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EvoWeaver: large-scale prediction of gene
functional associations from coevolutionary
signals

Aidan H. Lakshman 1 & Erik S. Wright 1,2

The known universe of uncharacterized proteins is expanding far faster than
our ability to annotate their functions through laboratory study. Computa-
tional annotation approaches rely on similarity to previously studied proteins,
thereby ignoring unstudied proteins. Coevolutionary approaches hold pro-
mise for injecting new information into our knowledge of the protein universe
by linking proteins through ‘guilt-by-association’. However, existing coevolu-
tionary algorithms have insufficient accuracy and scalability to connect the
entire universe of proteins. We present EvoWeaver, a method that weaves
together 12 signals of coevolution to quantify the degree of shared evolution
between genes. EvoWeaver accurately identifies proteins involved in protein
complexes or separate steps of a biochemical pathway. We show themerits of
EvoWeaver by partly reconstructing known biochemical pathwayswithout any
prior knowledge other than that available from genomic sequences. Applying
EvoWeaver to 1545 gene groups from 8564 genomes reveals missing connec-
tions in popular databases and potentially undiscovered links between
proteins.

Our ability to capture theprotein universewith genomesequencing far
outpaces our ability to investigate individual proteins. A select few
proteins have historically received a disproportionate amount of
study1–3. This annotation inequality hinders biomedical progress by
neglecting many proteins that could be important determinants of
health4. Only a small fraction of uncharacterized proteins can be
automatically annotated via similarity to experimentally investigated
proteins of known function5–7. The sparsity of high-quality annotations
exacerbates the problem of non-specific and low-confidence annota-
tions that proliferate across genomes8,9. Thus, computational
approaches to infer function without dependence on prior knowledge
are acutely needed.

Computationally annotating the remainder of the protein uni-
verse requires establishing connections with characterized proteins to
generate hypotheses about function through ‘guilt-by-association’10.
Shared function necessitates that protein-encoding genes coevolve in
the same cell, thereby leaving behind a molecular signal of

coevolution11. Four primary approaches are used to identify coevolu-
tion: phylogenetic profiling12–14, phylogenetic structure15–17, gene
organization18–20, and sequence level methods21–23. Each of these coe-
volutionary signals is an outcomeof a shared selection pressure acting
on groups of genes. To date, these four coevolutionary approaches
have primarily been applied independently. Even large databases of
functional associations, such as STRING, only consider evidence froma
small subset of coevolutionary approaches24.

Although coevolutionary analyses have shown great potential for
predicting functional associations25–32, scalability is a major impedi-
ment to comprehensive application on large datasets. The era of big
data holds the promise of distinguishing coevolution from other dri-
vers of molecular evolution13. Additionally, holistic evaluation of many
coevolutionary signals offers a means of amplifying weaker signals to
make higher-accuracy predictions. For example, conserved genesmay
notdisplay aphylogeneticprofiling signal but can still showpatterns of
gene organization. Combining disparate coevolutionary signals and
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scaling to larger datasets requires inventing new approaches for dis-
cerning signal from noise.

Coevolutionary analyses have the potential to infer functional
associations directly from sequencing data in away that is agonostic to
prior annotations, thereby overcoming the current reliance on extra-
polating from existing knowledge that compounds annotation
inequality. Here, we set out to develop a scalable approach to extract
and combine coevolutionary signals for predicting functional asso-
ciations between protein-coding genes. This required improving upon
existing approaches to scale to larger input data and incorporating
statistical testing. We unite these signals of coevolution usingmachine
learning models to quantify the degree of functional association
between genes. Our approach, named EvoWeaver, is available within
the SynExtend package (v1.19.0) for R and serves as a high-quality
hypothesis generator to help extend our knowledge of the protein
universe.

Results
Existing coevolutionary algorithms have widespread issues with scal-
ability, interoperability, and interpretability13. We chose to implement

all our coevolutionary analyses from scratch within a single software
package to standardize user interaction and allow for easy application
of ensemble methods. Our approach, named EvoWeaver, takes as
input a set of phylogenetic gene trees and optional metadata (Fig. 1a).
EvoWeaver then performs four types of coevolutionary analyses,
comprised of 12 algorithms optimized for scalable performance. The
output of EvoWeaver is 12 scores ranging from −1 to 1 that quantify the
strength of coevolution between a pair of gene groups. These scores
can be combined using a machine learning classifier to generate
inferences or hypotheses about gene function.

The first type of coevolutionary analysis, Phylogenetic Profiling,
investigates patterns of presence/absence (P/A) or gain/loss (G/L) of
genes, which manifest when multiple genes work in concert (Fig. 1b).
While P/A analyses have been successfully used to predict gene
function12–14,33–35, existing approaches canbe susceptible to biases from
small sample sizes or low evolutionary divergence36. We addressed
these biases by introducing an algorithm (G/L Distance) that examines
the distance between G/L events to measure compensatory changes
rather than extant patterns. We also implement clade-wise phyloge-
netic profiling (P/A Jaccard), which corrects for bias fromoversampled
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Fig. 1 | Overview of the EvoWeaver algorithm and benchmarking.
a Phylogenetic trees from groups of orthologous genes serve as the primary input
to EvoWeaver. Four categories of coevolutionary signal are quantified for each pair
of genes. These signals are combined in anensemble classifier to predict functional
relationships between gene pairs. EvoWeaver provides as output its 12 predictions
for signals of coevolution, and can optionally provide an ensemble prediction
using built-in pretrained models. b Functional associations often result in corre-
lated gain/loss patterns on a reference phylogenetic tree (e.g., a species tree).
EvoWeaver assesses the presence/absence patterns, correlation between gain/loss
events, and distance between gain/loss events as signals of coevolution. c Simi-
larity in phylogenetic structure is another indicator of coevolution between genes.
EvoWeaver computes topological distance as well as correlation in patristic dis-
tances following dimensionality reduction using random projection.
d Functionally associated genes sometimes cluster on the genome due to co-

regulation or horizontal gene transfer. EvoWeaver derives signals from the con-
servation in gene orientation and the distance between gene pairs. e Functional
associations sometimes cause concerted changes in sequences that are inter-
rogated by EvoWeaver. EvoWeaver can analyze nucleotide sequences or amino
acid sequences, though nucleotide sequences are pictured here. f Proteins
involved in the same complex are functionally associated and can be identified
through signals of coevolution. The goal of the Complexes benchmark is to dis-
tinguish orthology groups in the same complex (i.e., positives) from those in dif-
ferent complexes (i.e., negatives). g Functional associations between proteins that
are adjacent in the same module are stronger than those between different mod-
ules. The goal of the Modules benchmark is to distinguish adjacent proteins in the
same module from independent modules. Created in BioRender. Lakshman, A.
(2025) https://BioRender.com/m73q207.
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taxa37. Finally, we analyze the mutual information of ancestral state
transitions (G/L MI), as well as the conservation of mutual presence in
ancestral states (P/A Overlap). The end result is a category of algo-
rithms for identifying coevolution between gene groups that are not
highly conserved.

