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Detecting and calibrating large biases in
global onshore wind power assessment
across temporal scales
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The global capacity for wind power has grown rapidly in recent years, yet
uncertainties in wind power density (WPD) assessments still hinder effective
climate change mitigation efforts. One major challenge is the significant
underestimation ofWPDwhen using coarser temporal resolutions (Δt) of wind
speed data. Here, we show that using daily Δt results in an average under-
estimation of 35.6% in global onshore WPD compared to hourly Δt. This dis-
crepancy arises from the exponential decay of WPD with increasing Δt,
reflecting the intrinsic properties of wind speed distributions, particularly in
regions with weaker winds. To address this, we propose a calibration method
that introduces a correction coefficient to reduce biases and harmonize WPD
estimates across temporal resolutions. Applying this method to future wind
energy projections under the Shared Socioeconomic Pathway 585 scenario
increases global onshore WPD estimates by 25% by 2100, compared to
uncorrected daily data. These findings highlight the effectiveness of calibra-
tion in reducing uncertainties, enhancing WPD assessments, and facilitating
robust policy action toward carbon neutrality.

In recent years, wind power has emerged as a leading renewable
energy source for electricity generation, offering significant potential
to mitigate climate change by offsetting greenhouse gas emissions1,2.
Global onshoreandoffshorewindpower installations reached a record
117 Gigawatt (GW) in 2023, according to the Global Wind Energy
Council3. However, achieving the targets outlined by the United
Nations Climate Change Conference and Sustainable Development
Goals will still require accelerating this growth to at least 320GW
annually by 2030.

Wind power density (WPD), proportional to the cube of wind
speed, is a widely used metric for quantifying the potential wind
energy available at a given location4–6. It provides a standardized
measure for comparingwind resources, independent of turbine size or
technical specifications, and serves as the quantitative foundation for
wind energy assessments and resource classification7. Factors

influencing WPD assessments include spatial resolution8,9, temporal
resolution (Δt) of wind data10,11, and air density12,13. Among these,
temporal resolution has a particularly pronounced effect due to the
cubic relationship between wind speed and WPD14. High-speed wind
events, characterized by short-term variability and disproportionately
large contributions toWPD, are often smoothed or lost with coarserΔt
data15. This leads to substantial underestimations in wind power cal-
culations and related environmental impact assessments10. For exam-
ple,monthly averagedwind speeds have been shown to underestimate
total wind power by up to 48% compared to hourly measurements
from a wind tower in Boulder, CO, USA16. Similarly, daily wind speed
data from the fifth-generation atmospheric reanalysis of the global
climate produced by the European Centre forMedium-RangeWeather
Forecasts (ERA5) underestimates global offshore wind power by
10–30% relative to hourly estimates17.
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High-resolution data are therefore critical to accurately capturing
wind speed variability and improving WPD estimates. However, such
data are often challenging to obtain and computationally demanding
to process11. Practical applications in global and regional wind power
assessments often rely on coarser Δt data (Supplementary Table 1),
such as daily or even monthly averages, due to accessibility and
resource constraints18,19. Early global wind power assessments, for
instance, employed 6-hour or daily wind speed data20,21, while analyses
of historical changes in wind energy potential often depend on
archived low-resolution data. State-of-the-art global climate models
(GCMs) in the Coupled Model Intercomparison Project Phase 6
(CMIP6) typically provide daily wind speed data, exacerbating uncer-
tainties in WPD projections16,22.

Addressing these challenges requires a systematic evaluation of
Δt-induced bias, allowing us to balance the trade-offs between accu-
racy andpractical efficiency. Todevelop robust calibrationmethods to
harmonize WPD estimates across resolutions is also critical but
remains unresolved10,16. Furthermore, most research has focused on
regional analyses17, leaving the global implications—essential for
international policy frameworks—largely underexplored. If a robust
relationship between WPD and Δt exists, it would be possible to cor-
rect the bias and yield accurate WPD estimates even with coarser Δt,
reducing computational demands.

This study investigates the impact of Δt on WPD calculations at a
global scale using wind speed data from multiple sources, including
high-resolution observations (Supplementary Fig. 1), climate reana-
lyses (ERA5, and reanalysis datasets from the National Centers for
Environmental Prediction/National Centers for Atmospheric Research
(NCEP/NCAR) and the NCEP-US Department of Energy (NCEP-DOE)),
and climate model simulations from CMIP6. A robust statistical rela-
tionship between WPD and Δt is identified, providing a foundation for
a calibration method to standardize WPD estimates across temporal
resolutions. This approach offers a practical solution for reducing
uncertainties in WPD assessments, facilitating wind energy resource
planning, and informing policymaking for sustainable energy
development.

