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An unbiased tissue transcriptome analysis
identifies potential markers for skin
phenotypes and therapeutic responses in
atopic dermatitis
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Takehiro Hasegawa 5, Junshi Yazaki 6,14, Jun Seita 7,15, Osamu Ohara 8,
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Kazuhiro Sakurada 7,10,15, Eiryo Kawakami 7,11,12,15 &
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Atopic dermatitis (AD) is a skin disease exhibiting clinical and molecular het-
erogeneity, thereby jeopardizing thedevelopment of personalized treatments.
Herewepursue a cross-sectional and longitudinal cohort analysis of 951whole-
skin samples, employing an unsupervised decomposition analysis to link gene
expression profiles to disease severity, six distinct skin phenotypes, and blood
cytokines representative of given endotypes. Specifically, type 2 and type 17
responses are associated with major skin phenotypes such as erythema and
induration, while type 1 response is upregulated in lichen amyloidosis of AD
patients. Longitudinal analysis of patients treated with dupilumab finds sus-
tained gene signatures related to type 17 response in lesional skin and upre-
gulated transcription factors in non-lesional skin of patients with poor
treatment outcomes. Lastly, several extracellular matrix organization-
associated genes are correlated with clinical severity and treatment
response to dupilumab. Our findings thus provide potential skin and blood
biomarkers for assessing endotypes and therapeutic responses in AD to
pave the way for personalized medicine.

The skin is a complex organ that covers the entire body, made up of
various cells such as keratinocytes, fibroblasts, immune cells, nerve
cells, and skin appendage cells. Maintaining healthy skin requires a
delicate balance among the skin barrier, immune responses, and sen-
sory perception. Disruptions in these functions can lead to various skin
disorders. One common and troublesome condition is atopic derma-
titis (AD). While not typically life-threatening, AD causes persistent
itching and chronic inflammation, significantly impacting patients’
quality of life. AD involves complex interactions between structural

and inflammatory cells in the skin, leading to barrier dysfunction and
diverse inflammatory responses1,2. The symptoms of AD vary widely
among patients, with different areas of the skin affected in different
ways3. This variability makes it challenging to understand AD’s
pathogenesis anddevelopprecise treatments. Therefore, it is crucial to
study the relationship between the diverse symptoms of AD and its
underlying molecular features.

Past research on other inflammatory diseases has used large-scale
human data to uncover complex pathogeneses4,5. However, similar
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efforts in AD using blood biomarkers have shown only modest
results2,6. Though potentially more informative, skin tissue studies are
limited by the invasiveness and scarring associated with whole-skin
sampling. Less invasivemethods, such as blistering and tape stripping,
have been used to study the outer layer of the skin; however, these
methods may fail to capture important information derived from
deeper skin layers including signals from dermal fibroblasts and
macrophages1,7–9.

AD also has a “waxing and waning” nature, with unpredictable
flare-ups even during effective treatments10,11. In personalized medi-
cine, understanding the skin’s immune state, especially in lesions that
do not respond to treatment, is essential. Long-term sequential sam-
pling with detailed clinical data is needed to capture the changes in
skin transcriptomic profiles during these flare-ups. Among new treat-
ments, dupilumab, a monoclonal IL-4 receptor antagonist, is the
mainstay treatment for severe AD owing to its significant efficacy and
safety12–14. Understanding why some patients do not respond well to
dupilumab is crucial for improving clinical practices.

This study investigates the diverse molecular pathways of AD
through a large cross-sectional and longitudinal cohort study using
unsupervised decomposition analysis. We analyze mRNA from full-
thickness skin tissue, including both the epidermis and dermis,
obtained using minimally invasive 1-mm punch biopsies. This method
allows us to collect numerous samples from both affected and unaf-
fected skin areas, as well as tracking changes in patients treated with
dupilumab. By applying non-negative matrix factorization (NMF), we
identify previously recognized and unrecognized pathological path-
ways in AD-affected skin linked to clinical symptoms and the impact of
dupilumab treatment. These findings offer insights into personalized
medicine for AD by improving therapeutic response assessments and
disease monitoring.

