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Colossal permittivity in high-entropy CaTiO3
ceramics by chemical bonding engineering

Jinghan Cai 1, Shun Lan 1, Bin Wei 1,2, Junlei Qi1, Ce-Wen Nan 1 &
Yuan-Hua Lin 1

Dielectrics with high permittivity, low dielectric loss, and good temperature
stability are crucial for electronic components to meet the ever-increasing
application demands. However, challenges remain in further optimizing
dielectric properties due to the correlation between these parameters. Here,
we propose a chemical bonding engineering strategy in high-entropy CaTiO3

ceramics and realize colossal permittivity with low loss and excellent stability.
Our results reveal that the high-concentration oxygen vacancy (V��

O)-related
defects and the decreased activation energy of grain/grain boundary led to a
colossal permittivity dielectric behavior, which should be ascribed to the
weakened chemical bonding and the reduced formation energy of defects
confirmed by our first-principles calculation. Consequently, in the high-
entropy CaTiO3 ceramic, a permittivity of 2.37 × 105, low loss of 0.005, and
good temperature stability (<± 15%) in -50–250 °C are simultaneously
achieved. This finding implies that chemical bonding engineering may be a
promising strategy for designing colossal permittivitymaterials andprovides a
broad opportunity for the development of other defect-dependent functional
materials.

Dielectrics have widespread applications in electronic fields as fun-
damental components of electrostatic capacitors1,2. The developing
trend of device miniaturization has put forward higher requirements
for dielectrics with colossal permittivity (>104), low dielectric loss, and
excellent temperature stability. However, these key factors are
strongly correlated in dielectric materials. For example, in BaTiO3-
based dielectrics, the strong polarization contributes to a high per-
mittivity (>104) near the Curie temperature, yet a large loss and severe
temperature dependence due to the ferroelectric phase transition3.
Besides, CaCu3Ti4O12 ceramics show a colossal permittivity (CP) while
maintaining satisfying temperature stability owing to a frustrated
phase transition, yet the high dielectric loss (>0.1) limits its broader
application4. On the other hand, paraelectric SrTiO3 (STO) ceramics
possess low dielectric loss (<0.01) and are almost temperature-inde-
pendent, but suffer from an inferior permittivity (~300)5. As such,
simultaneously achieving colossal permittivity, low dielectric loss, and

temperature-stableperformance indielectrics has been abig challenge
and a common objective in this field.

The dielectric properties have been recognized to be directly
correlated with the polarization process, including interfacial polar-
ization and dipole polarization6–8, suggesting possible ways of reg-
ulating the overall performance of dielectrics. Accordingly, various
efforts have beenmade over the years to develop preferable dielectric
materials based on the principle of polarization improvement. On the
one hand, CP can be achieved in ACu3Ti4O12 (A =Ca, Bi2/3, La2/3, Y2/3,
etc.)- and NiO-based ceramics by constructing a core-shell structure
consisting of semiconducting grains and insulating grain boundaries,
which originates from the enhanced interfacial polarization. For
example, by forming abundant subgrains and the consequent polar-
ized interfaces, the Y2/3Cu3Ti4O12 ceramics can achieve a giant per-
mittivity of 4.49 × 105, but is accompanied by an unexpectedly high
loss (0.51)9. On the other hand, significantly improved permittivity can
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also be realized in materials such as TiO2 and STO ceramics. For
instance, in Nb + In co-doped TiO2 ceramics, CP (~6 × 104) and low
dielectric loss (~0.05) can be obtained due to the defects induced by
donor-acceptor co-doping8. In STO ceramic, CP (~2.8 × 104) and low
dielectric loss (~0.007) can be realized due to the promoted produc-
tion of V��

O
10. However, a further increase in permittivity depends on

high-concentration doping, leading to an inevitable increase in
dielectric loss, which limits further performance improvements.

