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Multi-country and intersectoral assessment
of cluster congruence between pipelines for
genomics surveillance of foodborne
pathogens

A list of authors and their affiliations appears at the end of the paper

Different laboratories employ different Whole-Genome Sequencing (WGS)
pipelines for Food and Waterborne disease (FWD) surveillance, casting doubt
on the comparability of their results and hindering optimal communication at
intersectoral and international levels. Through a collaborative effort involving
eleven European institutes spanning the food, animal, and human health sec-
tors, we aimed to assess the inter-pipeline clustering congruence across all
resolution levels and perform an in-depth comparative analysis of cluster
composition at outbreak level for four important foodborne pathogens: Lis-
teria monocytogenes, Salmonella enterica, Escherichia coli, and Campylobacter
jejuni. We found a general concordance between allele-based pipelines for all
species, except for C. jejuni, where the different resolution power of allele-
based schemas led to marked discrepancies. Still, we identified non-negligible
differences in outbreak detection and demonstrated how a threshold flex-
ibilization favors the detection of similar outbreak signals by different labora-
tories. These results, together with the observation that different traditional
typing groups (e.g., serotypes) exhibit a remarkably different genetic diversity,
represent valuable information for future outbreak case-definitions and WGS-
based nomenclature design. This study reinforces the need, while demon-
strating the feasibility, of conducting continuous pipeline comparability
assessments, and opens good perspectives for a smoother international and
intersectoral cooperation towards an efficient One Health FWD surveillance.

Food andwaterborne diseases (FWD) affect 600million people every
year worldwide and represent an important burden for human and
animal health1. Therefore, FWD prevention and control is of high
importance, requiring adequate surveillance systems able to track
the circulation of pathogens, detect and investigate potential out-
breaks, and monitor their clinically and epidemiologically relevant
features2,3. Such systems must recognize the interconnection
between people, animals, plants, and their shared environment, fol-
lowing a One Health approach2,4,5.

International agencies, such as the World Health Organization
(WHO), the World Organization of Animal Health (WOAH), the Eur-
opean Center for Disease Prevention and Control (ECDC), and the
European Food Safety Authority (EFSA), strongly promote the inte-
gration of Whole-Genome Sequencing (WGS) data as an essential
component of surveillance systems6–15. Therefore, a significant effort is
in place to develop and refine surveillance-oriented bioinformatics
solutions for the assessment of isolates’ genomic relatedness
and outbreak cluster identification. These include automated
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command-line pipelines, such as SnapperDB16, Lyve-SET17, CFSAN SNP
pipeline18, chewieSnake19 or WGSBAC20,21, open analytical/visualization
platforms, like INNUENDO22, BigsDB/PubMLST23, IRIDA24,
PathoGenWatch25, NCBI Pathogen Detection Portal26, COHESIVE27,28 or
Enterobase29, and also commercial software, as Bionumerics or Ridom
SeqSphere+8,30. Although these solutions cover the basic steps of a
WGS data analysis pipeline (and some species-specific requirements),
each of them has its own specificities and particularities8.

From a technical perspective, genomic pipelines can be roughly
divided into allele- and SNP-based pipelines, where genomic related-
ness is assessed based either on the alleles present at a given set of loci
(schema), or on the comparison of their single-nucleotide poly-
morphisms (SNPs). Allele-based (also known as gene-by-gene) pipe-
lines may rely on a core-genome Multilocus Sequence Type (cgMLST)
approach, in which the schema corresponds to a pre-defined group of
loci expected to be present in most of the species’ isolates, or, alter-
natively, in a whole-genome Multilocus Sequence Type (wgMLST)
approach, in which the schema includes both the core and accessory
loci, possibly providing a higher resolution power30,31. On the other
hand, SNP-based pipelines commonly rely on the alignment of
sequencing reads to a closely related reference genome, but k-mer-
and assembly-based alignments are also available as alternatives to
detect SNPs30,32. In the specific case of foodborne bacterial pathogens,
although SNP-based pipelines can be used as a first-line approach to
detect potential outbreak-related clusters, they are more often used
for fine-tuned analyses with a small set of isolates at high-resolution
levels in order to confirm their genomicproximity as inferred by an cg/
wgMLST approach16,30–33. Indeed, nowadays, allele-based pipelines are
promoted internationally as the first-line approach for monitoring
pathogen populations and detection of clusters of isolates related to
potential outbreaks6–8,30,34, being the most commonly used at Eur-
opean level, as demonstrated by recent ECDC External Quality
Assessments (EQAs)35–37.

European laboratories have been following independent paths
towards the implementation of FWD genomic surveillance frame-
works, often being at different stages of this technological transition
and ending up with different bioinformatic solutions for outbreak
cluster detection2,35–38. This heterogeneity raises concerns regarding
inter-laboratorial communication of surveillance results, with special
relevance during multi-country outbreak investigations where WGS-
based criteria for case definition is often similar regardless of the
pipeline39–42. Although previous studies have found some compar-
ability in the clustering results at outbreak level obtained by different
pipelines17,34,43–45, and public health authorities routinely launch inter-
national EQAs46,47, there is still a need for large-scale studies providing
in-depth knowledge about the congruence of the routinely applied
WGS strategies. Such studies would be aligned with international
agencies guidelines, which warn of the need to ensure the harmoni-
zation and comparability of outputs resulting from different
methods5,13,14.

In the frame of the BeONE project of the One Health European
Joint Program (OHEJP), eleven Institutes across Europe, spanning
different sectors, cooperated to advance in the field of FWD
surveillance48. This project aimed to contribute to the capacity of
European laboratories to routinely integrate genomic and epide-
miological data, and facilitate data sharing and comparability among
EU countries, international organizations, and/or other stakeholders
involved in FWDprevention and control. In the present study, we (the
BeONE consortium) assessed the congruence and comparability of
the clustering results obtained through the various WGS bioinfor-
matics pipelines used by the consortium partners for genomics sur-
veillance of four important foodborne bacterial pathogens
(Listeria monocytogenes, Salmonella enterica, Escherichia coli and
Campylobacter jejuni). This is a crucial step to promote efficient
communication at international and intersectoral levels towards
the establishment of a fully integrative One Health genomic
surveillance framework, according to the best practices and
recommendations5,13,14,49.

Results
Study design and strategy for congruence analysis
Multiple European laboratories, from different countries and sectors,
employed, whenever possible, their different bioinformatics pipelines
for genomic surveillance of foodborne bacterial pathogens (Fig. 1) on
the WGS datasets of L. monocytogenes (n = 3300 isolates50,51), S. enter-
ica (n = 2974 isolates52,53), E. coli (n = 2307 isolates54,55), and C. jejuni
(n = 3686 isolates56,57) (details in the Methods section and in Supple-
mentary Data 1). This collaborative effort covered a broad variety of
pipelines (hereinafter used as a proxy for the combination of software
pipeline and schema/reference), including the most commonly used
cg/wgMLST schemas, allele/SNP-callers and clustering methods
(Table 1). In order to assess pipeline clustering congruence and com-
parability, it was essential to obtain clustering information at all pos-
sible distance thresholds for each pipeline (both allele- and SNP-based
pipelines). Given the heterogeneity of end-point pipeline outputs, this
harmonization was achieved with ReporTree58, which also allowed the
application of the clustering methods used by the original laboratory,
either single-linkage hierarchical clustering (HC) or Minimum-
Spanning Tree (MST) generation through MSTreeV2 model of Grape-
Tree (GT)59 (Table 1, details in the Methods section). In addition,
whenever an allele matrix was provided, clustering was performed
with both algorithms, reinforcing the magnitude of the comparison
(Table 1).

Listeria monocytogenes
Listeria monocytogenes dataset (Fig. 2a) was analyzed with five allele-
based and three SNP-based pipelines (Table 1 and Tables S1.1 and S1.2
in Supplementary Data 2).

Evaluation of allele-based clustering and comparison of stability
regions. Following quality control (QC) of the initial 3300 L. mono-
cytogenes isolates (SupplementaryData 1), all pipelines retained >99%
of the samples, with the exception of Bionumerics, which only
retained ~95% (Table S1.1 in Supplementary Data 2). Despite the
intrinsic differences between the pipelines, they generally provided
very similar clustering patterns in terms of number of partitions
across all possible distance thresholds (Fig. 2b). Independently of the
schema (Moura60 or Ruppitsch61) and clustering algorithm (GT or
HC), the pipelines consistently revealed low stability (i.e., cluster
composition considerably changes in proximal distance thresholds)
in the highest resolution region (spanning the outbreak level), and
twomain plateau regions of high stability (i.e., yielding similar cluster
number and composition across a given threshold range), likely
reflecting the pathogen population structure and dataset diver-
sity (Fig. 2c).

L. monocytogenes S. enterica E. coli C. jejuni
Denmark
The Netherlands
Germany
Portugal
United Kingdom
Germany
Italy
Poland
Denmark
Germany

Allele-based Allele-based (commercial software)

Food
sector 

Human
health sector 

Animal
health sector 

SNP-based

Fig. 1 | Summary of the different countries and sectors involved in the assess-
ment of pipeline cluster congruence. The diversity of pipelines used for FWD
surveillance is indicated per country, sector, and species.
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Evaluation of allele-based clustering congruence with
traditional typing. Our results revealed a good correspondence
between the first large plateau of stability of all allele-based pipelines
and the L. monocytogenes Sequence Type (ST) classification (Fig. 2c
and d), with the highest congruence point being identified between
143 and 190 ADs (Table S1.1 in Supplementary Data 2). The maximum
CSwas very high (~2.9) but not themaximumpossible (3.0), indicating
that some of the STs were divided into more than one phylogenetic
branch at this level of resolution. Between 75% to 90% (depending on
the pipeline) of the 106 STs with two or more samples had all samples
grouped in the same cluster, and around half of these were fully iso-
lated, i.e., they were not clustering with another ST. Less than 2% of the
STs were split into three ormore groups regardless of the pipeline.We
then identified the lowest threshold level at which all samples of the
same ST cluster together in each pipeline (Supplementary Data 3). The
majority of the STs congruently cluster below the highest congruence
point (albeit at different scales), including prevalent and/or epide-
miologically relevant STs, such as ST1, ST5, ST6, ST8 and ST121
(Fig. 2d). This in-depth ST-specific analysis also suggested that some
STs were consistently polyphyletic regardless of the pipeline, as it is
the case of ST7 and ST325 due to the presence of a few same-ST
samples (one and four at the highest CS, respectively) clearly cluster-
ing apart (Fig. 2a and e).

Similar results were found when comparing the cgMLST cluster-
ing results with L. monocytogenes clonal complex (CC) typing. In this
case, the highest congruence point was identified between 388 and
508 ADs, with themaximumCS (>2.97) being even higher than the one
obtained with the ST (Supplementary Data 4 and Table S1.1 in Sup-
plementary Data 2). From the 70 CCs with at least two samples,
between 60% to 83% (depending on the pipeline) had all samples
grouped in the same cluster at the highest congruence point. On
average, 89% of these CCs were fully clustered apart, with some of
them, including the majority of the CCs with the higher amount of
samples, forming a single cluster at thresholds lower than the highest
congruence point in all pipelines (Fig. S1.1 in Supplementary Data 2). In
contrast, a few CCs were consistently polyphyletic regardless of the
pipeline (Fig. S1.1 in Supplementary Data 2), although with different
signatures. For instance, while CC5 and CC2 had just a few divergent
samples leading to the polyphyletic signature, CC4 and CC14 were
divided into two main clusters that could only be merged at high
threshold levels (considerably above the highest CS) (Fig. S1.1 in Sup-
plementary Data 2). When comparing the clustering of each CC with
the corresponding STs, we noted that CC8 clustered all its samples
together at higher AD thresholds than the individual STs (Fig. S1.1 in
Supplementary Data 2), particularly due to ST8 and ST16, which differ
from each other by more than 200 ADs but reveal low intra-ST
diversity.

Evaluation of cluster congruence between different pipelines at all
threshold levels. Our in-depth pairwise congruence analysis showed a
general high concordance between all allele-based pipelines (as
exemplified for a pairwise comparison in Fig. 3a and b, and detailed in
Section 2 of Supplementary Data 2). Indeed, the AD threshold points
with highest concordance (assessed as CS ≥ 2.85) between every two
pipelines (corresponding points) were observed across all levels of
resolution and followed a linear trend (r2 ≥0.99) in all comparisons
(Fig. 3c anddandSupplementaryDatas 2, 5 and6). The slight deviation
from a y = x scenario (i.e., theoretical situation in which clustering at
one level with a pipeline is concordant with the clustering at the exact
same level in the other one) revealed differences in their dis-
criminatory power (Fig. 3d), which corroborated the need for a fine
evaluation at outbreak level (next section).