The second type of coevolutionary analysis, Phylogenetic Struc-
ture, uses the fact that functionally associated genes tend to evolve in
tandem38, giving rise to similar genealogies (Fig. 1c). Commonly used
phylogenetic structure approaches include MirrorTree and
ContextTree39–41, although these approaches scale poorly due to high
computational complexity. We addressed this issue by using random
projection (RP MirrorTree, RP ContextTree) to decrease computa-
tional overhead and improve accuracy by reducing redundant infor-
mation. Random projection provides the added advantage that
computation canbedistributed across computers, unlike in SVD-phy42,
allowing EvoWeaver to process very large datasets on compute clus-
ters. Additionally, we introduce the use of tree distance metrics (Tree
Distance) to analyze coevolution via topological differences in
genealogies43. Taken together, these algorithms facilitate inference of
coevolution among more conserved gene groups.

The third type of coevolutionary analysis, Gene Organization,
leverages the fact that functionally linked genes tend to colocate on
the genome to facilitate gene regulation and horizontal gene
transfer44–46 (Fig. 1d). These approaches most commonly employ pro-
file hidden Markov models, such as antiSMASH47–49. While these
methods perform well at functional prediction, they rely on a priori
knowledge about genes that colocalize. We circumvented this limita-
tion by introducing an algorithm that compares the number of coding
regions separating genes (Gene Distance). Our approach is similar to
STRING’s colocalization metric, which measures the number of
nucleotides separating genes24, but STRING’s approach fails to con-
sider that low rates of evolutionary divergence can inflate evidence of
colocalization.We address this issue by usingMoran’s I to calculate the
extent to which evolutionary divergence affects the observed coloca-
lizationofgenes.Additionally, EvoWeaver analyzes the conservationof
relative gene orientation (Orientation MI), since this also indicates
functional association50. Collectively, these algorithms provide evi-
dence of coevolution among conserved gene groups on the same
chromosome.

The last type of coevolutionary analysis, Sequence Levelmethods,
looks at sequence patterns across gene groups, which are sometimes
indicative of physical interactions between gene products51 (Fig. 1e).
Direct coupling analysis is a well-known approach in this category52–54,
but it suffers from high computational complexity. Instead, we
extended a prior approach based on mutual information to predict
interacting sites between sequences55. EvoWeaver analyzes the extent
of these site-wise interactions to construct an overall score (Sequence
Info). Additionally, EvoWeaver compares gene sequence natural vec-
tors (Gene Vector), which carry evidence of functional association and
can be quickly computed56. These algorithms provide additional evi-
dence of coevolution for physically interacting gene products.

The four categories of analysis span levels of coevolution from the
organism (Phylogenetic Profiling) to the genome (Gene Organization)
to the gene (Phylogenetic Structure) to the sequence. Since our
component analyses individually capture different facets of coevolu-
tion, we sought to combine their strengths into a single comprehen-
sive estimate of evidence for functional association between gene
pairs. To this end, we trained three machine learning classifiers
(logistic regression, random forest, and neural network) on sets of
protein-coding gene pairs with known functional associations (Fig. 1a).
While these ensemble models require a priori knowledge to calibrate
their predictions, after training they permit the extension of this
knowledge to gene pairs without previously known associations.More
details about each algorithm are provided in section SI1 of the Sup-
plemental Information.

Ensemble methods accurately identify functionally
associated genes
Selection of high-quality ground truth datasets for coevolutionary
analysis is a challenging task13. As with previous studies42,57, we relied
upon the Kyoto Encyclopedia of Genes and Genomes database (KEGG)
because it is well-curated and experimentally validated58,59. KEGG
provides a hierarchical ontology of biochemical pathways consisting
of orthologous gene groups (KO groups) participating in protein
complexes (Fig. 1f) and/or enzymatic reactions within modules
(Fig. 1g). Modules are the building blocks of larger biochemical path-
ways. We first sought to validate the performance of EvoWeaver at
identifying KO groups that participate in the same complex, since
physical interactions are a form of functional association. We antici-
pated a strong coevolutionary signal for these pairs because of their
mutual dependence. Each algorithm’s performance was graded on its
ability to distinguish 867 pairs of KO groups that complex (positives)
versus 867 randomly selected pairs of unrelated KO groups (nega-
tives). The negative set was constructed from a weighted random
sample of 57,321 unrelated KO groups.Weighted sampling reduces the
risk of overfitting by matching the distribution of data features in the
negative set to the positive set.

Almost all coevolutionary algorithms performed well at identify-
ing KO groups involved in the same complex (Fig. S1). Sequence Level
methods performed slightly worse than other categories of coevolu-
tionary signal. This outcome was expected because many non-
interacting proteins appear to physically interface similarly to inter-
acting proteins60. The predictions of most algorithms were weakly
correlated with each other, which suggests combining signals could
further improve performance (Fig. S1). To this end, we evaluated three
ensemble methods (Logistic Regression, Random Forest, and Neural
Network) using five-fold cross-validation. All ensemble methods dis-
played predictive power exceeding component coevolutionary sig-
nals, with Logistic Regression performing the best (Fig. S1).

Given EvoWeaver’s strong performance on the Complexes
benchmark, we next sought to establish its ability to identify func-
tionally associated protein-coding genes that were not involved in the
same protein complex. To this end, we developed the Modules
benchmark as a set of 899 pairs of gene groups acting in adjacent steps
of a biochemical pathway in KEGG (positives) and 899 randomly
selected pairs from disconnected pathways (negatives). This task is
more challenging because proteins involved in the samemodule need
not physically interact (Fig. 1g). As shown in Fig. 2, the performance of
component algorithms on the Modules benchmark was slightly worse
than on the Complexes benchmark. However, ensemble methods
retained high performance (AUROC of 0.955 for Random Forest) and
outperformed individual coevolutionary signals. The gap between
ensemble and component predictors highlights the importance of
using multiple coevolutionary signals to infer functional associations.

Next, we sought to determine whether EvoWeaver’s ensemble
predictions were transferrable to a different prediction task. To this
end, we used the CORUM database to test EvoWeaver’s ability to
identify human proteins that participate in common complexes
(Fig. S2). The 12 component algorithms were less accurate on CORUM
than KEGG but outperformed other commonly used approaches
(Fig. S3). We observed a similar change in relative performance when
restricting EvoWeaver to only eukaryotic sequences in KEGG (Fig. S4),
indicating that the diminished performance on CORUM is likely due to
its stronger focus on eukaryotes.

EvoWeaver’s ensemble method trained on the KEGG Modules
benchmark did not show an advantage over the best component
algorithm on CORUM. We attributed this discrepancy to differences
between the two databases and CORUM’s sole emphasis on physical
protein-protein interactions. EvoWeaver is designed to predict func-
tional associations, which encompass direct (i.e., physical) and indirect
interactions. Retraining the ensemble classifier on the CORUM
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database resulted in a substantial increase in accuracy above that of
any component algorithm (Fig. S2). This result underscores the fact
that transferability of accurate ensemble predictions relies upon a
shared prediction objective. More detail on the discrepancies between
the CORUM and KEGG benchmarks is discussed in sections SI2 and SI3
of the Supplementary Information.