Recently, the high-entropy design strategy has been reported to
be effective in achieving a higher concentration of defects in some
high-entropy systems, e.g., (La0.6Sr0.4)(Co0.2[FeMnNiMg]0.8)O3

11,
which is mainly ascribed to the atomic disorder and lattice
distortion12–14. Inspired by these findings, we believe that this high-
entropy approach is highly desirable for the design of CP materials,
taking advantage of its probable defect-generating effects and
expanded solid solubility. In this work, CaTiO3 (CTO) was determined
as the matrix material, considering its similar crystal structure to the
reported defect-dependent CP ceramics. By the entropy design on its
A-site, our results demonstrate aCPof 2.37 × 105 and an ultralow loss of
0.005 obtained in the high-entropy CTO ceramic. This high-entropy
design approach is expected to provide a feasible method for the
development of high-performance dielectrics.

Results and discussion
High-entropy design on CTO-based dielectric ceramics
Nb, Er co-dopedCTOwasdetermined to be the startingmaterial based
on previous experimental experience, and additional Sr, Na, and Sm
were equimolarly incorporated into Ca sites. Ceramic samples with
compositions of Ca(Ti0.97Nb0.015Er0.015)O3 (CT), (Ca0.5Sr0.5)

(Ti0.97Nb0.015Er0.015)O3 (CST), (Na0.33Sm0.33Ca0.33)(Ti0.97Nb0.015Er0.015)
O3 (NSCT), and (Na0.25Sm0.25Ca0.25Sr0.25)(Ti0.97Nb0.015Er0.015)O3

(NSCST) were synthesized using the conventional solid-state reaction
method (Table S1). The quantitative chemical compositions of the
synthesized ceramics were confirmed by the XRF test results
(Table S2). Figure 1a depicts the schematic diagram of the high-
entropy design on the A-site of CT. Based on calculations and Rietveld
refinements, the structures show an increasing atomic disorder and
lattice distortion as more elements were introduced (Table S3).

The configurational entropy (Sconfig) is used to quantify the
overall compositional inhomogeneity, defined as Sconfig = � R½ðPN

i = 1xi
ln xiÞcation�site + ð

PM
j = 1 xj lnxjÞanion�site

�, where R, N(M), xi(xj) represent
the ideal gas constant, number of elements at the cation (anion) sites,
and the molar ratio of the elements, respectively15. As more foreign
elements randomly occupy equivalent A-site in CT, Sconfig gradually
increases from0.16 R (CT) to 1.54 R (NSCST), transitioning accordingly
from low entropy (Sconfig < 1 R) through medium entropy (1 R
≤ Sconfig < 1.5 R) to high entropy (Sconfig ≥ 1.5 R), and give rise to atomic
size disorder (Δδ*

size) (Fig. 1d). The XRD results confirm that all sam-
ples possess a pure orthorhombic phase, and the slight peak position
shift is consistent with the ionic size changes of the introduced A-site
elements, verifying the sufficiency of the solid solution (Fig. 1b). EDS
mapping of the NSCST sample shows a uniform and homogeneous
dispersion of the constituent elements, demonstrating successful
preparation of the high-entropy ceramic sample (Fig. 1c). Rietveld
refinement of the XRD patterns further proves that all CTO-based
ceramics have a pure Pbnm structure. The merging or disappearance
of some peaks or groups of peaks is the consequence of A-site
compositional fluctuation, which affected lattice parameters and
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Fig. 1 | Evolution of phase and structure as a function of configurational
entropy. a Schematic diagram depicting the progression of atomic disorder and
lattice distortion as configurational entropy increases. b XRD patterns of the

entropy-regulated ceramics. c SEM images of the cross-sectional area with element
mapping of the NSCST ceramic. d Atomic size disorder level as a function of con-
figurational entropy.
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diffraction patterns rather than phase transition16,17 (Figs. S1 and S2).
Based on the refined lattice parameter data, the relative densities were
calculated, revealing the compact structures obtained in all samples
(Table S4), which is also supported by the cross-sectional SEM images
(Fig. S3). The average grain size (AG) gradually increases as Sconfig
increases. Based on compositional and electrical test results shown
below, we propose that this facilitated grain growth in the high-
entropy ceramics is due to the elevated concentration of oxygen
vacancies, which promotes the mass transportation process during
sintering18,19. The above results together confirm the feasibility of
applying the high-entropy strategy to construct CTO-based ceramics
and provide more tunability for subsequent performance
optimization.