Results
Keratinocytes and fibroblasts as primary elements of 1-mm
punch skin biopsies for RNA sequencing
To understand the diverse molecular profiles of AD, we conducted a
large-scale cross-sectional and longitudinal cohort study using RNA-
seq data from 1-mm punch biopsy skin samples. An overview of the
study design is illustrated in Fig. 1. These samples included those
from healthy individuals and patients with psoriasis as disease con-
trols. Out of 1061 skin samples, 1036 met the quality criteria for
further analysis. This dataset comprised 529 lesional and 422 non-
lesional samples from 156 patients with AD, 18 lesional and 18 non-
lesional samples from 18 patients with psoriasis, and 49 samples from
26 healthy individuals (Table 1, Supplementary Fig. 1A, B, Supple-
mentary Tables 1–3). Treatments included topical steroids, dupilu-
mab, and other agents. Cross-sectional analyses were limited to
samples from patients not treated with dupilumab, while long-
itudinal analyses were conducted using serial samples from 24
patients treated with dupilumab.

Before conducting the analyses, we validated the cellular com-
position of the 1-mm skin samples. The levels of COL1A1 and KRT10
were substantially higher than those of CD3E and CD207 (Fig. 2A),
implying that the transcripts from these biopsies predominantly ori-
ginated from keratinocytes and fibroblasts. In the skin, keratinocytes
and fibroblasts function as immune sentinels, producing various
immune mediators in response to distinct inflammatory signals1,2,15.
Thus, we inferred that our dataset indirectly reflected the immune
status of the samples through the gene expression features of kerati-
nocytes and fibroblasts.

Decomposition using NMF depicts disease-related metagenes
and sample batch effects
A differentially expressed gene analysis comparing AD and psoriasis
skinwith healthy skin revealed genes associatedwith epidermal barrier

and immunological dysfunction, consistent with previous studies
(Supplementary Fig. 2A, Supplementary Data 1)2,8,16–19. Unsupervised
hierarchical clustering identified sample biases in gene expression due
to the inclusion of skin appendages, such as sebaceous and sweat
glands (Supplementary Fig. 2B).

Therefore, to exclude sample biases and unravel the molecular
heterogeneity in AD skin, we used NMF, an unsupervised decomposi-
tion method. NMF decomposes high-dimensional gene expression
data into a smaller number of gene sets in an unbiased manner20. This
method uncovers hidden co-expression profiles and reveals novel
genes that correlate with recognized genes, providing insights into
previously unrecognized gene interactions underlying the biology of
complex diseases. Applying NMF to our data, we identified 29 gene
sets, which we henceforth refer to as “SKIn-Tissue derivedMetagenes”
(SKITm), hereafter referred to as SKITm1 through SKITm29
(Fig. 2B and Supplementary Fig. 2C).

Geneswith highweights in eachmetagene, definedby a z-score>3
(referred to as z-scoreg), were considered key representative gene
signatures for their respective metagenes (Fig. 2B, Supplementary
Fig. 3, SupplementaryData 2 and 3). Genes highlyweighted specifically
in only one metagene were extracted as “marker” genes, serving as
candidate biomarkers of each metagene (see “Methods” for details).
To understand the biological implications of the metagenes, we ver-
ified the highly weighted genes using knowledge-based analytical
approaches in reference to previous studies (descriptions of the top 10
highly-weighted genes and marker genes for all metagenes are pre-
sented in Supplementary Data 4. An example of enrichment analysis
for SKITm10 is shown in Supplementary Fig. 4, Supplementary
Tables 4 and 5)17,19,21–28. Additionally, the expression levels of key
cytokines representing type 2 and type 17 inflammation (IL13, CCL13,
CCL18, CCL26, IL17A, IL17C, IL17F, IL23A, CCL20) were quantified by
quantitative real-time PCR in 33 AD lesional samples and their corre-
lation with the expression levels of key metagenes was analyzed. As a
result, IL13, CCL13, and CCL26 expression levels showed significant
correlations with SKITm17, IL17A, IL23A, and CCL20 were significantly
correlated with SKITm10, and IL17C was significantly correlated with
SKITm15, supporting thebiological relevanceof themetagenes (Fig. 3).