Even in the absence of training an ensemble classifier, a naïve
combination of EvoWeaver’s component algorithms resulted in per-
formance approximately equivalent to the best predictor on all
benchmarks, especially at low false positive rates (Fig. S5). This out-
come highlights a unique benefit of EvoWeaver over previous

approaches that require users to know which evolutionary patterns
will be most informative on their dataset. The combination of Evo-
Weaver’s algorithms produces a prediction approximately as good as
the best choice without any information about which algorithm is best
suited to a particular use case.

EvoWeaver infers hierarchical relationships among genes
Functional relationships among genes exist at multiple levels, ranging
from physically interacting to merely being part of the same cellular
environment. For this reason, it would be ideal to predict the strength
of coevolution across a hierarchy of multi-level relationships among

Fig. 2 | EvoWeaver’s ensemble predictions outperform individual algorithms
ontheModules benchmark.Coevolutionary approacheswere compared for their
ability to discern adjacent proteins in KEGG modules (i.e., 899 positives) from
proteins in distinct modules (i.e., 899 negatives). No single source of coevolu-
tionary signal greatly outcompeted all other sources. However, EvoWeaver’s
ensemble predictions that combine all component sources of coevolutionary
signal substantially improvedpredictive accuracy, as seenby larger areasunder the

curves. Inset of the receiver operating characteristic highlights the regionwith low
false positive rates. Scores from individual algorithms tended to have low corre-
lation except within similar categories of coevolutionary signal (i.e., boxed groups
in the heatmap), suggesting that the ensemble approach is superior because it
combines semi-orthogonal coevolutionary signals. Spearman’s correlation from
positive and negative sets is averaged to correct for artificial correlation among
high-performing algorithms. Source data are provided as a Source Data file.
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gene groups. We created the Multiclass benchmark as pairs of KEGG
module blocks from five classes arranged in a hierarchy of decreasing
functional association: Direct Connection, Same Module, Same Path-
way, Same Global Pathway, and Unrelated. Accurate classification
would imply EvoWeaver can construct a hierarchical classification
scheme of genes and recapitulate the relationships in KEGG. We then
used five-fold cross-validation to predict class membership for
642,770 pairs of module blocks using a Random Forest model (Fig. 3).
Notably, all 12 predictors contributed to the ensemble classifier’s
accuracy (Fig. 3b). Most Random Forest predictions were assigned to
the correct class or the adjacent class (Fig. S6), even when requiring at
least 50%confidence for prediction (Fig. 3a).Unsurprisingly, themodel
frequently confused the Same Global Pathway and Unrelated classes,
which are both expected to contain weakly coevolving genes.

The Random Forest ensemble classifier was best at distinguishing
the top two from bottom three hierarchical classes. Hence, we tested
whether these predictions could be used to recapitulate KEGG path-
ways by building a network of module blocks with connections
between pairs predicted as Direct Connection or Same Module. We
applied Louvain clustering61 to detect communities within this net-
work. A randomly selected community is shown in Fig. 3c, d, which
included all module blocks involved in the prodigiosin biosynthesis
pathway. EvoWeaver correctly identifiedmost Direct Connection pairs
and properly distinguished the two modules within the pathway.
However, EvoWeaver incorrectly classifiedmany SameModule pairs as

Direct Connection. This analysis suggests EvoWeaver’s predictions can
be used to hypothesize biochemical pathways, although they do not
provide directionality to biochemical steps.

EvoWeaver rivals STRING without reliance upon external data
STRING is one of the most comprehensive databases of knowledge
about functionally associated genes. One of STRING’s stated goals is to
predict genes belonging to the same pathway in KEGG57, which cor-
responds to EvoWeaver’s Direct Connection, Same Module, and Same
Pathway classifications. STRING’s Total Score is a composite of seven
evidence streams24. We applied STRING’s formula for Total Score to
quantify the marginal benefit of each evidence stream (Fig. S7).
External data, including mining the literature for cooccurrence of
terms (Text Mining) and knowledge bases such as KEGG itself (Data-
bases), provided the majority of STRING’s predictive performance
(Fig. 4a). As expected, STRING’s coevolutionary evidence streams
(Cooccurrence, Gene Neighborhood) were correlated with compar-
able signals derived by EvoWeaver (Fig. 4b). Excluding Text Mining,
EvoWeaver nearlymatches STRINGat its statedgoal of predicting pairs
of gene groups sharing a functional pathway in KEGG (Fig. 4a). This is
especially notable given that STRING’s Database evidence stream
incorporates KEGG itself as a predictor, whereas EvoWeaver only relies
on information extracted from genome sequences. EvoWeaver’s
ensemble methods greatly outperformed STRING when limiting both
methods to only predictors that do not require prior knowledge, even
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when using an ensemblemodel trained on a different dataset (Fig. 4a).
This makes EvoWeaver particularly powerful for identifying unknown
functional associations without reliance on prior knowledge, which
may help to mitigate the problem of annotation inequality1,2.

EvoWeaver can inform hypotheses about functional
associations
EvoWeaver’s primary purpose is to serve as a generator for hypotheses
about functional associations. As a case study, we examined one of
EvoWeaver’s high-confidence mispredictions, which was between
human genes B3GNT5 and ST6GAL1. B3GNT5 encodes an enzyme
responsible for the synthesis of lactotriaosylceramide, the primary
precursor for lacto- and neolacto-series glycosphingolipids, and this
enzyme is known to play a role in a variety of human diseases62,63.
ST6GAL1 is responsible for the α2,6-sialylation of N-glycosylated pro-
teins. Despite B3GNT5 and ST6GAL1 having no common modules or
pathways in theKEGGdatabase (Fig. 5a), EvoWeaver predicted this pair
to be Direct Connection with probability 0.63 or Same Module with
probability 0.36 (Fig. 5b). This finding is consistent with experimental
evidence showing mutations in glycosphingolipid biosynthetic
enzymes can causechanges in sialylationofN-glycosylatedmembrane-
bound proteins64, and specifically, mutations in B3GNT5 modulate
α2,6-sialylation of membrane-bound glycoproteins in ovarian cancer
cells by directly silencing the expression of ST6GAL1 in several human
cell lines65. EvoWeaver’s prediction was supported by Phylogenetic
Profiling evidence because of themultiple inferred simultaneous gains
of both genes (Fig. 5c) along with moderate evidence for Gene Orga-
nization due to conservation in gene orientation and relative distance
across the phylogeny (Fig. 5d). B3GNT5 and ST6GAL1 also displayed
strong similarity in their genealogies (Fig. 5e) and moderate evidence
for coevolutionary signal at the sequence level (Fig. 5f). While both
B3GNT5 and ST6GAL1 have functional associations with B4GALT family
genes in KEGG (Fig. 5a), EvoWeaver’s ensemble method did not

identify a connection between ST6GAL1 and B4GALT family genes
(Fig. S8), suggesting that the predicted linkage between B3GNT5 and
ST6GAL1 is unlikely to have resulted from transitivity.

