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Reversible control over the distribution
of chemical inhomogeneities in multiferroic
BiFeO3

M. Müller1, B. Yan 1, H. Ko1, Y.-L. Huang 2,3,4, H. Lu 5,6, A. Gruverman 5,6,
R. Ramesh3,4,7,8,9, M. D. Rossell 10, M. Fiebig 1 & M. Trassin 1

Despite the appeal of flawless order, semiconductor technology has demon-
strated that implanting inhomogeneities into single-crystalline materials is
pivotal for modern electronics. However, the influence of the local arrange-
ment of chemical inhomogeneities on the material’s functionalities is under-
explored. In this work, we control the distribution of chemical
inhomogeneities in La3+-substituted ferroelectric BiFeO3 thin films. By means
of a stress- and composition-driven phase transition, we trigger the formation
of a lattice of La3+-rich and La3+-poor layers. This ordering correlates with the
emergence of an antipolar phase. An electric field restores the original ferro-
electric phase and re-randomizes the distribution of the La3+ inhomogeneities.
Leveraging these insights, we tune the polar/antipolar phase coexistence to set
the net polarization of La0.15Bi0.85FeO3 to any desired value between its
saturation limits. Finally, we control the net polarization response in device-
compliant capacitor heterostructures to show that inhomogeneity-
distribution control is a valuable tool in the design of functional oxide
electronics.

Introducing chemical inhomogeneities into crystalline materials has
been crucial for technological advancement1,2. This is particularly
evident in silicon technology, where the integration of impurity
atoms constitutes the very essence of semiconductor functionalities.
However, introducing these inhomogeneities with uncontrolled,
typically homogeneous distribution is no longer sufficient to sustain
the current technological development3,4. The discovery that impor-
tant functionalities, such as ferroic order5,6, superconductivity7,8,
magnetoresistance9, and even CO2 photoreduction

10 often depend on
the configuration of inhomogeneities in the crystal structure under-
lines this point. As a result, the focus ofmaterials refinement has been
shifting from random toward ordered insertion of inhomogeneities

during synthesis. In a complementary development, there is an
emerging perspective of reversibly tuning material properties with-
out inserting or removing inhomogeneities, but solely by rearranging
them. The potential of this method is far from being exploited,
however, since inhomogeneities typically remain localized after
material fabrication, which inhibits post-synthesis functionality
control11–14.

A class of functionalmaterials prone to chemical inhomogeneities
are ferroelectric perovskite oxides15–18, materials that are discussed as
critical components of next-generation information technologies4,19,20.
Recent studies on BaTiO3, Pb[Zr0.2Ti0.8]O3, and SrTiO3 have demon-
strated active control over the arrangement of anionic
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inhomogeneities such as oxygen off-stoichiometry21–23. The associated
tunability of electrical conduction and polarization kinetics opens up a
new degree of freedom in materials engineering. Since cations deter-
mine the ferroelectric behavior, establishing control over the dis-
tribution of cationic inhomogeneities, a largely unexplored frontier, is
of great importance24.

Here, we reversibly create and annihilate ordered arrange-
ments of cationic inhomogeneities in ferroelectric single-layer
La0.15Bi0.85FeO3 thin films. Specifically, using a diamond-coated
scanning-probe tip, we apply a compressive force to create layer-
dependent variations in the La3+ concentration. Strikingly, the
local pressure-induced transition from polar to antipolar order
correlates with the arrangement of the La3+ inhomogeneities in
the lattice. By tuning the magnitude of the mechanical force, we
manipulate the polar/antipolar phase coexistence to create quasi-
continuous net polarization between zero and the saturation
polarization of La0.15Bi0.85FeO3. Finally, we demonstrate the
device potential of the reversible polar-to-antipolar transition and
of La3+ distribution control in capacitor heterostructures. This
outlines how the control of inhomogeneity distribution can be
utilized to adapt the properties of functional oxides post-growth
in support of the development of novel multifunctional electro-
nics components.