Promoted defect generation by high-entropy design
To validate the feasibility of the high-entropy design in inducing more
lattice defects, we conducted defect-related electrical measurements
and valence state analysis. The complex impedance spectra of the
CTO-based ceramics were measured at 500 °C and were fitted

according to the equivalent circuit20,21, which reflects the electrical
response from grains and grain boundaries, respectively (Fig. 2a). The
spectra for all samples consist of one obvious arc attributed to the
grain boundary response, while that of grains is indistinguishable due
to their relatively small resistance. The arc diameter gradually
decreased as more elements were introduced into the A-site of CTO,
indicating a reducing trend of grain boundary resistance, which can be
attributed to larger amounts of defects aggregated at the grain
boundaries (Fig. S4). Meanwhile, the diameter of the arcs decreases
with increasing temperature (Fig. S5), indicating a thermally activated
process that follows the Arrhenius law: σgb = σ0 exp �Egb=kBT

� �
,

whereσgb is the grain boundary conductivity, σ0 is the pre-exponential
factor, Egb is the activation energy of the grain boundary, and kB is the
Boltzmann constant. The experimental data were fitted accordingly
(Fig. 2b), showing a decreasing trend of the activation energies as the
entropy increases. Although the activation energy value varies slightly
between samples, the grain boundary resistance is obviously minimal
forNSCST, indicating the existenceof a larger number of defects in the
high-entropy ceramic. Moreover, the average value of the fitted grain
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boundary activation energies for all samples is around 1.7 eV, higher
than that of most STO-based CP systems10,22,23, which is beneficial for
the suppression of the dielectric loss.

Furthermore, TSDC tests were performed to determine the defect
characteristics in entropy-regulated ceramics (Fig. 2c). Two groups of
peaks can be seen in all four sets of data, where the one located at a
higher temperature range shows anobvious increase in intensity as the
entropy increases. To better understand the defect mechanism, TSDC
curves of the NSCST ceramic tested under different polarization vol-
tage (Ep) and temperature (Tp) were analyzed in detail (Fig. 2d). It has
been reported that three types of defects, including trap charges,
defect dipoles, and space charges (mainly referring to oxygen vacan-
cies) can be distinguished from the positions at the TSDC relaxation
curves24–26. In our case, three peaks can be identified, distinguished by
different peak temperatures (Tm) and denoted as Peak 1
(50 °C< Tm< 55 °C), Peak 2 (205 °C< Tm< 210 °C), and Peak 3
(266 °C< Tm< 286 °C), respectively (Fig. S6). Among these three
peaks, Peak 1 and Peak 3 shift towards a higher temperature as Ep
increases, which fits the characteristic of V��

O
27. The position of Peak 2

remains still, and its maximum depolarization current density (Jm)
increases linearly with Ep, corresponding to a defect dipole-related
relaxation process26,28. To further determine the exact defect types, an
initial rise method29 was used to calculate the activation energies:
ln JD Tð Þ� � ffi const: �Ea=kBT

� �
, where JD is the depolarization current

density. Three activation energy values were calculated to be
0.238–0.242 eV (Peak 1), 0.578–0.715 eV (Peak 2), and 1.264–1.513 eV
(Peak 3), corresponding to in-grain V��

O, defect dipoles, and across-
grain-boundary V��

O respectively30–32 (Fig. S7). Considering the valence
variability and relative content of the involved elements, V��

O and Ti0Ti
should be the dominant lattice defects, which can be shown as:
Ti ×Ti + e

0 ! Ti0Ti, O×
O ! V��

O + 2e0 + 1
2O2 ". Therefore, Ti0Ti�V��

O�Ti0Ti
would be themost likely existing formof the defect dipoles developed
during sintering, which is supported by the similar activation energy
value reported in the previous work30. According to the mathematical
definition of the dipole polarization intensity (Pe), the dipole con-
centration (Nd) can be evaluated by integrating the area under the
corresponding peak24. Results show a larger Peak 2 area for NSCST
(Fig. S8), pointing to the highest dipole concentration in the high-
entropy ceramic, consistent with the above discussions.

