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scMultiMap: Cell-type-specific mapping of
enhancers and target genes from single-cell
multimodal data

Chang Su 1,2,4 , Dongsoo Lee1, Peng Jin 2 & Jingfei Zhang 3,4

Mapping enhancers and target genes in disease-related cell types provides
critical insights into the functional mechanisms of genome-wide association
studies (GWAS) variants. Single-cell multimodal data, which measure gene
expression and chromatin accessibility in the same cells, enable the cell-type-
specific inference of enhancer-gene pairs. However, this task is challenged by
high data sparsity, sequencing depth variation, and the computational burden
of analyzing a large number of pairs. We introduce scMultiMap, a statistical
method that infers enhancer-gene association from sparse multimodal counts
using a joint latent-variable model. It adjusts for technical confounding, per-
mits fastmoment-based estimation and provides analytically derived p-values.
In blood and brain data, scMultiMap shows appropriate type I error control,
high statistical power, and computational efficiency (1% of existing methods).
When applied to Alzheimer’s disease (AD) data, scMultiMap gives the highest
heritability enrichment in microglia and reveals insights into the regulatory
mechanisms of AD GWAS variants.

The past two decades have seen significant advances in genome-wide
association studies (GWAS), generating extensive catalogs of genetic
variants linked to complex traits and diseases. However, over 90% of
these identified variants are located in non-coding regions of the
genome1, and their disease-causing mechanisms remain largely
unknown. Increasing evidence suggests thatGWAS variants contribute
to disease risk by modifying gene regulatory mechanisms in disease-
relevant cell types1–3. Mapping enhancers, a principal class of gene
regulatory elements, and its target genes has shown great promise in
uncovering the functions of GWAS variants in specific cellular
contexts4. However, most existing analyses utilize data from bulk tis-
sues, which may fail to capture the highly cell-type-specific nature of
enhancers, or data from cell lines, whichmay not accurately represent
the biology of primary cell types and cells from diseased subjects5,6.
Some other analyses detect cell-type-specific enhancers using epige-
netic data from a single modality, but they usually cannot identify the
associated target genes due to the lack of data modality with gene
expressionmeasurements5. Recent technologies such as 3D epigenetic

data and CRISPR screen data can be used to map enhancer-gene pairs
in different cell types, but they remain laborious and costly to collect
and may only be used to study cell lines5,7,8.

The advent of single-cell multimodal technologies has unlocked
unprecedentedopportunities formapping enhancers and target genes
in specific cell types and contexts. Specifically, paired single cell assays
for transposase-accessible chromatin using sequencing (scATAC-seq)
and single cell RNA sequencing (scRNA-seq) allow for the profiling of
both peak accessibility, a measurement of enhancer activity, and gene
expression within the same cells. These data enable the identification
of enhancer-gene pairs based on significant associations between peak
accessibility and gene expression. As single-cell multimodal data are
collected from both healthy individuals and those with various disease
statuses across primary human cell types, it enables the computational
inference of enhancer-gene pairs in a manner that is both cell-type-
specific and context-dependent. Though this is also possible with
unpaired scATAC-seq and scRNA-seq data9, paired data from multi-
modal technologies profile the coordinated variations of peaks and
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genes across individual cells, providing richer information and greater
power for identifying peak-gene associations.

However, substantial computational and analytical challenges
remain in the inference of peak-gene associations with single-cell
multimodal data. From a computational perspective, the task is highly
costly due to the computational burden of screening all candidate
peak-gene pairs in the genome. For example, using a cis-region of 1Mb
to define candidate pairs10 could result in ~ 104 pairs to be tested in a
single cell type. Meanwhile, most existing methods use Monte Carlo
methods for statistical inference, such as sampling peaks from differ-
ent chromosomes to construct null distributions11 and using boot-
strapping for uncertainty quantification12. For these methods, finding
the p-value for a single peak-gene pair requires running the compu-
tational procedure ~ 102 to ~ 104 times. Combined with the large
number of pairs and multiple cell types to consider, the overall com-
putational costs of existingmethods become prohibitively high, as the
procedure needs to be run ~ 106 to ~ 108 times. From an analytical
perspective, challenges arise due to the high sparsity, technical con-
founding and variations across biological samples in single-cell mul-
timodal data. First, scATAC-seq data are highly sparse and often
treated as binary13, leading to the common practice of using binarized
counts in peak-gene association inference11,12. Recent evidence, how-
ever, suggests that peak counts contain quantitative information and
count-based modeling can improve downstream analysis13,14. As a
result, the heuristic treatment of peak counts in existingmethodsmay
result in a loss of information and detection power in peak-gene
association inference. Second, the confounding effects of varying
sequencing depths pose a challenge for peak-gene association infer-
ence. It has been shown that varying sequencing depths can lead to
spurious associations when using most existing methods for inferring
gene-gene associations from scRNA-seq data15. For peak-gene asso-
ciations, similar spurious associationsmay arise as both peak and gene
counts correlate with their respective sequencing depths, and the
sequencing depths from these two data modalities tend to be corre-
lated (Supplementary Fig. 1). Third, in the presence of multiple biolo-
gical samples, inferring peak-gene associations are further challenged
by coordinated variations in mean expression and accessibility across
biological samples16–18, leading to spurious associations. For example,
consider a peak-gene pair that is not associated in sample A or sample
B. If the mean expression and accessibility levels are both high in
sample A and both low in sample B, then the peak-gene pair may
appear associated if cells from samples A and B are pooled in the
analysis without any careful adjustment.

To address these challenges, we present a new approach, called
scMultiMap, that uses single-cell multi modal data to map cell-type-
specific enhancer-gene pairs. scMultiMap is based on a multivariate
latent-variablemodel that simultaneously models the gene counts and
peak counts from single-cell multimodal data, and makes minimal
parametric assumptions. It measures peak-gene association via the
correlation betweenunderlying gene expression andpeak accessibility
levels while accounting for variations in sequencing depths and across
biological samples. Furthermore, we develop a highly computationally
efficient moment-based estimation framework that provides both
correlation estimates and theoretically justified analytical p-values for
assessing statistical significance.

We evaluated scMultiMapby applying it tomultiple paired scRNA-
seq and scATAC-seq datasets, including datasets on peripheral blood
mononuclear cells (PBMC) from healthy subjects and on postmortem
brain samples from Alzheimer’s disease (AD) patients and controls.
Our results show that scMultiMap maintains appropriate type I error
control and achieves higher statistical power when compared with
existing methods. Additionally, results from scMultiMap are more
reproducible across independent single-cell multimodal data and also
more consistent with results from orthogonal data modalities on the
same cell type, such as promoter capture Hi-C19, HiChIP20 and

proximity ligation-assisted chromatin immunoprecipitation sequen-
cing (PLAC-seq)3. We demonstrated the superior computational scal-
ability of scMultiMap by benchmarking its computing time on real
data. To illustrate its utility in studying functions of GWAS variants in
disease-related cell types, we applied scMultiMap to data collected on
microglia from AD patients and controls. This analysis revealed high
enrichment for AD heritability in microglia enhancers and identified
enhancer-gene pairs containing selective AD GWAS variants21, provid-
ing insights into the regulatory functions and disease-causing
mechanisms of these AD variants in microglia.

There is another body of work that identifies peak-gene pairs
based on variable importance scores in prediction models, such as
SCENIC+22. However, these methods do not incorporate statistical
inference and lack p-values or false positive control. Hence, we eval-
uate their performance only on benchmark datasets and focus in this
paper on methods that formally test peak-gene associations (Supple-
mentary Discussion).

Results
Overview of scMultiMap
We propose a joint latent-variable model to simultaneously model
gene expression and peak accessibility. Suppose there are p genes, q
peaks, and n cells in the cell type of interest. Let xij and yij0 be the
observed counts of gene j and peak j0 in cell i, respectively. Further-
more, let zij be the underlying expression level for gene j, defined to be
the number of mRNA molecules from each gene relative to the total
number of mRNA molecules in a cell. Let vij0 be the underlying acces-
sibility level for peak j0, defined to be the number of DNA fragments
from each peak relative to the total number of DNA fragments in a cell.
Use si =

Pp
j = 1xij and ri =

Pq
j = 1 yij to denote the sequencing depths for

scRNA-seq and scATAC-seq in cell i, respectively. We propose the fol-
lowing model

ðzi1, . . . , zip, vi1, . . . , viqÞ � Fp+qðμ,ΣÞ, μ=
μ1

μ2

� �
, Σ =

Σ1,Σ12

Σ12,Σ2

� �
,

xijjzij � Poisson ðsizijÞ, yij0 jvij0 � Poisson ðrivij0 Þ, j 2 ½p�, j0 2 ½q�,
ð1Þ

where Fp+q(μ, Σ) is a non-negative (p + q)-variate distribution with a
mean vector μ of length p + q and a covariance matrix Σ of dimension
(p + q) × (p + q). The covariancematrix Σ captures biological variations
in the underlying gene expression and peak accessibility levels across
cells, and is our main parameter of interest. Conditional on the latent
expression level zij and accessibility level vij0 , gene count xij and peak
count yij0 are assumed to independently follow Poisson measurement
models that depend on sequencing depths si and ri, respectively. Our
approachdoes not impose specific parametric assumptions on Fp+q( ⋅ ),
though (1) accommodates commonly considered distributions as
special cases. For example, if zij (vij0 ) follows a Gamma distribution,
then xij (yij0 ) follows a negative binomial distribution. In model (1),
dispersion beyond the Poisson distribution is flexibly accommodated
via Fp+q( ⋅ ).