Results
Underestimation of WPD using coarse temporal resolutions
To demonstrate the effects of temporal resolution on wind speed
variability and WPD estimates, a rural station in southern Canada
(52.3°N, 111.8°W) was chosen from stations with high-resolution wind
speed observational data, ensuring representation of diverse wind
conditions. Hourly observational data at this site during May 2021
capture frequent fluctuations andwind gusts exceeding 15m s−1, with a
standard deviation of 3.9m s-1 (Supplementary Fig. 2a). In contrast,
daily data smooth these variations, reducing the standard deviation to
2.9m s-1 and diminishing the frequency andmagnitude of strong gusts.
Similar patterns are observed in ERA5 reanalysis data at the same
location, where standard deviations decrease from 3.2m s-1 (1-hour) to
2.6m s-1 (daily) (Supplementary Fig. 2b). This smoothing effect of
coarse Δt eliminates high-frequency variability and suppresses the
upper percentiles of wind speeds, which dominate WPD calculations.
Consequently, WPD estimates are underestimated by 24.5% (observa-
tions) and 18.3% (ERA5 reanalysis) at this site.

Globally, observational data reveal consistent spatial patterns for
WPD(daily) and WPD(1-hour) (Fig. 1a, b), both aligning well with prior
global wind power assessments16,20,21. However, coarse Δt introduces
substantial underestimation. On average, WPD(daily) underestimates
WPD(1-hour) by 35.6%, with relative biases ranging from 20–40% at
most sites (Fig. 1c). Spatial variations are evident: high-WPD regions
(e.g., northern Europe, central USA, central Asia, and southwestern
Australia) exhibit low biases, while low-WPD regions (e.g., southern
Europe, eastern USA, Brazil, the Middle East, East Asia, and northern
Australia) can experience biases of up to 60% (Fig. 1c).

ERA5 reanalysis similarly highlights distinctive regional patterns
(Fig. 1d, e) consistent with observations. Mid- to high-latitude regions
and subtropical deserts exhibit relatively high WPD (>200Wm-2),
whereas tropical regions generally have low WPD (<50Wm-2). How-
ever, ERA5 reinforces the underestimation trend with daily data
(Fig. 1f). Similar findings are evident in both NCEP/NCAR and NCEP-
DOE reanalysis datasets (Supplementary Fig. 3). Across global terres-
trial areas, the averageWPDbias between hourly and daily ERA5 data is
approximately 20%, with biases exceeding 60% in tropical and
mountainous regions where wind speeds are generally low. These
consistent patterns across observations and reanalyses underscore
that Δt effects are less (more) pronounced in strong (weak) wind
environments.

Moreover, Δt significantly affects actual electrical power pro-
duction (AEP) calculations. Using a General Electric GE 1.5 s wind tur-
bine as anexample (Supplementary Fig. 4), AEP estimates derived from
daily wind speed data differmarkedly from those based on hourly data
(Supplementary Fig. 5), emphasizing the critical role of temporal
resolution in accurately evaluating wind energy potential.

Intrinsic dependence of WPD decay on temporal resolutions
To explore why WPD calculations differ across wind speed data with
varying Δt, we analyzed the statistical characteristics of their dis-
tributions. Using the rural station in southern Canada as an example,
the wind speed data were fitted to a Weibull probability density
function (PDF). Though theWeibull PDFhasbeen shown togive a good
fit to observed wind speed distributions in most cases10, here it was
used solely for fitting the distribution, while WPD calculations were
performed using the statistical method described in the Methods
section.

In this case, the Weibull distribution provides a good fit for the
hourly wind speed series, with a shape parameter k = 1.93 and a scale
parameter c = 6.53 (Fig. 2a). However, as Δt coarsens, the wind speed
distribution becomes increasingly constricted, with a notable short-
ening of the tail representing high wind speeds. This results in an
increase in k and a decrease in c, shifting the distribution toward a
more normal shape. Notably, wind speed data with daily or coarser Δt
cannot be accurately represented by the Weibull distribution, as k
exceeds the theoretical threshold of 3.04223.

