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How does the motor cortex combine simple movements (such as single finger
flexion/extension) into complex movements (such as hand gestures, or playing
the piano)? To address this question, motor cortical activity was recorded
using intracortical multi-electrode arrays in two male people with tetraplegia
as they attempted single, pairwise and higher-order finger movements. Neural
activity for simultaneous movements was largely aligned with linear summa-
tion of corresponding single finger movement activities, with two violations.
First, the neural activity exhibited normalization, preventing a large magnitude
with an increasing number of moving fingers. Second, the neural tuning
direction of weakly represented fingers changed significantly as a result of the
movement of more strongly represented fingers. These deviations from line-
arity resulted in non-linear methods outperforming linear methods for neural
decoding. Simultaneous finger movements are thus represented by the com-
bination of individual finger movements by pseudo-linear summation.

Coordinated finger movements are fundamental to many everyday
living activities, enabling tasks as simple as picking up an apple to as
complex as playing a Chopin nocturne. While the human hand exhibits
more than 20 degrees of freedom,’, naturally occurring finger move-
ments are structured*’. Indeed, many complex hand movements can
be broken down into simple combinations of flexion/extension or
abduction/adduction movements of individual finger joints. The
principles that govern how the neural representation of these

individual movements is combined to produce complex, multi-finger
movements remain largely unknown.

One hypothesis is that neural representation for a movement is
equal to a simple combination of the neural representation of its parts
(‘compositional coding’). The simplest compositional hypothesis for
multiple finger movements is the linear summation of constituent
single finger movements (Fig. 1A). This hypothesis has been successful
in explaining the motor cortical representation of homologous
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Fig. 1| Hypotheses and research setting. A-C Hypotheses for the neural geometry
of multiple finger movements in neural state space, where each axis corresponds to
the activity of a neuron. A represents compositional coding where the neural
activity for multiple finger movements is equal to the activity for single finger
movements combined by linearity summation. B Neural activity for multiple finger
movements is distinct from single finger movement activities, such that the

resulting activity is largely orthogonal to the subspace spanned by single finger
movements in the neural state space. C represents a variant of compositional
coding in (A), where the single finger movements are combined by pseudo-linear
summation. D Research setup. Intracortical neural activity is recorded using two
Utah arrays placed in the hand-knob area of the dominant precentral gyrus while
the participant attempts finger movements cued using an animated hand in 3D.

movements across limbs as the linear summation of a movement-
specific and a limb-specific component*”.

An alternative hypothesis is that the neural representation of
multiple finger movements is distinct and not predictable in a simple
way from the neural representation of constituent single-finger
movements. This hypothesis can be geometrically described in the
neural state space, with the axes corresponding to the activity of
neurons in the circuit. In this model, the neural activity representing
single and multiple finger movements may exist in largely orthogonal
subspaces (Fig. 1B), allowing a large number of movements to be dis-
tinctly represented along unique neural dimensions.

The compositional coding hypothesis in its simplest form predicts
that the magnitude of neural activity increases with the number of
moving fingers, which may be unrealistic in a biological neural circuit,
in which firing rates of individual neurons reach a saturation limit. To
address this potential issue, a more sophisticated compositional
hypothesis adjusts the initial simple linear summation by adding
magnitude normalization (“pseudo-linear” summation, Fig. 1C). This
revised compositional hypothesis limits representational capacity as a
large number of movements are constrained to a low dimensional
space spanned by single finger movements.

While previous studies have presented evidence for overlapping
neural representations of multiple finger movements and single finger
movements®™", a detailed mathematical characterization of the neural
geometry at the level of spiking neural ensembles has not been done.
We used investigated the hypotheses outlined above using intracor-
tical multi-electrode array recordings from the human premotor cor-
tex as research participants with paralysis attempted single, paired, or
higher-order finger movements (Fig. 1D) designed to explore a broad
parameter space including both natural gestures and arbitrary com-
binations of flexion and extension.

Our results were most consistent with the pseudo-linear compo-
sitional hypothesis in which the neural activity for multiple-finger

movements was aligned with the linear summation of constituent
single-finger movement activities, but the magnitude was lower com-
pared to linear summation (consistent with normalization).

Results

Intracortical neural recordings were obtained from two participants in
the BrainGate2 pilot clinical trial (‘T5" and ‘T1l') as they attempted
single finger and multi-finger movements. Both T5 (69 years old) and
T11 (36 years old) are right-handed men, with tetraplegia secondary to
a high-level spinal cord injury. Both had two 96-channel intracortical
Utah arrays placed in the ‘hand knob’ area of the left (dominant) pre-
central gyrus. All research sessions focused on the fingers of the
right hand.

Neural geometry of single-finger movements

We began by characterizing the neural representation of single finger
movements. Participant T5 attempted movements of the right hand,
starting from a neutral rest position and ending in either attempted
flexion or extension of a single finger. The movement for each trial was
cued using a 3D animated hand and consisted of preparatory (1.5 s) and
move (1s) periods (Fig. 1D, Supplementary fig. 1). Movements were
repeated across three research sessions resulting in a total of ~1000
trials.

Neural activity on single electrodes, measured by the number of
threshold crossing events, differed across the movement conditions,
confirming tuning for single finger movements (Fig. 2A). Both finger
velocity and finger position were represented in the neural activity
(Supplementary fig. 2). Neural population activity occupied a low-
dimensional space, with five principal components (out of 576 ambient
dimensions = concatenation of 192 channels of trial-averaged activity
across three sessions) capturing > 95% of the variance (Fig. 2B).

The geometry of different finger positions in the neural state
space was assessed using a Representational Dissimilarity matrix
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Fig. 2 | Neural geometry of single-finger movements. A Peristimulus time his-
tograms of recorded neural activity from 3 example channels during attempted
flexion and extension of individual fingers on the contralateral (right) hand (lines
show the average for different conditions, shaded regions show standard error).
B Cumulative fraction of variance explained by the principal components of the
trial and time-averaged neural activity. The top five components captured > 90% of
the variance (ambient dimensionality 576 resulting from concatenation of 192
channels across three sessions), suggesting a low dimensional representation.

C Schematic description of two metrics for characterizing the geometry of different
movements in neural state space, where each axis corresponds to the activity of a
particular neuron. Representational dissimilarity matrix (RDM) is estimated by
measuring Euclidean distance (d;;) between pairs of movements. Relative
arrangement of the direction along which each finger modulates the activity in the
neural state space is given by the cosine of angle (8) between lines joining flexion-
extension movements of a given finger. D RDM for neural activity during the hold
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period, averaged across three sessions for participant T5. Black indicates higher
similarity. Off-diagonal elements were significantly larger than zero (p < 0.001).
Significance level was computed by comparing the observed distances with a null
distribution of 1000 distances. These null distribution distances were calculated by
permuting neural activity across the two movements. E Similarity of the modula-
tion directions for pairs of fingers. Nearby fingers have similar modulation direc-
tion, except for the thumb. F, G Visualization of neural activity using cross validated
Targeted Dimensionality Reduction (TDR) followed by PCA. TDR directions iden-
tified by regressing from the kinematic variables (five dimensions, one for each
finger, +1 for flexion/ -1 for extension, and O for rest) to trial & time-averaged neural
activity in the last 0.4 s of each trial. Colors indicate fingers, line style indicates
different movements (flexion/extension) and black dots indicate the ‘go’ cue.
Arrows indicate the evolution of neural activity during the course of the trial. Two
views of the 3D geometry are shown. Source data are provided in the Source
Data file.