A similar pairwise comparisonwas performedbetween SNP-based
pipelines for the top-represented STs in the L. monocytogenes dataset
(ST1, ST5, ST6, ST8, and ST121) with a focus on the clustering obtainedTa
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Fig. 2 | Assessment of allele-based clustering at all possible threshold levels for
L. monocytogenes and comparison with traditional MLST. a Composition of the
L. monocytogenes dataset used in this study in terms of ST in comparison with
datasets of previous studies (Maury et al. 2016139 andMoura et al. 201660), the LiSeq
project140 and the BIGSdb database, as of November 202123. A GrapeTree59 visuali-
zation of the MST obtained with the INNUENDO-like pipeline is shown. Nodes (i.e.,
samples) are collapsed at the threshold with the highest congruence with CC (508
ADs for this pipeline) and colored according to the ST classification. b Number of
partitions obtained by each pipeline at each possible distance threshold.
c Clustering stability regions determined for each pipeline. To better distinguish

each region (represented by separated rectangle blocks), the different blocks are
vertically phased, starting in a different line. Distance thresholds (x axis) are pre-
sented in log2 scale. d Barplot (top) with the number of samples of the top
represented STs (≥50 samples) in L. monocytogenes dataset, with a swarmplot
(bottom) indicating the AD threshold at which each pipeline clusters together all
samples of each ST. e Distribution of the AD thresholds at which each pipeline
clusters together all samples of a given ST (n = 219). Boxplots show the interquartile
range (25% to 75%) and median, and whiskers extend 1.5 times the range, with
outliers (diamond symbol) plotted separately. The outlier STs are indicated above
the respective symbol. Source data are provided as a Source Data file.
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at up to a 100 SNPs threshold (detailed in Sections 3 and 4 of Sup-
plementary Data 2). We observed an overall concordant clustering
regardless of the ST under analysis, as supported by a similar max-
imum number of possible distance thresholds and number of clusters
throughout most levels of resolution (Supplementary Data 2). In most
comparisons, this high concordance is also illustrated by the nearly
symmetric CS matrices with high scores mainly falling within the

diagonal (Section 3 of Supplementary Data 2 and Supplementary
Data 6) and by a linear trendof the inter-pipeline correspondingpoints
with a slope very close to 1 (Fig. 3d). A notable exception included an
intermediate level of resolution with low congruence between CSI
Phylogeny and snippySnake/WGSBAC for ST6 and ST8, despite the
good concordance at outbreak level (Section 3 in Supplemen-
tary Data 2).
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On the contrary, when comparing allele- and SNP-based pipelines,
in most situations, we observed (slightly) asymmetric matrices (see
heatmaps in Section 4 of Supplementary Data 2), with similar cluster-
ing (assessed as high CS) often obtained at higher SNP threshold levels
than ADs. These results indicate that SNP-based pipelines, when using
the same ST reference for read mapping (a strategy in place in some
laboratories), tend to provide a higher discriminatory power than
cgMLSTpipelines, even though thismight not be applicable for all STs.
For instance, this asymmetric trend was not so evident for STs 6 and 8
(Section 4 in Supplementary Data 2), as similar cluster composition
was observed at similar SNP and AD threshold levels. In general, we
found a low number of corresponding points in the pairwise com-
parisons (assessed at up to 100 ADs/SNPs), which rarely (42/248)
yielded a linear trend (i.e., with r2 ≥0.99, Supplementary Data 6), thus
challenging the overall comparison of the discriminatory power
through this approach. Still, there was a high concordance at outbreak
level in most situations, as seen in the heatmaps (Section 4 in Sup-
plementary Data 2), showing that amoredetailed analysis for outbreak
detection is more informative about pipeline performance when
comparing allele- and SNP-based pipelines (next section).

As a complementary exercise, a SNP-based pipeline (CSI
Phylogeny62) was also applied in a dataset combining the five STs
assessed individually using the reference of ST6. As expected, the
discriminatory power dropped, reaching a level even lower than the
one provided by allele-based pipelines (Sections 3 and 4 of Supple-
mentary Data 2), showcasing that read mapping against a single
reference for multiple STs does not provide enough resolution for
routine surveillance and outbreak investigation.

Concordance for outbreak detection. Allele-based approaches are
the most commonly applied for L. monocytogenes outbreak detection,
and the distance threshold corresponding to 7 ADs is conventionally
used to determine potential outbreak-related samples60,63. As such, we
used this threshold to identify the potential outbreak-related clusters
determined by each allele-based pipeline for the L. monocytogenes
dataset. Each pipeline detected between 310 to 340 clusters at 7 ADs,
from which ~94.2% had similar composition in at least two pipelines
and 5.8% were exclusively detected by a single pipeline (Supplemen-
tary Data 7). Only ~50% of the clusters detected by a given pipeline was
also detectedwith the exact same composition in all pipelines, but this
value is highly influenced by the diversity of the studied pipelines and
by the use of a static cut-off. For instance, this value would increase to
~72%, if themost discrepant pipeline was removed (MentaLiST), and to
almost 90%, if only same-schema pipelines were compared (Supple-
mentary Data 7).

As these results are impacted by the use of a static threshold, we
identified the minimum threshold (ADs or SNPs) at which each 7 AD
cluster would be detected by the other pipelines (see the Methods
section for details) (Supplementary Data 8). This analysis yielded 316
clusters that, once detected at 7 ADs by at least one pipeline, were

detected by all pipelines regardless of the threshold (Supplementary
Data 8). As expected, most of these clusters were detected at ≤ 7 ADs
in all pipelines, or at higher threshold levels close to 7 ADs (Fig. 3e).
The difference between the AD thresholds required by the different
allele-based pipelines to detect each outbreak-level cluster had a
median of 2 ADs (1 AD, if MentaLiST is excluded), with a minimum of
0 and maximum of 24 ADs (Fig. 3f). Without MentaLiST, the pairwise
comparisons of the remaining pipelines showed that the overlap of
clusters detected at 7 ADs with the exact same composition was
84.5%, on average, a value that increased to 93.0%, when applying a
flexible threshold of up to 2 ADs above (Fig. 3g and h and Supple-
mentary Data 9). The cluster congruence at this level of resolution is
influenced by the cgMLST schema used, with pipelines using the
same schema yielding more similar results (Fig. 3g and h). This is
showcased through the analysis of the threshold flexibilization, in
which the overlap increases to 95.2% and 97.5% when only Moura or
Ruppitsch pipelines are compared (Fig. 3h), respectively. In a case
scenario where the recommended static thresholds for each schema
would be applied, i.e., 7 ADs for Moura60 and 10 ADs for Ruppitsch61,
the overlap of outbreak signals between pipelines running different
schemas would be considerably lower than the one obtained with a
flexible approach (Supplementary Data 9). We also tested the appli-
cation of a more stringent threshold (4 ADs) to identify isolates with
more compelling evidence of being part of the same outbreak, fol-
lowed by the application of a higher cut-off (7 ADs) for identifying
probable cases, as previously proposed63. This exercise showed that
clusters defined at 4 ADs by a given pipeline are very often captured
with the same composition by any other pipeline with a threshold of
up to 7 ADs, with the exception of MentaLiST (Supplemen-
tary Data 9).

When looking at the genomic diversity (SNPs/ADs) within the
cgMLST outbreak-level clusters (7 ADs), our results showed that the
maximumallele/SNP distances increasewith the size of the cluster and
are larger when looking at SNPs (Supplementary Fig. 1). These results
are consistent with the previous observation that higher SNP thresh-
olds (which increase alongside with AD thresholds) are needed to
identify cgMLST clusters with the exact same composition (Supple-
mentary Fig. 1), while suggesting that, in general, SNP-based pipelines
run per ST leverage good resolution to discriminate strains from the
same outbreak.

Salmonella enterica
Salmonella enterica dataset (Fig. 4a) was analyzed with seven allele-
based and four SNP-based pipelines (Table 1 and Tables S1.1 and S1.2 in
Supplementary Data 10).

Evaluation of allele-based clustering and comparison of stability
regions. Following QC of the initial 2974 S. enterica isolates (Supple-
mentary Data 1), a maximum of 2% of the isolates were filtered out by
each pipeline (Table S1.1 in Supplementary Data 10). Despite the

Fig. 3 | Cluster congruence at all threshold levels and overlap in detecting
outbreak signals for L. monocytogenes. a Heatmap with the CS of two pipelines
(details on each pairwise comparison are in Supplementary Data 2, with che-
wieSnake vs. Bionumerics using the HC algorithm being presented here as an
example). The inverteddendrogram (i.e., from the highest to the lowest resolution)
and dashed red lines illustrate how the congruence is related with the dataset’s
phylogenetic structure (dendrogram obtained with Bionumerics and visualized in
auspice.us141). b Zoom-in in the high resolution level highlighted in the orange
square of (a). c Bi-directional corresponding points (gray lines) connecting
thresholds providing similar clustering in the two pipelines exemplified in (a).
d Illustrative linear trend lines expected for the corresponding points with a slope
deviation of 10% and 20% to be used as scale reference for the boxplots. Boxplots
present the slope distribution for allele vs. allele (orange, n = 58) and SNP. vs. SNP
(blue, n = 22) pipeline comparisons for the linear trend lines with a r2 ≥0.99,

illustrated in Supplementary Data 2 and detailed in Supplementary Data 6 (“n”
refers to the number of comparisons with r2 ≥0.99 over the total number of
comparisons). The boxplot of the allele vs. SNP scenario is not presenteddue to the
lownumber of comparisons with r2 ≥0.99 (Supplementary Data 6). eDensity of the
distance thresholds required for the identification of clusters detected by at least
one allele-based pipeline at 7 ADs. Only clusters having the same composition in all
allele-based pipelines were included (n = 316). f Distribution of the difference
between the minimum and maximum AD threshold needed to detect the same
clusters across allele-based pipelines, using the clusters of (e) (n = 316). g Overlap
between the genetic clusters detected at 7 ADs. h Overlap between the genetic
clusters detected by one pipeline at 7 ADs and those detected by the others at ≤ 9
ADs. Boxplots in (d) and (f) show the interquartile range and median, and whiskers
extend 1.5 times the range, with outliers plotted separately. Source data are pro-
vided as a Source Data file.
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samples of each serotype. Source data are provided as a Source Data file.
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intrinsic differences between the pipelines, they generally provided
very similar clustering patterns in terms of number of clusters across
all possible partitions, with the exception ofMentaLiST (Fig. 4b). Given
the outlier behavior of MentaLiST that, as seen for L. monocytogenes,
has a considerable negative impact in pipeline comparisons and
interpretation of the results, we decided to remove this tool from all
downstream analyses, including for E. coli and C. jejuni.

Independently of the schema (Enterobase64 or INNUENDO22) and
clustering algorithm (GT or HC), the pipelines consistently revealed
low stability in the region of high resolution spanning the outbreak
level, but several regions of high stability could be identifiedwith good
correspondence between pipelines, likely reflecting the pathogen
population structure and dataset diversity (Fig. 4c). The largest stabi-
lity region (covering ~690 subsequent AD thresholds) was similar
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between pipelines, occurred between ~1000 and ~1700 ADs and cor-
responded to the largest stability regiondetected in a previous study65.

Assessment of allele-based clustering congruence with
traditional typing. Our results revealed a good correspondence
between the largest stability region detected in all allele-based pipe-
lines and S. enterica serotype classification (Fig. 4c and d), with the
highest congruence point being identified between 1261 and 1663 ADs
(CS~2.3) (Table S1.1 in Supplementary Data 10). From the 91 serotypes
with at least two samples, between44% to 68% aregrouped in the same
cluster at the highest congruence point. This observation is aligned
with the results of a large study in which 70.1% of the analyzed ser-
otypes mapped to a single cgMLST cluster in an equivalent stability
region65. Still, when focusing on those serotypes having a one-to-one
cluster correspondence (i.e., the whole cluster corresponds to all
samples of a serotype) in our study, this number decreased to about
30% of the serotypes, regardless of the pipeline. Remarkably, the one-
to-one correspondence was detected for the majority of the most
prevalent serotypes, although the lowest threshold needed to collapse
all samples was quite diverse across serotypes (Fig. 4d). Our analysis
also revealed that, at the identified highest congruence point, between
8% to 25% of all serotypes are split into three or more clusters, sug-
gesting the existence of polyphyletic serotypes. Among these, we
highlight the Thompson and Newport serotypes (Supplementary
Data 11), for which a threshold of more than 2400 ADs was required to
collapse all the respective samples, which is in accordance with their
previously reported multi-lineage nature65–68.

Regarding the congruence with the ST, the highest congruence
point was identified between 205 and 310 ADs (CS~2.6), always falling
within a pipeline stability region (Fig. 4c, Table S1.1 in Supplementary
Data 10). From the 112 STs with more than two samples, depending on
the pipeline, between 73% to 85% (82 to 95 STs) were grouped in a
single cluster at the highest congruence point. On average, 59% of the
STs exactly corresponded to a single cluster and a small proportion
(between 4% and 9%) were split into three or more clusters. When
looking at the earliest threshold to merge all samples of a given ST,
some STs clustered considerably below the highest CS (e.g., ST34 and
ST26) while others revealed high intra-ST heterogeneity (e.g., ST11 and
ST15) (Supplementary Data 12 and Fig. S1.1 in Supplementary Data 10).