To further substantiate EvoWeaver’s power as a hypothesis-
generating tool, we investigated the top 100 mispredictions wherein a
pair of genes was classified as Same Pathway in KEGG, but EvoWeaver
predicted them to be Direct Connection. Many of these gene pairs were
actually directly connected (19%) or separated by only a few genes in a
KEGG pathway (Fig. S9), but were categorized as Same Pathway because
they lacked connections in a common module. Therefore, the top mis-
predictions were partly artifacts of how the KEGG database defines
moduleswithin pathways.We also investigated the topmispredictions in
which a pair was classified as Same Global Pathway in KEGG but Evo-
Weaver predicted Direct Connection. Of the top five misclassifications,
three involved gene pairs between KEGGmodule M00892 (UDP-GlcNAc
biosynthesis in eukaryotes) and KEGG module M00055 (N-glycan pre-
cursor biosynthesis). Coevolutionary (Fig. S8) andexperimental evidence
support the interconnectedness of thesemodules: N-glycan branching is
hypersensitive to UDP-GlcNAc concentrations in mammals66, UDP-
GlcNAc transporters are involved in the delivery of N-glycan substrates
in plants67, and components of theUDP-GlcNAcbiosynthetic pathway are
required for complex N-glycan synthesis in C. elegans68.

Next, we asked whether EvoWeaver can contribute in cases where
a set of genes is implicated in a common function but their inter-
relationships are unknown. We investigated EvoWeaver’s predictions
for six sets of genes comprising discrete biochemical pathways (Fig. 6).
The four categories of coevolutionary algorithms often disagreed with
each other and differed from the connections in KEGG. However,
EvoWeaver’s ensemble predictions generated more accurate connec-
tions, which reinforces the notion that merging evidence streams
improves predictions. Taken together, these findings suggest that
EvoWeaver can be used to augment existing biological knowledge by
predicting credible gene functional associations.

Fig. 4 | EvoWeaver rivals STRINGwithout reliance onexternal data. a Predictive
accuracy was compared on 1514 pairs of gene groups that overlapped between
STRING and the Multiclass benchmark. Area under the ROC curve (AUROC) is
shown for discerning between pairs sharing the same pathway in KEGG (i.e.,
positives) versus pairs in different pathways (i.e., negatives). STRING’s predictions
are a composite of seven evidence streams. Sequentially incorporating evidence
streams from least to most beneficial demonstrates their marginal impact on
STRING’s reported Total Score. Text Mining and Databases were the most
impactful STRING evidence streams. Despite STRING’s predictions incorporating
KEGG itself into its Databases evidence stream, EvoWeaver’s Random Forest

predictions roughly match STRING’s predictions without Text Mining while only
using sequence information. EvoWeaver greatly outperforms STRING when both
are limited to only de novo predictors (i.e., Gene Fusion, Cooccurrence, and Gene
Neighborhood for STRING), even when trained on CORUM (EvoWeaver Transfer).
b As expected, some of EvoWeaver’s component predictors were modestly cor-
related with STRING’s evidence streams. For example, STRING’s Cooccurrence
score is correlated with EvoWeaver’s Phylogenetic Profiling algorithms (red box),
and STRING’s Gene Neighborhood score is correlated with EvoWeaver’s Gene
Organization algorithms (green box). Spearman’s correlation is calculated in the
same manner as in Fig. 2. Source data are provided as a Source Data file.
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Fig. 5 | EvoWeaver’s ensemble predictions can generate high-fidelity biological
hypotheses. a The protein product of B3GNT5 promotes the expression of
ST6GAL165, although this connection ismissing in KEGG and STRING.b EvoWeaver’s
component and ensemble predictions indicate that B3GNT5 and ST6GAL1 are
functionally associated, which is supported by experiments in human cell culture65.
c Phylogenetic Profiling demonstrates a pattern of association between B3GNT5
and ST6GAL1, although it is supported by relatively few gain/loss events on the
reference tree. d Organisms with both B3GNT5 and ST6GAL1 on the same

chromosome display correlations in gene orientation and modest signal of colo-
calization. e Shared patristic distances from both gene trees are correlated, espe-
cially after compression with random projection, suggesting a high degree of
coevolution between B3GNT5 and ST6GAL1. f Gene sequence natural vectors for
both B3GNT5 and ST6GAL1 are moderately correlated, implying similar residue
compositions and providing further signal of coevolution. Source data are pro-
vided as a Source Data file. Created in BioRender. Lakshman, A. (2025) https://
BioRender.com/u57r428.
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Discussion
EvoWeaver showcases the power of employing coevolutionary prin-
ciples to the discovery of functional associations. In this work, we
introduced several algorithms to quantify coevolution and showed
that EvoWeaver can capitalize on these signals to generate a more
complete understanding of the functional relationships between gene
groups. Importantly, EvoWeaver’s ensemble predictions have the
advantage that they do not require users to choose which

coevolutionary signals are appropriate for a particular context. Evo-
Weaver’s accuracy permitted us to construct a hierarchical model of
functional associations that was able to partly recapitulate experi-
mentally validated KEGGpathways without any prior knowledge of the
proteins other than their coding sequences and genomic locations.
Moreover, we demonstrated how EvoWeaver’s predictions can be
leveraged to infer functional associations that are absent from large
databases of biological knowledge.

Fig. 6 | EvoWeaver partly identifies biochemical pathway connectivity. Evo-
Weaver’s pairwise scores from component algorithms provide a ranking of func-
tional association drawn from alternative categories of coevolutionary signal
(colors). EvoWeaver combines 12 component scores into a single ensemble pre-
diction for each pair of gene groups. The strongest predicted connection for every
gene group shows high consistency (solid lines) with the actual connectivity of
KEGG pathways (arrows). Discrepancies (dashed lines) between predicted and

actual connections are often caused by EvoWeaver incorrectly linking consecutive
gene groups, such as AcbO-AcbL-AcbN in Acarbose Biosynthesis or ArgB-ArgC-
ArgD inOrnithine Biosynthesis. Component predictors are connected according to
the gene group with the highest mean rank among all algorithms in a category.
Ensemble predictions are determined by connecting each gene group to the gene
groupwith the highest probability of “DirectConnection” in theMulticlass Random
Forest model.

Article https://doi.org/10.1038/s41467-025-59175-6

Nature Communications |         (2025) 16:3878 8

www.nature.com/naturecommunications


EvoWeaver excels at three characteristics that are necessary for
the practical application of coevolutionary analyses on large-scale
datasets. First, EvoWeaver is highly scalable owing to its optimized
algorithms.Wedemonstrated this by applying EvoWeaver to 1545gene
groups from8564 genomes across the tree of life, comprising a total of
2,838,832 genes. To our knowledge, this is the largest coevolutionary
analysis to date in terms of number of genomes analyzed, exceeding
the 2167 genomes analyzed in previous work12,13. Unlike popular prior
approaches, such as ContextTree or SVD-phy42,69, EvoWeaver’s pair-
wise comparisons are independent and can be readily distributed
across a cluster of computers. Second, EvoWeaver’s predictions are
more accurate because they incorporate multiple sources of coevo-
lutionary signal, and each component algorithm incorporates statis-
tical testing that mitigates spurious signals. This improves on prior
work by allowing proteins to be classified by the extent of their func-
tional relatedness rather than simple binary classifications. Third,
EvoWeaver standardizes the application of multiple algorithms within
a single software package with consistent inputs and outputs. This
addresses usability issues previously identified in reviews of coevolu-
tionary analyses13.