(RDM?), estimated by measuring the cross-validated Euclidean
distance of the population activity between all pairs of move-
ments (flexion/extension across fingers) after trial and time
averaging (see Methods, Fig. 2C). The distances between flexion
and extension movements were large, resulting in a block diag-
onal structure (Fig. 2D). This structure is similar to the RDM of

the kinematics and muscle activity during finger movements in
able-bodied people!'*!*,

In addition to the RDM, the angle between the lines joining dif-
ferent movement conditions was used to evaluate the relative
arrangement of the directions along which finger movements mod-
ulate the activity in the neural state space (Fig. 2E). The cosine of this
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Fig. 3 | Attempted multi-finger movements are well-represented in the neural
activity. A Neural activity was recorded as T5 attempted 38 hand movements on
the right hand, consisting of gestures from the American Sign Language (ASL)
alphabet & single finger movements. Each movement was attempted 22 times in
trials consisting of 1s prep, 1 second move, and 2 s hold periods. Copyright © Meta
Platforms Technologies, LLC and its affiliates. All rights reserved. B A confusion
matrix, where the (i, j)th entry is colored by the percentage of trials where move-
ment j was decoded when movement i was cued. A linear support vector classifier
was used for decoding. Classification accuracy was 76%, substantially above the

chance accuracy of 2.6%. C The same decoding analysis was applied to a collection
of 80 combinatorial gestures, where four finger groups were varied independently
(the ring and small fingers constrained to the same movement). Each finger group
was independently cued to be flexed, extended, or idle (15 trials were collected per
condition, with a 1s preparatory and a 2 s movement period). Movements are
indicated with the inset images, with flexion, idle, and extension indicated with
black, gray, and white colors, respectively. The classification accuracy was 40%,
substantially above the chance accuracy of 1.3%. Source data are provided in the
Source Data file.

angle measures the correlation between the corresponding neural
activity patterns across neurons. First, within each finger, the neural
activity for flexion and extension evolved in opposite directions
(Supplementary fig. 3A). Second, within each movement type (flexion
or extension), nearby fingers evolved in similar directions (Supple-
mentary fig. 3B, C). Third, the lines joining flexion and extension
movements were more aligned for nearby fingers (as expected), but
the thumb was anti-correlated to the little finger, which was not
expected based on previously published studies.

To intuitively visualize these features, the neural activity was
projected into a three-dimensional space identified using five-
dimensional cross-validated targeted dimensionality reduction (TDR)
followed by PCA (see Methods). For each finger, neural activity cor-
responding to flexion and extension movements evolved along dia-
metrically opposite directions from the origin, and nearby fingers
occupied similar directions. In the top two PCs, thumb flexion over-
lapped with little finger extension, and thumb extension overlapped
with little finger flexion (Fig. 2F), explaining the negative correlation
between thumb and little finger directions in Fig. 2E. However, the
neural activity for the thumb and little fingers were separated in the
third PC dimension (Fig. 2G), maintaining the ability to distinguish
between them.

This structure was preserved across left and right hands and was
not influenced by different palm orientations, with the limb-specific
and/or pose-specific component linearly translating the activity in the
neural state space (Supplementary Fig. 4V).

Neural activity for multi-finger movement is consistent with the
sum of its parts

Given the neural representation of single finger movements, how are
they combined to represent multi-finger movements? First, we con-
firmed that attempted multi-finger movements are robustly repre-
sented in our neural recordings. For a collection of 38 natural hand
movements consisting of gestures from the American Sign Language
(ASL) alphabet and some stereotypical single/multiple finger

movements (Fig. 3A), a linear decoder achieved 76% classification
accuracy (chance 2.6%) using the neural activity recorded from T5
(Fig. 3B). Since most of these gestures have correlated movements for
nearby fingers and do not span the complete space of finger move-
ments, we repeated this analysis with a collection of 80 combinatorial
finger movements. For these combinatorial movements, each finger
was independently cued to be either flexed, extended, or at rest. To
ensure that enough repetitions of each combination could be col-
lected within a single research session, the ring and little fingers were
linked together (referred to throughout as a single “finger” entity, the
“ring-little finger”) to reduce the number of movement conditions to
80. Certain gestures, such as flexion of the thumb, index, and middle
finger with extension of the ring/little fingers, require improbable
coordination patterns of finger movements and may be difficult to
perform, resulting in “non-natural” movements. A linear decoder
achieved 40% classification accuracy (chance: 1.3%, Fig. 3C). This shows
that various natural and non-natural multi-finger movements are dis-
tinctly represented in the hand area of the premotor cortex, permitting
a study of their neural geometry.

Next, we tested the compositional coding hypothesis for multi-
finger movements, beginning with the simultaneous pairwise move-
ment of finger groups. Two types of finger groups were considered:
thumb versus all other fingers (Fig. 4A, B with participants T5 and T11
respectively) and individual fingers (Fig. 4C with T5). Each finger group
was independently cued for flexion/extension or rest. The neural
subspace that was most modulated by each pairwise finger group
movement was visualized with TDR after trial averaging and removing
the condition-invariant signal. Activity for pairwise finger movements
evolved in a region of the neural state space that was ‘in-between’ that
of the corresponding single finger movements, as expected from linear
summation of the constituent movements. Next, we assessed the
degree of linearity quantitatively by fitting a linear summation model
to a large set of 80 combinatorial finger movements, with four inde-
pendently varying finger groups. A linear model was fit to all move-
ment conditions using an eight-dimensional one-hot encoding of
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Fig. 4 | Neural activity for simultaneous movements evolves in a direction
consistent with linear summation. A Participant T5’s neural activity for all
movement combinations of two “finger groups” 1. the thumb, and 2. all other
fingers linked together. For each movement condition, threshold crossings were
trial-averaged and concatenated (over the electrode dimension) across two
sessions. Neural activity visualized after subtracting the condition invariant
signal (CIS) and projecting out the associated neural dimensions, followed by
cross-validated targeted dimensionality reduction (TDR, see Methods). Lines
indicate trajectories for each condition which start at rest, move outwards, and
settle at a final position representing the target gesture. Trajectories where only
one finger group moves are colored, while gray lines correspond to conditions
where both groups move in combination (as shown by inset images). Copyright
© Meta Platforms Technologies, LLC and its affiliates. All rights reserved. B Same
as (A), using data from one session in participant T11 (see Methods). T11 followed
the same experimental protocol for the pairwise finger movement task as T5.
C Same as (A), using data from five sessions for pairwise combinations of four
finger groups (thumb, index, middle, and ring-little combined). D A linear

encoding model was fit to predict trial-averaged neural activity recorded from T5
during the hold period (after removing the CIS) using the finger movement
kinematics. Kinematics were represented with an eight-dimensional one-hot
encoding, with each dimension corresponding to the presence (=1) or the
absence of (=0) of a combination of finger and movement type (flexion/exten-
sion). Bar heights indicate the magnitude (length) of the vector of regression
coefficients corresponding to each finger. Error bars indicate the standard
deviation across 100 resamplings of data. Neural activity modulated more with
flexion than extension, and thumb, ring & little, index, and middle modulated
activity in a decreasing order. E Distribution of the cross-validated correlation
between observed neural activity during the hold period and predictions from a
linear encoding of kinematics (blue) in (D). The linear model predicts the neural
geometry better than the null distribution (orange) generated by randomly
shuffling the neural activity and the kinematics labels with respect to each other
and measuring the correlation with the linear model predictions. Source data are
provided in the Source Data file.