In this dataset, Enteritidis serotype is mainly composed of
ST11 samples, and our results revealed a good concordance between
the thresholds required to merge either Enteritidis or ST11 samples,
with ST11 requiring a slightly higher threshold due to few samples not
predicted as Enteritidis (Fig. 4d and Fig. S1.1 in Supplementary
Data 10). Regarding the samples classified in sílico as Typhimurium,
they were segregated into three main STs (ST19, ST34 and ST36) with
different levels of intra-ST diversity. This likely justifies why all Typhi-
murium samples were only collapsed in a single cluster at a high
threshold (Fig. 4d and Fig. S1.1 in Supplementary Data 10). Still, we
cannot discard that this value is overestimated due to ST34 samples

that were classified as Typhimurium instead of its most common
classification within the Typhimurium monophasic variant 4,[5],12:i:-
(here treated as an independent serotype). Finally, Infantis serotype
has a high diversity and a potential polyphyletic signature, which
contrasts with its dominant ST (ST32). This is due to a few non-ST32
Infantis samples present in this dataset (Fig. 4d and Fig. S1.1 in Sup-
plementary Data 10).

Evaluation of cluster congruence between different pipelines at all
threshold levels. Our in-depth pairwise congruence analysis showed a
general high concordance between all allele-based pipelines (as
exemplified for a pairwise comparison in Fig. 5a and b, and detailed in
Section 2 of Supplementary Data 10). Indeed, the AD threshold points
with highest concordance (assumed as CS ≥ 2.85) between every two
pipelines (corresponding points) were observed across all levels of
resolution and followed a linear trend (r2 ≥0.99) in all comparisons
(Fig. 5c and d, Supplementary Data 10, 13 and 14). Despite the good
inter-pipeline concordance (even at low threshold levels), differences
in the discriminatory power were still observed, as shown by devia-
tions from a y = x scenario (Fig. 5d). A fine-tuned analysis of pipeline
performance and comparability at the outbreak level is presented
below (next section).

Regarding the SNP-based pipelines, the analysis was conducted
with a focus on the clustering obtained at up to a 100 SNPs threshold
for the top-represented serotypes, namely Enteritidis, Typhimurium,
and Infantis, in all pipelines, except for SnapperDB, as the partner
institute could only run it for Typhimurium and Infantis subdatasets.
As SnippySnake andWGSBAC yielded matching partitions at all levels,
only SnippySnake results are presented. SNP-based pipelines revealed
considerable differences in the maximum number of thresholds
(detailed in Sections 3 and 4 of Supplementary Data 10), which are
more pronounced between SnapperDB and the other pipelines.
SnapperDB excluded samples that, although being in sílico predicted
as Typhimurium or Infantis, were phylogenetically distant from the
remaining ones, reducing the number of informative sites in the core
alignment and, consequently, leading to a lower maximum number of
partitions for these serotypes in this pipeline but a higher resolution
power. This variability in sample inclusion/exclusion challenged the
assessment of the congruence at all levels between pipelines, as illu-
stratedby the asymmetry of theheatmaps (Section 3 in Supplementary
Data 10). Still, most pairwise comparisons were informative, as
revealed by the observation of concordant clustering results, espe-
cially at lower threshold levels.

When comparing allele- and SNP-based pipelines, we observed
(slightly) asymmetric matrices (see heatmaps in Section 4 of Supple-
mentary Data 10), often deviating towards high SNP thresholds (i.e.,
high CSs are observed when the SNP threshold is higher than the
corresponding AD threshold) (e.g., Fig. S4.1.6 in Section 4 of Supple-
mentary Data 10). As such, the SNP-based pipelines, when using the
same serotype reference for read mapping, tend to provide a higher

Fig. 5 | Cluster congruence at all threshold levels and of overlap in detecting
outbreak signals for S. enterica. a Heatmap with the CS of two pipelines (details
on each pairwise comparison are in Supplementary Data 10, with Bionumerics vs.
chewieSnake using the HC algorithm being presented here as an example). The
inverted dendrogram (i.e., from the highest to the lowest resolution) and dashed
red lines illustrate how the congruence is related to the dataset’s phylogenetic
structure (dendrogram obtained with chewieSnake and visualized in auspice.us141).
b Zoom-in in on the high resolution level highlighted in orange in (a). c Bi-
directional corresponding points (gray lines) connecting thresholds providing
similar clustering in the two pipelines exemplified in (a). d Illustrative linear trend
lines expected for the corresponding points with a slope deviation of 10% and 20%
to be used as scale reference for the boxplots. The boxplot presents the slope
distribution for allele vs. allele (orange, n = 90) pipeline comparisons for the linear
trend lines with r2 ≥0.99, illustrated in Supplementary Data 10 and detailed in

SupplementaryData 14 (“n” refers to the numberof comparisonswith r2 ≥0.99over
the total number of comparisons). The boxplots of the SNP vs. SNP and allele vs.
SNP scenarios are not presented due to the low number of comparison with
r2 ≥0.99 (Supplementary Data 14). eDensity of the distance thresholds required for
the identificationof clusters detected by at least one allele-basedpipeline at 14 ADs.
Only clusters having the same composition in all allele-based pipelines were
included (n = 255). f Distribution of the difference between the minimum and
maximum AD threshold needed to detect the same clusters across allele-based
pipelines, using the clusters of (e) (n = 255). gOverlap between the genetic clusters
detected at 14 ADs. h Overlap between the genetic clusters detected by one pipe-
line at 14 ADs and those detected by the others at ≤16 ADs. Boxplots in (d) and (f)
show the interquartile range and median, and whiskers extend 1.5 times the range,
with outliers plotted separately. Source data is provided as a Source Data file.
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discriminatory power than cg/wgMLST pipelines, even though this
might not be applicable for all serotypes and pipelines. For instance,
this trend was inverted for Enteritidis serotype when using SnippyS-
nake pipeline (e.g., Fig. S4.3.2 in Section 4 of Supplementary Data 10).
In general, we found a low number of corresponding points in the
pairwise comparisons (assessed at up to 100 ADs/SNPs) and the few
identified points did not follow a linear trend (i.e., with r2 ≥0.99,
Supplementary Data 14), thus hampering a broad assessment of the
discriminatory power. Still, the observed concordance trends at the
outbreak level showed that a more detailed analysis for outbreak
detection is more informative about pipeline performance when
comparing allele- and SNP-based pipelines (as addressed in next
section).

Concordance for outbreak detection. Allele-based approaches are
themost commonly applied for S. enterica outbreak detection, but the
methodanddistance thresholdused todetermine apossible outbreak-
related cluster usually vary between laboratories, and the inclusion
criteria for the outbreak is usually set during investigation. The
INNUENDO project proposed a dynamic threshold of 0.43% of the
cgMLST schema, corresponding to 14 ADs in the INNUENDO cgMLST
schema, due to its good concordance with clusters of epidemiologi-
cally verified isolates22. We used this 0.43% threshold (which translates
into 14 ADs in all pipelines) to start exploring the pipeline congruence
at the potential outbreak level.

Eachpipelinedetectedbetween216 to 254 clusters at 14ADs, from
which, on average, 95.9% had similar composition in at least two
pipelines and 4.1% were exclusively detected by a single pipeline
(SupplementaryData 15).On average, 62.6%of the clusters detectedby
a given pipeline was also detected with the exact same composition by
all remaining pipelines. However, this value is highly influenced by the
diversity of the studied pipelines and by the use of a static cut-off.
Indeed, this value would increase to almost 75%, if only same-schema
pipelines are compared (SupplementaryData 15).We further evaluated
theminimum threshold level (ADs or SNPs) at which each 14AD cluster
would be detected by the other pipelines. This analysis yielded a total
of 255 clusters that, once detected at 14 ADs by at least one pipeline,
were detected by all pipelines regardless of the threshold (Supple-
mentaryData 16). As expected,most of these clusterswere detected at
a threshold ≤ 14 ADs in all pipelines, or at higher threshold levels close
to 14 ADs. At SNP level, two different profiles were observed (Fig. 5e).
While SnippySnake showed a density profile similar to allele-based
pipelines (i.e., a threshold of 14 SNPswould be enough to capturemost
of the clusters determined at 14 ADs), the other two SNP-based pipe-
lines (SnapperDB and CSI Phylogeny) very often required higher SNP
thresholds to merge isolates belonging to the same cluster (Fig. 5e).
The difference between the AD thresholds required by the different
allele-based pipelines to detect each outbreak-level cluster had a
median of 2 ADs, with a minimum of 0 and maximum of 14 ADs. This
trend is less influenced by the clustering algorithm rather than the cg/
wgMLST schema, as amedian of only 1 ADdifference is observedwhen
comparing same-schema pipelines (Fig. 5f). Looking at pairwise com-
parisons between all pipelines, our results showed that the overlap of
clusters detected at 14 ADs with the exact same composition was
79.0%, on average, a value that increased to 89.8% when applying a
flexible threshold of up to 2 ADs above (Fig. 5g and h, Supplementary
Data 17). Importantly, the overall pairwise congruence only slightly
decreased when testing thresholds with higher resolution, namely
85.0% for ≤10 ADs, as commonly defined34,69, or 81.6% for ≤ 5 ADs, a
strict threshold that has recently been used for casedefinition inmulti-
country outbreaks70,71 (Supplementary Data 17).

When looking at the genomic diversity (SNPs/ADs) within the cg/
wgMLST clusters at 14 ADs, our results showed that allele-based pipe-
lines behave similarly, with the maximum intra-cluster distance
increasing with the size of the cluster, as expected (Supplementary

Fig. 2a). Although this trend is also seen at SNP level, SnapperDB andCSI
Phylogeny required higher SNP thresholds than SnippySnake to identify
cgMLST clusters with the exact same composition (Fig. 5e), and yielded
a higher SNP diversity within the clusters (Supplementary Fig. 2b). The
evaluation of intra-cluster diversity across incremental distance thresh-
olds also shows that SNP-based pipelines capture a higher diversity than
allele-basedpipelines. For example, 95%of the clusters detected at 5 ADs
by at least one allele-based pipeline were composed of strains that
diverge by no more than 11 alleles, a value that increases to 17 when
assessed in terms of SNPs (Supplementary Fig. 2c).

Finally, we conducted an additional exercise with the pipeline
running an wgMLST schema (INNUENDO-like-INNUENDO99) to
explore the potential gain in resolution to discriminate potential out-
break isolates (as assessed by cgMLST) when increasing the number of
wgMLST loci under comparison, aligned with a previously explored
rationale22,58. Regardless of the clustering algorithm, this approach
resulted in an average increase of 6 ADs in the maximum pairwise
distances observed between the isolates of the same original cgMLST
cluster (Supplementary Data 18), demonstrating the clear increase in
resolution provided by the dynamic extension of the cgMLST schema
with wgMLST loci shared by the same-outbreak isolates.

Escherichia coli
Escherichia coli dataset (Fig. 6a) was analyzed with seven allele-based
and two SNP-based pipelines (Table 1 and Tables S1.1 and S1.2 in Sup-
plementary Data 19).

Evaluation of allele-based clustering and comparison of stability
regions. Following QC of the initial 2307 E. coli isolates (Supplemen-
tary Data 1), all pipelines retained more than 99% of the samples, with
the exception of SeqSphere and Bionumerics, which only retained
89.99% and 46.25%, respectively (Table S1.1 in Supplementary Data 19).
As all pipelines used an inclusion criterion of at least 95% cgMLST loci
called, this result was most likely linked to the allele caller than to the
schema. Indeed, all pipelines relyingon chewBBACA72 retained >99%of
the samples, even when using the same schema as SeqSphere and
Bionumerics (the Enterobase schema64). Given the very low number of
samples that passed theQCof Bionumerics, this pipelinewas excluded
from the analysis of the E. coli dataset. Despite the intrinsic differences
between the remaining pipelines, they generally provided very similar
clustering patterns in terms of a number of clusters across all possible
thresholds, with the exception of SeqSphere (Fig. 6b), whichpresented
a deviating pattern possibly due to the removal of ~10% of the samples.

Independently of the schema (Enterobase64 or INNUENDO22) and
clustering algorithm (GT or HC), the pipelines consistently revealed
low stability in the region of high resolution spanning the outbreak
level. Beyond this region, multiple regions of high stability could be
identified across all levels, including a first high-resolution region
(around 60 to 120 ADs), likely reflecting the dataset diversity, as dis-
cussed below (Fig. 6c).