Generally, the defect characteristics can also be analyzed through
relaxation behaviors that appear in the dielectric property-frequency
diagram33,34. The imaginary part of the electrical modulus M″ is used
here to magnify potential defect signals of the NSCST ceramic in the
finite frequency test range (Fig. 2e). M″ was calculated as follows:
M 00 = ε00= ε02 + ε002

� �
, where ε0 and ε00 are the real and imaginary parts of

the complex relative permittivity. A group of relaxation peaks appears
in the frequency range of 10–103 Hz and shifts towards a higher fre-
quency with increasing temperature, suggesting a faster polarization
process35: f peak = f 0 exp �U=kBT

� �
, where f peak is the peak frequency

and f0 is a constant. U was calculated to be 0.925 eV, suggesting the
existence of oxygen vacancies at the grain boundaries, as confirmedby
other reported experimental results of similar material systems35–38.
TGA test results can further verify the existence of oxygen vacancies
(Fig. 2f). The evaporation effect of the physically adsorbed H2O has
already been excluded. The CT ceramics presented a drastic weight
loss with the increase of temperature, while that of the NSCST cera-
mics is relatively gentle, indicating that a larger amount of oxygen
vacancies exists in NSCST ceramics and mitigates the weight loss due
to the compensating effect of the backfilled oxygen atoms39,40. The Ti
K-edge XANES spectra were collected to validate the generation of Ti0Ti
(Fig. 2g). The edge position showed a shift towards lower photon
energy as the entropy increases, demonstrating a reduced average Ti
valence and more Ti0Ti in the high-entropy NSCST ceramics.

To directly visualize the variation of oxygen vacancy concentra-
tion after entropy regulation, XPS tests were conducted focusing on O

1s valence state changes (Fig. 2h, i, Fig. S9). Three peaks with binding
energies of around 532 eV, 530.8 eV, and 529.7 eV were observed,
attributed to the response of absorbed H2O, oxygen vacancies, and
lattice oxygen, respectively8,41,42. The spectra vary obviously between
samples, and the main difference comes from the intensity change of
Peak 2, corresponding to the oxygen vacancy concentration. Com-
pared to CT, Peak 2 shows a prominent enhancement in NSCST, indi-
cating a promoted production of oxygen vacancies after entropy
regulation. From the results and analysis above, it is proven that the
high-entropy strategy is an effective approach for stimulating the
production of defects, as expected.

To gain further insight into the nature of this high-entropy-
induced defect generation, DFT calculations were performed on
regulated CT supercells to visualize the structural evolution as a
function of configurational entropy. Multiple O atoms were removed
from the CT, CST, and NSCST ceramics to obtain structural informa-
tion considering various defect quantities. Electron localization func-
tion (ELF) mappings from different views of CT, CST, and NSCST were
simulated (Fig. 3a–d, Fig. S10 and 11), which reflect the localization
extent of the reference electron. The ELF value ranges from 0 to 1,
where 0 represents no electrons, and 1 corresponds to perfect
localization43. Along ½51�2�, local atom size disorder resulted in a certain
degree of lattice distortion in NSCST (Fig. 3a, c). With Na, Sm, and Sr
elements entering A-sites in CT, regions around O atoms appear to be
darker, demonstrating a notably reduced covalency of the A/B–O
bonds44 as a result of the entropy modulation. These changes in the
electron distribution are attributed to the diversity between different
A-site atoms, which leads to changes in chemical bonding character-
istics within the lattice. Further analysis focusing on unit bond
strengths in entropy-regulated systems helps to quantify these bond-
ing property differences with distinct intensity variations (Fig. 3e, f).
The A–Obond shows amonotonically weakening bond strength as the
entropy increases, regardless of the retracted amount of O atoms.
Meanwhile, the high-entropyNSCST ceramic also presents theweakest
B–O bond under equivalent circumstances, providing beneficial con-
ditions for theA/B–Obonddissociation and the escape ofO atoms45. In
addition, the defect formation energy ðΔEdefectÞ was calculated corre-
spondingly as a descriptor for defect formation difficulty (Fig. 3g)).
Horizontally viewing, it would cost less energy to generate lattice
defects in the high-entropy NSCST system. ELF simulations, each with
6 absent O atoms, were taken as comparative examples (Fig. 3b, d),
visualizing lattice distortions and Ti–O bonding changes from the
direction of [001]. Since the defect formation energy for CT exceeds
zero, this structure with more absent O atoms can only stably exist in
high-entropy NSCST ceramics. In other words, the weakened chemical
bonding of NSCST ceramics is conducive to generating larger amounts
of lattice defects, which explains our previous defect-related experi-
mental results. The dipole moment (Δp) was also evaluated as a
quantitative indicator pointing to overall dielectric performance
(Fig. 3h). The NSCST ceramics exhibit a maximum dipole moment
value, which is directly associated with enhanced polarization, vali-
dating the effectiveness of this high-entropy strategy. Additional DFT
calculations are shown in Figs. S12 and S13, demonstrating a lower
ICOBI value, a narrowed band gap, and a reduced effective mass of
charge carriers with the increase of entropy, pointing to a more
semiconductive characteristic in the high-entropy NSCST ceramic,
which is in agreement with the tested activation energies and other
experimental results.