kinematics, with separate dimensions for each finger group and
movement direction. For each finger, we found that the magnitude of
the linear model weights was higher for flexion compared to extension,
and for both types of movements, the magnitude was higher for thumb

and ring-little fingers compared to index and middle fingers (Fig. 4D).
The linear model predicted neural activity significantly better than
chance (Fig. 4E) and captured 56% of the variance (presented later
in Fig. 5E).
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Fig. 5 | Overall neural activity magnitude is conserved for multi-finger move-
ments. A Magnitude of the recorded neural activity (Euclidean norm of the high-
dimensional activity) during the hold period after removing the condition invariant
signal (red dots) for an example set of two finger-group movements (thumb vs. all
other fingers). Distance from the origin corresponds to the magnitude of neural
activity, with different movement conditions represented along different direc-
tions. Predictions from linearly summing the neural activity of single finger-group
movements are indicated in green. The magnitude of the recorded neural activity
for two finger-group movements was lower than what would be expected from the
sum of the corresponding single finger-group parts. B A comparison of recorded
activity magnitude (red) and predictions from a linear model (black) for 80 com-
binatorial movements of four finger-groups. Each point is a distinct movement
combination. Movements are grouped by the number of fingers either flexed or
extended (x-axis). A linear model using a one-hot encoding of kinematics (8
dimensions, one dimension for each combination of finger and movement direc-
tion) predicts that magnitude will increase as more fingers move, but the recorded
activity magnitudes appear relatively constant. The linear model under-predicts the
neural activity magnitude for a small number of moving finger-groups, as the linear
model is fit to all movement conditions, and there are a large number of conditions
with multiple finger-groups moving. Statistical significance of the difference in
means between the data and model fit for each group of conditions with a parti-
cular number of fingers moving is evaluated with a two-sided t-test. Significance
level is indicated by the number of stars (*’), with n stars indicating p<10™. C A
linear-nonlinear model (with 10 hidden units) better captures the magnitude of

neural activity (compared to (B)). The difference in means was not statistically
significant (two-sided t-test). D The linear-nonlinear model schematic which applies
a tanh(.) non-linearity to map kinematics to predicted neural activity patterns; this
nonlinearity should allow the model to capture activity magnitudes more accu-
rately via saturation. A and B denote linear maps from kinematics to hidden unit
inputs and hidden unit activity to the observed neural activity respectively.

E Fraction of variance explained across the 80 combinatorial movements by the
linear-nonlinear model with an increasing number of hidden layers (red). A low-
rank linear model was used for comparison (gray). Linear-nonlinear models out-
perform the linear model, and performance saturates at a small number of hidden
dimensions of -10. Cross-validated performance was averaged across 100 resam-
plings of trials used for training and evaluation (shaded regions indicate standard
deviation). F Similar analysis as (E), but testing generalization across movements—
models were trained on a random subset of 64 movements (out of 80) and tested
on the remaining movements. Since the performance varies based on which
movements are partitioned into the test set, the performance change was mea-
sured compared to the linear-nonlinear model with the highest number of hidden
units, and averaged across resamplings. Linear-nonlinear model generalizes better
than a linear model to novel movement conditions. G Cumulative distribution of
hidden unit activity in the linear-nonlinear model for conditions with different
numbers of moving finger-groups across 100 resamplings. Note the greater
saturation with a larger number of moving finger-groups. Source data are provided
in the Source Data file.

Overall neural activity magnitude is conserved for multi-finger
movements

While the linear summation model is simple and intuitive, it makes a
rather strong prediction: that the magnitude of neural activity should
increase with the number of moving fingers (i.e., the total number of
fingers either flexed or extended). We tested this prediction by com-
paring the magnitude of the neural activity to that predicted by a linear
model. We measured the magnitude of the neural activity during the
hold period (thereby avoiding potential trial-to-trial variability in
reaction time and movement speed), using an unbiased estimate of
activity magnitude*'®. For two finger-group movements, the magni-
tude of neural activity for simultaneous movement was smaller than
what would be expected from summing the constituent single finger-
group movements (Fig. 5A shows an example of two finger-groups,
Supplementary fig. 5 shows others). For combinatorial movements of
four finger-groups, neural activity magnitude remained constant as the

number of moving fingers increased. The linear model fit to all
movement conditions failed to capture this phenomenon and instead
predicted that magnitude should increase with the number of moving
fingers. This resulted in an under-prediction of neural activity magni-
tude for single and two-finger group movements (Fig. 5B). In summary,
linearly summing the contributions of single finger movements over-
predicts the magnitude for simultaneous movements (Fig. 5A), and
fitting a linear model to all the movements under-predicts the mag-
nitude for single finger movements while matching the magnitude of
simultaneous movements (Fig. 5B). Both observations are consistent
with normalization and show the failure of linear summation.
Extensions of the linear model were evaluated to find an accurate
but parsimonious description of the observed neural activity. First, we
tested if the magnitude normalization can be captured by a linear
model on normalized kinematics (kinematics represented using one-
hot encoding, normalized by their magnitude). The predictions
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accurately estimated the magnitude of neural activity for a small
number of moving fingers (Supplementary fig. 6A, B). However, when
the number of fingers increased, the predictions consistently under-
estimated the magnitude, resulting in no overall improvement in
prediction accuracy. Hence, the observed magnitude normalization
does not arise from a simple normalization of kinematics.

Next, we tested a quadratic model, which can incorporate inter-
actions between different finger groups. This model drastically
improved the prediction accuracy and captured the magnitude across
different numbers of finger groups (Supplementary fig. 6A). However
this model was not parsimonious, as it had four times as many para-
meters as the linear model.

Finally, we tested a linear-nonlinear model that can achieve nor-
malization of neural activity through saturating nonlinearities in the
mapping from kinematics to neural activity. Neural activity (y, during
the hold period) is modeled in terms of one-hot encoding of kine-
matics (u) as;y=A tanh(Bu), where B defines a linear map from kine-
matics to the hidden units and A defines a linear map from the hidden
units to the neural activity (Fig. 5E). The linear-nonlinear model out-
performed the linear model when trained on an identical set of
movement conditions as test data (Fig. 5F) and could generalize suc-
cessfully across movements (test movements different from train
movements, Fig. 5G). Additionally, the performance of the linear-
nonlinear model saturated with ~10 hidden units, which is much
smaller than either the number of conditions (80) or the dimension-
ality of the neural state space (448). We use the term “pseudo-linear” to
describe a linear-nonlinear model with a small number of hidden units.
Compared to the quadratic model, the pseudo-linear model is more
parsimonious with roughly the same number of parameters as the
linear model, and explains a similar amount of variance in neural
activity (Supplementary Fig. 6A). A pseudo-linear model with rectifying
nonlinearity instead of tanh nonlinearity achieved comparable per-
formance with many hidden units, but performed worse with fewer
units (Supplementary Fig. 6A, C).