Evaluation of allele-based clustering congruence with traditional
typing and WGS-derived pathogen main lineages. This assessment
is highly influenced by the often incompleteness in the inference of O
and H antigens and, specially, by the dominance of serotype
O157:H7 strains (almost all from ST11) in the dataset, which reflects the
bias towards this pathogenic E. coli in public databases. As con-
sequence, for all pipelines, the highest congruence point was the same
for serotype (CS~2.7) and ST (CS~2.9) (Table S1.1 in Supplementary
Data 19) and corresponded to the minimum threshold needed to col-
lapse all O157:H7 and ST11 strains, ranging between 545 and 738 ADs
(Fig. 6d). This point revealed a good correspondence with one of the
largest stability regions (Fig. 6c and d), but, due to the E. coli diversity
bias, this result should be eyed with caution, if intended to inform
nomenclature design.
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E. coli dataset composition
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Fig. 6 | Assessment of allele-based clustering at all possible threshold levels for
E. coli and comparison with traditional MLST and serotype. a Composition of
the E. coli dataset used in this study in terms of serotype in comparison with the
composition of the datasets of previous studies (INNUENDO22 and BioProject
PRJNA230969143,144), and the Enterobase database, as of November 202164. A
GrapeTree59 visualization of the MST obtained with the INNUENDO-like-
INNUENDO99 pipeline is shown. Nodes (i.e., samples) are collapsed at the thresh-
old with the highest congruence with serotype (620 ADs for this pipeline) and
colored according to the ST classification.bNumber of partitions obtained by each

pipeline at each possible distance threshold. c Clustering stability regions are
determined for each pipeline. To better distinguish each region (represented by
separate rectangular blocks), the different blocks are vertically phased, starting in a
different line. Distance thresholds (x axis) are presented in log2 scale. d Barplot
(top) with the number of samples of the most represented serotype (O157:H7) and
ST (ST11) in E. coli dataset, with a swarmplot (bottom) indicating the AD threshold
at which each pipeline clusters together all samples of each of them. Source data
are provided as a Source Data file.
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Regarding the less abundant serotypes, we observed very differ-
ent profiles, with those needing a higher threshold to collapse all
samples being also the oneswith the highest ST diversity. For instance,
among the ones with ≥10 isolates, O145:H28 (including ST32 and
ST137) was collapsed at around 350 ADs, while O8:H19 (including
ST88, ST90, ST201 and ST3233) required around 2250ADs tomerge all
same-serotype isolates (Fig. 6d, Supplementary Data 20 and 21). Also,

the lack of one-to-one correspondence was also illustrated by the
detection of some STs (e.g., ST88 and ST90) comprising isolates from
different serotypes.

Finally, we assessed the congruence between cg/wgMLST clus-
tering and WGS-derived pathogen main lineages inferred through
PopPUNK73. For this E. coli dataset, PopPUNK clustering had a high
congruence (CS > 2.97) at allelic distance thresholds (723 to 1002 ADs)
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above the level with the highest congruence with serotype and ST
(Table S1.1 in Supplementary Data 19).

Evaluation of cluster congruence between different pipelines at all
threshold levels. Our in-depth pairwise congruence analysis showed a
high concordance between all allele-based pipelines (as exemplified
for a pairwise comparison in Fig. 7a and b, and detailed in Section 2 of
Supplementary Data 19). Indeed, the AD threshold points with highest
concordance (assumed as CS ≥ 2.85) between every two pipelines
(corresponding points) were observed across all levels of resolution
and followed a linear trend (r2 ≥0.99) in all comparisons (Fig. 7c,
Supplementary Data 19, 22 and 23). Despite the good inter-pipeline
concordance (even at low threshold levels), differences in the dis-
criminatory power were observed, as shown by deviations from a y = x
scenario (Fig. 7d). In particular, most differences were seen when
SeqSphere was involved, as it revealed a higher resolution across all
threshold levels. A fine-tuned analysis about pipeline performance and
comparability at outbreak level is presented below (next section).

Regarding the SNP-based pipelines, the analysis was conducted
with a focus on the clustering obtained at up to a 100 SNPs threshold
for the O157:H7 serotype. In summary, CSI Phylogeny provided a
higher resolution than SnippySnake (Section 3 of Supplementary
Data 19), but this observation should not be extrapolated without
taking into consideration that the former excluded almost 20% of the
sequences. When comparing allele- and SNP-based pipelines (see
heatmaps in Section 4 of Supplementary Data 19), we again observed a
bias towards the higher resolution of CSI Phylogeny, while SnippyS-
nake provided a similar resolution power as the allele-based pipelines.

Concordance for outbreak detection. Allele-based approaches are
the most commonly applied for E. coli outbreak detection, but the
methodanddistance thresholdused todetermine apossible outbreak-
related cluster usually varies between laboratories, and the inclusion
criteria for the outbreak is usually set during investigation. The
INNUENDO project proposed a dynamic threshold of 0.34% of the
cgMLST schema, corresponding to 8 ADs in the INNUENDO cgMLST
schema, due to its good concordance with clusters of epidemiologi-
cally verified isolates22. We used this 0.34% threshold (which translates
into 9ADs in all pipelines) to start exploring the pipeline congruenceat
the potential outbreak level.

Each pipeline detected between 169 to 182 clusters at 9 ADs, from
which, on average, 96.6% had similar composition in at least two
pipelines and 3.2% were exclusively detected by a single pipeline
(Supplementary Data 24). On average, 70.4% of the clusters detected
by a given pipeline were also detected with the exact same composi-
tion by all remaining pipelines. We further evaluated the minimum
threshold level (ADs or SNPs) at which each 9 AD cluster would be
detected by the other pipelines. This analysis yielded a total of 185
clusters that, oncedetected at 9 ADs thresholdby at least one pipeline,
were detected by all pipelines regardless of the threshold

(Supplementary Data 25), with SeqSphere and INNUENDO-like-
ENTEROBASE requiring slightly higher thresholds to yield the same
clusters as the other pipelines. Regardless of this observation, most of
the outbreak clusters were detected at a threshold ≤ 9 ADs in all allele-
basedpipelines, or at higher threshold levels close to 9ADs (Fig. 7e). At
SNP level, the assessment was restricted to those outbreak-level clus-
ters corresponding to O157:H7 (94 out of the 185 clusters) and to the
SnippySnake pipeline, because of the CSI Phylogeny behavior noticed
above. As anticipated above, SnippySnake revealed a density profile
similar to allele-based pipelines (Fig. 7e), thus demonstrating that core
SNP and cg/wgMLST analyses have equivalent performance for
O157:H7 outbreak detection, in line with a previous observation74. The
difference between the AD thresholds required by the different allele-
based pipelines to detect each outbreak-level cluster had amedianof 3
ADs, with a minimum of 0 and a maximum of 15 ADs. This trend is less
influenced by the clustering algorithm rather than the cg/wgMLST
schema (Fig. 7f). A slightly higher diversity was observed between
those pipelines relying on the Enterobase schema (median of 2 ADs)
than between the ones relying on INNUENDO (median of 1 AD), pos-
sibly due to the fact that the Enterobase schemawas run with different
allele callers (and also different versions of the same allele caller),while
all pipelines relying on the INNUENDO schema used chewBBACA (the
allele caller used for its refinement)72,75. A side observationwas that the
direct use of chewBBACAon the Enterobase schema systematically led
to around 2%of loci not called in each sample, even though this did not
substantially affect the congruence and outbreak detection perfor-
mance (Supplementary Data 19). Looking at pairwise comparisons
between all pipelines, our results showed that the overlap of clusters
detected at 9 ADs with the exact same composition was 83.7%,
on average, a value that increased to 94.9% when applying a
flexible threshold according to the median estimation above (i.e., 3
ADs above, Fig. 7g and h, Supplementary Data 26). This exercise fur-
ther corroborated the outlier behavior of SeqSphere and INNUENDO-
like-ENTEROBASE, which needed higher thresholds to yield the
same clusters as the other pipelines (Fig. 7g, Supplementary
Data 25 and 26).

When looking at the genomic diversity (SNPs/ADs) within the cg/
wgMLST outbreak-level clusters (9 ADs), the INNUENDO-like-
ENTEROBASE consolidated its outlier behavior by capturing a higher
genomic diversity within the clusters and showing higher intra-cluster
maximum distances with incremental cluster sizes than the other
pipelines (Supplementary Figs. 3a). The other outlier pipeline, Seq-
Sphere, could not be used for this particular analysis, due to the una-
vailability of suitable pairwise distance inputwithin the BeONEproject.
SnippySnake again provided similar clustering and outbreak resolu-
tion power as the allele-based pipelines Supplementary Figs. 3a and
3b). For example, 95% of the clusters detected at 5 ADs by at least one
allele-based pipeline were composed by strains that diverge by no
more than 9 alleles, a value that only slightly increased to 12 when
assessed in terms of SNPs (Supplementary Fig. 3c).

Fig. 7 | Cluster congruence at all threshold levels and overlap in detecting
outbreak signals for E. coli. a Heatmap with the CS of two pipelines (details on
each pairwise comparison are in Supplementary Data 19, with INNUENDO-like-
Enterobase vs. INNUENDO-like-INNUENDO99 using the HC algorithm being pre-
sented here as an example). The inverted dendrogram (i.e., from the highest to the
lowest resolution) and dashed red lines illustrate how the congruence is related
with the dataset’s phylogenetic structure (dendrogram obtained with INNUENDO-
like-INNUENDO99 and visualized in auspice.us141). b Zoom-in in the high resolution
level highlighted in orange in (a). c Bi-directional corresponding points (gray lines)
connecting thresholds providing similar clustering in the two pipelines exemplified
in (a). d Illustrative linear trend lines expected for the corresponding points with a
slope deviation of 10% and 20% to be used as scale reference for the boxplots. The
boxplot presents the slope distribution for allele vs. allele (orange, n = 68) pipeline
comparisons for the linear trend lines with r2 ≥0.99, illustrated in Supplementary

Data 19 and detailed in Supplementary Data 23 (“n” refers to the number of com-
parisons with r2 ≥0.99 over the total number of comparisons). The boxplot of the
allele vs. SNP scenario is not presented due to the lownumber of comparisons with
r2 ≥0.99 (SupplementaryData 23). eDensity of the distance thresholds required for
the identification of clusters detected by at least one allele-based pipeline at 9 ADs.
Only clusters having the same composition in all allele-based pipelines were
included (n = 185). f Distribution of the difference between the minimum and
maximum AD threshold needed to detect the same clusters across allele-based
pipelines, using the clusters of (e) (n = 185). gOverlap between the genetic clusters
detected at 9 ADs. hOverlap between the genetic clusters detected by one pipeline
at 9 ADs and those detected by the others at ≤ 12 ADs. Boxplots in (d) and (f) show
the interquartile range and median, and whiskers extend 1.5 times the range, with
outliers plotted separately. Source data are provided as a Source Data file.
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Finally, we conducted an additional exercise with the pipeline
running an wgMLST schema (INNUENDO-like-INNUENDO99) to
explore the potential gain in resolution to discriminate potential out-
break isolates (as assessed by cgMLST) when increasing the number of
wgMLST loci under comparison, aligned with a previously explored
rationale22,58. Regardless of the clustering algorithm, this approach
resulted in an average increase of 5 ADs in the maximum pairwise
distances observed between the isolates of the same original cgMLST
cluster (Supplementary Data 27), demonstrating the clear increase in
resolution provided by the dynamic extension of the cgMLST schema
with wgMLST loci shared by the same-outbreak isolates.

Campylobacter jejuni
Campylobacter jejuni dataset (Fig. 8a) was analyzed with seven allele-
based and one SNP-based pipeline (Table 1 and Tables S1.1 and S1.2 in
Supplementary Data 28).

Evaluation of allele-based clustering and comparison of stability
regions. Following QC of the initial 3686C. jejuni isolates (Supple-
mentary Data 1), the pipelines using the large and static cgMLST
schema from PubMLST (1343 loci)76 retained ~95% of the samples,
while the ones with shorter cgMLST schemas retained ~98.5%
(Table S1.1 in Supplementary Data 28). The latter either perform
cgMLST on a set of core loci dynamically extracted from an wgMLST
schema (either 899/2754 core loci of the INNUENDO schema22 or 860/
1595 core loci of the Ridom schema77) for this dataset, or run a short
and static cgMLST (678/2754 core loci of the INNUENDO schema22)
(Table S1.1 in Supplementary Data 28). These three pipeline groups,
relying on different schema sizes, revealed distinct clustering patterns
in termsof a number of clusters across all possible thresholds (Fig. 8b),
with the pipelines using PubMLST schema displaying a higher resolu-
tion, i.e., a higher number of clusters for the same threshold.

Independent of the schema and clustering algorithm (GT or HC),
no pipeline revealed regions of high stability until 55ADs, far above the
common thresholds for outbreak detection. After this point, although
multiple regions of high stability have been identified across all levels,
theywerequite small, hampering the identificationof stability plateaus
common to all pipelines (Fig. 8c). This scenario contrasts with the
other species analyzed in this study and likely reflects the high genetic
diversity, extensive mosaicism and polyclonal population structure of
C. jejuni78–80.

Evaluation of allele-based clustering congruence with traditional
typing andWGS-derived pathogenmain lineages. Regarding the cg/
wgMLST clustering congruence with CC classification, the pipelines
relying on PubMLST schema presented the highest congruence point
between 644 and 839 ADs (CS~2.7), while this threshold ranged
between 315 and 522 (CS~2.7) for the pipelines with shorter schemas
(Table S1.1 in Supplementary Data 28). Still, the clustering of each
pipeline at this point yielded a similar number of partitions, which
varied between 161 and 229. When assessing the distribution of the 39
CCs across these partitions, only 25% had all the respective samples
integrated in the same cluster. In another perspective, almost two-
thirds of the CCs have strains dispersed across three or more clusters
at this level. Despite the fact that the likelihood of two samples of the
same CC cluster together at this cgMLST level is still high (AWC>0.8
for all pipelines), our results show that the CC classification only
slightly mimics C. jejuni clustering at the genome scale. Indeed, the
thresholds needed to cluster all samples of the same CC are quite high
across all pipelines, almost reaching the size of the respective cgMLST
schema, as observed for most of the dominant CCs in this dataset
(Fig. 8d and Supplementary Data 29). The comparison between
cgMLST clustering and ST classification revealed a more informative
scenario, as 78.2% of the 227 STs present in this dataset have all their
samples grouped into a single cluster at the highest congruence point

with cgMLST (Table S1.1 in SupplementaryData 28), andonly 4 to 7%of
the STs were split into three or more clusters at this level. Moreover, it
allowed the identification of STs with very different genetic hetero-
geneity in the dataset. For instance, when examining the most pre-
valent STs in the dataset (Fig. 8d), some (e.g., ST45, ST48 and ST50)
exhibited significant intra-ST diversity, which escalates with the
cgMLST schema size (as seen in the CC evaluation). In contrast, others
displayed less diversity, requiring similar threshold levels for merging
all samples from the same ST, regardless of the pipeline used (Sup-
plementary Data 30 and Figure S1.1 in Supplementary Data 28).