This shift in the wind speed distribution due to coarser Δt directly
impacts WPD calculations. To quantify this, we calculated WPD across
different Δt values using global observations. As illustrated by four
representative sites in Figs. 2b, c, the relationship betweenWPD andΔt
follows an exponential function as Eq. (1)

WPD Δtð Þ=a exp �bΔtð Þ ð1Þ

Here, a represents the theoretical maximum WPD (WPDmax)
associated with the finest Δt, and b quantifies the rate of WPD decline
with increasing Δt. Larger b values indicate a more rapid reduction in
WPDwith coarser Δt (Fig. 2b). The fitting results indicate that a 6-hour
Δt reduces WPD to approximately 80–90% of WPDmax, whereas daily
averaging can lower it to as little as 55% of WPDmax in certain cases
(Fig. 2c). Moreover, although WPDmax (equal to a) may be slightly
lower than theWPDcalculated fromfinerΔt values (e.g., 1-hour or even
higher resolutions), a exhibits a strong positive correlation with
WPD(1-hour) (Fig. 2d), indicating that WPD(1-hour) is a reasonable
approximation of a, the theoretical maximum WPD.

Unlike the stretched exponential model proposed by a previous
study10, our exponential function reveals significant negative correla-
tions between a and b, and between b and WPD(1-hour). As shown in
Fig. 2e, f, regions with smaller a and lowerWPD(1-hour) exhibit larger b
values, indicating a steeperWPDdeclinewith coarserΔt. Conversely, in
regionswith higher a andWPD(1-hour), the decline is less pronounced.
These results align with previous findings17 and confirm that WPD
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underestimation due to coarse Δt is more pronounced in regions with
lower wind power potential. Indeed, the ratio of WPD(Δt) to WPD(1-
hour) diminishes exponentially as Δt increases, with the decline rate
being steeper for lower WPD(1-hour), as shown by site 4 with the
smallest a (Fig. 2c).

Globally, the spatial distribution of parameters a and b highlights
distinct regional patterns (Fig. 2g, h), and most sites (>95.8%) exhibit
robust exponential fits, with coefficients of determination (R2)
exceeding 0.7 (Fig. 2i). Regions with higher a—indicative of strong
wind speeds and highwind power potential—include northern Europe,
central USA, central Asia, southwestern Australia, southern South
America, and some coastal areas. These regions typically have lower b
values (<0.01), indicating minimal WPD decline with coarser Δt. Con-
versely, regions with lower a, such as southern Europe, eastern USA,
Brazil, the Middle East, and East Asia, exhibit higher b values, sug-
gesting that WPD calculations in these areas are more sensitive to
coarse Δt.

Finally, the decay relationship betweenWPD and Δt is evident not
only in observational data but also in ERA5 reanalysis (Supplementary
Fig. 6), demonstrating that Δt effect on WPD calculations is

independent of data source. The strong correlation between para-
meters a and b suggests that this effect is likely an intrinsic property of
the wind speed distribution itself, rather than a site-specific attribute.
The parameter b, which governs the exponential decay of WPD with
respect to Δt, is intrinsically linked to general wind-energy conditions
represented by parameter a.

Calibration of WPD bias across temporal scales
The robust relationship between parameters a and b indicates that
sites with distinct a values—derivable from WPD(1-hour)—exhibit
varying decay characteristics, providing a foundation for rectifying
WPD estimates derived from coarser Δt. To address this, we propose a
calibration coefficient, K(Δt-1hour), which quantifies the relative bias
between WPD(Δt) and WPD(1-hour). This coefficient enables the
alignment of WPD estimates from varying Δt values to WPD(1-hour).
Details of K(Δt-1hour) definition, calculation, and the rationale for
using WPD(1-hour) as the “target” for rectification are provided in the
Methods section.

The global distribution of K(daily-1hour) based on observations
(Fig. 3a) shows that regions with lower K values generally correspond

Fig. 1 | Global wind power density (WPD) at 100m hub height from observa-
tions and climate reanalysis with different temporal resolutions (1973–2021).
The maps show global WPD distribution derived from observational data at daily
(a) and hourly (b) resolutions, along with their relative bias (RB, %) (c). Similarly,

WPD distributions from the fifth-generation European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5) using daily (d) and
hourly (e) resolutions are shown, with their corresponding relative bias (RB, %) (f).
Source data are provided as a Source Data file.
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with high wind-energy areas, such as northern Europe, central Asia,
central USA, southwestern Australia, southern South America, and cer-
tain coastal zones. In contrast, higher K values—indicating significant
discrepancies between WPD(daily) and WPD(1-hour) —are observed in
relatively flat inland terrains such as East Asia, southern Europe, eastern
USA, and Brazil, where wind power generation is already widely imple-
mented. Furthermore, K(daily-1hour) derived from ERA5 reanalysis
(Fig. 3b) alignswell with observations, supporting the applicability of the
calibration approach across diverse datasets.