Significantly improved dielectric performance in the high-
entropy NSCST ceramics
Dielectric performance from all aspects was evaluated to further
confirm the feasibility of achieving CP through the high-entropy
strategy. The frequencydependence ofdielectric properties, including
permittivity and dielectric loss (tanδ), was measured at room
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temperature (RT) for CTO-based ceramics (Fig. 4a). All samples show
frequency-independent characteristics in the low-frequency range,
and undergo a slight degradation beyond 100 kHz. No obvious inter-
facial relaxation behaviors were detected in the low-frequency range,
excluding major contributions from interface polarizations7. The per-
mittivity also remained stable when applied with various DC bias vol-
tages, confirming no electrode effect was involved in the achieved CP
performance46,47 (Fig. S14). Specifically, in the low-entropy CT ceramic,
both colossal permittivity (7.02 × 104) and low tanδ (0.019) were
obtained simultaneously, demonstrating that CP can also be achieved
in the CTO matrix. As more substitutional elements were introduced
into the A-site, the permittivity monotonically increased and reached
an exceptional level of 2.37 × 105 in the high-entropy NSCST ceramic,
while effectivelymaintaining an ultralow tanδ of 0.005 (Fig. 4a, e). This
remarkable evolution trend of permittivity reveals a close association
between dielectric properties and configurational entropy and con-
firms the effectiveness of this strategy in achieving permittivity
improvement. Thermal stability is also evaluated for CTO-based cera-
mics (Figs. 4b, S15). Each of them shows a good temperature-stable
capacitance in the test temperature range (−50 to 250 °C). The
detected loss increase at higher temperatures should be attributed to
the migration of thermally activated carriers48. Notably, the calculated

temperature coefficient (ΔC/C25 °C) value at 1 kHz for the high-entropy
NSCST is within ±15% (Fig. 4c), sufficient to satisfy the temperature
stability requirements of X9R capacitors (ΔC/C25 °C ≤ ± 15%, −50
to 200 °C).

The intrinsic correlation between configurational entropy and
dielectric performance needs to be further discussed and concluded.
As a directly affected parameter of compositional change, the bond
strengths of A–O and B–O show a distinct entropy-dependent per-
formance (Fig. 4d). The enhancementof entropy leads to an increase in
atomic size disorder and the change in electron distributionwithin the
lattice49. These effects are manifested as weakened bonding in the
high-entropy NSCST, benefiting the bond dissociation process and the
escape of oxygen atoms. The semiquantitative concentrations of
oxygen vacancies in CT, CST, andNSCSTwere estimated based onXPS
fitting results (Fig. 4d). Considering the requirements of charge con-
servation, corresponding amounts of electronegative defects would
be generated for compensation, most likely Ti3+ in these titanium-
based systems50. With efficiently produced defects, including V��

O and
Ti0Ti, the dipole polarization of CTO-based ceramics was significantly
enhanced, eventually obtaining an exceptional dielectric performance
in the high-entropy NSCST (Fig. 4e). A colossal permittivity of
2.37 × 105, an ultralow tanδ of 0.005, and a favorable frequency/
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temperature stability were simultaneously achieved, outperforming
other CP ceramic materials8,9,34,51–75 (Fig. 4f).