Under model (1), we measure peak-gene correlations via Σ12,
which directly quantifies the correlation strength between the under-
lying expression zi = (zi1,…, zip) and accessibility vi = (vi1,…, viq) and is
not affected by variations in sequencing depths. When multiple bio-
logical samples (subjects) are present in the data set, we model the
mean vector μ as μk for subject k. This consideration accounts for
variations in means across biological samples and avoids spurious
associations (see Methods section).

We model peaks using a count measurement model that accom-
modates sequencing depth variations and overdispersion. Existing
methods either treat peak data as binary12 or free from sequencing
depth variations11, leading to a loss of power and potentially con-
founded estimates. Supported by recent evidence that Poisson
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modeling improves thedownstreamanalysis of peakcounts13,14 and the
observation that peak counts display additional overdispersion com-
pared to Poisson (Supplementary Fig. 2), model (1) is able to better
leverage thequantitative information in peakcounts, removepotential
confounding due to sequencing depths, and improve power in
detecting association.

Estimation and testing under model (1) are non-trivial, as we do
not wish to make restrictive parametric assumptions on Fp+q( ⋅ ).
Moreover, there is usually a large number of peak-gene pairs to con-
sider, making computational cost a practical and significant concern.
To tackle these challenges, we propose a moment-based estimation
framework that uses iteratively reweighted least squares (IRLS) with
carefully specified weights to improve statistical efficiency. For genes
j∈ [p], we estimate themeanparameters μ1,j’s and varianceparameters
σ1,jj’s using moment-based regressions for the first and second
moments, iteratively until convergence. In this process, σ1,jj’ s are
estimated with μ̂1, j ’s and μ1,j’s are estimated with weights involving
σ̂1, jj ’s. When multiple subjects are present in the data, we introduce a
set of binary indicators for the subject-of-origin of each cell, allowing
us to estimate subject-specificmeans and avoid confounding effects. A
similar set of regressions is applied to estimate the mean μ2, j0 ’s and
variance σ2, j0 j0 ’s of peaks j0 2 ½q�. Given the estimated mean and var-
iance parameters for peaks and genes, we then estimate covariance
with amoment-based regression that includes weighting for statistical
efficiency. Computationally, we implement these regressions using
matrix algebra to efficiently process multiple genes and peaks, elim-
inating explicit loops and enabling high parallelism and scalability.
Under the proposed framework, we formulate a statistical test of
hypothesis to evaluate the dependence between the underlying gene
expression and peak accessibility levels from a given peak-gene pair,
and analytically derive the null distribution. Correspondingly, the
proposed test is theoretically justified and p-values can be analytically
evaluated, without the need for time-consuming sampling-based
inference. More details of the estimation and testing procedures can
be found in the Methods section.

In summary, scMultiMap takes observed gene and peak counts as
well as sequencing depths as input and generates analytical p-values
for assessing the statistical significance of peak-gene associations. It
properly models the distributions of gene and peak counts with a joint
latent-variable model, accounting for variations in sequencing depths
and acrossbiological samples. Theprovided testhas a controlled type I
error rate, and enjoys a better statistical power. The computation of

correlation estimates and p-values is fast and can be quickly imple-
mented for tens of thousands of peak-gene pairs.

scMultiMap has better detection accuracy and computational
efficiency
To evaluate the performance of scMultiMap, we benchmarked its
association detection accuracy and computational efficiency against
existing methods using multiple single-cell multimodal datasets on
PBMC from 10x Genomics23–26. In the benchmark analysis, we con-
sidered two peak-gene association inference methods that provide
p-values, including Signac10,11 and SCENT12 (Methods). In particular,
Signac estimates peak-gene associations using Pearson’s correlations
of gene counts normalized via sctransform27 and rawpeak counts. This
methodmay also represent other tools that use Pearson’s correlations
to identify peak-gene pairs, such as ArchR28 and scMEGA29. For testing,
it constructs a null distribution by randomly sampling peak counts
from other chromosomes. This procedure does not account for
sequencing depth variations in peak counts and has a computational
cost of running ~ 102 procedures for a single pair. Additionally, cor-
relations of marginally normalized data are known to be biased by
mean and overdispersion15,30, and random sampling is inadequate to
adjust for such bias and may generate invalid p-values for inference.
Specifically, correlations of marginally normalized data may be more
attenuated for genes or peaks with either lower abundance levels or
smaller overdispersion, as these are more affected by sequencing-
induced measurement errors that attenuate associations. For valid
statistical inference, the sampled genes and peaks used to estimate
p-values should have the samemeanandoverdispersion parameters as
the observed genes and peaks, which can hardly be guaranteed by
random sampling. For SCENT, it employs a Poisson regression model
that relates gene counts with binarized peak counts, and uses boot-
strap methods for testing. This method may suffer from information
loss due to the binarization of peak counts and confounding due to
correlated sequencing depths. Additionally, it has a high computa-
tional cost ranging from ~ 102 to ~ 104 for a single pair12.

To evaluate the type I error control of different methods, we
construct null data by permuting peak counts randomly across cells.
Correspondingly, the permuted peak counts are expected to be
independent of gene counts (Methods). Fig. 1a shows that scMultiMap
has an appropriate type I error control with empirical type I errors
matching the nominal level of 0.05. In comparison, the empirical type I
errors of SCENT are slightly conservative for most pairs and notably
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Fig. 1 | Performance evaluation of scMultiMap, SCENT and Signac using single-
cell multimodal data on PBMC from 10x Genomics23–26. a Empirical type I errors
on null data with independent gene expression and peak accessibility levels for
1000 randomly selected peak-gene pairs. The dashed line marks the nominal level
of 0.05. Boxplots display the median (center), the first to the third quartiles (box),
and whiskers extending to values within 1.5 × the distance between the quartiles.

Points indicate outliers beyond this range. b Precision-recall curves on simulated
data,with the samecolor legend as in (a).cComputing time in hours (log scale) ona
dataset with 729 cells and 31,132 candidate peak-gene pairs, evaluated on 1 core of
an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz. Source data are provided as a
Source Data file.
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inflated for some pairs. The empirical type I errors of Signac are sub-
stantially inflated for a subset of pairs. Next, to evaluate the detection
power of different methods, we simulate representative single-cell
multimodal data using model parameters estimated from PBMC data
(Methods). The precision-recall curves in Fig. 1b show that scMultiMap
has higher power and a greater area under the curve. Both Signac and
SCENT show reduced power, possibly because they are unable to fully
extract the quantitative information in peak counts. When sparsity
levels of simulated peak counts vary, the power of scMultiMap remains
the highest, with greater improvement on less sparse data (Supple-
mentary Fig. 3). The power of all methods increases when data are less
sparse, with the exception of SCENT, which binarizes peak counts and
benefits less from larger nonzero counts. Finally, to compare compu-
tational costs, we run all three methods on 729 CD14 monocytes and
31,132 peak-gene pairs using data from ref. 26. These pairs are derived
from top 2000 highly expressed genes, top 20,000 highly accessible
peaks, and a cis-region of width 1Mb10. Fig. 1c shows that the compu-
tational costs vary significantly across methods, with SCENT taking
1.47 days, Signac taking 1.46 hours, and scMultiMap taking only
8.35 seconds.

scMultiMap has higher reproducibility across independent
datasets
The peak-gene association detection accuracy and power of scMulti-
Map are further evaluated through reproducibility analysis across
multiple single-cell multimodal PBMC datasets. In particular, we eval-
uated reproducibility between biological replicates (different samples
sequenced with the same instrument) and technical replicates (same
samples sequenced with different instruments)23–25 (Methods). Fig. 2a
shows that scMultiMap consistently yielded higher numbers of
reproduced pairs in both reproducibility analyses across different BH-
adjusted p-value cutoffs. Supplementary Fig. 4 shows that scMultiMap

also outperformedapproaches in SCENIC+22 with higher enrichmentof
reproduced pairs.