Coevolution differs from protein-protein interactions in that it
does not require any physical interaction.Many prior approaches exist
for predicting protein-protein interactions, along with databases of
known interactors53,54,70,71. Benchmarking functional association algo-
rithms presents its own challenges, as proteins that do not physically
interact may nevertheless be functionally associated17. This renders
common benchmarks for protein-protein interactions insufficient for
benchmarking coevolutionary algorithms71–73. We chose to rely on the
KEGG database as a source of experimentally validated functional
associations within amulti-level hierarchy. Although KEGG is limited in
size (i.e., 26,418 orthology groups), it is one of the few comprehensive
sources of genomes and genes linked across pathways.

EvoWeaver is distinct from prior approaches for modeling
functional associations. Alternative methods often depend on phy-
logenetic profiles calculated with similarity to a reference organism,
limiting their generalizability. In contrast, EvoWeaver operates at the
level of orthology groups, removing the dependence on a reference
organism and increasing robustness to misspecifications in the
underlying data. The application of a wide variety of coevolutionary
algorithms further increases robustness by reducing dependence on
any particular source of coevolutionary signal. These features cir-
cumvent the need to compare multiple approaches, streamlining the
generation of hypotheses about the function of understudied
proteins.

We anticipate EvoWeaver to be particularly useful for generating
hypotheses that catalyze investigations into understudied proteins.
EvoWeaver allows users to search through millions of gene pairs to
find a comparatively small number of potential functional associa-
tions. EvoWeaver’s predictions are particularly valuable when com-
bined with network analyses or expert insights. In the future,
EvoWeaver will assist in curating and supplementing large databases
of biological knowledge to address errors and annotation inequality.
We also expect EvoWeaver’s predictions to be useful for other
sequence features, such as non-coding RNAs, although protein-
coding genes were the focus of this study. Most importantly, Evo-
Weaver empowers users to combat annotation inequality by pre-
dicting functional associations for the rapidly expanding collection
of sequences with unknown function.

Methods
Experimental details
EvoWeaver is available as part of the SynExtend (v1.19.0) package74 for
R75, which is distributed via the Bioconductor76 platform. A compre-
hensive description of input/output and examples of running each
algorithm are contained in the supplementary R Markdown file

available on GitHub (https://github.com/WrightLabScience/
EvoWeaver-ExampleCode). Briefly, users first construct an Evo-
Weaver object with the EvoWeaver function using input gene groups,
and then run the predict function to generate predictions using any of
the 12 component algorithms. Depending on the algorithm, the input
consists of a reference tree, gene trees, positional data, or sequences.
The output is a matrix of scores, representing the pairwise strength of
coevolution measured by each algorithm between each pair of gene
groups. Scores range from −1 (strong negative association) to +1
(strong positive association). Detailed information about individual
algorithms is described below and in SI1 of the Supplementary
Information.

All analyses were performed with R (v4.4.1). Algorithms were
implemented in EvoWeaver using the R and C programming lan-
guages, with user-exposed methods available in R via the SynExtend
package (v1.19.0). SynExtend is dependent on the DECIPHER package
(v3.2.0). Area under the receiver operator characteristic curves
(AUROC) and Area under the precision-recall curves were calculated
with the AUC function in the DescTools package (v0.99.49) for R.

Local analyses were performed on a MacBook Pro with M1 Pro
CPU and 32GB of RAM. Runtimes weremeasured on a Dell PowerEdge
T650 with an Intel Xeon processor (E5-2690 v4 2.6GHz) and 792 GBof
memory running Ubuntu 22.04.4 LTS. Distributed computing was
performed on the Open Science Grid77. Phylogenetic tree reconstruc-
tion used eight core nodes with 8–16 GBRAMand 8GB disk space, and
pairwise coevolutionary score calculations with EvoWeaver used
single-core nodeswith 2–4GBRAMand 2–4GBdisk space. Computers
matching these node specifications varied based on availability and
Open Science Grid scheduling.

Coevolutionary algorithms in EvoWeaver
The goal of EvoWeaver is to capture a holistic view of coevolution for
predicting functional associations between groups of genes. To
achieve this, we implemented 12 algorithms from scratch that quantify
different sources of coevolutionary signal. Each algorithm analyzes a
pair of gene groups and returns a score between zero and one, where
zero represents an absence of signal and more positive scores imply
greater coevolutionary signal. Some algorithms can provide scores
between –1 and 1, where rare negative scores represent an inverse
coevolutionary association. To correct for spurious signal resulting
from insufficient information, we multiply all scores by their sig-
nificance (1 – p-value). The resulting final scores are combined into an
overall prediction using an ensemblemachine learningmethod. When
an algorithm cannot make a prediction for a particular pair, the final
score passed to the ensemble method for that algorithm is zero. For
example, if a pair of genes do not cooccur in any organisms, then their
final score for all Gene Organization algorithms is zero. The 12 algo-
rithms we implemented fall into four categories: Phylogenetic Profil-
ing, Phylogenetic Structure, Gene Organization, and Sequence Level
methods (Fig. 1a). Of these, four algorithms are original to EvoWeaver
(G/L Distance, P/A Overlap, RP ContextTree, and RP MirrorTree), four
are new applications of existing algorithms (Tree Distance, Moran’s I,
Orientation MI, Gene Vector), and the remaining four are refinements
on existing algorithms. Computational scaling for all algorithms in
terms of number of gene groups and size of each gene group is
available in SI3 of the Supplemental Information and Fig. S10. The
problem of inferring functional associations among a set of gene
groups is fundamentally quadratic in the number of gene groups. As
such, we designed our algorithms to return the same results whether
analyzing one pair or millions of pairs of gene groups to facilitate
scalability through distributed computing.

Phylogenetic Profiling. Phylogenetic profiling is a common technique
that uses presence/absence (P/A) profiles of genes to investigate
shared function. The approaches previously introduced in the
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literature use binary P/Aprofiles, where one represents the presenceof
a gene and zero represents its absence78. The first P/A approach used
Hamming distances on binary profiles as a score79. Later, Jaccard index
and mutual information (MI) were applied to score P/A profiles12,80.
Subsequent work accounted for clade-wise conservation25 or trans-
formed P/A profiles into ancestral gain/loss (G/L) events and scored
the correlation between events81. These transformations reduce
redundancy for sets of organisms with low rates of gene gain and
loss36,81.