Finally, we assessed the congruence between cg/wgMLST clus-
tering and WGS-derived pathogen main lineages inferred through
PopPUNK73. For this C. jejuni dataset, PopPUNK clustering had the
highest congruence with cg/wgMLST typing (CS~2.6) at allelic distance
thresholds consistently falling in between the points of highest con-
gruence with ST and CC (Table S1.1 in Supplementary Data 28).

Evaluation of cluster congruence between different pipelines at all
threshold levels. Our in-depth pairwise congruence analysis showed a
high concordance between all allele-based pipelines (as exemplified
for a pairwise comparison in Fig. 9a and b, and detailed in Section 2 of
Supplementary Data 28). Indeed, the AD threshold points with the
highest concordance (assumed as CS ≥ 2.85) between every two pipe-
lines (corresponding points) followed a linear trend (r2 ≥0.988) in all
comparisons (Fig. 9c and d, Supplementary Data 28, 31 and 32). Not
unexpectedly, due to the differences in cgMLST schema size between
pipelines, the discriminatory power was consistently higher in the
PubMLST schema pipelines, as shown by deviations from a y = x sce-
nario (Fig. 9d). Moreover, the pairwise comparisons between these
pipelines revealed many corresponding points even within the out-
break region (Supplementary Data 31), which was not observed in the
comparisons involving the pipelines with shorter schemas. A fine-
tuned analysis about pipeline performance and comparability at the
outbreak level is presented below (next section). The pairwise com-
parisons between allele-based pipelines and the available SNP-based
pipeline (CSI Phylogeny) were conducted with a focus on the cluster-
ing obtained at up to a 100 SNPs threshold for the top-represented
STs, namely ST21, ST50, ST45, ST48 and ST257. Our results showed
that CSI Phylogeny, with an ST-specific reference, generally offered
superior resolution compared to allele-based pipelines using short
schemas, although less frequently than when comparing with those
employing PubMLST schemas (Supplementary Data 32).

Concordance for outbreak detection. Allele-based approaches are
expected to become the standard method for C. jejuni outbreak
detection, but this is not yet been conducted routinely in most coun-
tries. Despite the existence of limited data about the cgMLST resolu-
tion levels with good epidemiological concordance, a threshold of 4
ADs has often been pointed out as a proxy for generating outbreaks
signals81, with proven application in real investigations81,82. As such, in
the present study, in order to start exploring the pipeline congruence
at the potential outbreak level, we applied a 4 AD threshold for all
pipelines.

Each pipeline detected between 271 to 388 clusters at 4 ADs, from
which, on average, 97.1% had similar composition in at least two
pipelines and 2.9% were exclusively detected by a single pipeline
(Supplementary Data 33). However, as anticipated above, due to the
substantially different sizes of the studied cgMLST schemas, the clus-
tering congruence at a 4 AD threshold was considerably higher
betweenpipelineswith similar schema sizes (Fig. 9e and f). On average,
only 36.6% of the clusters detected by a given pipeline were detected
with the exact same composition in all pipelines, but this value con-
siderably increased when this comparison is restricted to pipelines
with similar cgMLST schema size (81.7% for pipelines running the
PubMLST schema and 58.6% for the others) (Supplementary Data 33).
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Wesubsequently sought to evaluate theminimumthreshold level (ADs
or SNPs) at which each 4 AD cluster would be detected by the other
pipelines. This analysis yielded a total of 430 clusters that, once
detected at 4 ADs threshold by at least one pipeline, were detected by
all pipelines regardless of the threshold (Supplementary Data 34). The
cg/wgMLST pipelines with the larger schema very often needed

thresholds two or three times higher to provide the same clusters,
which reflects their higher resolution power (Supplementary Data 34).
When looking at this threshold dispersion in terms of SNPs (with the
CSI Phylogeny),most of the cgMLST clusters at 4 ADswere detected at
a threshold ≤4 SNPs or at higher threshold levels close to 4 SNPs
(Fig. 9e). The difference between the AD thresholds required by the

C. jejuni dataset composition
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Fig. 8 | Assessment of allele-based clustering at all possible threshold levels for
C. jejuni and comparison with traditional MLST. a Composition of the C. jejuni
dataset used in this study in termsofCCand in comparisonwith the composition of
the INNUENDO22 dataset and the PubMLST database, as of November 202123. A
GrapeTree59 visualization of the MST obtained with the INNUENDO-like-PubMLST
pipeline is shown. Nodes (i.e., samples) are collapsed at the threshold with highest
congruence with CC (839 ADs for this pipeline) and colored according to the ST
classification. b Number of partitions obtained by each pipeline at each possible

distance threshold. c Clustering stability regions determined for each pipeline. To
better distinguish each region (represented by separated rectangle blocks), dif-
ferent blocks are vertically phased, starting in a different line. Distance thresholds
(x axis) are presented in log2 scale. d Barplot (top) with the number of samples of
the top represented CCs (≥50 samples) in C. jejuni dataset, with a swarmplot
(bottom) indicating the AD threshold at which each pipeline clusters together all
samples of each CC. Source data are provided as a Source Data file.
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different allele-based pipelines to detect each outbreak-level cluster
had a median of 3 ADs, with a minimum of 0 andmaximum of 24 ADs.
This trend is less influenced by the clustering algorithm than the cg/
wgMLST schema, as amedian of only 1 ADdifference is observedwhen
comparing pipelines running schemas with similar sizes (Fig. 9f).
Looking at pairwise comparisons between all pipelines, our results
showed that the overlap of clusters detected at 4 ADs with the exact

same composition was, on average, 88.6% between pipelines using the
PubMLST schemaand75.0%between thepipelines running the shorter
schemas (Fig. 9g and Supplementary Data 35). Importantly, given the
significant difference in resolution at outbreak level, one would need
to decrease the threshold applied in the shorter schema pipelines to a
threshold as low as 1 AD to have a proxy of the potential outbreak
clusters obtained with the PubMLST schema at the commonly used 4
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ADs threshold (Fig. 9h and Supplementary Data 35). This hampers the
application of a single static threshold across different pipelines,
highlighting the challenge of applying shorter schemas for outbreak
detection. Given these results, we exclusively measured the genomic
diversity within potential outbreak-level clusters (i.e, 4 ADs) for the
pipelines using the PubMLST cgMLST schema. Themaximumdistance
between same-cluster samples per pipeline had an average of 2 ADs, a
value that increases to 3 SNPs when mapping to an ST-representative
reference (Supplementary Fig. 4).

Finally, we conducted an additional exercise to evaluate the
resolution gain obtained when applying a previously explored
rationale22,58 in which the cgMLST is dynamically increased to the
maximum number of wgMLST shared loci for a given cgMLST cluster.
This exercise was conducted for the wgMLST INNUENDO schema
(n = 2754 loci), starting either from a static core of 678 loci
(INNUENDO-like-INNUENDOcgMLST) or froma coreof 899 loci shared
by 99% of the studied dataset (INNUENDO-like-INNUENDO99), as well
as for the SeqSphere wgMLST schema (n = 1595 loci), starting from a
core of 860 loci shared by 99% of the studied dataset (SeqSphere-
wgMLST). In all cases, there was a clear gain in the discriminatory
power, with an increase of about 5 ADs in the maximum pairwise dis-
tances observed between the isolates of the same original cgMLST
cluster (Supplementary Data 36). These clusters often enroll isolates
with considerably high genetic distances (Supplementary Data 36),
thus consolidating the observation that a threshold of 4 ADs is high for
pipelines with original short cgMLST schemas, as it would likely
overestimate the size of a real outbreak. The application of a dynamic
wgMLST approach as the one tested here might mitigate this risk,
providing a layer of extra resolution towards a more reliable detection
of outbreak signals.

Impact of applying a different assembly pipeline and updating
the allele-caller: proof-of-concept study
Given the availability of an alternative assembly pipeline within the
Consortium (INNUca22,83), we sought to investigate if its usage in place
of AQUAMIS would impact the study outcomes. Additionally, taking
into account that the main allele-caller tested in this study
(chewBBACA72) was significantly updated while we were conducting
our analyses, we extended this proof-of-concept investigation by also
comparing the clustering results obtained when two different versions
of this software are used, namely the stable chewBBACA v2.8.5 and the
recent (at the time of this analysis) chewBBACA v3.3.5. In summary, for
each species, we took the INNUENDO-like pipeline (exactly as applied
throughout the whole study, i.e., providing the AQUAMIS assemblies
as input and using chewBBACA v2.8.5 - details in the Methods section)
and compared its clustering results with those obtained when INNUca
assemblies or chewBBACA v3.3.5 are used. Similar to the species-
specific sections, these exercises were conducted for the two cluster-
ingmethods used in this study (i.e., single-linkage andMSTreeV2). Our
results revealed a high cluster congruence at all threshold levels for all

species, with the usage of either INNUca or chewBBACA v3.3.5 yielding
barely no deviation from the theoretical y = x scenario (slope varying
between 0.984 and 1.003), indicating that the clustering at one level
with the original pipeline is highly concordant with the clustering at
the exact same level in each of the two alternative workflows (Sup-
plementary Data 37).We further performed an in-depth comparison at
the outbreak level. Although our pairwise comparison strategy is quite
strict, i.e., only considers a cluster as detected by two pipelines if it has
exactly the same composition at the same AD level, the alternative
pipelines were able to detect more than 94% and 97% of the clusters
yielded by the original pipeline, when INNUca assemblies or chewB-
BACA v3.3.5 are used, respectively (Supplementary Data 37). These
values are considerably higher than those obtained in the inter-
pipeline comparisons presented above for each species. Altogether,
this exercise shows that the species-specific results and conclusions of
this study would bemaintained if other assemblies had been provided
or if the partners using chewBBACA had updated their respective
pipelines to the newest version of this software. In another perspec-
tive, it underscored the added value of the tools developed in this
study to comprehensively and rapidly evaluate the impact of software
updates and changes of components, which is pivotal to ensure the
long-term robustness and sustainability of routine genomics
workflows.

Discussion
The integration ofWGS into foodbornedisease surveillance represents
a significant advance in public health, providing unparalleled resolu-
tion to detect and respond to outbreaks84. Still, the gains of WGS can
only be fully leveraged by taking a One Health approach, which is not
free of challenges5. Indeed, a coordinated and efficient global response
to multi-country and intersectoral public health threats requires inter-
laboratory comparability and data sharing13, two processes that could
be virtually achieved with complete harmonization and standardiza-
tion of themethods employed by the different laboratories5. However,
such a goal seems utopic, as intra-country and supra-national One
Health surveillance enrolls multiple stakeholders commonly in differ-
ent stages of WGS application and different surveillance systems
(decentralized and centralized), thus complicating harmonization and
communication5,43,85. Moreover, with the multitude of bioinformatics
pipelines available nowadays, which are under constant innovation
and refinement, it is now clear that, even though cg/wgMLST are
becoming the standard WGS typing methods for FWD outbreak
detection and investigation, the community is not evolving towards
the adoption of a common WGS pipeline, as demonstrated in our
study. Therefore, our vision is that efforts should be directed to
develop and implement solutions that guarantee that the WGS sur-
veillance methods in place are comparable between laboratories at
regional, national and international levels, as demanded by WHO13. In
the present study, we relied on a collaborative effort of multiple Eur-
opean institutes from seven different Countries, from the food, animal

Fig. 9 | Cluster congruence at all threshold levels and overlap in detecting
outbreak signals for C. jejuni. a Heatmap with the CS of two pipelines (details on
each pairwise comparison are in Supplementary Data 28, with Bionumerics vs.
INNUENDO-like-INNUENDO99 using the HC algorithm being presented here as an
example). The inverteddendrogram (i.e., from the highest to the lowest resolution)
and dashed red lines illustrate how the congruence is related with the dataset’s
phylogenetic structure (dendrogram obtained with INNUENDO-like-INNUENDO99
and visualized in auspice.us141).b Zoom-in in the high resolution level highlighted in
orange in (a). c Bi-directional corresponding points (gray lines) connecting
thresholds providing similar clustering results in the two pipelines exemplified in
(a). d Illustrative linear trend lines expected for the corresponding points with a
slope deviation of 10% and 20% to be used as scale reference for the boxplots. The
boxplot presents the slopedistribution for allele vs. allele (orange, n = 104) pipeline
comparisons for the linear trend lines with r2 ≥0.99, illustrated in Supplementary

Data 28 and detailed in Supplementary Data 32 (“n” refers to the number of com-
parisons with r2 ≥0.99 over the total number of comparisons). The boxplots of the
SNP vs. SNP and allele vs. SNP scenarios arenot presenteddue to the lownumber of
comparisons with r2 ≥0.99 (Supplementary Data 32). e Density of the distance
thresholds required for the identification of clusters detected by at least one allele-
based pipeline at 4 ADs. Only clusters having the same composition in all allele-
based pipelines were included (n = 430). f Distribution of the difference between
the minimum and maximum AD threshold needed to detect the same clusters
across allele-based pipelines, using the clusters of (e) (n = 430). gOverlap between
the genetic clusters detected at 4 ADs. h Overlap between the genetic clusters
detected by one pipeline at 4 ADs and those detected by the others at ≤4 ADs.
Boxplots in (d) and (f) show the interquartile range and median, and whiskers
extend 1.5 times the range, with outliers plotted separately. Source data are pro-
vided as a Source Data file.
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and human health sectors, to perform a large-scale assessment of the
comparability and congruence at the clustering level of different WGS
pipelines for four major foodborne bacterial pathogens: L. mono-
cytogenes, S. enterica, E. coli, and C. jejuni. We took a surveillance-
guided approach in which each participating institute ran its pipeline
over the same sequencing dataset, rather than conducting a theore-
tical comparison focused on assessing the impact of individual soft-
ware components on the overall pipeline performance. This strategy
provided a more realistic picture of how the clustering results
obtained by different laboratories in their routine activities can be
compared with each other at all possible resolution levels, while
unveiling the WGS typing congruence with traditional methods and
the inter-pipeline performance for outbreak detection.