Furthermore, we compared the enhancer-gene pairs inferred
from multimodal datasets with those inferred from orthogonal data
types on the same cell type, including promoter capture Hi-C data,
HiChIP data and cell-type-specific eQTL data (Methods). Fig. 2b shows
that peak-gene pairs identified by scMultiMap are the most consistent
with promoter capture Hi-C19, H3K27ac HiChIP20, and cell-type-specific
eQTL31 data onCD14monocytes. These pairs show the largest numbers
of overlaps, and the overlaps are statistically significant (Methods, see
Supplementary Fig. 5 for percentages of overlaps). The enrichment by
scMultiMap is also generally higher than approaches in SCENIC+22

(Supplementary Fig. 6).
Finally, we illustrate the utility of scMultiMap in studying gene

regulation in specific cell types. For this task, we constructed gene
regulatory trios32, consisting of transcription factors (TFs), peaks and
target genes, where a TF binds to the motif within the peak to reg-
ulate a target gene in close proximity to the peak. We quantified the
association between TF and peak, peak and target gene with scMul-
tiMap, and the association between TF and target gene with CS-
CORE15. We considered the trios with simultaneous significant asso-
ciations on TF-peak, peak-gene and TF-gene as cell-type-specific gene
regulatory trios (Methods). Fig. 2c shows the Gene Ontology (GO)
enrichment in biological processes among the target genes in iden-
tified trios for the seven top enriched TFs in CD14 monocytes. Con-
sistent with the role of monocytes as antigen-presenting cells33, the
pathway for antigen processing and presentation viaMHC class II was
found to be strongly enriched, regulated bymultiple TFs. Many other
immune functions of CD14 monocytes were also identified, such as T
cell and lymphocyte activation34,35. Similar analysis of Signac and
SCENT’s results shows weaker enrichment among the identified trios
(Supplementary Fig. 7).

Fig. 2 | Comparison of reproducibility across methods and validation of reg-
ulatory trios inferred by scMultiMap. a Number of significant peak-gene pairs
reproduced between biological replicates and between technical replicates of
single-cell multimodal data on CD14 monocytes across varying BH-adjusted
p-values cutoffs. See b for the color legend. b Consistency of scMultiMap findings
with orthogonal data modalities. Significant peak-genes pairs on CD14 monocytes

(BH-adjusted p-value <0.1) were compared against enhancer-gene pairs measured
by promoter capture Hi-C19, H3K27ac HiChIP20 and cell-type-specific eQTLs31

(Methods). In a,b, statistical significanceof the overlapped counts is evaluatedwith
one-sided Fisher exact tests (-log10 p values are shown). c Enrichment of GO bio-
logical processes among the target genes in trios identified for each TF in CD14
monocytes. Source data are provided as a Source Data file.
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scMultiMap identified biologically relevant gene regulatory
mechanisms in brain cells
We further demonstrate the utility of scMultiMap with an analysis of
the single-cell multimodal data collected from postmortem brain
samples of Alzheimer’s disease patients and controls36. We focus on
the cells from healthy controls. This part of the data include cells from
eight subjects (biological samples), introducing potential variations
across subjects and representing a more challenging scenario when
compared to the PBMC data, which involves only one subject.

Using a bootstrap-based analysis (Supplementary Methods), we
found significant variations in mean gene expression and mean peak
accessibility across subjects (Supplementary Fig. 8). Interestingly,
these variations tend to be correlated between peaks and genes
(Supplementary Fig. 9), leading to spurious associations if left unad-
dressed. To understand the impact of coordinated variations across
subjects on existingmethods,wepermuted real data to generate a null
setting with independent peak accessibility and gene expression while
preserving across-subject variations, and then evaluated the empirical
type I errors (Methods). Figure 3a shows that Signac now exhibits
much higher inflation in type I errors than in the PBMC data, as its
correlation metric fails to account for variations across samples.
SCENT also shows inflated type I errors, despite including subject id as
a covariate in its regression model. In contrast, the empirical type I
errors of scMultiMap align with the nominal level. We also evaluated
the power of scMultiMap on simulated data with variations across
subjects (Methods). Figure 3b shows that scMultiMap maintains the
highest power. Notably, there is a larger gap between SCENT and
Signac compared to the PBMC data (Fig. e 1b), as Signac is more
confounded by the coordinated variations between peaks and genes
across subjects.

We then evaluated the accuracy of scMultiMap on brain data
through consistency and reproducibility analysis with other datasets
measuring enhancers and target genes in brain cell types. Due to the
large inflation (Fig. 3a) and systematic bias in Signac correlations by
mean levels15,30, we applied a permutation-based procedure to Signac
to ensure a fair comparison with other methods (Methods). For con-
sistency analysis, we used PLAC-seq data from3, which measures the
interaction between promoter and distal regulatory regions in neuro-
nal cells, oligodendrocytes and microglia using cell nuclei isolated
from human brains. We compared the significant peak-gene pairs
identified in single-cell multimodal data with PLAC-seq results (Meth-
ods). Fig. 3c shows that scMultiMap yields the highest enrichment for
consistent enhancer-gene pairs in the three most abundant brain cell
types, excitatory neurons, inhibitory neurons, and oligodendrocytes.
The enrichment is below 1 and statistically insignificant for approaches
in SCENIC+ applied to the same cell types (Supplementary Fig. 10),
suggesting relatively poor overlap with PLAC-seq pairs. The numbers
of consistent pairs in microglia are insignificant for all methods (raw
p-value >0.05), possibly due to the smaller number of microglia in the
single-cell multimodal dataset. The peaks from the significant peak-
gene pairs from scMultiMap are also enriched for enhancer annota-
tions on brain tissues from the same region and aged donors, as
characterized by ChromHMM37 in the ENCODE consortium38 (Supple-
mentary Fig. 11, Supplementary Discussion).

We further analyzed a second single-cellmultimodal dataset from
postmortem brain samples39 and evaluated the reproducibility of
findings with those from data in36 (Methods). We focused on the three
abundant brain cell types as in Fig. 3c and did not include astrocytes
and microglia due to the limited number of cells from these two cell
types in the seconddataset39. Fig. 3d, e show that scMultiMapgenerally
has the highest enrichment and the largest number of overlapping
pairs between the two independent datasets. While Signac has similar
enrichment as scMultiMap, it has lower power and identified fewer
pairs compared to scMultiMap. SCENT failed to generate reproducible
discoveries when the significance cutoff is stringent, and the

enrichment of reproduced discoveries is much lower when the sig-
nificance cutoff is lenient. This suggests that SCENT may suffer from
lower power in identifying true pairs and inflated false positive dis-
coveries that cannot be replicated across datasets. The enrichment of
reproduced pairs by SCENIC+ is also lower than scMultiMap across
three cell types (Supplementary Fig. 12).

We further applied scMultiMap to identify regulatory trios and
studied the biological processes regulatedby enrichedTFs in five brain
cell types (Fig. 3f, g, Supplementary Fig. 13) (Methods). The identified
enriched GO biological processes are consistent with existing litera-
ture on the functions of these TFs in excitatory neurons (Fig. 3f). For
example, FOXP2 is known for its regulatory role in neurite outgrowth40

and neuronal differentiation41, MEF2C regulates synapse number and
function to facilitate learning andmemory42, and RORB contributes to
the establishment of neocortical layers43. Similarly, the trios yield
biologically plausible enrichment in astrocytes (Fig. 3g). For instance,
chemical synaptic transmission, a key function of astrocytes44,45, is
found to be enriched among the target genes of three TFs in Fig. 3g.
Strong enrichment for multiple biological functions was identified for
RORA, an important pluripotent transcription factor that supports the
neuro-protective and anti-inflammatory role of astrocytes in the
brain46. The trios also yielded enrichment for cell-type-specific func-
tions in oligodendrocytes (e.g. axon ensheathment, lipoprotein
metabolic process), inhibitory neurons (e.g. chemical synaptic trans-
mission, migration of Purkinje cell) and microglia (e.g. regulation of
gliogenesis, inflammatory response) (Supplementary Fig. 13).

scMultiMap mapped GWAS variants of Alzheimer’s disease to
target genes in microglia
Previous AD GWAS have identified 75 loci associated with the risk of
developing AD47. However, the functional pathways and the cellular
contexts in which these variants exert their effects remain unclear.
Here, weuse the samedataset as in theprevious section36, and leverage
the candidate enhancer-gene pairs identified from scMultiMap in cells
from healthy control and AD subjects to study cell-type and context-
specific target genes of AD GWAS variants. We focus on microglia, the
innate immune cell types in the brain whose cis-regulatory elements
are the most enriched for AD genetic risk3,48.