EvoWeaver includes four Phylogenetic Profiling algorithms
(Fig. 1b and S11). The first algorithm, P/A Jaccard, uses the centered
Jaccard index82 of P/A profiles with conserved clades collapsed to
mitigate bias from closely related organisms. The second algorithm, P/
A Overlap, applies Fitch Parsimony83 to infer ancestral states on the
reference tree from P/A profiles and calculates the proportion of the
tree where both genes appear together relative to their overall pre-
valence. The third algorithm, G/L MI, calculates weighted MI of G/L
events (G/L profiles). G/L profiles include three states: −1 for gene loss,
0 for no change, and +1 for gene gain. G/LMI uses theweightedmutual
information of four cases: simultaneous concordant transitions (i.e.,
gain/gain or loss/loss), simultaneous gain in gene one and loss in gene
two, simultaneous gain in gene two and loss in gene one, and non-
simultaneous transitions. MI is calculated by weighting the first case
with +1, the second and third cases with −1, and the fourth case with 0.

G/LMI fails to adequatelymeasure compensatory changes that do
notoccur on the samebranchof the reference tree,which are common
in sequence evolution84. The fourth algorithm, G/L Distance, comple-
ments the previous algorithms by quantifying the evolutionary dis-
tance between G/L events assuming the time between gain or loss
events is exponentially distributed. Thus, the score between a pair of
events for two gene groups is calculated aswe�d v1 , v2ð Þ, wherew is +1 if
the events are the same (i.e., both gain or both loss) and −1 if the events
are different, and d v1, v2

� �
is the distance between events v1 and v2 on

the reference tree. The distance between events on separate branches
is defined as the total distance between their branch midpoints. The
distance between events on the same branch is defined as zero. For
each pair of genes, events are paired to their closest event from the
other group. The total score for the gene pair is the average score for
all event pairs, and ranges from −1 to +1.

Statistical significance for P/A Jaccard is calculated using an
empirical distribution of scores obtained from bootstrapping P/A
vectors. Significance for G/L MI is calculated using Fisher’s Exact Test
on the contingency table of the four cases, and p-values for P/A
Overlap and G/L Distance are calculated using empirical values from
permutation testing.

Phylogenetic Structure. Gene tree structural comparisons were pio-
neered by MirrorTree40, which scores each pair of gene groups by the
correlation of their pairwise sequence distances. Subsequent
improvements to MirrorTree attempted to correct for background
evolutionary signal prior to analysis85. These extensions, often referred
to as ContextTree or ContextMirror, use different approaches to
remove the shared signal representedby the reference tree39,69,86.More
recently, SVD-phy was introduced as an alternative approach using
SIMAP87 or BLAST to measure distance between sequences42,88. SVD-
phy uses singular value decomposition (SVD) to reduce redundant
information contained in pairwise distances, which removes signal
shared across all genes and improves overall predictions. However,
this approach requires that all pairwise distances be simultaneously
kept in memory.

EvoWeaver uses random projection in lieu of SVD for dimen-
sionality reduction. Random projection (RP) is a surjective mapping
that approximately preserves distances between vectors89. While tra-
ditional RP uses a large matrix of random values, this requirement can
be circumvented by generating values of the matrix on demand with a

preset random seed. Hence, this dimensionality reduction canbe done
with negligible memory overhead, allowing for efficient and replicable
distribution across a compute cluster. The RP MirrorTree algorithm
applies RP to patristic distances and scores pairs of vectors using
Spearman’s correlation coefficient. The RPContextTree algorithm also
subtracts the reference tree fromeachdistancematrix prior to random
projection and scoring. RP ContextTree’s final scores aremultiplied by
the Hamming distance of overlap in organismmembership to correct
for spurious correlations caused by minimally overlapping sets. Sta-
tistical significance for both RP ContextTree and RP MirrorTree is
calculated using the closed-form solution for significance of Spear-
man’s correlation coefficient.

EvoWeaver also incorporates tree distance metrics to measure
topological similarity. A variety of previously benchmarked metrics43

were implemented as measures of functional similarity, all of which
were highly correlated in their tree distances. By default, EvoWeaver’s
Tree Distance predictor uses normalized Robinson-Foulds Distance
due to its low memory requirement and closed form solution for
significance90, though other tree distance metrics are also supported.
The score for each pair of genes was defined as one minus the tree
distance of the gene trees pruned to their common leaves. If two gene
groups do not appear in any common genomes, their Tree Distance
score is set to zero.

Gene Organization. Gene organization is commonly used as a sig-
nature of functional association. For example, a priori knowledge of
genes that colocalize can be used to find biosynthetic gene clusters.
Existing programs, such as antiSMASH47, use profile hidden Markov
models to search for clusters of genes with known functional asso-
ciations. However, these approaches cannot be used to find gene
clusters de novo. STRING makes use of the distance in nucleotides
between genes as a de novo predictor of functional association24. To
our knowledge, analysis of gene organization is one of the most
understudied approaches for de novo prediction of functional
associations.

EvoWeaver incorporates three Gene Organization algorithms.
Together, they provide a well-rounded view of gene organization: the
first algorithm looks at whether genes possibly share regulation, the
secondmeasures how closely genes are located to each other, and the
third quantifies the extent to which gene distances are preserved
across phylogenies. The first algorithm, Orientation MI, examines the
relative orientation of paired genes. Conservation of relative gene
direction has been validated in prior work to be indicative of shared
function19. The score for Orientation MI is defined as the bidirectional
mutual information91 between the orientation of paired genes, with
Fisher’s Exact Test used to determine statistical significance.

The second algorithm, Gene Distance, examines the separation
between genes. For each pair of genes on the same chromosome or
contig, the distance d is calculated as the absolute value of the dif-
ference in gene index. The index of a gene is its gene order in the
chromosome or contig, starting from one for the first gene. We used
indices rather than nucleotide locations to mitigate the effect of
variability in gene lengths. The score for each pair of sequences is
defined as e1�d , and the overall score for a pair of gene groups is the
mean of their sequence pair scores. In this way, Gene Distance is
maximized (1) when two genes are always adjacent (d = 1). Statistical
significance is derived from the distribution of distances between two
random points on a line segment92. If a pair of gene groups never
appears in the same organism on the same chromosome/contig, the
score for the pairing is defined as zero.

The third algorithm, Moran’s I, measures spatial autocorrelation
among gene distances. Moran’s I requires pairwise weights repre-
sented by the inverse exponential of the patristic distances93 and
values in the form of gene distances (d). Moran’s I measures the extent
to which the relative distances between genes are correlated with the
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evolutionary trajectories of their respective organisms on the refer-
ence tree. Statistical significance is calculated using the closed form
solution to the expected value and variance of Moran’s I ref. 94.

Sequence Levelmethods. Covariation of residues is a common signal
of protein-protein interactions, and numerous methods have been
devised for this purpose. A popular approach is direct coupling
analysis54, which fits a Pottsmodel to amultiple sequence alignment in
order to parse direct effects from indirect effects. Other algorithms
using deep learning have been successfully applied to sequencing data
for finding interaction sites between proteins95,96. While some pre-
viously developed approaches improved scaling97,98, many of these
algorithms have prohibitively high computational complexity for high-
throughput analysis. Additionally, the focus of these algorithms is on
finding interaction sites between small numbers of proteins or pro-
teins known a priori to have a high likelihood of interacting.