Statistical analysis reveals a moderate but significant negative
correlation between WPD(daily) and K(daily-1hour) (R = −0.49,
p <0.001; Fig. 3c). Regions with lower WPD(daily) exhibit higher
K values; for instance, K can reach 5.0 when WPD(daily) falls below
10Wm-2, while K approximates 1.5 when WPD(daily) exceeds
400Wm-2. As most sites fall within the WPD(daily) range of 10 and
400Wm-2 (Fig. 1a), calibrations using K values of 1.5–2 are particu-
larly relevant. Interestingly, sites with WPD(daily) exceeding about

1000Wm-2 have K values below 1.0 (Fig. 3c), consistent with the
positive relative bias in Fig. 1c. This phenomenon is actually attrib-
uted to deceptive high-speed wind events arising from averaging
wind speeds above the cut-out threshold (Supplementary Fig. 7),
which are unsuitable for electricity production.

To facilitate practical use,K valueswere categorized byWPD levels
(Fig. 3d). For WPD Level I (0–50W m-2), the median K value is 2.12,
albeit with substantial variation, while for WPD Level VI (>400W m-2),
the median K value is 1.21, with much narrower variability. These
categorized K values can be directly used to adjust WPD across dif-
ferent grades. Additionally, a global gridded dataset of K values at
1° × 1° resolution was generated (Supplementary Fig. 8). This dataset
preserves large-scale spatial features, enabling straightforward cor-
rection of WPD at specific locations with present conditions by refer-
encing the nearest grid point’s K value.

Calibration coefficients K(Δt-1hour) were also derived for
6-hour and 3-hour resolutions, commonly used in previous studies

Fig. 2 | Relationship between wind power density (WPD) and temporal
resolutions (Δt). aWind speeddistribution for differentΔt values (1-hour to 48-hour)
fitted with Weibull probability density function, using wind speed observational data
(2014–2021) from a rural station in southern Canada (52.3°N, 111.8°W; same site as
Supplementary Fig. 2). Parameters k and c describe the Weibull shape and scale,
respectively, and the numbers in the panel following k and c (e.g., 1, 3, 6,…) indicate
the corresponding Δt values (e.g., 1-hour, 3-hour, 6-hour, …). WPD for this example
was calculated based on the statistical method according to Eq. (5). b Exponential fits
of WPD versus Δt for four global sites representing different WPD levels: Site 1
(southeast Australia, 38.4°S, 141.6°E, WPD: ~400Wm-2), Site 2 (Kazakhstan, 49.6°N,
73.3°E, WPD: ~300Wm-2), Site 3 (southern Canada, 51.7°N, 112.7°W,WPD: ~200Wm-2),
and Site 4 (southern USA, 35.4°N, 94.8°W,WPD: ~100Wm-2). Each site’s fitted curve is
shown in a different color. Parameters a and b for each site are labeled as a1, a2, a3, a4

and b1, b2, b3, b4, respectively. c Ratio of WPD(Δt) toWPD(1-hour) as a function ofΔt,
corresponding to the sites in panel (b). Each site’s fitted curve is color-matched with
(b). d Scatter plot of WPD(1-hour) versus parameter a, with *** denoting a correlation
exceeding the 99.9% significance level in t-test. e Scatter plot of WPD(1-hour) versus
parameter b. f Scatter plot of parameter a versus b. gGlobal distribution of parameter
a. h Global distribution of parameter b. i Global distribution of the coefficient of
determination (R2) for the exponential fits of WPD versus Δt. Sites with R2<0.7
(accounting for less than 4.2% of all sites), which show abnormal WPD values and
negative b values likely due to data anomalies, were excluded from the analysis. The
fitting was performed using 1-hour resolution wind speed data and Eq. (1), with
parameters a and b determined for each site. Source data are provided as a Source
Data file.
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(Supplementary Table 1). As shown in Supplementary Fig. 9, the rela-
tionship between WPD and K at these resolutions mirrors that of daily
Δt, with slightly lower K values. Applying the samemethodology, WPD
and K values were calculated from ERA5, NCEP/NCAR, and NCEP-DOE
reanalysis datasets across variousΔt values (Supplementary Fig. 10). In
all cases, K maintained a significant negative correlation with WPD,
reinforcing the robustness of the calibration method (Supplemen-
tary Fig. 11).

Taken together, these findings suggest that the statistical rela-
tionship between K and WPD, derived from diverse datasets, can
effectively rectify WPD estimates across different Δt ranges. This cali-
bration approach not only aligns WPD(daily) with WPD(1-hour) but
also extends to WPD(3-hour) where applicable, offering a practical
solution for harmonizing global wind power assessments and mini-
mizing uncertainties in policy-relevant decisions.