First, we demonstrate the power of scMultiMap in identifying
candidate cis-regulatory elements in microglia via AD heritability
enrichment analysis. Given the high microglia-specific enrichment
reported in the literature3,48, we hypothesize that a more powerful and
accurate method for identifying cis-regulatory elements should yield
higher heritability enrichment for AD in microglia. It is important to
note that scMultiMap can capture general cis-regulatory elements that
modulate the expression of target genes, even though it was initially
motivated by detecting enhancer-gene pairs. Fig. 4a shows that using
peaks from significant peak-gene pairs, scMultiMap generated higher
and more significant AD heritability enrichment in a stratified linkage
disequilibrium score (S-LDSC) analysis49 based on three AD GWAS
studies47,50,51 (Methods).

We then compared the inferred candidate peak-gene pairs in
microglia from healthy controls and AD subjects. We identified sig-
nificantly differentially associated peak-gene pairs (Fig. 4b) through a
permutation analysis (Methods). Genes in differentially associated
pairs (raw p-value <0.05) are significantly enriched for differentially
expressed genes inmicroglia from52 (OR=1.58,p-value=2.55 ⋅ 10−6) and36

(OR=1.51, p-value=0.01). We further intersected genes in significantly
differentially associated peak-gene pairs and differentially expressed
genes from36 and evaluated the enriched GO biological processes. Fig.
4c shows the top enriched processes, three ofwhich are closely related
to lipid metabolism-a pathway previously implicated in AD patho-
genesis and microglia50,53,54. Similar analysis on astrocyte, another glial
cell type critical to AD disease mechanisms55–57, also revealed differ-
entially associated peak-gene pairs and implicated pathways in lipid
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metabolism and neurofibrillary tangle assembly, both of which have
been linked to AD in astrocytes56,57 (Supplementary Fig. 14). We further
used highly expressed genes in each cell type as the background and
found that high-density lipoprotein particle assembly and positive
regulation of lipid metabolic process remained significant for micro-
glia and astrocytes, respectively, suggesting robustness to potential
confounding effects from gene expression abundance.

We next integrated the scMultiMap findings with AD GWAS var-
iants to study the functional roles of these variants in microglia. We

leveraged a set of AD GWAS variants that have been fine-mapped and
prioritized based on microglia 3D epigenome annotations from a
recent study21. scMultiMap found two significant peak-gene pairs that
overlap with the selective GWAS variants and their putative target
genes from21 (Fig. 4d, e). In particular, these pairs were validated by
promoter capture Hi-C data on human pluripotent stem cell-derived
microglia-like cells21, and theywere not found by Signac or SCENT (raw
p-value >0.05). Figure 4d shows that scMultiMap identified a peak
containing the ADGWAS variant rs10792831 as associatedwith PICALM

Fig. 3 | Results from scMultiMap on single-cell multimodal data from post-
mortem brain samples in ref. 36. a Empirical type I errors on permuted data for
1000 randomly selected peak-gene pairs. Normalized peak values were randomly
permuted within subject to break dependency with gene expression while pre-
serving variations among subjects. The dashed linemarks the nominal level of 0.05.
Boxplots display the median (center), the first to the third quartiles (box), and
whiskers extending to values within 1.5 × the distance between the quartiles. Points
indicate outliers beyond this range.b Precision-recall curves on simulated data. See
color legend in (a). c Consistency of significant pairs (BH-adjusted p-value <0.2)
with enhancer-gene pairs measured by PLAC-seq3 in excitatory neurons (Exc),

inhibitory neurons (Inh) and oligodendrocytes (Oli) (Methods). See color legend in
(a).d, eReproducibility of significant pairswith independent single-cellmultimodal
data on brain samples from39 across cutoffs of BH-adjusted p-values, as evaluated
by the enrichment (d) and the number (e) of reproduced counts. In c–e enrichment
is quantified by odds ratio (OR) and log OR in (c) and (d) respectively (OR=0 not
shown), and p-values are from one-sided Fisher exact tests. f, g Enrichment of GO
biological processes among the target genes in trios identified for each TF in
excitatory neurons (f) and astrocytes (g). Color intensity is given by BH-adjusted
-log10p-values from one-sided Fisher exact tests (values larger than 10 were set to
10). Source data are provided as a Source Data file.
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in microglia. PICALM is a known AD locus50 with upregulated expres-
sion in microglia from brain samples of AD patients58. The variant
rs10792831 is located 72 kb away from the transcription start site of
PICALM. According to the FAVOR database59, this variant has a high
epigenetics active score (with elevated H3K27ac and H3K4me1 levels
from ENCODE60), a high TF score for overlapwith TF binding sites, and
aCADD score61 of 10.11 for deleteriousness.While these results suggest
moderate regulatory potential without reference to cellular contexts,
scMultiMaphighlights its functional role inmicroglia and identifies the
target gene regulated in this cell type. Interestingly, this pair (the peak
with rs10792831 and PICALM) is also among the significantly differen-
tially associated peak-gene pairs in microglia, where the association is
no longer significant when microglia from AD samples are considered
(Fig. 4d). This implies that the identified candidate enhancer is context-
specific and that rs10792831 may contribute to AD risk by dysregu-
lating the enhancer and, consequently, the expression of PICALM in
microglia. Fig. 4e shows that scMultiMap identified another peak
containing theADGWASvariant rs4075111 as associatedwith INPP5D in
microglia. INPP5D is a known AD locus with downregulated expression
in microglia from AD samples36. The associated variant, rs4075111, is
located within the intronic region of INPP5D, 24 kb away from the
transcription start site. It has been identified as being within the
transcription factor binding site and enhancer for INPP5D by
GeneHancer62, and it has a high epigenetics active score based on
FAVOR59. scMultiMap further highlights this enhancer-gene pair in the
specific cellular context of microglia. Moreover, the association is not
significant in microglia from AD patients, suggesting the context-

specificity of the enhancer and the potential regulatory role of the AD
GWAS variant rs4075111 in microglia.

Discussion
Wehave introduced scMultiMap, a new statisticalmethod formapping
cell-type-specific enhancer-gene pairs using single-cell multimodal
data. By properly modeling peak counts and confounders in sequen-
cing experiments, scMultiMap demonstrates higher statistical power
to detect true enhancer-gene pairs and is robust against false positive
associations due to varying sequencing depths and variations across
biological samples. Utilizing a moment-based estimation framework
and theoretically derived statistical tests, scMultiMap provides analy-
tical p-values and has computational complexity that is less than 1% of
existing methods. Systematic simulations and real data analyses show
that scMultiMap better identifies reproducible and externally vali-
dated enhancer-gene pairs, making it a valuable tool for studying gene
regulation in cell types. Integrative analysis with AD GWAS variants
illustrates that scMultiMap can offer functional insights into the reg-
ulatory roles of GWAS variants in disease-related cell types, generating
hypotheses for downstream validation and identifying potential tar-
gets for therapeutic intervention.

While scMultiMap is designed to quantify pairwise associations
between peaks and genes, it can also serve as a tool for constructing
gene regulatory networks22,63,64. The gene regulatory trios illustrated here
can be adapted to infer networks of target genes regulated by TFs. In this
work, we have focused on paired scRNA-seq and scATAC-seq as an
example of single-cell multimodal data, partly due to its availability.

Fig. 4 | Studying the functional role of selective ADGWAS variants inmicroglia
with scMultiMap. a AD heritability enrichment for peaks from significant peak-
gene pairs (raw p-value <0.05) in microglia. Summary statistics from three AD
GWAS studies were used: Jansen50, Kunkle51 and Bellenguez47.* and ** denote
p-value <0.1 and0.01, respectively for one-sidedp-values ofheritability enrichment
from S-LDSC. b Differential peak-gene pairs in microglia from control and AD
subjects. c Enrichment of GO biological processes among the genes from

significantly differential peak-gene pairs. BH-adjusted p-values from one-sided
Fisher exact tests are shown. d scMultiMap mapped AD variant rs10792831 to
PICALM in microglia from control subjects and the association is insignificant in
microglia from AD subjects. e scMultiMapmapped AD variant rs4075111 to INPP5D
in microglia from control subjects and the association is insignificant in microglia
from AD subjects. In (d, e), correlations with a magnitude greater than 0.2 are
plotted. Source data are provided as a Source Data file.
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However, scMultiMap can also be applied to other multimodal sequen-
cing data, such as those that jointly profile transcriptome and histone
modification in single cells65,66, to study gene regulation in cell types.

We note that for the purpose of identifying enhancers, the results
in this work are limited by the use of chromatin accessibility, which is
necessary though not sufficient to define enhancers3. Additional data
modalities, especially histone modification data in the cell types of
interests, are needed to further validate the prioritized enhancers. As
aforementioned, scMultiMap may also be applied to infer the asso-
ciation between gene expression and histone modification across
single cells65,66, whichwill offer complementary insights into enhancer-
gene pairs compared to those inferred from paired scRNA-seq and
scATAC-seq data.