For this study, we chose La3+-substituted multiferroic BiFeO3 as
the model system. La3+ inhomogeneities substitute for the Bi3+ ions,
which is responsible for the ferroelectric order24–26. Their substitution
has enabled magnetoelectric operation at voltages close to technolo-
gical requirements27. The proximity of multiple structural phases in
BiFeO3 with respect to the La3+ concentration14,28–30 or external
stimuli31–36 renders La3+-substituted films the ideal platform to study
the relation between chemical inhomogeneities, their distribution, and
the rich functionalities of oxide thin films. The existence of a mor-
photropic polar-to-antipolar transition for a La3+ substitution level of
15% in the bulk form37motivates the study of La0.15Bi0.85FeO3 thin films.

Results and discussion
We grew epitaxially strained (001)p.c.-oriented La0.15Bi0.85FeO3 films
with a thickness of 100 nmon a 14-nm-thick SrRuO3 buffer layer on top
of (110)o-oriented single-crystalline DyScO3 substrates using pulsed
laser deposition. Here, we chose the latticematchingDyScO3 substrate
motivated by the studies reporting high crystalline quality and excel-
lent properties of the BiFeO3 thin film system20,26,38. The strain state,
orientation, and thickness of the films were characterized using X-ray
diffraction, see supplementary information, Fig. S1. The subscripts
“p.c.” and “o” refer to the pseudocubic and orthorhombic lattices of
BiFeO3 and DyScO3, respectively.

We start the investigation by probing the distribution of the La3+

ions in the pristine La0.15Bi0.85FeO3 films with high-angle annular dark-
field (HAADF) scanning transmission electronmicroscopy (STEM). The
intensity in the HAADF-STEM micrographs scales approximately with
the square of the atomic number, Z39,40, thereby allowing us to differ-
entiate between Bi3+ and La3+ ions located at the A-site of the ABO3

perovskite structure. The HAADF-STEM image of our pristine film and
the superimposed normalized intensities associated with the A-site
(Bi3+ and La3+, noted as Bi3+/La3+) atomic columns are plotted in Fig. 1a.
The regular intensity pattern and the uniformity of the averaged ver-
tical and horizontal line profiles confirm the expected homogeneous
distribution of the La3+ ions in the pristine La0.15Bi0.85FeO3 films.

The impact of the homogeneous La3+ distribution on the func-
tionality of the films is investigated using atomic force microscopy
(AFM) and piezoresponse force microscopy (PFM). The topography
of the film, as well as out-of-plane and in-plane polarization-domain
configurations, are shown in Fig. 1b–d. The films exhibit a smooth
topography with unit-cell-high step terraces. Moreover, the com-
parison of the contrast in vertical PFM (VPFM) between the pristine,
upward- and downward-polarized regions after PFM tip-induced
poling indicates a mostly downward-oriented polarization in the out-
of-plane direction in the pristine state, and distinct three piezo-
response levels in lateral PFM (LPFM) images, representative of all
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Fig. 1 | Distribution of La3+ inhomogeneities and associated properties of epi-
taxial La0.15Bi0.85FeO3 thin films. a HAADF-STEM micrograph of a pristine
La0.15Bi0.85FeO3 film captured along [100]p.c.. Superimposed on the HAADF-STEM
image are the STEM intensities normalized to the maximum intensity of the A-site
(labeled Bi3+/La3+) atomic columns plotted at their fitted coordinates. The averaged

line profiles in vertical and horizontal directions demonstrate the homogeneous
distribution of the La3+ ions. b–d Topography, VPFM, and LPFM micrographs of a
pristine La0.15Bi0.85FeO3film. A local out-of-plane polarization reversal is inducedby
the application of −/+ 10 V scanning-probe tip bias. The scanning direction is hor-
izontal in (b–d).
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four in-plane polarization-domain states of BiFeO3
41. Hence, the PFM

investigation confirms the ferroelectric order in the pristine
La0.15Bi0.85FeO3 films. The La3+ substitution causes the in-plane
polarization domains to arrange randomly, in comparison to the
neatly ordered stripe-domain arrangement in BiFeO3 on (110)o-
oriented DyScO3 substrates26. Because of this, the net-in-plane
polarization of the pristine La0.15Bi0.85FeO3 is substantially atte-
nuated with respect to pure BiFeO3

26.
In the next step, we tune the distribution of the cationic La3+

inhomogeneities. A way to act on the La3+ arrangement is indicated by
the rich phase diagram BiFeO3 exhibits under hydrostatic pressure42.
Pure BiFeO3 loses its spontaneous polarization under the influence of
mechanical force through a ferroelectric-to-antipolar phase transition.
Motivated by the recent reports highlighting correlations between
lattice chemistry and polarization in epitaxial systems43–45, we thus
apply a compressive force and study its influence on the La3+ dis-
tribution in the films.

