Table 1 Summary Performance for Sepset signature and classifier
From: A machine learning and centrifugal microfluidics platform for bedside prediction of sepsis
RNA-Seq Dataset | AUC | Sensitivity | Specificity | Precision | NPV | Accuracy | Reference |
---|---|---|---|---|---|---|---|
COVID-19 Sepsis (N = 359) | 0.85 | 85% | 72% | 85% | 71% | 79% | An39 |
ICU Validation (N = 176)a | 0.9 | 92% | 82% | 88% | 88% | 87% | This study |
ER Validation (N = 338)a | 0.69 | 70% | 59% | 63% | 67% | 65% | This study |
Scicluna (N = 802) | 0.99 | 97% | 90% | 99% | 61% | 94% | Scicluna29 |
Davenport (N = 371) | 0.83 | 86% | 62% | 59% | 88% | 74% | Davenport32 |
Burnham (N = 327) | 0.92 | 87% | 83% | 74% | 92% | 85% | Burnham62 |
Kalantar (N = 152) | 0.81 | 83% | 65% | 61% | 86% | 74% | Kalantar63 |
McClain (N = 201) | 0.96 | 92% | 91% | 58% | 99% | 91% | |
Tsalik (N = 280) | 0.86 | 75% | 88% | 70% | 91% | 82% | Tsalik66 |
Pankla (N = 138) | 0.97 | 94% | 100% | 100% | 92% | 97% | Pankla67 |
Arunachalam (N = 34) | 0.89 | 83% | 95% | 91% | 91% | 89% | Arunachalam68 |
Aggregated Data (N = 3178) | 0.88 | 87% | 78% | 80% | 83% | 83% | |
Negative Control Data Sets | |||||||
Stage 3/4 Cancer (n = 1755) | 0.5 | 0% | 100% | - | 63% | 50% | TCGA/GDC69 |
Cardiogenic shock (n = 33) | 0.53 | 0% | 100% | - | 52% | 50% | Yang 202270 |
Coronary Artery Disease (N = 353)b | 0.51 | 3% | 100% | 100% | 51% | 51% | McCaffrey71 |
Inflammatory Bowel Disease (N = 1030)c | 0.53 | 0% | 100% | - | 21% | 51% | Argmann72 |
Bacterial infection (N = 170)b | 0.39 | 83% | 9% | 38% | 43% | 46% | Smith73 |
Viral infection (N = 64)c | 0.48 | 0% | 93% | 0% | 83% | 46% | Dapat74 |