In scMultiMap, wemodel the conditional distribution of observed
counts given the underlying abundance levels using a Poisson dis-
tribution. This model is supported by existing literature, which indi-
cates that a Poisson distribution adequately captures the variation
introduced by sequencing experiments in scRNA-seq data27,67,68, and
similar observations on scATAC-seq data13,14. If there exists higher
dispersion from the sequencing step, it can be useful to adapt scMul-
tiMap to model xij∣zij and yij0 jzij0 using negative binomial distributions.
This requires re-deriving the moment conditions (2)-(3) and updating
the estimating and testing procedures accordingly. This is an impor-
tant direction that requires a thorough and separate investigation, and
we leave it to future work.

To apply scMultiMap, we would like to note two caveats with the
datasets being used. First, scMultiMap cannot be applied to unpaired
single-cell multi-omics data, since it needs the simultaneous observa-
tions of both modalities across single cells for estimation and infer-
ence. Secondly, when one of the modalities is scATAC-seq, one should
use the fragment counts insteadof read counts (or insertion counts) of
DNA fragments,whichenables the countmodeling of scATAC-seq data
and has been shown to achieve better performance in downstream
analysis13,14.

We have demonstrated the improved power of scMultiMap for
identifying peak-gene pairs compared to existing methods. However,
the power of this task is still limited by the sparsity and the small
number of cells in single-cell multimodal data. It has been established
that larger numbersof cells are needed fordetectingover-dispersion69,
which is the variance of underlying abundance in the distribution F in
(1). Similarly, for association inference, larger numbers of cells are also
necessary to accurately estimate and test the covariance between
underlying abundances. Often, there are fewer than a few hundred
cells from the cell type of interest, providing limited information and
yielding low tomoderate power for association inference. Fortunately,
larger consortium efforts are ongoing, collecting single-cell multi-
modal data with more cells across more biological samples. This will
greatly improve the power of mapping enhancer-gene pairs in a cell-
type-specific and context-specific manner. Given its better power and
computational scalability, we expect scMultiMap to be a useful and
practically appealing tool for analyzing these new consortium data,
studying gene regulation, and elucidating the regulatory functions of
GWAS variants in cell types. These results may further contribute to
the broad collective efforts in the field, such as IGVF70 and MorPhiC71,
to map the functions of genetic variants and provide a more com-
prehensive understanding of their roles across cell types.

Methods
scMultiMap method
Based on model (1), the law of total expectation, and the law of total
variance, we have:

EðxijÞ= EðEðxijjzijÞÞ= EðsizijÞ,
VarðxijÞ= EðVarðxijjzijÞÞ+VarðEðxijjzijÞÞ=EðsizijÞ+VarðsizijÞ

Letting μ1,j and σ1,jj denote the mean and variance of zij, respectively, it
holds for the count of gene j that

EðxijÞ= siμ1, j , VarðxijÞ= siμ1, j + s
2
i σ1, jj : ð2Þ

Similarly, it holds for the count of peak j0 that

Eðyij0 Þ= riμ2, j0 Varð yij0 Þ= riμ2, j0 + r
2
i σ2, j0 j0 : ð3Þ

Furthermore, bymodel (1) and the law of total covariance, it holds that

Covðxij, yij0 Þ=EðCovðxij , yij0 jzij , vij0 ÞÞ+CovðEðxij jzijÞ, Eð yij0 jvij0 ÞÞ
�
= siriCovðzij, vij0 Þ:

Letting σ12, jj0 denote the covariance between zij and vij0 , it holds for
counts from gene j and peak j0 that

Covðxij , yij0 Þ= siriσ12, jj0 : ð4Þ

The estimation in scMultiMap includes two steps. The first step esti-
mates the mean and variance parameters in (2)-(3) with IRLS. For
example, for peak j0, we derive the following regression equations
based on (3):

yij0 = riμ2, j0 + ϵ2, ij0 ,

ðyij0 � riμ2, j0 Þ2 = riμ2, j0 + r
2
i σ2, j0 j0 +η2, ij0 ,

where mean-zero error terms ϵ2, ij0 ’s are independent across i for peak
j0, and the same for η2, ij0 ’s. These moment-based regressions are
consistent with (3) as taking expectation on both sides recovers (3).
Due to the use of moment conditions, no restrictive assumptions
need to be made on the distributions of ϵ2, ij0 and η2, ij0 , and the
estimation procedure below holds for any peak counts from
model (1). We propose to estimate μ2, j0 and σ2, j0 j0 with weighted least
squares estimators μ̂2, j0 = argminμ

Pn
i= 1 w2, ij0 ðyij0 � riμÞ2 and

σ̂2, j0 j0 = argminσ

Pn
i = 1 h2, ij0 ½ðyij0 � riμ2, j0 Þ2 � riμ2, j0 � r2i σ�

2
, respectively.

We set w2, ij0 = 1=Varðϵ2, ij0 Þ and h2, ij0 =w
2
2, ij0 , which either equates or

approximates the inverse variance of the response variable to improve
the statistical efficiency of the estimators15. As μ̂2, j0 depends on true
μ2, j0 and σ2, j0 j0 through w2, ij0 and σ̂2, j0 j0 also depends on true μ2, j0 , we
propose an iterative procedure where we iterate between updating
μ̂2, j0 given σ̂2, j0 j0 and vice versa.Wepropose to initiate the iterationwith
w2, ij0 = 1 (i.e. ordinary least squares estimator). The mean and variance
for gene j can be estimated similarly from (2). A detailed algorithm of
IRLS is included in Supplementary Algorithm 2.

Given theseestimates, the second stepof of scMultiMapestimates
the covariance between peaks and genes with weighted least squares
(WLS). Based on (4), we drive the regression equation

ðxij � siμ1, jÞðyij0 � riμ2, j0 Þ= siriσ12, jj0 + ξ ijj0 ,

where mean-zero error terms ξ ijj0 ’s are independent across i for gene j
andpeak j0. Thesemoment-based regressions are consistentwith (4) as
taking expectation on both sides recovers (4). We then propose to
estimate σ12, jj0 via argminσ

Pn
i= 1 gijj0 ½ðxij � siμ̂1, jÞðyij0 � riμ̂2, j0 Þ � siriσ�2.

We set the weights gijj0 ’s using gijj0 = 1=½VarðxijÞVarðyij0 Þ�, which is the
inverse variance of ξ ijj0 under the null hypothesis of independence
between gene and peak, and we use weightsw1,ij andw2, ij0 from step 1
to calculate gijj0 . A detailed algorithm of WLS is included in
Supplementary Algorithm 3.

For statistical inference on the association between peak and
gene, we propose a test statistic based on the WLS estimator and
analytically characterize its distribution under the null hypothesis. We
define Tjj0 = σ̂12, jj0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðσ̂12, jj0 Þ

q
, where σ̂12, jj0 ’s are estimated with true

μ1j,μ2j0 ’s. Under the null hypothesis of independence between gene
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expression and peak accessibility, we show that

Tjj0 =

P
isiriðxij � siμ1, jÞðyij0 � riμ2, j0 Þgijj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

is
2
i r

2
i ðsiμ1, j + s

2
i σ1, jjÞðriμ2, j0 + r

2
i σ2, j0 j0 Þg2

ijj0

q

and that Tjj0 asymptotically follows a standard normal distribution
(Supplementary Methods). This result facilitates the analytical calcu-
lation of test statistics and p-values without the need for computa-
tionally intensive sampling, and also ensures the theoretical validity of
the test. In practice, we compute this test statistics by plugging in the
IRLS estimates of mean and variance parameters from the first step,
which are all consistent estimators.

When multiple subjects or biological samples are present in the
single-cell multimodal data, we extend the model in (1) to model the
variations in mean expression and accessibility across subjects. Sup-
pose there areK subjects. For cell i= 1,…,n and subject k= 1,…,K, let 1ki
denote a binary indicator for subject k, i.e. 1ki = 1 if cell i is from subject
k, otherwise 0. We assume that

E½ðzi1, . . . , zip, vi1, . . . , viqÞ�=
XK

k = 1

μk1
k
i , ð5Þ

where μk denotes the mean for all genes and peaks in subject k. This
implies the following moment condition for peak j0:
Eðyij0 Þ= rið

PK
k = 1 μ2, j0k1

k
i Þ, and similarly for gene j. We propose to esti-

mate μ2, j0k ’s and μ1,jk’s using a similar IRLS procedure and the estima-
tion of variance and covariance follows analogously (Supplementary
Methods). We note that when groups of subjects are present (e.g.
control subjects and subjects with diseases), this will not remove the
difference in covariance between groups and we model samples from
each group separately (Supplementary Discussion).

Other methods for statistical inference of peak-gene
associations
Wecompared scMultiMapwith twoothermethods: Signac and SCENT.
For Signac, we used the peak-gene association method originally
developed by11, and implemented in the software Signac10. In bench-
marking computational costs (Fig. 1c), we used the LinkPeaks function
in the R package Signac (v1.12.0) for the method Signac, and the R
package SCENT (v1.0.0) for the method SCENT. SCENT was run with-
out parallel computing to ensure a fair comparison with the other two
methods.