Using diamond-coated AFM tips with a relatively large apex
curvature radius (~100 nm), we applied a localmechanical force up to
140 μN to the film surface while raster-scanning a square-shaped
region. Strikingly, after exposure to the compressive force, the
HAADF-STEM micrograph shows a reduced intensity at the A-site of
the ABO3 perovskite in every other Bi3+- and La3+-containing plane,
see Fig. 2a. This STEM intensity modulation is evident in the line
profile extracted along the vertical of the image in Fig. 2a. The results
are depicted in Fig. 2b and show two distinct STEM intensity levels of
the (001)p.c.-planes that alternate along the [001]p.c.-direction. They
indicate a periodic modulation of the average atomic number when
passing from one layer to another. We thus conclude that the applied
compressive force triggered an alternating enrichment and deple-
tion of the La3+ distribution in the films. This is further supported by
complementary electron energy-loss spectroscopy and energy dis-
persive X-ray analysis, see supplementary information Fig. S2a and
Table S1.
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Fig. 2 | Compressive force-induced rearrangement of La3+ inhomogeneities.
aHAADF-STEMmicrograph along [100]p.c. of a region that has been exposed to 140
μN of compressive force. Superimposed on the HAADF-STEM image are the STEM
intensities normalized to the maximum intensity of the A-site (labeled Bi3+/La3+)
atomic columns plotted at their fitted coordinates. The blue and red arrows indi-
cate the up- and down-shifts of the Bi3+/La3+ ions, respectively. b Averaged vertical
line profile of (a). The green and dark blue dashed lines indicate the two distinct
intensity levels of alternating La3+-rich and La3+-poor planes, respectively.

c Topography micrograph demonstrating the surface reorganization of a region
after exposure to a compressive force of 140 μN—indicated by a white dashed
square—with respect to the pristine region. The line profile below corresponds to
the dashed blue line in the micrograph. The purple- and light blue-shaded regions
denote the pristine and stressed areas, respectively. d, e LPFM, and VPFM micro-
graphs of the same region as depicted in (c). The antipolar region is marked with a
dashed white square.
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In addition to the oscillations of the average atomic weight, the
La3+-enriched layers now reveal an alternating up-up–down-down shift
of the Bi3+/La3+ ions. The cation shifts are indicated by the blue and red
arrows in Fig. 2a. Note that the influence of the cation shifts on the
intensity profile in Fig. 2b is subtracted in the analysis shown in the
supplementary information Fig. S2b.

The observed structural deformation, i.e., alternating up-
up–down-down shift in every other A-site plane in Fig. 2a, is char-
acteristic of an antipolar phase with the space group Pnma46,47, see
supplementary information, Fig. S3. Additional HAADF-STEM micro-
graphs taken at the boundary between the ferroelectric and antipolar
regions demonstrate a clear spatial separation between layered La3+-
arrangements with antipolar electric-dipole orderings and the pristine
phase with randomized La3+ distribution, see supplementary infor-
mation, Fig. S4. Hence, the experimental results show a striking cor-
relation between the lattice chemistry and the polar nature of the
La0.15Bi0.85FeO3 unit cell. In ferroelectric BiFeO3, the Bi3+ electronic
lone pair drives local polar distortions in the ferroelectric unit cell in
BiFeO3