The pseudo-linear model captured magnitude normalization, i.e.,
how neural activity remained at a relatively constant magnitude with
an increasing number of moving fingers (Fig. 5C). The model achieved
this via saturating nonlinearity, as shown by the greater saturation of
hidden unit activity with an increasing number of moving finger
groups (Fig. 5G). Overall, the pseudo-linear model can be interpreted
as explaining the neural activity by linearly combining the kinematic
variables and then non-linearly projecting it onto a low-dimensional
manifold described by the hidden unit activities.

Pseudo-linear representation limits linear decodability of fin-
gers with weaker modulation
What is the impact of pseudo-linear compositional representation on
the ability to use a linear decoder to identify the finger positions during
multi-finger movements? This can be assessed by measuring how the
representation of a given finger changes across contexts, i.e., how it
changes with particular movement combinations of the other fingers.
In the neural state space, the line connecting a pair of multi-finger
movements which only differ in the final position of a target finger (i.e.,
either flexed or extended) but which are identical in the final position
of other fingers describes the target finger’s “population tuning”, i.e.,
how the population activity changes as a function of a finger’s move-
ment in a given context. Changes in the population tuning across
contexts measure how a decoder might generalize to multi-finger
movement it was not trained on. A linear decoder, for example, might
decode the motion of each finger by projecting neural activity along
each finger’s population tuning direction - in this case, generalization
would be impaired if the population tuning changes.

We analyzed the changes in the population tuning direction and
magnitude for each finger across contexts using neural activity
during the hold period for combinatorial movements of four fingers

(Fig. 6A, Supplementary Movie 1). The variation in tuning direction
was characterized by the distribution of angles between the popu-
lation tuning directions across all pairs of contexts (Fig. 6B). Whi-
le the population tuning vectors showed a context-dependent
variation for all finger-groups, they were more consistently aligned
across contexts for the thumb and ring-little finger groups as com-
pared to the middle and ring fingers. While a linear model, by defi-
nition, cannot describe the changes in tuning direction across
contexts, a pseudo-linear model (ten hidden units with tanh non-
linearity) captured the variation across contexts within a finger-
group and across finger-groups (Fig. 6B). Similarly, the population
tuning magnitude varied across contexts within each finger group,
with a lower variation for thumb and ring-little compared to index
and middle finger groups (Fig. 6C). Similar to tuning direction, while
a linear model cannot capture these variations, a pseudo-linear
model was able to capture the changes in population tuning mag-
nitudes (Fig. 6D).

We assessed the impact of these population tuning changes on
the generalizability of linear decoding across contexts using two tasks.
For combinatorial movements of four finger groups, the within-
context decoding performance was high across all fingers (88-92%);
across-context performance was much lower for middle and index
fingers (58% and 63% respectively) compared to thumb and ring-little
fingers (73% and 76% respectively) (Fig. 6F).

These observations were replicated for pairs of natural gestures.
Specifically, a linear decoder trained on isolated flexion/extension
movements of the thumb generalized to gesture pairs where all other
fingers were flexed but the thumb was either extended (‘thumbs up’
gesture) or flexed (American Sign Language for symbol S, Fig. 6G).
However, for other gesture pairs, a linear decoder trained on isolated
movements of the ring finger or the little finger performed poorly
(Fig. 6l), suggesting that the population tuning for the movement of
ring and little fingers separately changes more compared to moving
them as a finger group. For decoding the continuously varying finger
positions over the course of a trial, non-linear decoders such as a
recurrent neural network and a temporal convolutional network per-
formed better than linear (Kalman) filters with a larger difference in
performance for index and middle fingers (see Supplementary fig. 7).
This suggests the context-dependent changes in population tuning
observed during static gestures may be present for continuous finger
movements as well.

In summary, the population tuning of weakly-represented fingers
changed more based on the movement of other fingers, suggesting
that peak performance for intracortical brain-computer interface fin-
ger control requires the use of non-linear decoders that jointly decode
the movement of all fingers. However, the amount of training data
increases with complexity of the decoder. For example, quadratic
decoder may provide high decoding accuracy by capturing all pairwise
interactions if a large amount of training data is available (Supple-
mentary Fig. 6A).

Discussion

We discovered a pseudo-linear compositional neural code for how
individual finger movements are combined to represent multi-finger
movements. While the neural activity evolved in a direction consistent
with the linear summation of its constituent movements (Fig. 4), the
magnitude of neural activity was normalized, i.e., it was independent of
the number of moving fingers (Fig. 5). As a consequence, fingers that
were weakly represented (such as middle) showed a greater change in
their tuning magnitude and direction as a function of the movement of
other fingers (Fig. 6). Hence, while the linear model explained a large
fraction of the variance in the neural activity, decoding multiple finger
movements can be substantially improved with a joint, non-linear
decoder (Supplementary fig. 7).
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Fig. 6 | Impact of pseudo-linear representation on the linear decodability for
individual fingers. A Visualizing ‘population tuning’ vectors joining the points
corresponding to the flexion and extension movements for fixed movement of
other fingers. Three principal components capturing the average neural activity for
flexion-extension movements across fingers are computed and visualized with a
two-dimensional projection that aligns the flexion-extension movements of a par-
ticular finger along the y-axis. Colored lines indicate the marginalized (average
across conditions) neural activity for flexion (dotted) and extension (solid) move-
ments of fingers. Dots indicate the average neural activity during the hold period
while the participant attempted a combinatorial finger movement. Gray (black)
dots indicate conditions where the target finger was flexed (extended). Lines join
movement pairs from the same context (i.e., other fingers have the same cued
movement but the target finger has different cued movements). B Histogram of
alignment of population tuning directions (cosine of angle) across pairs of contexts
in data (left) and linear-nonlinear model fits (right). Population tuning directions
are more aligned for thumb and ring/little finger groups in both data and the linear-
nonlinear model. By construction, the linear model exhibits complete alignment of
all contexts (all values at 1). C How neural population tuning magnitude for a given
finger group is affected by the movement of other fingers. Data are shown from 80
combinatorial movements of four finger groups. Contexts (specific movements of
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other fingers) are sorted by tuning magnitude. Error-bars indicate standard
deviation across 100 resamplings of the data. D Context dependence of population
tuning magnitude in a linear-nonlinear model from Fig. 5D. While the linear-
nonlinear model captures the variations in tuning magnitude, a linear model has
constant tuning magnitude by construction (arrows). Error-bars similar to (C).

E Performance of a linear decoder (support vector classifier) when classifying
between flexion/extension positions of a finger across contexts. Element at position
(i,j) corresponds to training the classifier on context j and testing on contexti. Mean
within-context (diagonal values) accuracy was high for all finger groups, whereas
across-context (off-diagonal values) accuracy was low for middle and index fingers
compared to the thumb and ring-little group. F Examples of cross-context
decoding performance for the thumb, little, and ring finger. Two gesture pairs are
shown for each finger. For the first pair, the target finger is either flexed or extended
while the other fingers are at rest. For the second pair, the target finger is either
flexed or extended while all other fingers have an identical movement. A linear
classifier for thumb position trained on isolated movements showed 100% accuracy
when tested on the second pair of movements (Thumbs Up vs ASL sign for letter S).
This accuracy dropped to nearly chance performance in a similar analysis for the
little and ring fingers. Source data are provided in the Source Data file. Copyright ©
Meta Platforms Technologies, LLC and its affiliates. All rights reserved.