In all other analyses, we used a re-implementation of LinkPeaks()
to evaluate Signac. This re-implementation corrects a coding error in
the p-value calculation in its original implementation and speeds up
computation (SupplementaryMethods). We applied SCENT with fixed
numbers of bootstrap samples in numerical analyses (Supplementary
Methods).

We also evaluated the approaches in SCENIC+22 for defining peak-
gene pairs. However, since SCENIC+ is not based on statistical tests,
lacks p-values and false positive control, it cannot be directly com-
pared with methods that use statistical tests (see Supplementary Dis-
cussion). We implemented gradient boosting machine with the R
package gbm (v2.2.2) to predict gene counts based on peaks. Follow-
ing the methods in SCENIC+22, we defined associated peak-gene pairs
using three quantiles (85th, 90th, and 95th) of variable importance
scores (see Supplementary Discussion).

Experiments for evaluating type I errors and power
To evaluate type I errors, we used a permutation-based procedure to
generate null datasets where the gene expression and peak accessi-
bility are independent. We used the gene counts as observed, and
modified the observed peak counts following an approach that com-
bines permutation and Poisson sampling as in15. This procedure

maximally preserves the characteristics of real data, such as the mean
accessibility of peaks, dependency of peak counts on sequencing
depths, and the correlation of sequencing depths betweenmodalities,
to faithfully evaluate type I errors in real data. When multiple subjects
are present in the same dataset (Fig. 3), we applied the above proce-
dure to cells from each subject separately, such that the variations in
mean across subjects were preserved while any dependency between
peaks and genes was removed. We obtained 100 independent repli-
cates of null samples from this procedure and calculated the empirical
p-values using the number of times the test statisticwas rejected for all
peak-gene pairs considered. To evaluate power, we simulated peak-
gene pairs under model (1) with parameters estimated from real data,
and incorporated model (5) for generating subject-specific means
when multiple subjects are present in the dataset (Fig. 3). We then
evaluated the precision-recall curve by varying the cutoff of p-values
for calculating false discovery rate (FDR) and power. In all type I error
and power evaluation, we used 1000 peak-gene pairs randomly sam-
pled from the full set of candidate peak-gene pairs, with varying mean
and variance parameters. More details can be found in Supplementary
Methods.

Reproducibility analysis
We performed two sets of reproducibility analysis between indepen-
dent single-cell multimodal data, including on PBMC in Fig. 2a and on
brain samples in Fig. 3d, e. For PBMC analysis, we considered23 and24 as
biological replicates, which were generated with the same 10x instru-
ment but with different biological samples. We also included a pair of
technical replicates24,25 that sequenced biological samples from the
same individual but with different 10x instruments. We focused on
CD14monocytes as it is themost abundant cell types in these datasets.
For brain analysis, we considered36 and39, which are two datasets
independently generated by different labs, and evaluated the repro-
ducibility on threemost abundant brain cell types: excitatory neurons,
inhibitory neurons, and oligodendrocytes. In both analyses, two peak-
gene pairs are defined as overlapped if two genes are the sameand two
peaks overlap in genomic ranges.

We performed two sets of consistency analysis with orthogonal
data types, including on PBMC in Fig. 2b and on brain samples in
Fig. 3c. For PBMC analysis, we combined four datasets23–26 to max-
imize statistical power for detecting peak-gene pairs, and run
scMultiMap and SCENT with indicators of datasets as covariates. In
all analyses, we defined (candidate) cell-type-specific enhancer-gene
pairs from orthogonal datasets following the original papers. In
specific, for promoter capture Hi-C data19, we used interactions with
a CHiCAGO score ≥572; for H3K27ac HiChIP data20, we used the sig-
nificant interactions based on FitHiChIP73 (FDR <0.1); for cell-type-
specific eQTL, we used cis-SNPs significant in Naive CD14 Monocytes
(FDR <0.05)31; for PLAC-seq3, profiles chromatin loops between
promoters and distal regulatory regions in NEUN+ neuronal, OLIG2+

oligodendrocyte, PU.1+ microglia nuclei isolated from human brain
tissues, and we used the provided data on enhancers, promoters, and
interactomes on these cell types to define enhancer-gene pairs
(SupplementaryMethods). For datasets whose genomic locations are
in hg19, we use liftover in R package rtracklayer (v1.62.0) to map the
locations to hg38.

In both reproducibility and consistency analysis, when mul-
tiple subjects are present in the data, we further adjusted Signac
by its estimates on permuted null data that preserve across-
subject variations. This is because correlations in Signac are
known to be biased by mean15,30, and such systematic bias might
cause artificially high reproducibility and consistency that are
unfair to other methods with no systematic mean bias. Specifi-
cally, we computed Signac p-values using a background null dis-
tribution computed on permuted null data replicates, which
corrects for the mean bias in Signac statistics.
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Analysis of cell-type-specific gene regulatory trios
Following the conceptual model in ref. 32, we inferred cell-type-
specific regulatory trios based on the associations between TF and
target gene, TF andpeak, peak and target gene using cells from the cell
type of interest. We considered the highly expressed genes (mean
expression ranks top 2000) and highly accessible peaks (mean
accessibility ranks top 20,000).We identified enrichedmotifs in highly
accessible peaks using motifs from JASPAR 2020 database74 and
FindMotifs from R package Signac (v1.12.0). For each TF whose motifs
are enriched and all highly expressed genes in the cell type, we con-
structed candidate trios using this TF, a highly expressed target gene,
and highly accessible peaks located within the cis-region of the target
gene (width 1Mb) and harbor the binding motifs of the TF. For all
candidate trios, we then inferred the associations betweenTFandpeak
and peak and target gene with scMultiMap, and associations between
TF and target gene with CS-CORE15. Based on the p-values, we prior-
itized trios whose all three edges are significant as cell-type-specific
regulatory trios and evaluated the enrichment for biological processes
among the target genes from all trios for each TF. More details can be
found in Supplementary Information.

GO enrichment analysis
We used gost in R package gprofiler2 (v0.2.2) to perform enrichment
analysis for GO biological processes with one-sided Fisher exact tests
and selected driver GO terms with FDR <0.05. We combined the
selected terms manually based on the function of each cell type.

Differential peak-gene associations
In differential analysis, we considered top 5000 highly expressed
genes and top 50,000 highly accessible peaks and the resulting can-
didate peak-gene pairs within the cis-region of width 1Mb in microglia
and astrocytes. We applied scMultiMap while adjusting for the varia-
tions across subjects to cells from the control subjects and subjects
with AD, respectively. To test the changes between two groups, we
conducted a permutation analysis where we randomly permuted the
disease label for 100 times and calculated p-values as the proportion of
permutation replicates with the difference of covariance greater than
that in observed data. In Fig. 4b, we focus on gene-peak pairs that are
significantly associated in either control or AD cells (raw p-value
<0.05)with significant differencebetween groups (rawp-value <0.05)
and the difference in correlation is greater than amagnitude of 0.2.We
further intersected this set of genes with cell-type-specific differen-
tially expressed genes from ref. 36.

LDSC analysis for heritability enrichment
AD heritability enrichment analysis was conducted using stratified
linkage disequilibrium score (S-LDSC) regression49 (v1.0.1) to deter-
mine if peaks from significant peak-gene pairs (raw p-value < 0.05)
obtained by scMultiMap have higher heritability enrichment for AD in
microglia compared to Signac and SCENT. S-LDSC calculates herit-
ability enrichment in a stratum using the ratio of the proportion of
heritability explained versus the proportion of SNPs in the stratum,
based on GWAS summary statistics and an ancestry-specific reference
panel. We used three AD GWAS summary statistics47,50,51 and the Eur-
opean samples from 1000 Genomes data75 as a reference panel. We
estimated and tested the heritability enrichment of significant peaks
from each method among all peaks considered in peak-gene associa-
tion analysis, while adjusting for 97 functional annotations in baseline-
LD v2.2. to best detect cell-type-specific heritability enrichment76,77.

Preprocessing of fragment counts
We used fragment counts to quantify chromatin accessibility, which
are more appropriate for count-based modeling and can yield
improved performance in downstream analysis compared to read
counts13,14. For four single-cell multimodal datasets on PBMC23–26 and

the dataset on postmortem brain tissues36, we called peak in each cell
types, respectively withMACS2 (bioconda v2.2.9.1) to obtain fragment
counts and to maximize the discovery of cell-type-specific peaks. For
the validation brain data39, we calculated fragment counts based on
read counts following the procedure in14.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PBMC data from 10x Genomics23–26 used in this study are available
from thewebsites of 10xGenomics (see citations23–26 for theURLs). The
brain datasets36,39 used in this study are available in the GEO database
under accession code GSE214979 and available from URL https://
personal.broadinstitute.org/bjames/AD_snATAC/MFC/. The ENCODE
annotations of brain enhancers were based on subjects
ENCDO980BZD and ENCDO871IWW are available on the ENCODE
portal [https://www.encodeproject.org]. The detailed summary of
single-cell multimodal data sets is in Supplementary Table 1. Source
data are provided with this paper.