24–26. Hence, the Bi3+ substitution with La3+ influences the net
polar state in the La-BiFeO3 films. At the pressure-induced polar-to-
antipolar phase transition in highly La3+ substituted BiFeO3 thin films,
the reorganization of the atomic displacementwithin the unit cellmay,
hence, correlate with a change in lattice chemistry. Here, the identical
radii and valence states of Bi3+ and La3+ cations at play most likely
facilitate the reversible cationic redistribution across the phase tran-
sition, as highlighted in the report of the different polar regions in the
phase diagram of BiFeO3/LaFeO3 superlattices

48.
In the next step, we investigate the topography and ferroelectric

domain configuration of the antipolar region. Using AFM,we observe a
transition from an initially flat surface to a corrugated pattern, see
Fig. 2c. We attribute this corrugation to the vertical compression and
resulting lateral expansion of the La0.15Bi0.85FeO3 lattice in the anti-
polar Pnma phase, see supplementary information, Fig. S4c, d. In
addition, the lack of piezoresponse in both the LPFM and VPFM
micrographs validates the transition to the antipolar phase in this
region, see Fig. 2d and e, respectively.

We tested whether mechanical-damage-induced artifacts can
explain the observed AFM/PFM results by studying the dependence of
the topographic corrugation on the raster-scanning direction during
force application. The results, depicted in supplementary information
Figs. S5 and S6 show that neither surface reconstruction49 nor

chemistry changes48 occur in the regions of interest and that the cor-
rugation always aligns with respect to the [1�10]o-axis of the DyScO3

substrate, independent of the diamond-tip scanning direction. The
disconnection between scanning direction and topographic features,
combined with the HAADF-STEM results, allows us to exclude
mechanical-damage-induced artifacts as the cause of the topographic
alteration in Fig. 2c and the loss of piezoresponse in Fig. 2d and e.

With the knowledge that a compressive force can rearrange La3+

ions in the La0.15Bi0.85FeO3 films, we now investigate the force-
magnitude dependence of this process. We applied forces from 21
μN to 139 μN to six different regions of the sample and assessed the
degree of the La3+ ordering by studying the ferroelectric polarization
using LPFM. We observe a progressive loss in polarization-domain
contrast, indicative of the steady transition from the ferroelectric to
the antipolar phase with increasing force. A selection of the respective
LPFM micrographs is depicted in Fig. 3a–d.

We quantify the suppression of the polarization by extracting the
width of the LPFM histogram of the stressed-square region and nor-
malizing it to the according value for the pristine region. Note that the
LPFM histogram depicts the presence and number of piezoresponse
levels associated with in-plane polarization domains, see supplemen-
tary information, Fig. S7. The gradual fading of piezoresponse contrast
with increasing force can thereby be translated to a quantitative esti-
mate of the extent of the polar-to-antipolar phase transition. The result
is depicted in Fig. 3e and corroborates that we have identified a new
handle to adjust the macroscopic polarization level of the
La0.15Bi0.85FeO3 films quasi-continuously between zero and the
saturation value by making use of the pressure-controlled polar-to-
antipolar phase transitions. This tunability is an essential feature for
multi-level information technology50–53. Note that, since the antipolar
order is accompanied by an alternating La3+ distribution, we conclude
that the degree of La3+ ordering scales with the applied force, too.

Next, we investigate whether the force-controlled inhomogeneity
distribution and the associated variation in spontaneous polarization
can be reversed. Therefore, we applied a local electric field in the form
of an 8V bias to a conducting PFM tip and poled a small square within
the antipolar region. Strikingly, a cross-sectional HAADF-STEM
micrograph of a region treated in this way reveals the return to the
homogeneous La3+ distribution and back-conversion to the ferro-
electricR3cphase, see Fig. 4a. This remarkable structural anddielectric
reversibility is corroborated by the scanning-probe investigations in
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points corresponds to that of the dashed boxes in (a–d). The LPFM micrographs
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Fig. 4b–d. We also observe a return to the flat topography of the
pristine film in the poled region, see Fig. 4b, and to the original pie-
zoresponse contrast in the PFM micrographs, see Fig. 4c, d. These
observations, therefore, demonstrate full reversibility of the force-
induced La3+ and antipolar order under an electric field. In supple-
mentary information, Fig. S8, we show that this cycle can be repeated
multiple times. Finally, we tested the impact of the La3+ substitution on
the phase conversion, see supplementary Figs. S9 and S10. The polar-
to-antipolar phase transition is only achieved for 10 and 15 % La3+