Implications for future wind power assessment
To illustrate the uncertainties in assessing future wind power potential
using coarse-resolution wind speed data, and to demonstrate the uti-
lity of the proposed calibration coefficient K, we provide an example
based on the Earth system model (EC-Earth3) from CMIP6. The global
distribution of WPD derived from daily wind speed data in the EC-
Earth3 model under the Shared Socioeconomic Pathway 585 (SSP585)
scenario for 2100 (Fig. 4a) shows spatial patterns similar to those
observed during the historical period in ERA5 (Fig. 1d). According to
the model, the average global onshore WPD(daily) is projected to be
approximately 120Wm-2 by 2100 (SSP585 scenario; Fig. 4g). However,
analysis of 3-hour wind speed data reveals a substantial under-
estimation when comparing WPD(daily) with WPD(3-hour) (Fig. 4d),
despite similar spatial distributions. This discrepancy results in an

average deviation of -30.7% for futureWPD across global land (Fig. 4f),
aligning closely with the -35.6% bias observed historically in the
observational data (Fig. 1c). Regions such as East Asia, southern Eur-
ope, and USA—where wind power generation is extensively imple-
mented—exhibit particularly pronounced biases.

Applying the calibration coefficient K(daily-3hour) significantly
improves WPD estimates (Fig. 4b). The calibrated WPD(3-hour) redu-
ces the relative bias between WPD(3-hour) and WPD(daily) (Fig. 4e),
decreasing the average deviation from −30.7% to −15.0% (Fig. 4f). By
applying K(daily-1hour), the global average onshore WPD increases to
>150Wm-2, representing a 25% enhancement relative to daily data
(120Wm-2, Fig. 4g).

These results emphasize the practicality of calibrating WPD using
K in scenarios where high-resolution wind speed data are unavailable.
This calibration method is especially valuable given that publicly
accessible CMIP6 model outputs typically offer wind speed data at
resolutions no finer than 3 hours, with most models providing only
daily data11. The simplicity of the K-based approach enables accurate
assessments without requiring computationally intensive high-
resolution data, making it particularly advantageous in resource-
constrained settings.

It is important to note that this study focuses on the impact of Δt
on absolute future global onshoreWPD rather than changes relative to
the present. As shown in Supplementary Fig. 12, the CMIP6 multi-
model mean indicates statistically insignificant decreasing trends in
global onshore WPD over the period 2015–2100. Furthermore, the
relative changes in WPD remain largely unaffected by the application
of K across different greenhouse gas emission scenarios. It may imply
that Δt has a minimal impact on WPD trend estimation, whether for
historical periods (Supplementary Fig. 13) or future projections

Fig. 3 | Calibration coefficient K(daily−1hour) derived from observational data
and climate reanalysis. a Global distribution of K(daily−1hour) derived from
observational data spanning 1973–2021. b Global distribution of K(daily−1hour)
calculated from the fifth-generation European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalysis (ERA5) for the same period. c Scatter
plots of wind power density (WPD, daily) versus K(daily−1hour) based on obser-
vations. The color bar represents point density, computed in linear WPD space but
displayedona logarithmicx-axis for clarity. *** denotes statistical significanceat the

99.9% confidence level (t-test). d Boxplots of K(daily−1hour) categorized by WPD
levels (WPL, I–VI), as defined by the National Renewable Energy Laboratory7. Levels
I–VI correspond to WPD ranges of 0–50, 50–100, 100–200, 200–300, 300–400,
and >400Wm-2, respectively, based on observational data. Median K values are
indicated by red lines within each box. Outliers (K(daily-1hour)>5.0, accounting for
less than 1.9% of total sites) were excluded from the analysis due to anomalously
low WPD values, likely resulting from data anomalies. Data for the boxplots are
provided in Supplementary Table 3. Source data are provided as a Source Data file.
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(Supplementary Fig. 12; Supplementary Note 1). While uncertainties
persist in GCMs regarding wind speed projections, including dis-
crepancies in simulatedmagnitude and trends16,22, one certainty is that
using daily data to computewind energy resources consistently results
in at least a 30% negative bias on global onshore WPD. Consequently,
while calibration may not critically affect assessments of relative
changes in WPD—provided both historical and future simulations
share consistent biases—it is indispensable for minimizing errors in
absolute WPD estimates.

Discussion
Our study reveals substantial biases inWPDestimateswhen usingwind
speed data with coarse Δt. These biases intensify as Δt increases, par-
ticularly in low-wind regions, leading to significant underestimations in
WPD. Importantly, the decay in WPD with Δt is independent of data
sources, as consistent patterns are observed across observational data
andmultiple reanalysis products (Fig. 2, Supplementary Figs. 3, 6). This

phenomenon is driven by the intrinsic characteristics of wind speed
distributions: high-speed wind events, which dominate the upper
percentiles, often occur over shorter timescales. For example, the
strongest phase of a synoptic-scale extratropical cyclone often spans
an hour to a day24. Whenmeasurement intervals are too long, or when
time series are averaged over extended Δt intervals (e.g., daily)25, peak
wind speeds are smoothed out. Because of the cubic relationship
between wind speed and turbine power output26, these omissions
amplify underestimations in WPD and actual energy production.