The context-dependent changes in population tuning magnitude
and direction across finger groups can be understood by the differ-
ences in the strength of neural representation of different finger
groups (Fig. 4D) and the impact of magnitude normalization on linear
summation. To understand this geometrically, consider the popula-
tion tuning direction of a finger when it is moved in isolation (red,
Fig. 7). When the contribution of other finger movements is linear, the
displaced population vector (orange) has the same magnitude and
direction as the population tuning vector during isolated movements.
However, if the linear contribution is large, the resulting neural activity
has a large magnitude, which is not realistic in a biological neural
circuit. The observed neural activity will thus differ from the prediction
of linearity due to this magnitude constraint. As a result, the observed
population tuning vector may have a different magnitude and direc-
tion compared to that of isolated movements (blue). Conversely, if the
contribution of other fingers is small, the linearly summed neural

activity satisfies the constraint on neural activity magnitude, and the
population tuning vector preserves the magnitude and direction. In
our recordings, the index and middle finger were more weakly repre-
sented than the thumb and ring-little fingers.

The pseudo-linear composition of individual finger movements is
consistent with recent work in monkeys', which showed that linear
summation of neural activity for single finger movement explains two-
finger movements. However, our analysis of the two finger and four
finger-group movements in our participant with paralysis (enabled by
the ability of human participants to attempt complex and flexible
tasks) revealed a characteristic deviation from a pure linear summa-
tion. While the dominant fingers (e.g., thumb) had consistent tuning
across different combinations (as predicted with linear summation),
the weakly-represented fingers (e.g., middle) showed a larger deviation
from the linear model. This is explained with magnitude normalization
after linear summation, and is consistent with recent publications.
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Fig. 7 | lllustration demonstrating how pseudo-linear summation explains the
changes of population tuning for a finger and its dependence on the strength
of neural representation. Points indicate neural activity corresponding to differ-
ent gestures, with gray (black) indicating the gestures with flexion (extension) of a
particular finger (finger 1). The red line joins a pair of gestures when finger 1 moves
alone (i.e., other fingers are at rest), and indicates the population tuning vector
during isolated movement. The contribution of the movement of other fingers is
indicated by displacement along the black arrow. The displaced population tuning
vector under linear summation is indicated in orange. This results in preserved

) finger 1 tuning in isolation

) contribution from a specific movement combination of other fingers
) finger 1 tuning with linear summation

) finger 1 tuning with linear summation and magnitude normalization

population tuning magnitude and direction (red and orange lines are parallel and of
the same length). However, the magnitude of neural activity in biological neural
circuits is limited (indicated by the black circle). Hence, the experimentally
observed neural activity differs from the prediction of linear summation, and the
observed population tuning vector (blue) shows a change in magnitude and
direction compared to the neural tuning vector for the finger movement in isola-
tion (red). When the relative contribution from other fingers is large (such as for the
index and middle fingers), the changes in population tuning magnitude and
direction are greater.

First, prior work in monkeys showed that in a task requiring produc-
tion of different amounts of force, a linear model needs to be sup-
plemented by a condition-dependent gain to predict EMG activity
from neural activity?’. Second, there exists a mild degree of non-linear
encoding for two finger movements in monkeys, explaining why non-
linear decoders have been shown to improve closed loop
performance”. These observations are consistent with the widespread
observation of normalization as a canonical neural computation in
many neural circuits during sensation and decision making®*.

Multi-finger movements have previously been studied extensively
using functional MRI (fMRI) in able-bodied volunteers. A study by Ejaz
et al.”® showed that the neural activity for multi-finger movements
could not be predicted linearly from single-finger representations,
indicating that nonlinear interactions between different fingers need
to be taken into account. Subsequently, the neural representation of
multi-finger stimulation in the somatosensory cortex and the motor
cortex**?, which may be similar to the neural activity during active
movement®®, was better explained by a linear-nonlinear model com-
pared to a linear model. The pseudo-linear summation model is
potentially a unifying concept that both explains interaction effects'®
and offer an explanation of their origin.

In addition to finger movements, pseudo-linear composition may
explain the neural activity for simultaneous limb and multi-joint
movements as well“?*%, Future work will verify if magnitude normal-
ization can explain the observed suppression of the non-dominant
limb for simultaneous bimanual movements and if there exists a uni-
fied theory of how the brain represents simultaneous multiple
movements.

What circuit mechanisms could explain the mild degree of non-
linearity and magnitude normalization? One hypothesis is that the
observed non-linearities could be a consequence of inputs with dif-
ferent strengths processed by a network of neurons with saturating
nonlinearities. We tested if a simple recurrent neural network (RNN)

with static input drive of unequal magnitudes and saturating unit
activations could capture the observed properties. The inputs corre-
spond to different fingers, and the unequal input magnitudes reflect
the unequal modulation observed for different fingers. Starting from
random unit activation, the RNN was simulated until the activity
reached a steady state. This steady state activity captured all the
properties observed for neural recordings—it was low dimensional,
with a largely constant magnitude that cannot be approximated by a
linear model of finger positions, and the population tuning direction
for weaker inputs changed more compared to the stronger inputs
(Supplementary fig. 7).

An alternative hypothesis arises from the balance of excitatory
and inhibitory inputs to the neurons®~*, Specifically, the preserved
magnitude of neural activity might be explained by the simulta-
neous increase in both excitatory and inhibitory activity as the
number of moving fingers increases. However, testing this possibi-
lity in human participants is challenging due to experimental
limitations.

This work helps to address a fundamental question of how neu-
ronal ensembles represent multiple task-related variables. While a
neural representation that linearly composes individual task variables
is simple, and a decoder trained to decode a particular task variable in
one context generalizes to other contexts, the overall capacity to
accurately represent multiple combinations of task variables is limited.
An alternative representation using non-linear composition of task
variables provides a higher capacity but poorer decoder generalization
across contexts. Similar to the pseudo-linear compositional principle
described here, several studies have presented evidence of a largely
linear composition with a mild non-linearity—a compromise between
the two extremes**¢. However, most of the literature on multi-task
computation has been limited to simulated networks**%, neural
recordings in non-human primates***°, or functional magnetic reso-
nance imaging in humans®’. Along with some recent works*’, we
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extend the principle of compositionality to neural recordings in the
human motor cortex at single neuron resolution, providing further
evidence that compositionality may be a general feature of brain
representations.

Overall, we show that the compositional coding hypothesis with
pseudo-linear summation (Fig. 1B) is strongly supported by the neural
geometry of multi-finger movements in the human premotor cortex.
This principle may explain the neural structure in other motor and
cortical tasks and may aid in a rapid development of future intracor-
tical brain computer interface applications such as multi-finger typing,
playing a piano, or whole-body movement.