substitution levels. Films with 20% La3+ substitution already exhibit the
antipolar phase in the pristine state (Fig. S10), in agreement with
reports on highly La3+-substituted BiFeO3 films54. Here, the ferro-
electric phase cannot be triggered by an external electric field. Films
without La3+ substitution, i.e., pure BiFeO3 films, exhibit ferroelectric
order in the pristine state, and the application of local stress does not
trigger the emergence of the antipolar phase, as shown in Fig. S9a–c.

For a quantitative analysis of the voltage needed to restore the
original ferroelectric state from the antipolar phase, we performed
local PFM switching spectroscopy measurements on pristine ferro-
electric regions and stressed antipolar regions. Figure 5a shows the
topography within the antipolar region before (left panel) and after
(right panel) local poling. The white circles, respectively squares indi-
cate the location of the immobile tip during the electric-field cycling,
starting with the negative, respectively positive polarity of the tip bias.
The clear topography change at these locations demonstrates the

ability to recover the ferroelectric phase at the nanoscale. The PFM
switching spectroscopy loops measured in the ferroelectric and anti-
polar states are shown in Fig. 5b and c, respectively. While the voltage-
dependent piezoresponse shows the characteristic hysteretic behavior
in the ferroelectric regions, see Fig. 5b, a clear signature of the anti-
polar phase can be tracked at sub-ferroelectric-coercive field voltage
(<2 V) in Fig. 5c. Both the piezoresponse phase and amplitude signals
are suppressed in the antipolar phase in the initial poling sequence in
Fig. 4c. The transition to the ferroelectric state is not voltage-polarity
dependent. Finally, we note that we did not detect any variation of the
pressure-induced or poled features over a timeperiodexceeding three
months, as documented in supplementary information, Fig. S11.

In order to explore the technological potential of our findings, we
finally integrate the La0.15Bi0.85FeO3 films into a device-like archi-
tecture. Inspired by the application-relevant integration of BiFeO3 in
ferromagnetic/multiferroic heterostructures 20,27,38,55,56, we deposited
circular Co90Fe10 (2 nm) /Pt (2 nm) top electrodes, hence creating a
SrRuO3/La0.15Bi0.85FeO3/Co90Fe10/Pt capacitor.

To probe its ferroelectric polarization non-invasively through the
top and bottom electrodes, we used optical second-harmonic gen-
eration (SHG). This technique describes the frequency-doubling of
electromagnetic waves in materials lacking inversion symmetry57. In
our experimental geometry, the SHG intensity scales quadratically
with the net-in-plane polarization magnitude26,58. Hence, we can dis-
tinguish the antipolar, centrosymmetric from the ferroelectric, non-
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centrosymmetric phase non-destructively by the absence or presence
of an SHG signal, respectively.

Figure 6a shows the spatially resolved SHG emission from the
capacitor before force application. Note that 103 bipolar voltage pulses
were applied to enhance the net-in-plane polarization by reorganizing
the randomizedpristine domain configuration into a regularpatternof
stripe domains26. The resulting net in-plane polarization within the
capacitor gives rise to a strong SHG signal26. (Note that some regions in
the outer rim of the capacitor exhibit low SHG intensity. In this area,
the in-plane polarization domains remain homogeneously distributed,
leading to a weak net in-plane polarization and, thus, negligible SHG
emission.) Subsequent application of a compressive force to the top
electrode leads to a suppression of the SHG emission, see Fig. 6b.
Finally, Fig. 6c shows that application of an electric field to the
La0.15Bi0.85FeO3-based capacitor recovers the original SHG intensity.

We have thus evidenced that the phase transition from ferro-
electric to antipolar occurs in a device architecture just like in the
original La0.15Bi0.85FeO3 films. In turn, we conclude that the La3+ ions
can be redistributed into a layered arrangement even in capacitor
structures. Moreover, we have observed the return of the ferroelectric
phase and, thus, our ability to complete a polarization-mediated write-
and-erase cycle in a prototypical device architecture.