EvoWeaver implements two Sequence Level methods that sup-
port either amino acid or nucleotide sequences, although amino acid
sequences were utilized for all analyses in this work. The first of these,
Gene Vector, uses the gene sequence natural vector approach, devel-
oped to predict protein-protein interactions56. We extended this
algorithm to amino acids following the same theoretical model as the
initial nucleotide-based method. We chose to use the natural vector
without 2-mers or 3-mers, since the full vector incurred higher com-
putational overhead with a negligible difference in scores. For each
pair of gene groups, we subset the sequences to the intersection of the
organismspresent in both groups. The natural vector for each group in
the pair is the average of the natural vectors for each of its constituent
sequences. We centered each natural vector assuming a null model of
equally distributed nucleotides or amino acids. The final score and
statistical significance for the pairing are calculated from Spearman’s
correlation coefficient of the natural vectors.

The second approach, Sequence Info, extends a prior approach to
measure the mutual information between sites within sequence
alignments of each gene group55. For each pair of gene groups, we
subset the sequences to the genomes that appear in both groups, and
subset the sites to those with high information content (entropy ≥0.3
bits) using the MaskAlignment function in DECIPHER99. Mutual infor-
mation is calculated for each pair of sites (i.e., columns) across both
alignments after applying a background entropy correction alongwith
an average product correction100. The final score is calculated as the
average of the highest-scoring pairing for each site. Statistical sig-
nificance is calculated by applying Fisher’s combined probability test
to the distribution of p-values across sites.

Ensemble methods. EvoWeaver combines the output of all 12 coe-
volutionary algorithms into a final prediction using an ensemble
machine learning method (Fig. 1a). For ensemble methods, we tested
logistic regression, random forest, and neural network models in R75.
Logistic regression was performed with the glm function with
family = “binomial”, random forests using the randomForest package101

(v4.7-1.1), and neural networks using the neuralnet package (v1.44.2)102.
The random forest model usedmaxdepth = 25 for binary classification
and maxdepth = 100 for multiclass classification to avoid overfitting
trees of unlimited depth. The neural network architecture was a feed
forward network with 12 inputs, one hidden layer of matched size
(i.e., 12), two output nodes (i.e., class = 0 or class = 1), and sigmoid
activation functions on each node. We intentionally chose relatively
simple architectures with default parameters for our ensemblemodels
to maintain interpretability of the predictions and mitigate overfitting
to the dataset. All models were evaluated using five-fold cross-valida-
tion without hyperparameter tuning.

Only random forest was used for hierarchical classification due to
its better performance in the binary classification benchmarks. Hier-
archical classification was also evaluated using five-fold cross-

validation. Members of each class were distributed equally among
each train/test fold. Toprevent overfitting fromhigh class imbalance in
the complete dataset, we downsampled classes in each training set to
match the size of the smallest class, Direct Connection, with 899
members. This meant that each class in the train set for each fold had
719members (i.e., 80%). Testing was done on the complete set of data
partitioned for testing, which comprised 128,552–128,557 members
(i.e., ~20%) per fold. Each pair was in exactly one test set, and no pairs
belonged to both the train and test set for any fold. Feature impor-
tance for the random forest model was calculated using permutation
importance, which was chosen over mean decrease in Gini impurity
since the latter has been shown to produce biased estimates103.

To construct an example network, we first created a weighted
adjacency matrix from the random forest predictions. Each node
represented a single gene group and was connected to its top two
Direct Connection predictions with edges of weight 1.0. All predicted
SameModule pairs were connectedwith edges ofweight 0.5. Our basis
for this approach is that most module blocks in KEGG are directly
connected to two neighbors, and other nodes in the samemodule are
less important than direct connections. We then used Louvain clus-
tering implemented in the igraph package104 (v1.5.0.1) to perform
community detection. The network in Fig. 3c was randomly chosen
from the resulting communities.

A possible concern with holding out pairs in cross-validation is
that ensemble methods could use spurious signals to simply distin-
guish highly connected gene groups from less connected groups. On
binary benchmarks, we further validated our results by reevaluating
our ensemble classifier using ten-fold cross-validationwith gene group
holdouts rather than pair holdouts. Within each fold, 10% of gene
groups were randomly selected, and all pairs involving at least one of
thesegroupswas taken as the test set. The resulting train/test sets each
comprised roughly 80/20% of the data (respectively), which forms a
comparable scenario to five-fold cross-validation with pair holdouts.
We also evaluated the impact of module/complex holdouts, which
were performed similarly to gene group holdouts. The results of these
analyses were virtually identical to prior results (Figs. S6, 12, 13),
implying that EvoWeaver is not heavily relying on spurious signals
when making predictions. More details on factors impacting Evo-
Weaver’s performance are available in section SI3 of the Supplemen-
tary Information.

A potential limitation of ensemble methods is their general-
izability to new datasets. Training an ensemble method necessitates
having access to a gold-standard training set. Furthermore, distinct
sets of organisms may exhibit fundamentally different coevolu-
tionary patterns, leading to decreased performance on out-of-
distribution data (e.g., Fig. S2). To analyze EvoWeaver performance
under these constraints, we investigated the quality of naïvely com-
bining EvoWeaver’s component algorithms (Fig. S5). A simple sum of
the 12 coevolutionary algorithms’ scores produced results similar to
that of the best component algorithm and substantially better than
the median performing algorithm (i.e., the 6th best performing
algorithm on each dataset). Notably, this result was most pro-
nounced at low false positive rates and requires no a priori knowl-
edge or training. This demonstrates that EvoWeaver generates
informative predictions with minimal knowledge about the
underlying data.

Construction of benchmark datasets
The goal of the Complexes benchmark is to judge each algorithm’s
ability to discern genes encoding proteins involved in a complex ver-
sus genes encoding unrelated proteins. To this end, we identified all
orthology groups belonging to a complex in KEGG105, for a total of 372
gene groups. We computed pairwise coevolutionary scores between
orthology groups with at least three sequences that were involved in a
complex, for a total of 358 orthology groups. This resulted in 57,321
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pairs of orthology groups that are not in the same pathway (unrelated
pairs) and 867 pairs participating as required or optional components
of the same complex. Importantly, there was negligible similarity
between distinct orthology groups (Fig. S14), which might have
otherwise resulted in data leakage. Positive pairs were defined as the
867 pairs from the same complex, and an equivalent number of
negative pairs were drawn to create a balanced dataset for bench-
marking. Random sampling of negative pairs was weighted in order to
match the distribution in number of sequences per gene group to that
of the positive pairs. This weighted sampling was used to mitigate the
ability of algorithms to use the number of sequences per group as a
proxy for functional association.