Methods

Participant information

Research sessions were conducted with volunteer participants enrol-
led in the BrainGate2 pilot clinical trial (ClinicalTrials.gov Identifier:
NCT00912041). The trial is approved by the U.S. Food and Drug
Administration under an Investigational Device Exemption
(#G090003, Caution: Investigational device. Limited by Federal law to
investigational use) and the Institutional Review Boards of Stanford
University Medical Center (protocol #52060), Brown University
(#0809992560), and Partners HealthCare/Massachusetts General
Hospital ((#2009P000505).

Participant T5 was a right-handed man who was 69 years old at the
time of the study. He was diagnosed with C4 AIS-C spinal cord injury
eleven years prior to this study. T5 was able to speak and move his
head, and had residual movement of his left bicep as well as trace
movement in most muscle groups (See ref.* for further details). T5
gave informed consent for this research and associated publications.

Participant T11 was a 36-year-old right-handed man with a history
of tetraplegia secondary to C4 AIS-Aspinal cord injury that occurred 11
years prior. T11 gave informed consent for this research and associated
publications.

Both participants had two 96-channel intracortical microelec-
trode arrays placed chronically into the hand knob area of the left
precentral gyrus (PCG).

Neural recordings

For the present study, neural control and task cuing closely followed™
and were controlled by custom software running on the Simulink/xPC
real-time platform (The Mathworks, Natick, MA), enabling millisecond-
timing precision for all computations. Neural data were collected by
the NeuroPort System (Blackrock Microsystems, Salt Lake City, UT)
and available to the real-time system with 5 ms latency. Neural signals
were analog filtered from 0.3 Hz to 7.5 kHz and digitized at 30 kHz (250
nV resolution). Next, a common average reference filter was applied
that subtracted the average signal across the array from every elec-
trode in order to reduce common mode noise. Finally, a digital
bandpass filter from 250 to 3000 Hz was applied to each electrode
before spike detection. For threshold crossing detection, we used
a—-4.5xRMS threshold applied to each electrode over 1 ms bins, where
RMS is the electrode-specific root mean square (standard deviation) of
the voltage time series recorded on that electrode and downsampled
at 15 or 20 ms bins. For most analyses the binned activity was also
smoothened with a gaussian filter (6 =300 ms).

For T11 data, neural activity was recorded using the Brown Wire-
less Device (BWD) described previously>. BWD transmitted data at
20 kHz and 12 bits per sample, which was then upsampled to 30 kHz
and 16 bits per sample. The raw activity was then passed through a
fourth-order bandpass butterworth filter (250-7500 Hz). A common
average reference filter was applied, threshold crossing counts were
computed for 1 ms bins (threshold = -4 x RMS), and discretized at 15 or
20 ms bins and Z-scored (normalized) for each channel.

While sorted units could be identified using our recordings, this
study uses multi-unit activity to simplify the methods and multi-unit

activity has similar neural geometry and neural decoding performance
as sorted units™ >,

Task design

The finger and hand visualization was developed in Unity Software
(Unity Technologies, San Francisco) using a pre-fabricated hand*®*’.
The fingers and hand were animated by either using the Animation
toolbox in Unity to continuously interpolate between specified start-
ing and ending positions (American Sign Language gestures), or spe-
cifying the trajectory of joint positions and rotations directly from an
external program using Redis (Redis Enterprise, all other tasks, which
have a single axis of motion per finger). When specified directly,
motion involved only the flexion-extension movements of individual
fingers, and joint positions and angles were interpolated between a
complete flexion and extension position.

Trial structure. All trials were “open-loop” and consisted of watching
an animated hand smoothly transitioning from one gesture to another.
The participant was asked to attempt to make those same motions
with his own hand, even though paralysis prevented him from doing
so. Each trial consisted of distinct phases: a preparatory period, a go
cue followed by a movement period, and a hold period (optional).
During the preparatory period, participants were shown the final tar-
get finger positions but did not move their hands. At the go cue, they
were instructed to slowly move their hands to the target positions.
During the hold period, they were instructed to hold their hands
steady at the target positions. The final target position was shown at
the beginning of each trial, either using a separate hand that changed
configuration at the beginning of each trial (for natural gestures in
Fig. 3B) or using overlay markers that indicate the desired configura-
tion of fingers at the end of each trial (other tasks).

Block structure. The trial within a block followed a structure similar to
the 2D cursor control task common in motor neuroscience™). Bor-
rowing the terminology from 2D cursor control tasks, trials alternated
between “center-out” and “return” trials. Center-out trials began with
the hand at a rest position, which then proceeded to move to a target
gesture (equivalent to the “going-out” phase of a center-out cursor
control task). During return trials, the hand moved back to the rest
posture. Only center-out trials were analyzed.

Single finger movement task (Fig. 2, Supplementary Figs. 2, 3, 4). A
single finger was either fully flexed or extended in each trial. Each trial
consisted of a 1.5 s preparatory phase and a 1s movement phase. Each
block consisted of 81 gestures (162 trial total as center-out and return
trials alternate). Center-out single finger movements were also per-
formed across contexts (different hands and palm-poses), either
changing contexts across blocks (but fixing the context within each
block) or alternating across contexts within a block.

Natural gestures task (Fig. 3A, B). Sign-language task consisted of 38
total gestures, with some corresponding to signs from the American
Sign language and others added probe single-finger movements,
coordinated movements of all fingers (e.g., all finger flexion/exten-
sion), or decorrelating the movements of all fingers (e.g., Sign Alter-
nating Fingers). Each trial had 1 s preparatory time, 1.5 s move tim,e and
2 s hold time.

Pairwise finger movement task (Figs. 4, 5A, Supplementary Fig. 5).
Two finger groups were independently cued (each at full flexion/full
extension/rest), resulting in 9 unique movements, with one movement
being rest. The two finger groups either consisted of thumb vs all other
fingers tied together (Fig. 4AB, Fig. 5A), or individual fingers (Fig. 4B,
Supplementary fig. 5). Each trial consisted of a 1.5 s preparatory phase
and a 1s movement phase.
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Combinatorial four-finger movement task (Figs. 3C, 4, 5, 6, Sup-
plementary Fig. 6). For combinatorial movements of four finger-
groups (the ring and little fingers were constrained to move together),
the target position for each finger-group was sampled independently
(full flexion/full extension/rest), resulting in 81 unique movements,
with one movement being rest. These 81 movements were randomly
divided into three groups consisting of 27 movements each. Each
block only contained movements from one of these groups, and each
movement was repeated three times in a row. The multiple repetitions
of each movement were designed to improve behavioral reproduci-
bility since the movements were often non-intuitive and non-natural.
Hence, three open-loop blocks with different subsets of target con-
figurations give three trials of all 81 target gestures. Each trial had 1s
preparatory time and 2 s move time (slightly longer move time reduces
behavioral variability).

Neural geometry analysis

We assessed the geometry of the activity elicited by different move-
ment conditions in the multi-dimensional neural state space, where
each dimension corresponds to the activity of a particular channel and
each movement condition corresponds to a single point in the state
space. The geometry was assessed by measuring (i) the angle between
lines connecting origin to two movements or equivalently the corre-
lation between corresponding neural activity patterns (Fig. 2E, Fig. 6C,
Supplementary fig. 3), (ii) the magnitude of neural activity for indivi-
dual movement conditions (Fig. 5, Supplementary fig. 5), (iii) distance
between pairs of conditions (Fig. 2D, Fig. 6B), and (iv) magnitude of
neural activity generated by linear summation of two movement
conditions (Fig. 5A). In each case, neural activity during the hold period
was used for analyzing the geometry.