In striking contrast to previous reports, in which the stabilization
of the antipolar Pnma phase required elaborate elastic and electro-
static boundary-condition engineering in complex La0.4Bi0.6FeO3/
BiFeO3

46 and TbScO3/BiFeO3
47 superlattices, we stabilize the antipolar

phase in a single La0.15Bi0.85FeO3 layer directly integrated into a capa-
citor. This situation suggests that rather than electrostatics, strain, or
surface chemistry, the force-dependent distribution of cationic La3+

inhomogeneities is originally responsible for the robustness of both
the ferroelectric and antipolar phases in the single layers and capaci-
tors. Furthermore, we tested the robustness of the reversible polar-to-
antipolar phase conversion on single-crystalline substrates other than
DyScO3. The local AFM and PFM images of stressed and subsequently
poled regions in films grown on (001)-oriented SrTiO3 demonstrate
that the local control on the La3+ inhomogeneities and corresponding
polar-to-antipolar phase transition is achieved with similar experi-
mental parameters, see supplementary Fig. S12. Hence, the findings
reported in this work are not limited to the use of orthorhombic
DyScO3 substrates.

In conclusion, we redistribute cationic inhomogeneities in a mag-
netoelectric oxide material using compressive force and electric fields.

In the model system La0.15Bi0.85FeO3, we demonstrate that the rearran-
gement between randomized and layered distributions of La3+ ions
enables reversible and continuous interconversion between ferro-
electric and antipolar phases. In a step toward multi-level computing
technology, we transfer this concept to a device-like capacitor envir-
onment. This work on the BiFeO3 material family, the only room-
temperature multiferroic material to date and the most promising
compound toward the realization of ultra-low-energy consuming logic
devices27, advances the development of future ferroelectric and mag-
netoelectric memory technology. Here, the continuous tuning of the
fraction of antipolar and ferroelectric phases via phase interconversion
may enable memristive behavior as well in the magnetoelectric
response. While our investigation focused on 100-nm-thick layers, we
report the reversible control on the polar state in 20-nm-thick layers in
the supplementary information, Fig. S13. Lastly, the scope of controlling
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cationic inhomogeneity distributions goes beyond mere polarization
engineering, however. We envision multifunctional oxide-based devices
whose mechanical, electrical, or optical properties at large can be
readily adjusted through cationic inhomogeneity-distribution control.

Methods
Sample fabrication
The La0.15Bi0.85FeO3/SrRuO3 films were grown on single-crystalline
(110)o-oriented DyScO3 substrates (CrysTec GmbH) by pulsed laser
deposition using a 248 nm KrF excimer laser. The SrRuO3 buffer layer
was deposited at 700 °C under 0.15mbar oxygen partial pressure with
a laser fluence of 0.69 J cm−2 and a laser repetition rate of 8Hz (9600
pulses for the growth of 14-nm-thick film). The La0.15Bi0.85FeO3 films
were subsequently grown at 700 °C under 0.15mbar oxygen partial
pressurewith a laser fluence of 1.14 J cm−2 keeping the repetition rate at
8Hz (43,200 pulses for the growth of 100-nm-thick film). Post-growth,
the films were cooled down with a cooling rate of 10 °C/min. The
heterostructure was transferred to a high-vacuum magnetron sput-
tering chamberwith a base pressure of ~10−7mbar. TheCo90Fe10 and Pt
layers were deposited via DC magnetron sputtering with argon pres-
sure ranging from 2 ∙ 10−3 to 7 ∙ 10−3 mbar under a static magnetic field
of 200Oe. The electrodes were patterned by photolithography and
argon-ion milling. The samples used were kept in ambient conditions.