Next, we constructed the Modules benchmark to test each algo-
rithm’s ability to discern proteins acting in subsequent steps of a
biochemical pathway versus unrelated proteins. We first identified all
module blocks within the KEGG MODULES database. Each module
block is a set of one or more orthology groups that perform a discrete
step within a biochemical pathway (Fig. 1g). Each module was parsed
from its definition on KEGG (Table S1), for a total of 1547 module
blocks from 369 modules. Positive test cases were defined as succes-
sive blocks in a module, and negative cases were defined as module
blocks in separate modules not sharing a pathway in KEGG. KEGG’s
Global and Overview Pathways were not considered, since their broad
definition encompasses most proteins in KEGG. Blocks containing
complexes were also excluded to prevent overlap with the Complexes
benchmark. Since some orthology groups belong to multiple blocks,
only pairs of blocks without overlap in orthology groups were asses-
sed. The final Modules benchmark was comprised of 1187 blocks with
899 positive pairs. An equivalent number of negative pairs were sam-
pled in the same manner as in the Complexes benchmark.

Having constructed two binary benchmarks, we constructed the
Multiclass benchmark to explore EvoWeaver’s ability to distinguish
interaction strengths among proteins. Accordingly, we used the rela-
tionships encoded in the KEGG PATHWAYS database to define multi-
ple hierarchical levels of functional association.Weassigned all pairs of
module blocks into one of five categories: Direct Connection, Same
Module, Same Pathway, SameGlobal Pathway, or Unrelated. The Same
Pathway group comprises pairs ofmodule blocks that share a pathway
not in the Global and Overview Pathways category in KEGG, and the
Unrelated group comprises pairs with no modules or pathways in
common. We chose 50% confidence as the cutoff for classification
(Fig. 3a) because these predictions have higher probability assigned to
their predicted class than their sum of probabilities across all other
classes. The confusion matrix at 0% confidence is shown in Fig. S6. To
look for connections absent from KEGG (Fig. 5), we examined pairs
belonging to Unrelated and Same Global Pathway groups that Evo-
Weaver predicted as being Direct Connection. More details on
benchmarkdatasets anddata preprocessing are available in section SI2
of the Supplemental Information. A list of all misclassifications is
available in Supplemental Datafile 1.

Preparing gene groups for analysis
EvoWeaver takes as input a set of two or more gene trees, which may
include sequences, gene indexes, and/or a reference tree. It then
applies the set of component algorithms for which it has the necessary
input data types. We obtained amino acid sequences for each gene
group from KEGG and used DECIPHER99 to align sequences and con-
struct neighbor-joining gene trees. In total, there were 8564 genomes
with at least one genepresent in the benchmarks. Reference treeswere
estimated using the ASTRID algorithm106. Impact of error in the
reference tree is discussed in sections SI1 and SI3of the Supplementary
Information and shown in Fig. S15. To find each gene’s index within its
genome, we downloaded the set of all genes available for each
organism from KEGG, along with their chromosome/contig, orienta-
tion, and location. We mapped locations to indices by calculating the

index of each gene relative to all other genes on the same chromo-
some/contig available for that genome. Of the 8564 genomes present
in the benchmarks, 8136 had location data available in KEGG. A taxo-
nomic breakdown of the genomes used and their location data is
available in Supplemental Datafile 2.

Comparison with STRING
Data for STRING’s clusters of orthologous genes (COGs) and interac-
tions were downloaded from STRING v12.0. Since STRING’s COG
membership sometimes did not perfectly correspond to KEGG’s KO
groups, we tabulated the KO group assignments for sequences
belonging to each STRING COG. Overall, 6849 COGs had at least one
sequence that could be mapped to a KO group in KEGG. Each STRING
COG was mapped to KEGG Module blocks using its majority (≥50%)
KEGG KO group. A total of 6311 COGs had a majority KO group, and
4481 (71%) of these COGs had perfect consensus. Only 538 STRING
COGs lacked a consensus KO group, and these COGs were excluded
from analysis.

STRING’s stated goal for its Total Score is to estimate how likely a
reported functional linkage between twoproteins “is at least as specific
as that between an average pair of proteins annotated on the same
‘map’ or ‘pathway’ in KEGG”57. Therefore, EvoWeaver’s analogous
predictions were made by summing the probabilities predicted for
Direct Connection, Same Module, and Same Pathway in the hier-
archical classification (Fig. 3). A total of 757 pairs of COGs in the mat-
ched dataset belonged to the Same Pathway, Same Module, or Direct
Connection categories in KEGG. Note that this differs from the pairs
used in the Modules Benchmark, which only included pairs in the
Direct Connection category. An equivalent number of negatives were
randomly sampled from the remainingpairs. STRINGprovides its Total
Score calculation within a Python script available on their website. We
used this formula to calculate the hypothetical Total Score using
subsets of STRING’s evidence streams. The sequence of AUROCs in
Fig. 4a was obtained by sequentially adding evidence streams from
lowest to highest marginal impact on AUROC to the Total Score cal-
culation (Fig. S7). The “de novo only” prediction in Fig. 4a is STRING’s
Total Score using only the three evidence streams that do not depend
on prior knowledge (i.e., Gene Fusion, Cooccurrence, and Gene
Neighborhood), while “EvoWeaver Transfer” refers to using an Evo-
Weaver ensemble model trained on the CORUM prediction
task (Fig. S2).

KEGG case studies
Case studies for Fig. 6 were manually constructed from KEGG data for
biologically meaningful sets of KEGG modules belonging to the same
KEGG pathway. Gene groups were connected according to the direc-
ted connections available in the corresponding KEGG pathway. Only
gene groups used in the Multiclass benchmark were included. For the
ensemble network, we connected each node to its top connection,
where each connection’s ranking is determined from its probability of
Direct Connection according to the Multiclass classifier used in Fig. 3.
The component predictor networks were constructed similarly to the
ensemble network, but used the average rank of the component score
ranks for calculating each node’s top connections. For example, the
Phylogenetic Profiling connections are determined by the mean rank
of P/A Jaccard, P/A Overlap, G/L MI, and G/L Distance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Data for reproducing
figures and pretrained ensemble models used in this work are
available on GitHub (https://github.com/WrightLabScience/EvoWeaver-
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ExampleCode, https://doi.org/10.5281/zenodo.15027870). All other data-
files are available from Zenodo (https://doi.org/10.5281/zenodo.
14205427). The list of EvoWeaver’s misclassifications and relevant algo-
rithm scores are available in the Supplemental Datafiles. Unique identi-
fiers for data downloaded from KEGG are available on Zenodo as well as
in Supplemental Datafile 1. Accession codes for genomes used are avail-
able in Supplemental Datafile 2. Sourcedata are providedwith this paper.

Code availability
EvoWeaver is available under a GPL-3 license as part of the SynExtend
(v1.19.0) package74 for R75, which is distributed via the Bioconductor76

platform. The code used to develop the model, perform the analyses
and generate results in this study is publicly available and has been
deposited on GitHub at https://github.com/WrightLabScience/
EvoWeaver-ExampleCode 107, under an MIT license (https://doi.org/
10.5281/zenodo.15027870).
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