While wind speed time series generally follow a Weibull
distribution10,27, this model becomes inadequate when the number of
independent observations is insufficient23,28. Our findings indicate that
as Δt coarsens from 1-hour to daily—reducing observations from 8,760
to 365 per year—theWeibullmodel no longer fits the data well (Fig. 2a).
Consequently, daily wind speed data fail to capture the statistical
characteristics or preserve the probability distribution observed in
higher resolution data11.

Fig. 4 | Projected global wind power density (WPD) distribution at the hub
height (100m) under the Shared Socioeconomic Pathway 585 scenario for
2090–2100, based on the Earth systemmodel (EC-Earth3) simulations. aGlobal
WPD(daily) derived from daily wind speed data. b Calibrated WPD(3-hour), calcu-
lated using WPD(daily) and K(daily-3hour). c Calibrated WPD(1-hour), calculated
using WPD(daily) and K(daily-1hour). d Relative bias (RB) between WPD(daily) and
WPD(3-hour), based on daily and 3-hour wind speed data from the climate model.
eRelativebias (RB)betweencalibratedWPD(3-hour) andoriginalWPD(3-hour). The

calibrated WPD(3-hour) was calculated using WPD(daily) and K(daily-3hour).
f Boxplots of RB for (i) WPD(daily) versus WPD(3-hour), and (ii) calibrated WPD(3-
hour) versus original WPD(3-hour). g Bar chart showing average global onshore
WPD for different temporal resolutions and calibrations: (i) WPD(daily), (ii) cali-
brated WPD(3-hour), and (iii) calibrated WPD(1-hour). Antarctica is excluded from
the analysis due to its current unsuitability for wind power development. Source
data are provided as a Source Data file.
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High-resolution wind speed data better reflect wind speed dis-
tributions and offer more accurate WPD assessments. However, these
datasets require substantial computational resources and may be
more expensive and complicated instruments. Our findings show that
1-hour resolution data strikes an effective balance between accuracy
and feasibility (Fig. 2d), aligning with previous studies highlighting the
similar statistical characteristics of 10-minute and 1-hour data11,29. The
widespread availability and reliability of hourly datamake it a practical
benchmark for WPD calculations.

Crucially, our study demonstrates that the decay of WPD with Δt
follows an exponential relationship (Eq. (1)), reflecting the intrinsic
properties of wind speed distributions rather than site-specific char-
acteristics. Regions with weaker wind environments, characterized by
lower values of parameter a, exhibit higher b values, indicating more
rapidWPDdecaywith coarserΔt (Fig. 2c). Thismakes underestimation
effects particularly pronounced in regions such as East Asia, southern
Europe, and eastern USA—areas with relatively flat terrain and exten-
sive wind power deployments21.

Interestingly, the impact of Δt on WPD is broadly consistent
across diverse landscapes (Supplementary Figs. 14, 15, 16), despite
variations in surface roughness associated with different land cover
types that influence absoluteWPDvalues (SupplementaryNote 2). This
again underscores that the relationship between WPD and Δt is gov-
erned primarily by wind speed distribution characteristics (parameter
a), not land surface attributes.

The calibration coefficient, K, is particularly relevant for revisiting
earlierWPD assessments that relied ondaily ormonthly data and likely
underestimatedwindpowerpotential. Additionally, in scenarioswhere
high-resolution data are unavailable, applying K enables accurate
assessments with coarse-resolution datasets, reducing computational
costs. Using K(Δt–1 hour), WPD estimates from commonly used Δt
intervals (e.g., 3-hour, 6-hour, daily; Supplementary Table 1) can be
harmonized withWPD(1-hour). This calibration approach substantially
mitigates underestimations, as demonstrated in Fig. 4f, fostering
consistency in wind power assessments across research, industry, and
policymaking contexts.

While Δt minimally impacts projected relative changes in future
wind speed and WPD, it does affect assessments of primary wind
direction (Supplementary Fig. 17), which is critical for turbine align-
ment and wind farm design (Supplementary Note 3). To improving
future wind regime predictions, enhanced simulation capabilities are
essential, including better representation of boundary-layer processes,
high-resolution models, regional downscaling, and advanced machine
learning techniques30,31. These advancements will help address uncer-
tainties inwind speed andWPDprojections, while accounting for other
factors such as air density, complex terrain, surface roughness, and
grid resolution12,32–34. Ultimately, the proposed calibration method
offers a straightforward solution to reduce one prominent source of
uncertainty in wind power assessments. By enabling more accurate
evaluations, it facilitates effective planning and decision-making in the
global transition toward renewable energy.