In this comprehensive study, we observed variations in clustering
patterns across different bioinformatics pipelines, reflecting the
diversity of approaches being currently applied for routine genomic
analysis. Still, we generally found an overall good concordance for the
pipelines following a cg/wgMLST approach, which displayed a high
clustering congruence and similar discriminatory power across all
levels of resolution, with the notable exception of C. jejuni compar-
isons. Indeed, for this pathogen, we observed a significant variation in
resolution power that could be linked to the inclusion of pipelines
running over schemaswith a very discrepant number of loci.While this
discrepancy reflects the current lack of a standard schema for C. jejuni,
our observation that cgMLST pipelines with larger schemas often
required thresholds two or three times higher than those with shorter
schemas to detect the same clusters raises concerns about the lower
performance (or even reliability) of the latter in discriminating out-
breakclusters. In this regard, our results suggest that the applicationof
a dynamic wgMLST approach to each outbreak cluster first identified
by cgMLST (with a static schema), thus taking advantage of the cluster-
specific accessory genome86–88, might mitigate this risk, as simulated
here for C. jejuni, S. enterica, and E. coli.

Another significant observation was that even allele-based pipe-
lines with overall high congruence exhibited some non-negligible dif-
ferences in detecting outbreak clusters. Although our comparative
analysis at outbreak level was intentionally strict, only considering
clusters with the same isolate composition as concordant between
pipelines, it was crucial to uncover discrepancies with potential prac-
tical impact on outbreak case definition and inter-laboratory com-
munication. Indeed, despite case-definition criteria typically include a
static and similar threshold for both centralized (e.g., ECDC and EFSA)
and national pipelines39–42, our findings indicate that a cut-off flex-
ibilization by up to 2–3 ADs increases the likelihood that a given
pipeline detects clusters with the exact same composition as another
pipeline by roughly 10%. Consistent with previous observations44, our
results also showed that same-schema pipelines tend to detect the
same outbreak signals at more similar thresholds, and that, in this
scenario, the flexibilization of just 1 AD is often sufficient to reach very
concordant performance in outbreak detection. Importantly, the
application of GT or HC clusteringmethods, which are themost widely
applied for cg/wgMLST analysis30, had considerably less impact on
pipeline discrepancies. We anticipate that, contrary to the choice of
the schema, the current lack of consensus about the clusteringmethod
to employ should not be a main factor hampering inter-laboratory
comparability. For L. monocytogenes and S. enterica, we also simulated
the application of a more stringent cut-off (e.g., 4 ADs for L. mono-
cytogenes and 5ADs for S. enterica),which consolidated that the cut-off
flexibilization favors the detection of the same outbreak signal in dif-
ferent laboratories. In practice, as the discrepancy increases with the
variability of pipelines under comparison, a potential reasonable
approach when setting international and inter-sectoral case definition
criteria can be the inclusion of suspected outbreak isolates based on a
flexible threshold, instead of the usual reliance on a static and similar
cut-off that does not take into account the comparability of the

pipelines involved in the investigation. In the context of a multi-
country outbreak, the proposed approach of relaxing and tailoring the
outbreak cut-off would reduce the likelihood of missing isolates that
go unreported as they fall outside the case definition threshold in a
given national pipeline, but that would cluster within the defined
threshold in the pipeline centralizing the genomic outbreak investi-
gation (e.g., ECDC or EFSA).

The adoption of this strategy for outbreak case-definition implies
shaping the threshold boundaries according to the specific context of
the outbreak under investigation, namely: i) the genetic and temporal
distance between the outbreak isolates already with a confirmed epi-
demiological link; ii) the clustering performance and comparability of
the pipelines involved in the outbreak investigation (regional, national
or supra-national); and, iii) the expected genetic heterogeneity, evo-
lutionary context and available typing information (ST, CC, serotype,
drug susceptibility profile) of the potential outbreak-causing strain.
While the first premise is expected to be strengthened as the integra-
tion of genomic and epidemiological data becomes more frequent (at
national and international levels)84,89, we consider that the present
study adds significant value to better inform outbreak investigation
regarding the last two knowledge gaps. On the one hand, we present
actual data regarding the comparability of a panoply of pipelines
currently in place in several countries and sectors, and describe an
innovative methodology for the rapid and comprehensive assessment
of pipeline clustering congruence and outbreak performance com-
parability. On the other hand, with the assessment of the congruence
between WGS typing and traditional typing data, we showcase very
different levels of genetic heterogeneity of the most prevalent STs,
CCs and/or serotypes, which represents valuable information for
routine genomic surveillance and outbreak case definition. Indeed, we
consolidated the existence of STs/CCs/serotypes with a clear poly-
phyletic signature, such as the ST7 and the ST325 for L. monocytogenes
and the Thompson and the Newport serotypes for S. enterica, a topic
that has been explored in previous studies65–68,90. Still, we also found
contrasting scenarios where the intra-ST or intra-serotype diversity
was quite low, such as the ST8 and the ST87 for L. monocytegenes, the
Agona serotype for S. enterica and the ST53 for C. jejuni. Besides the
potential implications that these different evolutionary patterns may
have for the selection of isolates for routineWGS surveillance based on
traditional typing data, which is commonly performed for the highly
prevalent S. enterica and C. jejuni species91, these observations under-
score the potential inadequacy of applying a single outbreak threshold
within a species89, as this may lead to an oversizing of potential out-
break clusters when highly clonal WGS-derived lineages (often over-
lapping with STs/serotypes) are involved. For instance, a previous in-
depth lineage-specificWGSanalysis of L.monocytogenes evolution also
corroborates that the outbreak cut-offs should not disregard the sub-
lineages/CCs under analysis92. This topic warrants further research in
order to determine which threshold ranges render the highest epide-
miological concordance per genogroup or even to evaluate the need
of (novel) cg/wgMLST typing schemas tailored to their population
structure, evolutionary history, and contemporary public health and
food safety concerns. For example, in recent years, the E. coli ser-
ogroup O26 (less represented in our dataset) has been the most
commonly reported to causeHemolytic Uremic Syndrome in Europe93,
thus being a good candidate for such evaluations (besides the O157
addressed in this study). The integration of epidemiological data in
large-scale WGS studies, for example, through the analysis of epide-
miologically confirmedoutbreaks,will alsobe crucial to tackle all these
subjects.

Noteworthy, even though allele-based pipelines are increasingly
consolidated as the method of choice for routine FWD WGS typing
with recognized gains6–8,22,94, SNP-based analysis for FWD outbreak
detection and investigation are intuitively used by many laboratories
for an enhanced discrimination of outbreak isolates detected by
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cg/wgMLST17,89, and are still in place in others as the main approach
for FWD outbreak detection (e.g., SnapperDB or CFSAN SNP
pipeline16,18,33,95,96). The timeframe of this international Consortium and
the dimension of our study rendered it impractical to perform an in-
depth SNP analysis for each one of the ~100 to ~300 potential outbreak
clusters consistently detected by all allele-based pipelines for each
species. Still, by conducting a SNP analysis for the top-represented
STs/serotypes, we investigated the congruence between SNP and cg/
wgMLST clustering and measured the SNP diversity within potential
cg/wgMLST outbreak clusters. Our results suggest that, when using an
ST- or serotype-specific reference (similar to what is done in Snap-
perDB), SNP-based analyses frequently provide equal to higher dis-
criminatory power than cg/wgMLST pipelines, which is also reflected
in the higher SNP than allelic distance within a cg/wgMLST outbreak
cluster. However, not unexpectedly, this observation was sensitive to
the genetic heterogeneity of the dataset, and, consequently, influ-
enced by the ST/serotype under evaluation by the SNP-based pipeline
and by the cg/wgMLST schema used by each allele-based pipeline. For
example, in C. jejuni, although dependent on the ST, ST-specific SNP-
based clustering generally provided higher resolution than the allele-
based pipelines running shorter schemas, but not so frequently when
compared to the pipelines relying on the biggest schema (PubMLST).
When comparing SNP-based pipelines between themselves (only
possible for L. monocytogenes and S. enterica), there were noticeable
resolution discrepancies, particularly in S. enterica analyses. These
discrepancies were related to the QC inclusion criteria applied by each
SNP-based pipeline, which had a considerable impact on the size of the
core SNP alignment, and, consequently, on the resolution. It is note-
worthy that our study did not explore the need and benefits of con-
ducting more advanced phylogenetic reconstructions (e.g., Maximum
Likelihood) and/or integrating recently described models that incor-
porate epidemiological and evolutionary data (e.g., substitution
rates)97 in SNP-based outbreak detection and investigation. In sum-
mary, the variations detected between SNP-based pipelines and their
sensitivity to multiple factors showcase the known difficulties in the
comparison and integration of surveillance data from laboratories
relying on this approach, as often reported in FWDs EQAs35–37. In
another perspective, our study suggests that SNP-based pipelines
provide enough resolution for outbreak detection when performed at
ST level, which corroborates their great potential to leverage even
higher resolutionwhenoutbreak-specific references are used to zoom-
in cg/wgMLST-derived outbreak clusters17. Regarding this topic, we
explored a dynamic cg/wgMLST approach that performs such zoom-in
by automatically increasing the resolution through the inclusion of
shared accessory wgMLST loci22,34, as implemented in ReporTree58.
Although we did not perform a direct comparison to assess the con-
gruence between the two zoom-in approaches, the results of this
exercise sustain that the “cg/wgMLST only” approach can be a pro-
mising alternative to enhance the intra-outbreak resolution, while
avoiding the need of relying on different methodologies and likely
reducing the complexity and turn-around time of the genetic investi-
gation in the context of outbreak.

The relevance of large-scale WGS typing approaches goes far
beyond the detection and investigation of outbreaks. Indeed, the
identification and real-time monitoring of main circulating lineages is
pivotal for a sustainable and efficient pathogen surveillance. There-
fore, in the last few years, a significant effort has been made towards
the development of clustering-based nomenclatures. For instance, for
cgMLST, Enterobase and INNUENDO propose nomenclature systems
based on the hierarchical clustering at different resolution levels22,98,
and other approaches relying on Life Identification Numbers (LIN)
were recently released99,100. For SNPs, the hierarchical “SNP-address”
nomenclature has proven applicability in routine surveillance. In this
study, we could identify, for each species and pipeline, subsequent
distance thresholds in which cluster composition remains similar (i.e.,

stability regions). Despite slight deviations, concordant regions were
normally found across all pipelines, thus showcasing their suitability to
capture main WGS-derived lineages and species population structure.
For instance, L.monocytogenes, S. enterica and E. coli exhibited stability
regions across multiple levels of resolution (Figs. 2c, 4c and 6c),
including early plateau regions of considerable high stability that are
not far from the outbreak level (where high instability was expectedly
noticed). These plateaux represent specific genetic distance threshold
ranges suitable for longitudinal monitoring of the main circulating
lineages/genogroups, thus representing an important asset for the
development/refinement of novel/existing nomenclature systems.
This research line also informed us about the challenges associated
with the identification of stability regions for C. jejuni, due to its high
genetic diversity and polyclonal population structure78–80. In fact, the
identified regions for this species were often too short and less con-
cordant between pipelines, anticipating great difficulties in the
implementation of a robust hierarchical allele-based nomenclature
system for this pathogen, and reinforcing the need for in-depth
populational genomics studies to explore whether genogroup- or CC/
ST-specific WGS-based classification systems could be an alternative
solution to surpass these challenges. The identification of stability
regions and their congruencewith traditional typinghave been the aim
of multiple studies, typically relying on a single pipeline22,65,88. In this
study, we went a step further by performing this analysis for multiple
pipelines. We observed not only that the threshold ranges with the
highest congruence with traditional typing have a good overlap with
stability regions, but also thatdifferent pipelines yielded similar results
between them. For example, in L. monocytogenes, we could identify, in
all pipelines, a high congruence with CC and ST classifications around
cgMLST thresholds of 388-508 and 150-190ADs, respectively. A similar
scenario was found for S. enterica, where we observed moderate
congruencebetween cg/wgMLST stability regions and serotype and ST
classifications, roughly at 1261-1663 and 205-310 levels, respectively.
The interpretation of these results should take into consideration the
fact that our study relied on curated datasets that aimed at mimicking
the current species diversity in public repositories, thus being likely
biased towards more prevalent lineages and/or countries with high
WGS volume. Still, the good inter-pipeline comparability and the high
congruencewith traditional typing are good indicators that our results
are robust and can be extrapolated to other diverse datasets and
scenarios. For example, the cg/wgMLST stability region that we iden-
tified as best representing serotype classification for S. enterica cor-
responded well with the largest stability region detected in a previous
large-scale comparative genomics study of this species that relied on a
different dataset65. In summary, our investigation on cluster stability
regions and congruence with traditional typing provides valuable
results with possible implications for future nomenclature design,
while favoring backwards compatibility with pre-WGS typing Era and
increasing the confidence of laboratories to pursue the demanded
technological transition.

