with significant hetero-
geneity. The MHC region (chr6: 25.5–34.0Mb) was treated as a single
region. The regional sentinel variant for each genomic locus was
defined as themost significant variant within the region. Variants were
defined as cis-pQTLs if they were within the 1Mbwindow (±500Kb on
either side) of the protein encoding gene and defined as trans-pQTLs if
they were not within the 1 Mb window.

Enrichment of sex-differential pQTLs
To assess whether the sd-pQTLs were enriched for certain character-
istics (i.e., being located onX-chromosomeor being a draggable target
as defined by Finan et al.20.), we conducted Chi-square tests. Addi-
tionally to assess, whether there was evidence of the target of sd-
pQTLs being expressed in reproductive tissues or breast, wehave used
expression profiles reported by Human Protein Atlas22.

Phenome-wide association study (PheWAS)
We have tested whether any of the significant sd-pQTLs showed het-
erogeneity between sexes in terms of their disease associations across
the phenome. For this purpose, in each sex, we tested the association
of the unique sd-pQTL variants with 365 binary diseases with more
than 2500 cases in UK Biobank. The binary disease categories were
collated through clinical entities named ‘phecodes' in UK Biobank,
which were defined using the International Classification of Diseases,
10th Revision (ICD-10) and the International Classification of Diseases,
10thRevision, ClinicalModification (ICD-10-CM) codes fromelectronic
health records, available in UK Biobank54. We tested the association of
each sd-pQTL with each phecode in each sex, using a logistic regres-
sionmodel in R v3.6 and adjusting for age, genotype batch, test centre,
and the first ten genetic principal components in unrelated European
participants.Wehave subsequentlymeta-analysed the female-only and
male-only summary statistics using a fixed-effects meta-analyses
through metafor package in R v3.6 to assess the heterogeneity of the
association between sexes. To correct for multiple testing, hetero-
geneity p-value threshold for PheWAS was defined as phet < 9.13 × 10−6

and phet < 1.59 × 10−6 for aptamer- and antibody-based platforms
respectively, which were corrected for the number of unique sd-pQTL
variants and number of phenotypes tested (n = 365) in each platform.

Data availability
Data from the Fenland cohort can be requested by bona fide
researchers for specified scientific purposes via the study website
(www.mrc-epid.cam.ac.uk/research/studies/fenland/information-for-
researchers/). Sex-stratified summary statistics will be made available
in the GWAS Catalog upon publication. Access to the UK Biobank
genomic, proteomic and phenotype data is open to all approved
health researchers (http://www.ukbiobank.ac.uk/). This research has
been conducted using the UK Biobank resource under the application
44448. Summary statistics for significant sex-differential pQTLs and
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approximately 1Mb (±500Kb on either side) surrounding regions can
be found here: https://doi.org/10.5281/zenodo.15061671. Sex-stratified
and sex-combined genome-wide summary statistics for all protein
targets in this study will be available on https://omicscience.org/ upon
publication.

Code availability
Associated code and scripts for the analyses canbe foundhere: https://
github.com/MRC-Epid/sex_specific_pGWAS.
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