Methods
Wind datasets
This study utilizes global high temporal-resolution wind speed data,
including 20-min, 30-min, and 1-hour observations, sourced from the
National Climatic Data Center (NCDC). To ensure data quality and
sufficient sample sizes for reliable statistical analyses10, only stations
with >80% valid records spanning 1973–2021 were included in the
analysis, as illustrated in Supplementary Fig. 1. Climate reanalysis
datasets, such as ERA5, NCEP/NCAR, and NCEP-DOE, were also
employed to analyze 10m and hub-height (100m) wind speeds35–37.
Reanalysis datasets are widely recognized for their consistency and
high-fidelity in wind speed estimates38,39. WPD was calculated across
multiple temporal resolutions (e.g., 20-min, 1-hour, 6-hour, daily) for

both observational and reanalysis datasets to quantify the
effect of Δt.

For future wind power assessments, this study used outputs from
EC-Earth3 model in CMIP6 as a representative example. This model
was selected because it provides 3-hour wind speed data, whichmeets
the requirements of this analysis40. Previous studies show that EC-
Earth3 closely alignswith other CMIP6models in capturingwind speed
trends41. Additional CMIP6 models with coarser temporal resolutions
(e.g., BCC-CSM2-MR, CMCC-ESM2, CNRM-CM6-1, INM-CM4-8, IPSL-
CM6A-LR, MIROC6, MRI-ESM2-0) were used to evaluate relative
changes in WPD under future scenarios (Supplementary Fig. 12).

Extrapolating wind speed at hub height
Wind speed at turbine hub height, typically 100 meters above ground
level, was extrapolated from 10m using a stability-corrected loga-
rithmic wind profile42, as described in Eq. (2)

U zð Þ= u*

κ
ln

z
z0

� �
+Ψ

z
L

� �� �
ð2Þ

where U(z) is the wind speed at height z, u* is friction velocity, κ =0.4
(von Karman constant), z0 is the surface roughness length, ΨðzLÞ is the
stability correction term, and L is the Monin-Obukhov length. For
neutrally stability conditions43,44, this equation simplifies to Eq. (3)

U zð Þ= u*

κ
ln

z
z0

� �
ð3Þ

Whenheight z1 and z2 are known, friction velocities cancel out, yielding
Eq. (4)

Uðz2Þ
Uðz1Þ

=
lnðz2z0Þ
lnðz1z0Þ

ð4Þ

This logarithmic wind profile equation (Eq. (4)) is widely used to
extrapolate hub-height wind speed from the observations20,45–47. While
previous studies often assumed a constant z0 value, surface roughness
varies with land-use and land-cover (LULC)48. To improve the accuracy
of WPD calculation, this study applied z0 values specific to LULC
types48–51, as summarized in Supplementary Table 2. LULC types were
determined using global land cover data from European Space Agency
(ESA) WorldCover52.

ERA5 provides 100m wind speed data directly, eliminating the
need for extrapolation. These data have been widely used in WPD
assessments due to their reliability and consistency38,46,53. Further-
more, z0 was calculated globally using ERA5 wind speed data at 10m
and 100m, based on Eq. (4)54,55. The global z0 map derived from ERA5
(Supplementary Fig. 18) aligns well with the LULC-specific z0 values
(Supplementary Table 2). This global z0 map derived from ERA5 was
applied to extrapolate hub-height wind speeds in CMIP6 outputs.

Calculation of wind power density and actual electrical power
production
WPD, a widely used metric for assessing wind energy potential4–6, was
calculated using the statistical approach described in Eq. (5)

WPD =
1
2n

Xn
i = 1

ρUi
3 ð5Þ

where n is the number of observations over a given time period, Ui is
the hub-height wind speed (restricted to 3-25m s-1, corresponding to
cut-in and cut-out speeds of wind turbines), and ρ is the air density,
assumed to be 1.225 kgm-3 (standard value). While air density varies
spatially and temporally due to geographic and seasonal factors, a
constant p was used here to isolate the effects of Δt on WPD. The
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3–25m s-1 range represents the operational limits for most turbines,
wherewind speeds outside this range contribute no electrical power14.