Ultimately, with the rampant increase of WGS data and a number
of laboratories conductingWGS-based surveillance, we anticipate that
the typical exercises for inter-laboratory comparability assessment
(e.g., EQAs, ring trials, proficient tests, etc.), which are usually focused
on outbreak cluster detection among a limited number of isolates, will
need to evolve to another scale in terms of dataset size and diversity,
and the magnitude of congruence assessment. The current study was
limited to European laboratories, but the methodologies and tools
developed throughout this study may be used to streamline further
inter-laboratory assessments at a global scale, with expected benefits
for a more cooperative and efficient global response to bacterial
foodborne threats. In addition, these tools can contribute to support
the continuous intra-laboratory evaluation and long-term sustain-
ability of existing or newly developed pipelines. In order to showcase
this application,we employed thedeveloped tools to rapidly assess the
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impact ofmodifying certain pipeline components (assembly and allele
calling), showing that our results would be maintained if alternative
assemblies had been used or if chewBBACA had been updated to a
newer version.

In conclusion, this study provides valuable insights into the
comparability of pipelines commonly used for FWD genomics sur-
veillance and reinforces the need, while demonstrating the feasibility,
of conducting continuous and comprehensive WGS pipeline compar-
ison studies. Our work contributes to accelerate the technological
transition towards a robust FWD WGS surveillance at global scale,
while promoting smoother communication and cooperation between
One Health stakeholders.

Methods
Dataset selection and curation
In order to accomplish the objectives of this study, we aimed to
compile a diverse dataset (including sequencing reads and respective
metadata) that captures the genomic diversity within the populations
of L. monocytogenes, S. enterica, E. coli and C. jejuni. To this end, the
BeONE partners shared anonymized sequencing reads under a Mate-
rial Transfer Agreement. Read QC, trimming and assembly were per-
formed with Aquamis v1.3.9101 using default parameters. Briefly, reads
were trimmed with fastp102 and assembled with Shovill v1.1.0103 using
SPAdes v3.15.4 de novo genome assembler104. Assembly QC was per-
formed with QUAST v5.0.2105, Augustus106 for gene prediction and
BUSCO107. ConFindr v0.7.4108 was used for inter and intra genus con-
tamination analysis and Kraken2 v2.1.2109 for read and assembly-based
taxonomy profiling. MLST ST determination was performed with mlst
v2.22.023,110. All genome assemblies passing the QC were included in
the final dataset. Among the others, we noticed that a considerable
proportionof assemblieswasflagged as “QC fail” exclusively due to the
“NumContamSNVs” parameter (252 out of 371 for L. monocytogenes,
198 out of 702 for S. enterica, 324 out of 675 for E. coli, and 446 out of
919 for C. jejuni), suggesting that this setting might have been too
strict. The manual inspection of a random subset of these samples
showed that the detected contaminants were essentially related to
sequencing errors. Therefore, we decided to recover the assemblies
forwhich thepercentageof reads corresponding to the correct species
was >98% (according to the results of Kraken2109 in the AQUAMIS101

pipeline) and integrate them in the final dataset. The final BeONE
dataset comprised 1426 L. monocytogenes, 1540 S. enterica, 308 E. coli
and 610C. jejuni isolates50,52,54,56. In order to ensure the dataset diver-
sity, we complemented this BeONEdatasetwith publicly availableWGS
data for the four species of interest, and for which the QC and
assembly followed the exact same methodology51,53,55,57,58. The final
dataset used in this study comprised a total of 3300 L. monocytogenes,
2974 S. enterica, 2307 E. coli and 3686C. jejuni isolates.

Pipeline and input selection
Based on the provided details for each pipeline, we established a
strategy to avoid pipeline redundancy and increase the analytical scale
(e.g., splitting the work between BeONE institutes with matching
pipelines). As it would be unfeasible for each BeONE partner to filter
the reads and/or assemble the genomes of so many isolates with the
personal and computational resources available throughout the
BeONE project timeframe, allele-based pipelines took as input all the
assemblies available for these datasets, while SNP-based pipelines
started from the QC-passed trimmed sequencing reads for the most
represented STs/serotypes in each dataset, whichwere then aligned to
the respective reference genome sequences (details in Table 1 and
Supplementary Data 1). After an initial survey, wenoticed that all allele-
based approaches used by the BeONE partners that could be used to
assemble the input datasets relied on SPAdes104,111 for de novo genome
assembly. Specifically, two non-commercial automated workflows
were available within the consortium: AQUAMIS101,112 and INNUca22,83.

As the use of different assembly pipelines was not expected to have a
significant impact on the clustering results63 and AQUAMIS turned out
to be faster and consume less computational resources, we decided to
use the assemblies generated with this tool (see Dataset selection and
curation section) as input for all allele-based pipelines. Of note,
AQUAMIS is aligned with the QC and assembly workflow implemented
in the EFSA One Health WGS analytical pipeline6,101.

Specific pipeline methodology
Allele-based pipelines
chewieSnake. The chewieSnake pipeline v3.1.119 was used to perform
allele calling with chewBBACA v2.0.12 (setting bsr_theshold: 0.6,
size_threshold: 0.2)72 on the genome assemblies, and to compute the
distance matrix (grapetree_distance_method: 3) and generate a MST
with GrapeTree v2.159. Details on the used schemas are provided in
Supplementary Data 38.

INNUENDO-like. The INNUENDO-like pipeline corresponds to a non-
automated workflow similar to the one available at the INNUENDO
platform22. Allele-calling was performed with chewBBACA v2.8.5 (set-
tingbsr_theshold: 0.6, size_threshold: 0.2)72. Dependingon the species,
this pipeline was run with alternative schemas, as detailed in Supple-
mentary Data 38. In order to distinguish the different approaches,
except for L. monocytogenes for which only one schema was tested
with this pipeline, for all species the pipeline name is followed by the
schema used.

Ridom SeqSphere+. This software was run by two laboratories on
different datasets. One was responsible for the analysis of S. enterica
andC. jejuni, and theother one for the analysis of L.monocytogenes and
E. coli. In both cases, SeqSphere+ (Ridom GmbH, Germany) version
8.3.4 (Ridom, Münster, Germany) was used to perform cgMLST allele
calling on assemblies, and samples covering less than 95%of target loci
of the schemas were removed from subsequent analysis. Details on
the used schemas are provided in Supplementary Data 38. Of note, the
partner Institute applying SeqSphere for C. jejuni typically run the
cgMLST schema (637 loci) over closely related samples. A preliminary
analysis revealed that the application of this methodology on the
diverse C. jejuni dataset of this study would yield a very low clustering
resolution, which hampered the comparison with the remaining ones.
For this reason, an extraSeqSphere analysiswith the extended cgMLST
schema (637 core loci + 958 accessory loci) was requested to the
partner in order to avoid the exclusion of this pipeline. The obtained
wgMLST allelic matrix was subjected to clustering analysis with
ReporTree v1.0.158, as described below (this combined pipeline was
designated SeqSphere-wgMLST). For the S. enterica dataset, hamming
distances were calculated with SeqSphere+ version 8.3.4, and cluster-
ing analysis was performed with ReporTree v1.0.158, as described
below. For L. monocytogenes and E. coli datasets, hamming distances
and HC single-linkage clustering were calculated in R with the ham-
mingdists function of cultevo package v1.0.2113 and the hclust function
of stats package v 0.1.0114, respectively.

Bionumerics. cgMLST analysis was performed on assemblies with
BioNumerics 8.1 (Biomérieux). Details on the used schemas are pro-
vided in Supplementary Data 38. For all four target pathogens entries
covering less than 95% of the loci in the schema were removed. Entries
with “multiple consensus loci” above 30 were removed. Furthermore,
only sequences with genome sizes within the following size rangewere
kept for further analysis: L.monocytogenes (2.8-3.1Mb), S. enterica (4.5-
5.3Mb), E. coli (4.5-5.6Mb) and C. jejuni (1.53-1.9Mb). Hamming dis-
tances were also calculated with Bionumerics.

MentaLiST. cgMLST profiles were computed with MentaLiST v1.0.0115

(docker: mentalist:1.0.0--39e9e05e54) for each species of interest.
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MentaLiST115 was used to build the k-mer databases for each species of
interest with a k-mer length (-k) of 31 and a minimum a percentage of
allele coverage (-c) of 1.0, as well as call alleles from input fasta format
(--fasta) with the original voting algorithm (--output_votes), and
including alleles from special cases such as incomplete coverage,
novel, and multiple alleles (--output_special). Details on the used
schemas are provided in Supplementary Data 38.

SNP-based pipelines
snippySnake (and WGSBAC). snippySnake v1.1.044,116 ran snippy
v4.6.0117 on each sample, followed by snippy-core to obtain the core-
alignment and variant table. The snippy parameters were “mapqual:
60; basequal: 13; mincov: 10;minfrac: 0; minqual: 100; maxsoft: 10”. A
SNP distancematrix was computed using snp-dists v0.7.0118. Details on
the reference genomes are provided in Supplementary Data 1.

WGSBAC119 ran snippy v4.6.0117 for each STor serotype in standard
settings for the sequencing data of each sample using the respective
reference genome sequence (details in Supplementary Data 1). Based
on core-genome SNP-alignments, snp-dists v0.6.3118 was used to cal-
culate pairwise SNP-distances, which were used for hierarchical clus-
tering with the hierClust function v.5.1 of the statistical language R114.
After the cluster congruence analysis for L. monocytogenes, it was
observed that WGSBAC yields the exact same clustering results as
SnippySnake, so, for theother species, weonlypresented the results of
SnippySnake, which also reflect the WGSBAC performance.

CSI Phylogeny. CSI Phylogeny v1.462 was used to call SNPs and infer
phylogenies. Settings used were: “min SNP depth: 10, min relative SNP
depth: 10%, Minimum distance between SNPs (prune): 10, min SNP
quality: 30, min read map quality: 25, min Z-score: 1.96, ignore het-
erozygous SNPs: false”. In brief, the pipeline maps sequencing read
data using BWA MEM120 to the chosen reference sequence (details in
SupplementaryData 1), then vcfutils (part of SAMtools121) is used to call
SNPs. SNPs are then filtered by CSI Phylogeny62, which produces a SNP
matrix and a SNP pseudoalignment. Note that the usual CSI Phylogeny
workflow would then produce a maximum likelihood tree from the
alignment122. However, in order to create comparable results between
the methods, this final step was skipped in this study, and, instead, a
single-linkage tree was created from the SNP matrix with ReporTree
v1.0.158, as described below.

SnapperDB. SnapperDB16 software was utilized to assign a SNP address
to each of the analyzed isolates. The ‘SNP address’ strain level nomen-
clature is used to describe the relationship between isolates in a defined
population, and is routinely performed at the partner institute using
hierarchical single linkage clustering at seven decreasing thresholds of
genetic differences (250, 100, 50, 25, 10, 5 and 0 SNPs difference) to
identify epidemiologically significant clusters. For the purpose of this
study, partitions were identified at all possible SNP levels.