Scanning-probe microscopy
Scanning-probe microscopy measurements were conducted using an
NTEGRA Prima scanning-probe microscope (NT-MDT Spectrum
Instruments) and a Bruker Multimode 8 atomic force microscope. To
apply force to the surface of the sample, we used diamond-coated
DCP20 tips from NT-MDT. The force was calibrated using a force-
distance curve, see supplementary information Fig. S14. Topography
and PFM were performed with μmasch HQ:NSC35/Pt tips in contact
mode. During raster-scanning, a 3-V peak-to-peak AC voltage mod-
ulation was applied to the tip at ~70 kHz. Ferroelectric poling was
induced by applying a DC bias of 8 V to the tip. The bottom SrRuO3

electrode was grounded. The same test region for the stress treatment
and electric poling is identified and overlaid using the characteristic
topography change accompanying the polar-to-antipolar phase tran-
sition. In addition, the clear drop of piezoresponse in the antipolar
region enables a convenient location of the stressed regions. During
the different poling or local pressure application, the sample remains
fixed in the AFM. The PFM images in Figs. 1–4 were recorded simul-
taneously inCartesiancoordinates (usingX andYoutputs of the lock-in
amplifiers rather than R and θ). This way, instrumental background
noise interfering with the measurements was minimized. The PFM
switching spectroscopy loops were measured using an Asylum
Research AFM system (MFP-3D) with HQ:NSC18/Pt tips (MicroMasch).
Voltage pulses of 12.5ms duration with incrementally increasing
amplitudewere applied to the tip. The PFM signal wasmeasured in the
resonance-enhanced PFM mode at an AC modulation frequency of
350kHz and amplitude of 0.6V.

X-ray diffraction techniques
X-ray symmetric θ − 2θ scan and reciprocal space mapping were per-
formed using a Panalytical X’Pert3 MRD four-circle diffractometer at a
wavelengthof 1.5406Å. X-ray reflectivitywasemployed tomeasure the
thickness of the thin films.

HAADF-STEM
Cross-sectional specimens of single-phase films or across different
phases were prepared for transmission electron microscopy with an
FEI Helios NanoLab 600i focused ion beam (FIB) instrument operated
at accelerating voltages of 30 and 5 kV. Scanning transmission electron
microscopy (STEM) imaging was attained with a probe-corrected FEI
Titan Themis microscope operated at 300 kV. Atomic-resolution

imaging of the La0.15Bi0.85FeO3 thin films was performed by high-
angular dark-field (HAADF) STEM, whose signal is proportional to Zn

(n ≈ 1.6–2.0), with Z as the atomic number. A probe convergence semi-
angle of 18 mrad and collecting semi-angles of 70–190 mrad for the
HAADF-STEM detector were used.

To correct for the scan distortions, time series consisting of 10
frames (2048 × 2048 pixels) were acquired and averaged by rigid and
non-rigid registration using the Smart Align software59. The processing
of the resultingHAADF-STEM imageswasperformed inMATLAB, using
custom-developed scripts as follows. First, the raw data were
background-corrected and denoised using the procedure described in
ref. 60. Subsequently, the atomic column positions in the corrected
images were fitted by means of a center-of-mass peak-finding algo-
rithm and refined by solving a least-squares minimization problem
using the Levenberg–Marquardt algorithm. This iterative refinement
makes use of seven-parameter two-dimensional Gaussians. The fitting
allows quantitative estimation of the atomic column peak intensities
and their positions with picometer precision61,62. For comparison, the
fitted intensities of the Bi3+/La3+ atomic columns in each image were
normalized to the maximum atomic-column intensity. Finally, a
quantitative analysis of the lattice parameters was performed by
means of a peak-pair analysis62.

Optical SHG
130-fs laser pulses with a repetition rate of 1 kHz and a wavelength of
1400nm were used for all SHG measurements. To achieve maximum
intensity, we aligned the polarization of the fundamental laser pulse
along [1�10]o using a half-wave plate and probed the frequency-doubled
light along the same axis using a Glan-Taylor prism. We detected the
frequency-doubled light with a liquid-nitrogen-cooled charge-coupled
device (CCD) camera. A spatial resolution of ~3μmwas achievedwith a
long-working-distance microscope objective. All experiments were
conducted in a normal-incidence geometry to minimize optical SHG
contributions from the surface or interfaces.

Data availability
The source data that supports the findings of this study are provided
with this paper. Source data are provided with this paper.
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