To estimate actual electrical power production (AEP), we used the
General Electric GE 1.5 s wind turbine as an example56. The turbine-
specific power curve, shown in Supplementary Fig. 4, includes the
following parameters: rated power (1500 kW), cut-in wind speed
(3.5m s-1), rated wind speed (12.0m s-1), cut-out wind speed (25m s-1),
diameter (70.5m), swept area (3904.0m2), and hub height (100m).
Hourly and daily hub-height wind speed data were applied to this
power curve to calculate AEP.

Examination of wind speed probability distribution function
The Weibull probability distribution function (PDF) has been widely
used to fit wind speed distributions due to its reliability in capturing
observed patterns23,27,57. The Weibull PDF is expressed in Eq. (6)

f Uð Þ= k
c

U
c

� �k�1

exp � U
c

� �k
" #

ð6Þ

whereU iswind speed (ms-1), k is the shapeparameter (dimensionless),
and c is the scale parameter (m s-1). These parameters can be estimated
using methods such as maximum likelihood estimation or least
squares fitting58.

WPD derived fromWeibull distributions is calculated using Eq. (7)

WPD = 1
2ρc

3Γ 1 + 3
k

� 	 ð7Þ

where Γ is the gamma function and canbe calculated using themethod
of factorial.

However, our findings reveal substantial discrepancies between
WPDestimates derived using theWeibullmethod and those calculated
via the statistical method (Eq. (5)), irrespective of whether hourly or
daily data were utilized (Supplementary Figs. 19, 20). These dis-
crepancies are particularly pronounced at low WPD levels (<50Wm-2)
or high levels (>400Wm-2) (Supplementary Fig. 20). Previous studies
have also highlighted uncertainties in Weibull-based WPD estimates
for coarse temporal resolutions23,29. Thus, to ensure consistency across
differentΔt values,we adopted the statisticalmethod (Eq. (5)) forWPD
calculations in this study.

Definition and calculation of calibration coefficient K
The relative bias (RB) of WPD calculated from different Δt values,
relative to WPD(1-hour), is defined by Eq. (8)

RB=
WPD Δtð Þ

WPD 1hourð Þ � 100% ð8Þ

This relationship can be reformulated to express the relationship
between WPD(1-hour) and WPD(Δt) as shown in Eq. (9)

WPD 1hourð Þ
WPD Δtð Þ =

1
RB+ 100%

ð9Þ

The calibration coefficient K(Δt−1 hour), defined as the ratio of
WPD(1-hour) to WPD(Δt), is expressed in Eq. (10)

KðΔt � 1hourÞ= WPD 1hourð Þ
WPD Δtð Þ ð10Þ

K values directly correspond to RB (e.g., K = 5.0 for RB = -80%;
K = 2.0 for RB= -50%). WPD(1-hour) was chosen as the target for rec-
tificationdue to several reasons. First, as shown in Fig. 2d,WPD(1-hour)
closely approximates parameter a, which represents the theoretical
maximum WPD. This makes it a useful benchmark for wind power
assessments. Second, while higher temporal resolution data, such as

10-minute intervals, may offer more precise WPD estimates29, such
data are often unavailable or computationally prohibitive. In contrast,
1-hour resolution data are widely accessible and statistically compar-
able to 10-minute data10,59. Third, practical considerations, such as data
availability and computational efficiency, often necessitate the use of
even coarser resolutions (e.g., 3-hour, 6-hour, daily, monthly) in WPD
calculations (Supplementary Table 1). Using WPD(1-hour) as the stan-
dard enables K(Δt−1 hour) to reliably correct biases introduced by
coarse resolutions, ensuring robust adjustments while maintaining
computational feasibility.

Data availability
All datasets used in this study are publicly available. High temporal-
resolution wind speed observations from NCDC are accessible at
https://www.ncei.noaa.gov/maps/hourly/ (last accessed: December 1,
2024). ERA5 reanalysis data are available at https://cds.climate.
copernicus.eu/datasets (last accessed: December 1, 2024). NCEP/
NCAR andNCEP-DOE reanalysis datasets can be accessed athttps://psl.
noaa.gov/data/gridded/ (last accessed:December 1, 2024).Wind speed
simulation data with 3-hour resolution from EC-Earth3 model are
available at theClimateModel Diagnosis and Intercomparisonwebsite:
https://esgf-node.llnl.gov/projects/cmip6/ (last accessed: December 1,
2024). Global land cover data fromESAWorldCover canbe accessed at
https://esa-worldcover.org/en (last accessed: December 1, 2024). The
calibration coefficient (K) generated in this study are provided in the
Supplementary Information and Source Data file. Source data are
provided with this paper.

Code availability
The data analysis in this study was performed using Python (version
3.8) with statistical packages. The figures were generated using Python
with Cartopy package. All software packages used in this study are
publicly accessible.
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