These measurements are straightforward for noise-free observa-
tions, such as predictions of an encoding model. However, for the
recorded neural activity, we only have access to multiple trials of noisy
neural activity for each condition.

Notation. Let n; be the neural state space representation of recorded
activity for trial i. Let n is the noise-free activity, and the noise is con-
sidered additive, zero-mean, and independent across trials (€;), giving
n;=n+¢;. Denote the sample mean (trial average) of T trials is given

i=T

i=T
by i= L";l"i =n+ L‘;le’ =n+e.

Estimating angle between neural activity patterns. Let the neural
activity for two movement conditions be denoted by n® and n®
respectively. The angle between these movements after centering on a
reference activity p is given by the inner product

a T(nb . . .
6=cos™! <%> The numerator is estimated using sample

averages as (i, — 1) Thb — 1, and the estimation of denominator is
described below. This analysis was done for Supplementary Fig. 3, with
the reference vector u being defined as the mean across all movement
vectors.

For paired movements on a finger, the angle between lines joining
flexion/extension of a given finger is measured as

T
0 =Ccos™ 1( ("fingerl,ﬂexion 7nfingerl, ex:ension) ("fingerz,flexion *nfingerz, extension ) ). Si mi I ar tO the
| |"fingerl,ﬂexion 7”fingerl, extension [l |nfingeiz,ﬂexian *nfingerz, extension Il

above, the numerator is estimated using sample averages, and the
estimation of the denominator is described below. This analysis was
performed for Fig. 2E.

Estimating neural activity magnitude. A “naive” estimator of the
magnitude (||n||?) using sample estimates ||72||? is biased, which can be
shown as follows. Expanding the naive estimator results in
l1A]?=|n||? + 2¢.n + ||€])%. Since the expected value of € is zero, the
second term is zero. However, ||€|>>0, making the expected value of

|72, E||\A||? =E||n||? + E||€||*>E||n||?, shows that the naive estimate is
biased.

An unbiased estimator can be developed to estimate neural
magnitudes and distances'®**“°. We use the implementation outlined

in (Willett et al. 2020). With n_;= w denoting the empirical

mean of all trials except the ith trial, the estimator £ (|| n| |2) is defined as

joy il - L€ _ A
Zﬂ# .Note that, i_;=n+ =:104" = p+¢_. The expected value of
each term in the summation is given by:

Emi_;=E[(n+€).(n+€&_)]=||n||®+Ee€;.€_;+nEe;+n.Ee ;=|n|> ()

Since the noise is zero mean and independent across trials, the
last three terms evaluate to zero, making the summation unbiased.

When using a movement condition was cued across multiple
sessions, we average the session-specific estimates of neural activity
magnitude. Note that the unbiased estimator could give negative
values, which we interpret as evidence that the true magnitude is
near zero.

Estimating neural distances. Let n® and n’ correspond to the neural
activity for conditions a and b. A naive estimator using sample avera-
ges ||n? — nb|)? is biased, as explained above. An unbiased estimator
can be estimated by expanding the square and plugging in the
unbiased estimator for each term in the expansion:

&(In® — n?|2)=[In% 2+ ||n?|2 — 2n%.nP = £(|In%|1?) + E(In?|?) — 22%R°
)

If n® is deterministic (not random), the second term simplifies to
[In||2. The representational dissimilarity matrix is constructed by
calculating the neural distance between all pairs of movement condi-
tions within a session and averaging across sessions.

Estimating the magnitude of neural activity under linear summa-
tion. Similar to the estimator for distances, the magnitude of neural
activity when two neural activity patterns are added together
(||n? +n®)|?) is given by

&(In +n?|12)=&(IIn% %) + (I 1?) + 2R° A 3)

Encoding models for predicting neural activity from movement
kinematics

For the encoding model analysis presented in Figs. 4D, E, 5B-G, 6, and
the Supplementary Figs. 6, 7, we use data from the “combinatorial four-
finger movement task” outlined above. Trials were split into a disjoint
training set (70% of the trials) and testing set (30%) for each session
and condition. Neural activity was thresholded, binned, smoothened
(details above), and only channels with high mean activity were kept
(mean firing rate > 1.3Hz). For each condition, neural activity was
further trial-averaged, time-averaged (for the last quarter of trial
duration corresponding to hold period), and concatenated across
sessions, resulting in 960 dimensions. Condition invariant signal
(average of the neural activity for different movements) was calculated
from the training data and subtracted from both training and
testing data.

Movement kinematics were represented as a one-hot vector with
separate dimensions for flexion and extension of each finger group,
resulting in an eight-dimensional movement encoding. In addition to
splitting the trials, the cross-condition generalization analysis (Fig. 5F)
involved splitting the 80 movements into training (80%) and testing
(20%) conditions.
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Linear encoding model. A linear model approximates the observed
neural activity as n; = Ak; + a, where n; is the neural activity vector for
condition i, k; is the one-hot encoding of kinematics, A, a are the
learned encoding matrix and the bias respectively. For the low-rank
linear model, A was constrained with low-rank matrices (X, Y): A=XY".
Performance on test data was measured using mean-squared-error,
estimated with Eq. 2 (with one random and one deterministic com-
ponent) and averaged over 100 resamples of data.

Linear-nonlinear encoding model. The linear model was augmented
with saturating nonlinearities (f) modeling the neural activity as:
n; =Bf(Ak; + a) + b. The nonlinearity f = tanh(.) for all analysis. Analysis
with recifying non-linearity (f(x)= max(x, 0)) is presented in Supple-
mentary Fig. 6. The parameters of this model (A, a, B, b) were opti-
mized by minimizing an unbiased estimate of the MSE (Eq. 2) using
Adam optimizer (learning rate = 0.0001, stopped when change in loss
<le-7).

Discrete decoding of movement kinematics from neural activity
Neural activity was classified into the corresponding movements for
natural gestures (Fig. 3B), combinatorial movement of four finger
groups (Fig. 3C), or position of a particular finger during simultaneous
movements (Fig. 6E, F). To categorize neural activity into discrete
movements, threshold crossings were first binned (10 ms bins) and
smoothed (by convolving with a Gaussian kernel, 0 =20 ms). Binned
threshold crossing was then averaged across time for the entire
duration of the movement, yielding a single neural feature vector for
each trial. Inactive channels (as defined by <10 Hz activity) were
removed from the feature vector, and channels were Z-scored within
each block.

The ability to distinguish between different gestures was assessed
using a multi-class linear classifier (support vector classifier from the
sklearn package®, linear kernel, C = 0.025), which combines the output
of multiple binary (one vs. one) classifiers. Data for Fig. 3B consist of
22-24 trials per condition; data for Fig. 3C consist of 14-18 trials per
condition when at least one finger is moving and 30 trials for the
condition with no fingers moving. Accuracy and confusion matrices
were estimated using ten-fold cross-validation.