Code availability
The R package that implements scMultiMap78 is publicly available and
has been deposited in GitHub at https://github.com/ChangSuBiostats/
scMultiMapunder GPL license. The vignettes for using this R package
are hosted at https://changsubiostats.github.io/scMultiMap/. The
code used to perform the analyses and generate results in this study is
publicly available and has been deposited in GitHub at https://github.
com/ChangSuBiostats/scMultiMap_analysisunder GPL license. The
specific versions of the code associated with this publication are
archived in Zenodo and are accessible via https://doi.org/10.5281/
zenodo.1494845778 and https://doi.org/10.5281/zenodo.1496185079.

References
1. Maurano, M. T. et al. Systematic localization of common disease-

associated variation in regulatory dna. Science 337, 1190–1195
(2012).

2. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic
differences in discovery of genetic effects on gene expression and
complex traits. Nat. Genet. 55, 1866–1875 (2023).

3. Nott, A. et al. Brain cell type–specific enhancer–promoter inter-
actome maps and disease-risk association. Science 366, 1134–1139
(2019).

4. Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A. & Bejer-
ano, G. Enhancers: five essential questions. Nat. Rev. Genet. 14,
288–295 (2013).

5. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive
catalogue of validated and target-linked human enhancers. Nat.
Rev. Genet. 21, 292–310 (2020).

6. Feingold, E. et al. The encode (encyclopedia of dna elements)
project. Science 306, 636–640 (2004).

7. Xie, S., Armendariz, D., Zhou, P., Duan, J. & Hon, G. C. Global ana-
lysis of enhancer targets reveals convergent enhancer-driven reg-
ulatory modules. Cell Rep. 29, 2570–2578 (2019).

8. Gasperini, M. et al. A genome-wide framework for mapping gene
regulation via cellular genetic screens. Cell 176, 377–390 (2019).

9. Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the
developing human cerebral cortex at single-cell resolution. Cell
184, 5053–5069 (2021).

10. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-
cell chromatin state analysis with signac. Nat. methods 18,
1333–1341 (2021).

11. Ma, S. et al. Chromatin potential identified by shared single-cell
profiling of rna and chromatin. Cell 183, 1103–1116 (2020).

Article https://doi.org/10.1038/s41467-025-59306-z

Nature Communications |         (2025) 16:3941 10

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE214979
https://personal.broadinstitute.org/bjames/AD_snATAC/MFC/
https://personal.broadinstitute.org/bjames/AD_snATAC/MFC/
https://www.encodeproject.org
https://github.com/ChangSuBiostats/scMultiMap
https://github.com/ChangSuBiostats/scMultiMap
https://changsubiostats.github.io/scMultiMap/
https://github.com/ChangSuBiostats/scMultiMap_analysis
https://github.com/ChangSuBiostats/scMultiMap_analysis
https://doi.org/10.5281/zenodo.14948457
https://doi.org/10.5281/zenodo.14948457
https://doi.org/10.5281/zenodo.14961850
www.nature.com/naturecommunications


12. Sakaue, S. et al. Tissue-specific enhancer–gene maps from multi-
modal single-cell data identify causal disease alleles. Nat. Genet.
56, 615–626 (2024).

13. Miao, Z. & Kim, J. Uniform quantification of single-nucleus atac-seq
data with paired-insertion counting (pic) and a model-based inser-
tion rate estimator. Nat. Methods 21, 32–36 (2024).

14. Martens, L. D., Fischer, D. S., Yépez, V. A., Theis, F. J. & Gagneur, J.
Modeling fragment counts improves single-cell atac-seq analysis.
Nat. Methods 21, 28–31 (2024).

15. Su, C. et al. Cell-type-specific co-expression inference from single
cell RNA-sequencing data. Nat. Commun. 14, 4846 (2023).

16. Tung, P.-Y. et al. Batch effects and the effective designof single-cell
gene expression studies. Sci. Rep. 7, 39921 (2017).

17. Squair, J. W. et al. Confronting false discoveries in single-cell dif-
ferential expression. Nat. Commun. 12, 5692 (2021).

18. Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. A practical
solution to pseudoreplication bias in single-cell studies. Nat.
Commun. 12, 738 (2021).

19. Javierre, B. M. et al. Lineage-specific genome architecture links
enhancers and non-coding disease variants to target gene pro-
moters. Cell 167, 1369–1384 (2016).

20. Chandra, V. et al. Promoter-interacting expression quantitative trait
loci are enriched for functional genetic variants. Nat. Genet. 53,
110–119 (2021).

21. Yang, X. et al. Functional characterization of alzheimer’s disease
genetic variants in microglia. Nat. Genet. 55, 1735–1744 (2023).

22. Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic
inference of enhancers and gene regulatory networks. Nat. meth-
ods 20, 1355–1367 (2023).

23. Pbmc from a healthy donor - granulocytes removed through cell
sorting (10k). https://www.10xgenomics.com/datasets/pbmc-
from-a-healthy-donor-granulocytes-removed-through-cell-sorting-
10-k-1-standard-1-0-0. Date Published: 2020-09-09.

24. 10khumanpbmcs,multiomev1.0, chromiumcontroller. https://www.
10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-
chromium-controller-1-standard-2-0-0. Date Published: 2021-08-09.

25. 10k human pbmcs, multiome v1.0, chromium x. https://www.
10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-
chromium-x-1-standard-2-0-0. Date Published: 2021-08-09.

26. Pbmc from a healthy donor - granulocytes removed through cell
sorting (3k). https://www.10xgenomics.com/datasets/pbmc-from-
a-healthy-donor-granulocytes-removed-through-cell-sorting-3-k-1-
standard-1-0-0. Date Published: 2020-09-09.

27. Hafemeister, C. & Satija, R. Normalization and variance stabilization
of single-cell rna-seq data using regularized negative binomial
regression. Genome Biol. 20, 296 (2019).

28. Granja, J. M. et al. Archr is a scalable software package for inte-
grative single-cell chromatin accessibility analysis. Nat. Genet. 53,
403–411 (2021).

29. Li, Z., Nagai, J. S., Kuppe, C., Kramann, R. & Costa, I. G. scmega:
single-cell multi-omic enhancer-based gene regulatory network
inference. Bioinforma. Adv. 3, vbad003 (2023).

30. Wang, Y., Hicks, S. C. & Hansen, K. D. Addressing the mean-
correlation relationship in co-expression analysis. PLoS Comput.
Biol. 18, e1009954 (2022).

31. Fairfax, B. P. et al. Innate immune activity conditions the effect of
regulatory variants upon monocyte gene expression. Science 343,
1246949 (2014).

32. Jiang, Y. et al. Nonparametric single-cellmultiomic characterization
of trio relationships between transcription factors, target genes,
and cis-regulatory regions. Cell Syst. 13, 737–751 (2022).

33. Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differ-
entiation and antigen-presenting functions. Nat. Rev. Immunol. 17,
349–362 (2017).

34. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of
immunity. Nature 392, 245–252 (1998).

35. Ginhoux, F. & Jung, S. Monocytes and macrophages: develop-
mental pathways and tissue homeostasis. Nat. Rev. Immunol. 14,
392–404 (2014).

36. Anderson, A. G. et al. Single nucleusmultiomics identifies zeb1 and
mafb as candidate regulators of alzheimer’s disease-specific cis-
regulatory elements. Cell Genomics 3, (2023).

37. Ernst, J. & Kellis, M. Chromhmm: automating chromatin-state dis-
covery and characterization. Nat. methods 9, 215–216 (2012).

38. Moore, J. E. et al. Expanded encyclopaedias of dna elements in the
human and mouse genomes. Nature 583, 699–710 (2020).

39. Xiong, X. et al. Epigenomic dissection of alzheimer’s disease pin-
points causal variants and reveals epigenome erosion. Cell 186,
4422–4437 (2023).

40. Vernes, S. C. et al. Foxp2 regulates gene networks implicated in
neurite outgrowth in the developing brain. PLoS Genet. 7,
e1002145 (2011).

41. Chiu, Y.-C. et al. Foxp2 regulates neuronal differentiation and
neuronal subtype specification. Developmental Neurobiol. 74,
723–738 (2014).

42. Barbosa, A. C. et al. Mef2c, a transcription factor that facilitates
learning and memory by negative regulation of synapse num-
bers and function. Proc. Natl Acad. Sci. USA 105, 9391–9396
(2008).