Our results prove that CP behavior can be achieved in CTO-based
ceramics. By regulating the configurational entropy with proper sub-
stitutional elements and modulating chemical bonding properties, an
increasing amount of lattice defects can be generated in CTO-based
ceramics. The intentionally induced defects further interact to form
defect dipoles and clusters, giving rise to dipole polarization while
contributing to the localization of carriers, thus achieving an overall
optimization of the dielectric performance. This strategy could be used
in dielectric ceramics with similar structures to simultaneously obtain
colossal permittivity and ultralow dielectric loss. This study offers an
additional option for CP matrix determination and provides a feasible
solution for the design of other defect-dependent functional materials.

Methods
Sample preparation
The CTO-based ceramics with the compositions of
Ca(Ti0.97Nb0.015Er0.015)O3, (Ca0.5Sr0.5)(Ti0.97Nb0.015Er0.015)O3, (Na0.33
Sm0.33Ca0.33)(Ti0.97Nb0.015Er0.015)O3, and (Na0.25Sm0.25Ca0.25Sr0.25)
(Ti0.97Nb0.015Er0.015)O3 were fabricated by conventional solid-state reac-
tion method. High-purity powders of CaCO3 (99.5%, Aladdin, China),
SrCO3 (99.5%, Aladdin, China), Na2CO3 (99.99% Aladdin, China), Sm2O3

(99.9% Aladdin, China), TiO2 (99% Aladdin, China), Nb2O5 (99.99% Alad-
din,China), andEr2O3 (99.99%Aladdin,China)wereusedas rawmaterials
and were weighed stoichiometrically (Na2CO3 5% excess). The powders
were mixed thoroughly through ball-milling with ethanol for 24h and
were calcined in the air at 1100–1150 °C for 3h before being ball-milled
for the second time. The resulting powders were then mixed with 5wt%
PVA as a binder and pressed into pellets with a 12mm diameter under
axial pressure. The as-prepared cylindrical pellets were then heated at

600 °C for 3 h to eliminate the binder. Finally, the samples were sintered
at 1400–1500 °C for 3h in a 5%H2/N2 atmosphere. A group of pellets was
sintered in air separately at corresponding temperatures for TSDC tests.
Both sides of the samples were polished, coated with silver paste, and
heated at 600 °C to obtain electrodes for electrical measurements.

Structure characterizations
X-ray diffraction (XRD, Bruker D8 Advance, Germany) with Cu Kα X-ray
source was used to identify the phase structure of the ceramic samples.
To further confirm the structural parameters, Rietveld refinement was
performed using the GSAS (General Structure Analysis System) soft-
ware. The cross-sectional morphology of the microstructure and the
elemental distribution were analyzed using scanning electron micro-
scopy (SEM, Zeiss Merlin Compact, Germany), and the grain size dis-
tribution was calculated using the software “Nano Measurer”. The
relative density of the samples was calculated according to the mea-
sured density and the theoretical density. X-ray photoelectron spec-
troscopy (XPS, Thermo Fisher Scientific ESCALAB 250Xi, the U. S.) was
used to investigate the valence states of the elements and thus deter-
mine the possibly existing lattice defects. Thermogravimetry analysis
(TGA, NETZSCH Scientific Instruments Trading Ltd X70, Germany) was
used to visualize the oxygen refill process and quantify the bulk defect
concentration. X-ray absorption near edge structure (XANES) of Ti K-
edge was performed at BL14W1 beamlines at the Shanghai Synchrotron
Radiation Facility (SSRF, Shanghai, China) in a transmission mode to
evaluate the valence change. The absorption-edge position was defined
as the photon energy of thepeak in thefirst derivative spectrum.All test
results were calibrated by aligning the absorption-edge energy shift of a
Ti metal foil at 4966 eV. X-ray fluorescence (XRF, Thermo Fisher Sci-
entific ARL PERFORM’X, the U.S.) analysis was conducted to provide
quantitative elemental compositions of the synthesized ceramics.
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Electrical and dielectric measurements
The dielectric properties were measured by a broadband dielectric/
impedance spectrometer (Novocontrol Technologies GmbH& Co. KG,
Germany), which was equipped with a liquid nitrogen cooling system
toprovide precise test results over a broad temperature and frequency
range (−50 to 300 °C, 100Hz–100 kHz). The thermally stimulated
depolarization current (TSDC) measurements were performed using
an electrometer/high resistance meter (B2985A, Keysight, the U. S.),
equipped with the same quatro-temperature controller mentioned
above. The pellets werefirst polarized under a DC electric field (Ep) at a
certain temperature (Tp) for 10min (100 V/mm≤ Ep ≤ 200V/mm;
Tp = 200 °C), then rapidly cooled to −50 °C to freeze the oriented
defects, and gradually heated up to 300 °C to gather the depolariza-
tion current. The complex impedance spectra (IS) were tested by an
impedance/gain-phase analyzer (Solartron SI 1260) at various tem-
peratures (450–550 °C) in the frequency range of 1 Hz to 1MHz.