For the analysis in Fig. 6E and Fig. 6F, classifiers were trained on
one pair of gestures and evaluated on different pairs. For Fig. 6F,
instead of using the mean activity for the entire duration of the trial,
the accuracy is reported with a featurization of neural activity corre-
sponding to a concatenation over 30 bins of the trial. Accuracy and
confusion matrices were estimated using distinct conditions for
training and testing (e.g., in Fig. 6E) or five-fold (Fig. 6F).

Visualizing the factor-specific components of neural activity
The high-dimensional neural activity is projected to a two or three-
dimensional subspace and visualized to highlight movement-related
components using Targeted Dimensionality Reduction (Fig. 2F, G, 4
A-C) and marginalized principal component analysis (Fig. 6A).

Cross-validated targeted dimensionality reduction (TDR). Targeted
dimensionality reduction® projects the neural activity into a subspace
that can be linearly mapped from movement kinematics. The proce-
dure is detailed below.

Let n; be Ny x T x C dimensional the neural activity for research
session s with N; trials, trial length T and C channels. Each neural
activity pattern is associated with a kinematic movement condition m;
of K dimensions. The following steps are repeated multiple times:

1. Partition data: For each session and movement condition, the
trials are partitioned into training and testing samples (random
50% split for each combination of session and movement
condition).

2. Marginalize: The training data are trial averaged for each move-
ment condition; time-averaged for the last section of the trial
corresponding to continuously holding a given finger position;
and concatenated across sessions. Hence 7,4, is SC* L dimen-
sional, with L being the total number of conditions. The test trials
are similarly marginalized, but the temporal dimension is not
collapsed, to give n,,, of dimension SCxTxL.

3. Remove condition-invariant signal: Movement condition-invariant
component is estimated from the training data and removed from
N¢rqin and N4 . The movement condition-invariant neural activity
is estimated by averaging all training neural activity (not averaged
over time) and concatenating it across sessions to give ns of
dimensions T x SC. A low (three)-dimensional approximation rn;
is computed and n,,;, and n, are projected orthogonal to
this space.

4. Linear regression: The movement kinematics are encoded in a
(K +1)x L matrix M, with each column corresponding to a differ-
ent movement condition, and the first K rows correspond to
positions of the fingers, and the last row =1 is for estimating a bias.
Finger positions are encoded as +1 for flexion, -1 for extension,
and O for rest. The number of non-zero elements in each column
(excluding the last element corresponding to bias) indicates the
number of fingers not at rest. The encoding matrix A of
dimensions SCxK is estimated by solving n,.,,=AM using
ordinary least squares. It is important to note that only the static
neural activity pattern computed by averaging the activity at the
end of a trial is taken into account. This corresponds to the
duration for which the participant is holding a cued gesture. The
top three left singular vectors from the SVD of A are retained for
projecting neural activity (For SVD of A=USV’, the projection
matrix corresponds P=U(: ,1: 3), the left three columns of U).

5. Alignment (for repetition > 1). The projection direction can vary
across repetitions of this procedure. In the absence of any esti-
mation noise, the projection directions can be sign-flipped across
repetitions. In the presence of estimation noise, the projection
directions can also be permuted or, more generally, rotated
across repetitions. While we do not attempt to correct for the
rotations, we attempt to correct for permutations and sign-flips
by aligning the projections estimated in later repetitions (> 1) to
the first repetition by greedily matching the absolute value of the
inner product between projection directions.

6. Projection: The non-time averaged test data n,,,, is projected onto
the three dimensional space (with projected activity at time t
being A, (: , ¢, :)=PTf1,est(: ,t, ) and averaged with previous
repetitions.

This method was used in Figs. 2F, G, 4 A-C. The entire procedure
is repeated 500 times for Fig. 2F, G and 100 times for Fig. 4A-C. Three
sessions were used for Fig. 2F, G and five sessions for Fig. 4A, C; and
one session for Fig. 4B.

Marginalized principal component analysis. The visualization of
neural activity in Fig. 6A aims to isolate the contribution of each finger
group during the combinatorial movements of the four finger groups
(thumb, index, middle, and ring-little constrained together). Briefly, we
identify a three-dimensional subspace that captures the activity across
all single-finger movements and visualize the activity in this subspace
after aligning the tuning directions for a particular finger to be vertical.

Neural activity for each trial was binned and smoothened,
resulting in 7=130 samples per trial. The analysis in this section used
the trial-averaged activity for each movement condition. The trial-
averaged activity was concatenated across sessions, resulting in C
(=192, number of channels) x S (=5, number of sessions) dimensional
observations. Trial-averaging within a session minimizes noise corre-
lation between channels, and concatenating the channels across
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sessions is justified if we assume that we get a random readout of the
same underlying task-related manifold for each session. Let the trial-
averaged and session-concatenated activity for movement condition i
be represented by T x CS dimensional matrix n;.

First, condition invariant signal is calculated by averaging the
activity across all movement conditions. A rank-3 approximation of CIS
is computed using singular value decomposition, and all n; are pro-
jected orthogonal to it.

Next, the contribution of each finger movement is
computed by marginalizing-out the movements of other fingers.
Specifically, the contribution of thumb-flexion is calculated as

> ) S »
n . = __ i murflb is flexed in condltmr} i _
thumb—flexion — |{i:thumb is flexed in condition i}|

Next, these marginalizations are concatenated for the flexion/
extension movements on each finger and all four finger groups and
to give a 8TxCS dimensional matrix. Projection onto the top three
PCs (reducing the matrix to 87x3) gives the 3D visualization of all
finger-movement combinations.

Across the panels in Fig. 6A, this space can be rotated to align
flexion-extension movement of each finger in the north-south direc-
tion. Dots are generated by projecting the neural activity of each
movement combination (n;) onto this 3D space and calculating the
average of the last quarter of the trial duration (presumably corre-
sponding to holding a given gesture). Only conditions when the target
finger is not idle are considered, with black dots corresponding to
extension and gray for flexion; lines join condition pairs where other
fingers have the same movement.

and is of dimensions TxCS.

Recurrent neural network (RNN) simulation

A mechanistic explanation for the linear-nonlinear encoding model
was explored using simulations of a randomly connected recurrent
neural network in Supplementary Fig. 8. We simulated a recurrently
connected network of n=1000 neurons with tanh(.) nonlinearity and
random connectivity / between units (the connection between neu-
rons i and j was sampled independently using /;;.N(O, 1/n)). Two inputs
(i1, i,) were applied to the network and varied between -10 and 10. Each
input was projected onto the neurons using input weight coefficients
sampled from an identical distribution (vector b, of length 1000), but
the inputs had different scales (s;=35, s,=1). In Supplementary Fig. 8,
we simultated an RNN with four inputs with different scales (s;=4,
S>=4,83=1, 4= 1).

Network was simulated for each input combination in a uniformly
sampled grid of the inputs, starting from a random initial state until the
activity settled to a steady state (magnitude of change in state <le-6).
Simulations used the following update equation with 7=1 and dis-
cretization step size 0.01:

dx S = -
G- +Jtanh(X) + z{:s,b,t,

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data needed to reproduce the key findings in this study are available at:
https://doi.org/10.6084/m9.figshare.28396166 Source data are pro-
vided with this paper.

Code availability
The code needed to reproduce the key findings in this study is avail-
able at: https://doi.org/10.6084/m9.figshare.28396166.
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