Output harmonization and clustering at all resolution levels
For the cluster congruence analysis, it was important to harmonize the
output of the different pipelines having clustering information at each
possible distance threshold (i.e., all possible resolution levels). How-
ever, except for the WGSBAC pipeline and the Ridom SeqSphere+
pipeline for L. monocytogenes and E. coli, which provided a partitions
table, the vastmajority of themdonot produce this type of output, but
instead end up with outputs such as allele/SNP or distance matrices
and phylogenetic trees (Table 1). Therefore, in order to have a har-
monized input for the clustering congruence analysis, allele matrices
(in the case of chewieSnake, INNUENDO-like, C. jejuni SeqSphere-
wgMLST and MentaLiST) or distance matrices (in the case of Ridom
SeqSphere+, Bionumerics, snippySnake, CSI Phylogeny and Snap-
perDB)were used as input for ReporTree v1.0.158. This tool was used to
process the available outputs and obtain clustering information at all

possibledistance thresholds. Default parameterswereused, except for
the argument “--loci-called”, which was set to 95% in order to remove
samples with more than 5% missing loci, and for the argument “--site-
inclusion”, which was set to 99% for the INNUENDO-like using the
INNUENDO wgMLST schemas and the C. jejuni SeqSphere-wgMLST
pipeline in order to only keep informative wgMLST loci with alleles
assigned for 95% of the samples (Supplementary Data 38). ReporTree
was run for all of them using the single-linkage hierarchical clustering
algorithm, which is also the default clustering method that the
respective institutes use to determine clusters of potential public
health interest. For all cases where allelic matrices were available, an
additional ReporTree run was performed requesting clustering with
the MSTreeV2 GrapeTree algorithm6,27,59,64.

Traditional typing
The traditional typing information used in this work corresponded to
the ST andCC for L.monocytogenes, ST and serotype for S. enterica and
E. coli, and ST and CC for C. jejuni. ST was determined for all species
with mlst v2.22.023,110 through Aquamis v1.3.9101, as described above
(Dataset selection and curation section). L.monocytogenes andC. jejuni
CCs were inferred for each predicted ST based on the information
present in PubMLST/BIGSdb23 schema profiles for these species.
S. enterica serotype was determined with SeqSero2 v1.1.1123 using
default parameters. E. coli serotype was determined for QC-passed
reads with patho_typing v1.0124 using default parameters.

PopPUNK
Themain genomic lineages present in E. coli andC. jejunidatasets were
inferred with PopPUNK v2.6.5 (default parameters) using E. coli v2 and
C. jejuni v1 databases obtained on November 22nd, 2023 from BacPop
website [https://www.bacpop.org/poppunk/125] and providing AQUA-
MIS genome assemblies as input. Given the unavailability of functional
databases for L.monocytogenes and S. enterica at the time of this study,
this tool was not used for these two species.

Identification of pipeline stability regions
Stability regions, i.e., distance thresholds providing similar
clustering results were determined with ReporTree v1.0.158 using
default parameters. Briefly, this pipeline uses the script
comparing_partitions_v2.py58,126 to assess the number and composition
of clusters obtained at progressively increasing distance thresholds
anddetermine theneighborhoodAdjustedWallace coefficient (nAWC)
at consecutive partitions (n + 1 → n), based on a previously described
approach86–88. This script was run with default settings requesting the
stability analysis, and, therefore, a regionwas considered as of stability
when a nAWC ≥0.99 was observed in more than 5 subsequent
thresholds.

Congruence analysis
Cluster congruence was assessed with the script comparing_
partitions_v2.py58,126 requesting the between_methods analysis. Briefly,
for each pairwise comparison, we calculated the AWC, as a measure of
the probability that two samples that cluster together using one
method (at a given threshold level) also cluster together with another
one (at a given threshold level) or belong to the same lineage, ST, CCor
serotype87. This was conducted between all possible threshold levels in
both directions (method A →method B andmethod B →method A). In
addition, for each comparison, we also calculated the Adjusted
Rand (AR) coefficient as a measure of the overall agreement
between the typing methods87. The three values calculated for each
comparison were then combined into a Congruence Score (CS)
(CS = AWCA → B + AWCB → A + AR), which varies from 0 (no congruence)
to 3 (absolute congruence). This score was used to compare clustering
results at each possible threshold of a pipeline either with traditional
typing data orwith each of the possible thresholds of another pipeline.
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Identification of corresponding points
The script get_best_part_correspondence.py127 was used for each pipe-
line comparison in order to assess what was the threshold that pro-
vided the most similar clustering results in the other pipeline (i.e., the
best corresponding point), as assessed by CS scores. Only compar-
isons yielding CS ≥ 2.85, which ensures a score ≥0.95 for each CS
metric component, were considered as possible corresponding points
(i.e., no correspondence was reported when the best match had CS <
2.85). When a given threshold had a single valid corresponding point,
this was assumed as the point of highest congruence. When a given
threshold had several valid corresponding points, the closest thresh-
old was reported as the best match. The trend line fitting the corre-
sponding points of each comparison, as well as the respective r2 and
slope, were determined with the scipy v1.10.0 linregress function128.
The slope was used as a proxy to evaluate whether two pipelines yield
highly concordant clustering at the exact same level with slopes close
to 1 (i.e., y = x scenario) reflecting high clustering concordance and
similar discriminatory power across all levels.

Assessment of the discriminatory power at high-resolution
thresholds
The script comparison_outbreak_level.py127 was used to assess the dis-
criminatory power of each pipeline at high-resolution thresholds.
Briefly, all the clusters identified at a potential outbreak level (7 ADs for
L. monocytogenes, 14 ADs for S. enterica, 9 ADs for E. coli, and 4 ADs for
C. jejuni, see section Thresholds for identification of outbreak clusters
for details) by each allele-based pipeline and their composition were
recorded. Then, a list with the union of these clusters was created and
the lowest threshold level at which each cluster was identified with the
same composition in each pipeline (allele- and SNP-based) was asses-
sed. Only samples passing the QC of all pipelines were considered for
these analyses.

The script stats_outbreak_analysis.py was used to determine the
number of clusters identified by a given pipeline at a given threshold
that could also be detected with the exact same composition by
another pipeline at a (or up to a) similar or even higher threshold. Only
samples passing the QC of all pipelines were considered for these
analyses. Clusters with overlapping samples but different composi-
tions were considered as different clusters.

Regarding the assessment of the genetic diversity within potential
outbreak-related clusters, we used the script stats_out-
break_analysis_snp_dists.py. This script determines, for each cluster
identified by a given allele-based pipeline at a given threshold, the
maximum allelic or SNP distancewithin the cluster that the same or an
alternative allele- or SNP-based pipeline detected with the exact same
composition.

Thresholds for identification of outbreak clusters
The threshold used for the identification of potential outbreak clusters
varied between species. For L. monocytogenes, we used a cutoff cor-
responding to 7 ADs, as this is the threshold conventionally used to
determine potential outbreak-related samples in this species7,63,129. For
the other three, namely S. enterica, E. coli andC. jejuni, we considered a
dynamic approach using the level for outbreak detection determined
in the INNUENDO project22. Specifically, 0.43% of the core loci for S.
enterica, 0.34% for E. coli, and 0.59% for C. jejuni. For S. enterica and E.
coli, the corresponding absolute thresholds translated to 14 and 9 ADs
in all pipelines, respectively, which are absolute thresholds similar to
the ones obtained in INNUENDO22. ForC. jejuni, the calculated absolute
threshold varied between pipelines, corresponding to 4 ADs for the
pipelines running shorter schemas and 8 ADs for those running the
PubMLST schema. However, as previous studies suggested the appli-
cation of a 4 ADs threshold also for the PubMLST schema81,82, we
decided to run our exercise with a 4 ADs threshold in all pipelines.
Noteworthy, in order to provide more informative results regarding

the inter-pipeline pipeline comparison at outbreak level, this study
also explored other commonly used thresholds (e.g., 4 ADs in L.
monocytogenes and 5ADs inS. enterica). Additionally, taking advantage
of the flexibility of stats_outbreak_analysis.py (described above), the
exercise included the assessment of the proportion of clusters iden-
tified by a given pipeline at a static threshold (= AD1) that could also be
detectedwith the exact samecompositionwhen: i) a static threshold (=
AD2) is also applied to the second pipeline (e.g., Figs. 3g, 5g,
7g and 9g); or ii) a range of thresholds (≤AD2) is also applied to the
second pipeline (e.g., Figs. 3h, 5h, 7h and 9h).

wgMLST zoom-in exercise
For the three species with wgMLST schemas available, namely S.
enterica, E. coli and C. jejuni, we conducted an additional exercise that
aimed to assess the potential of a dynamic cgMLST approach to
increase the discriminatory power at outbreak level. Briefly, for each of
the three species, the INNUENDO-like pipeline was run with the
respective INNUENDO wgMLST schema (Supplementary Data 38) and
ReporTree v1.0.158 was used to identify clusters at all possible distance
thresholds, as described above. For the purpose of this exercise, the
“--zoom-cluster-of-interest” argument of ReporTree was set to the
threshold used for outbreak identification (see section Thresholds for
identification of outbreak clusters). With this approach, for each
cluster identified at this threshold level, the set of core loci was
dynamically increased according to the samples that belong to the
cluster. The maximum AD difference between two samples within a
cluster and the difference between this value and the maximum dis-
tance observed in the initial analysis (i.e., with the cgMLST loci deter-
mined for thewhole dataset) for the same cluster was determinedwith
the scriptwgmlst_exercise.py. Of note, in C. jejuni, a similar analysis was
performed for the SeqSphere-wgMLST pipeline. Moreover, as the
INNUENDO-like pipeline using the INNUENDO static cgMLST schema
was the oneproviding the lowest resolution inC. jejuni, for this species,
we also tested the impact of performing a dynamic cgMLST approach
using the INNUENDO wgMLST schema in outbreak clusters identified
in an initial analysis with the static INNUENDO cgMLST schema. For
this, we performed an additional ReporTree run, where, instead of
providing the initial allele matrix for the static cgMLST, we provided
the allelematrix for thewgMLST schema.Moreover, the file combining
metadata and the clustering partitions at all levels that was obtained in
the initial ReporTree run (with the static cgMLST schema) was pro-
vided asmetadata input. This additionalReporTree runwasperformed
for each cluster identified in the initial run at the threshold used for
identification of outbreak clusters (i.e., 4 ADs) combining the “--filter”
and “--subset” arguments.

Assessing the impact of modifying pipeline components
This study involved the distribution of the same set of genome
assemblies (generated with AQUAMIS101) across multiple institutes in
order to assess inter-pipeline cluster congruence. This approach was
taken because it would be unfeasible for every BeONE partner to run
their own assemblies with the personal and computational resources
available throughout the BeONE project timeframe, and also because
the use of different assembly pipelines was not expected to have a
significant impact on the clustering results63. Nevertheless, in order to
assess the impact of providing genome assemblies performed with
AQUAMIS101 in a pipeline that does not use this assemblyworkflow, and
of a possible futureupdate of chewBBACA72 allele-caller,weperformed
two additional analysis: i) comparison of the clustering results
obtained with same pipeline when AQUAMIS or INNUca22,83 assemblies
are provided as input; and ii) comparison of the clustering results
obtained with the same pipeline when two different versions of
chewBBACA are used. For the first analysis, we assembled the datasets
of each of the four species with INNUca v4.2.222,83 with default para-
meters. Afterwards, the INNUENDO-like pipeline (with chewBBACA
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v2.8.5) was run in parallel using as input the INNUca and the AQUAMIS
genome assemblies of the set of samples that passed theQCof the two
assembly workflows. For the second analysis, for each of the four
species, we ran in parallel the INNUENDO-like pipeline over the
AQUAMIS genome assemblies using chewBBACA v2.8.5 and chewB-
BACA v3.3.5 with the non-populated cgMLST schemas available on
April 1st, 2024 in chewie-NS75,130. After an initial run of the allele-caller
to identify the samples with less than 5% of missing loci, we then run
the two versions of the allele-caller on the set of passing samples. For
each of the two comparisons (different assembly workflows and dif-
ferent allele-caller versions), we performed a cluster congruence ana-
lysis and an in-depth pairwise comparison at outbreak level following
the above-mentioned methodologies.

Graphical visualization
Plots generated in this research studywere generatedwith the Seaborn
python module131 or with the ggplot2 R package132.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Anonymized sequencing reads of the BeONE dataset are deposited in
the European Nucleotide Archive (ENA) database under the BioPro-
jects PRJEB57166133, PRJEB57179134, PRJEB57098135 and PRJEB57119136.
Genome assemblies are deposited in the Zenodo repository (L.
monocytogenes: [https://doi.org/10.5281/ZENODO.7267486]50; S.
enterica: [https://doi.org/10.5281/ZENODO.7267785]52; E. coli: [https://
doi.org/10.5281/ZENODO.7267844]54; C. jejuni: [https://doi.org/10.
5281/ZENODO.7267879]56). The public dataset data was retrieved
from Zenodo (L. monocytogenes: [https://doi.org/10.5281/ZENODO.
7116878]51; S. enterica: [https://doi.org/10.5281/ZENODO.7119735]53; E.
coli: [https://doi.org/10.5281/ZENODO.7120057]55; C. jejuni: [https://
doi.org/10.5281/ZENODO.7120166]57). Supplementary data have also
been deposited in the Zenodo repository [https://doi.org/10.5281/
zenodo.12805750)]137. Source data are provided with this paper.

Code availability
The collection of scripts used to conduct these analyses are available at
the github repository [https://github.com/insapathogenomics/WGS_
cluster_congruence]127. For reproducibility, the version corresponding
to this study is deposited in Zenodo [https://doi.org/10.5281/zenodo.
15089452]138.
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