Calculations
The atomic size disorder. The atomic size disorder (Δδ*

size) of the
ceramics can be calculated as follows:

Δδ*
size =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

ci 1� riPn
i = 1ciri

	 
2
vuut ð1Þ

where n, ci, and ri represent the number of elements, the atomic
fraction of the ith element, and the radii of the ith element, respectively.
In our case, the perovskite structure has A and B two cation sites, thus
its Δδ*

size can be modified as76:

Δδ*
size =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δδ2

sizeðAÞ +Δδ
2
sizeðBÞ

q
ð2Þ

here, the ionic radii for the involved elements are 1.34 Å (Ca2+), 1.44 Å
(Sr2+), 1.39 Å (Na+), 1.24Å (Sm3+), 0.605 Å (Ti4+), 0.64 Å (Nb5+), and
0.89Å (Er3+)77.

The distortion index. The parameter of distortion index (D) was
applied to quantify the distortion extent within the octahedron, which
is defined as78,79:

D=
1
6

X6
i = 1

li � lav
�� ��

lav
ð3Þ

where li and lav represent individual and average Ti–O bond lengths,
respectively. The D values were calculated according to bond length
data, which were obtained from Rietveld refinement results, as shown
in Table S3.

DFT. Allfirst-principles calculationswere performedusing the Vienna Ab
Initio Simulation Package (VASP)80,81 based on density functional theory
(DFT). The exchange-correlation function was performed using the
generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof
(PBE)82. Considering the strong correlation between localized Sm 4f and
Ti 3d electrons, theDFT+Uapproximationwas used for correction, with
the effective U parameter taken to be 8 eV (Sm 4f), and 5.8 eV (Ti 3d)83.
The cut-off energy was set to 450 eV for the plane-wave based on the
maximumenergy of the atoms in the potential. The Brillouin zone of the
reciprocal space was set to 1 × 5 × 3. The force components for each
atom were all less than 0.005 eV/Å, and the total energy difference
was less than 10−6 eV. All structures were fully relaxed before property
calculations. The bonding information was obtained from the LOBSTER
software84, and the electron localization function was visualized by
VESTA software85.

Based on pristine CaTiO3 (0 R), a 5 × 2 × 2 supercell (100 atoms)
was used to obtain entropy-modified structures. The structures of CST

and NSCST were obtained by substituting 50% of Ca with Sr, and
equally substituting 75% of Ca with Sr, Na, and Sm, respectively. Oxy-
gen vacancies were obtained by removing 2 (3.33%), 4 (6.67%), and 6
(10%) O atoms from each entropy-modified structure. The bond
strength was evaluated by the integrated crystal orbital Hamilton
populations (ICOHP) value in a unit bond length (L). The integrated
crystal orbital bond index (ICOBI) of A–O and B–O bonds, the band
structure, and the corresponding density of states (DOS) were
acquired for CT (0Vo), CST (2Vo), and NSCST (4Vo) systems.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
The source data used in this study have been deposited in the Figshare
database under accession code https://doi.org/10.6084/m9.figshare.
28280039.
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