43. Oishi, K., Aramaki, M. & Nakajima, K. Mutually repressive interaction
between brn1/2 and rorb contributes to the establishment of neo-
cortical layer 2/3 and layer 4. Proc. Natl Acad. Sci. USA 113,
3371–3376 (2016).

44. Newman, E. A. New roles for astrocytes: regulation of synaptic
transmission. Trends Neurosci. 26, 536–542 (2003).

45. Haydon, P. G. & Carmignoto, G. Astrocyte control of synaptic
transmission and neurovascular coupling. Physiological Rev. 86,
1009–1031 (2006).

46. Journiac, N. et al. The nuclear receptor rorα exerts a bi-directional
regulation of il-6 in resting and reactive astrocytes. Proc. Natl Acad.
Sci. 106, 21365–21370 (2009).

47. Bellenguez, C. et al. New insights into the genetic etiology of alz-
heimer’s disease and related dementias. Nat. Genet. 54, 412–436
(2022).

48. Gjoneska, E. et al. Conserved epigenomic signals in mice and
humans reveal immune basis of alzheimer’s disease. Nature 518,
365–369 (2015).

49. Finucane, H. K. et al. Partitioning heritability by functional annota-
tion using genome-wide association summary statistics.Nat.Genet.
47, 1228–1235 (2015).

50. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci
and functional pathways influencing alzheimer’s disease risk. Nat.
Genet. 51, 404–413 (2019).

51. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed alzheimer’s
disease identifies new risk loci and implicates aβ, tau, immunity and
lipid processing. Nat. Genet. 51, 414–430 (2019).

52. Mathys, H. et al. Single-cell multiregion dissection of alzheimer’s
disease. Nature 632, 858–868 (2024).

53. Chausse, B., Kakimoto, P. A. & Kann, O. Microglia and lipids: how
metabolism controls brain innate immunity. In Seminars in cell &
developmental biology, vol. 112, 137–144 (Elsevier, 2021).

54. Haney, M. S. et al. Apoe4/4 is linked to damaging lipid droplets in
alzheimer’s disease microglia. Nature 628, 154–161 (2024).

55. Bellaver, B. et al. Astrocyte reactivity influences amyloid-β effects
on tau pathology in preclinical alzheimer’s disease. Nat. Med. 29,
1775–1781 (2023).

56. Qi, G. et al. Apoe4 impairs neuron-astrocyte coupling of fatty acid
metabolism. Cell Rep. 34, 108572 (2021).

Article https://doi.org/10.1038/s41467-025-59306-z

Nature Communications |         (2025) 16:3941 11

https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-x-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-x-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-x-1-standard-2-0-0
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-3-k-1-standard-1-0-0
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-3-k-1-standard-1-0-0
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-3-k-1-standard-1-0-0
www.nature.com/naturecommunications


57. Serrano-Pozo, A. et al. Reactive glia not only associates with pla-
ques but also parallels tangles in alzheimer’s disease. Am. J. Pathol.
179, 1373–1384 (2011).

58. Ando, K. et al. Clathrin adaptor calm/picalm is associated with
neurofibrillary tangles and is cleaved in alzheimer’s brains. Acta
neuropathologica 125, 861–878 (2013).

59. Zhou, H. et al. Favor: functional annotation of variants online
resource and annotator for variation across the human genome.
Nucleic Acids Res. 51, D1300–D1311 (2023).

60. Consortium, E. P. et al. An integrated encyclopedia of dna elements
in the human genome. Nature 489, 57 (2012).

61. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M.
Cadd: predicting the deleteriousness of variants throughout the
human genome. Nucleic acids Res. 47, D886–D894 (2019).

62. Fishilevich, S. et al. Genehancer: genome-wide integration of
enhancers and target genes in genecards. Database 2017,
bax028 (2017).

63. Wang, L. et al. Dictys: dynamic gene regulatory network dissects
developmental continuum with single-cell multiomics. Nat. Meth-
ods 20, 1368–1378 (2023).

64. Yuan,Q.&Duren, Z. Inferringgene regulatory networks fromsingle-
cell multiome data using atlas-scale external data. Nat. Biotech.
1–11 (2024).

65. Zhu, C. et al. Joint profiling of histone modifications and tran-
scriptome in single cells from mouse brain. Nat. methods 18,
283–292 (2021).

66. Xie, Y. et al. Droplet-based single-cell joint profiling of histone
modifications and transcriptomes.Nat. Struct. Mol. Biol. 1–6 (2023).

67. Sarkar, A. & Stephens, M. Separating measurement and expression
models clarifies confusion in single-cell rna sequencing analysis.
Nat. Genet. 53, 770–777 (2021).

68. Lause, J., Berens, P. & Kobak, D. Analytic pearson residuals for
normalization of single-cell rna-seq umi data. Genome Biol. 22,
1–20 (2021).

69. Choudhary, S. & Satija, R. Comparison and evaluation of statistical
error models for scrna-seq. Genome Biol. 23, 27 (2022).

70. Consortium, I. et al. The impact of genomic variation on function
(igvf) consortium. ArXiv (2023).

71. Molecular phenotypes of null alleles in cells (morphic). https://
www.genome.gov/research-funding/Funded-Programs-Projects/
Molecular-Phenotypes-of-Null-Alleles-in-Cells.

72. Cairns, J. et al. Chicago: robust detection of dna looping interac-
tions in capture hi-c data. Genome Biol. 17, 1–17 (2016).

73. Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification
of significant chromatin contacts from hichip data by fithichip.Nat.
Commun. 10, 4221 (2019).

74. Fornes, O. et al. Jaspar 2020: update of the open-access database
of transcription factor binding profiles. Nucleic acids Res. 48,
D87–D92 (2020).

75. Consortium, G. P. et al. An integratedmap of genetic variation from
1,092 human genomes. Nature 491, 56 (2012).

76. Gazal, S. et al. Linkage disequilibrium–dependent architecture of
human complex traits shows action of negative selection. Nat.
Genet. 49, 1421–1427 (2017).

77. Gazal, S., Marquez-Luna, C., Finucane, H. K. & Price, A. L. Recon-
ciling s-ldsc and ldak functional enrichment estimates. Nat. Genet.
51, 1202–1204 (2019).

78. Su, C. R package for scMultiMap: Cell-type-specific mapping of
enhancers and target genes from single-cell multimodal data.
GitHub https://doi.org/10.5281/zenodo.14948456 (2025).

79. Su, C. & Lee, D. Analysis code for scMultiMap: Cell-type-specific
mapping of enhancers and target genes from single-cell multi-
modal data. GitHubhttps://doi.org/10.5281/zenodo.14961850
(2025).

Acknowledgements
We thank theHigh PerformanceComputing cluster at the Rollins School
of Public Health, Emory University for providing computing support. Su
was supported inpart by theNationalCenter for AdvancingTranslational
Sciences of the National Institutes of Health under Award number
UL1TR002378. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Insti-
tutes of Health. Jin was supported, in part, by the National Institutes of
Health (NS111602 and HD104458). Zhang was supported by National
Science Foundation grants DMS 2210469 and 2329296.

Author contributions
C.S. and J.Z. designed research; C.S. and D.L. performed research and
analyzed data; C.S. contributed analytic tools; P.J. provided feedback on
real data analysis; C.S., D.L., and J.Z. wrote the paper; C.S. and J.Z. jointly
supervised the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-59306-z.

Correspondence and requests for materials should be addressed to
Chang Su or Jingfei Zhang.

Peer review information Nature Communications thanks Wei Sun and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-59306-z

Nature Communications |         (2025) 16:3941 12

https://www.genome.gov/research-funding/Funded-Programs-Projects/Molecular-Phenotypes-of-Null-Alleles-in-Cells
https://www.genome.gov/research-funding/Funded-Programs-Projects/Molecular-Phenotypes-of-Null-Alleles-in-Cells
https://www.genome.gov/research-funding/Funded-Programs-Projects/Molecular-Phenotypes-of-Null-Alleles-in-Cells
https://doi.org/10.5281/zenodo.14948456
https://doi.org/10.5281/zenodo.14961850
https://doi.org/10.1038/s41467-025-59306-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	scMultiMap: Cell-type-specific mapping of enhancers and target genes from single-cell multimodal data
	Results
	Overview of scMultiMap
	scMultiMap has better detection accuracy and computational efficiency
	scMultiMap has higher reproducibility across independent datasets
	scMultiMap identified biologically relevant gene regulatory mechanisms in brain cells
	scMultiMap mapped GWAS variants of Alzheimer’s disease to target genes in microglia

	Discussion
	Methods
	scMultiMap method
	Other methods for statistical inference of peak-gene associations
	Experiments for evaluating type I errors and power
	Reproducibility analysis
	Analysis of cell-type-specific gene regulatory trios
	GO enrichment analysis
	Differential peak-gene associations
	LDSC analysis for heritability enrichment
	Preprocessing of fragment counts
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