We then investigatedmetagenes associatedwith sample biases. In
addition to the seven metagenes derived from skin appendages and
reticulocytes (SKITm22–27, SKITm19), we identified four metagenes
associated with sample bias, including outlier sample (SKITm14,
SKITm20), sample quality such as RIN score and sequence batch
effects (SKITm28, SKITm29) (Fig. 2B, Supplementary Figs. 5 and6A–D).
Uniform manifold approximation and projection (UMAP) revealed a
distribution that distinctly reflected the disease state when we exclu-
ded the expression of sample bias-related metagenes (Supplemen-
tary Fig. 7).

Among the 18 metagenes unrelated to sample bias, 12 were dif-
ferentially expressed in lesional AD or psoriasis samples in the cross-
sectional study (Fig. 2C, Supplementary Fig. 8. Patient demographics
and sample information are presented in Supplementary Tables 6–8.).
Descriptions of highly-weighted genes, marker genes and biological
interpretation for the 12 metagenes are presented in Table 2. SKITm1,
SKITm17, SKITm4 and SKITm8, with high contributions of genes
associated with leukocyte adhesion, type 2 response, and keratinocyte
differentiation respectively, were upregulated in AD samples.
SKITm10, characterized by inflammatory keratins and keratinocyte-
derived genes inducible by type 17 inflammation, and SKITm15, also
enriched with genes associated with type 17 response in keratinocytes
with marked weight of SPRR2G, were upregulated in AD and psoriasis
lesional samples. SKITm9, also characterized by type 17 response, was
upregulated in psoriasis only. SKITm11, associated with type 1
response, was also highly expressed in psoriasis. SKITm2, representing
an epidermal barrier gene signature, and SKITm16, enriched for genes
involved in dermal extracellular matrix (ECM) organization, were both
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downregulated in AD andpsoriasis. SKITm5 and SKITm6, composed of
transcription factor genes such as immediate early genes (IEG), were
upregulated in AD. Notably, AD and psoriasis exhibited apparent dif-
ferences in the non-lesional sites. Non-lesional psoriasis samples pre-
sented almost the same profiles as normal controls, whereas non-
lesional AD samples showed similar but weaker features than lesional
AD, with enhanced immunological and barrier disruption. Most of
these 12 metagenes correlated with the gene modules from our pre-
vious study which included 219 common AD samples (Supplementary
Fig. 9)29.

The total expression score of 12 metagenes, representing the
overall molecular dysregulation, was significantly higher in lesional
and non-lesional AD than in normal samples (Fig. 4A). The metagene
expression score correlated with the local and total disease severity
(Fig. 4B, C). The expression profiles of representative normal and AD

participants with mild, moderate, and severe disease are shown in
Supplementary Fig. 10A–H.

Collectively, our unsupervised decomposition analysis revealed a
collection of gene clusters, including both established and unrecog-
nized gene clusters within the context of previous inflammatory skin
studies.

Different gene co-expression patterns contribute to various skin
phenotypes and disease severity
In the cross-sectional study, we explored the correlation between
metagenes and local symptoms (erythema, papulation/induration,
excoriation, lichenification), as well as disease severity indicators,
including Eczema Area and Severity Index (EASI; a measure of disease
severity), and pruritus (patient-oriented pruritus severity score), using
amixed-effects regressionmodel (Eq. (1)).We alsoevaluatedmetagene
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Fig. 1 | Overview of the study design. The schematic outlines the process from patient skin sampling to transcriptome analysis and computational identification of
disease- and response-related signatures. GC gene cluster, ECM extracellular matrix, IEG immediate early genes.

Table 1 | Patient demographics

Disease Number of
samples

Number of patients Age
(mean ± SD)

Sex EASI
(mean ± SD)

Treatment
(n = number of samples)

Atopic dermatitis 951
(Lesional: 529,
Non-Lesional: 422)

156 42.0
(30.9–53.0)

F: 46
M: 110

18.4
(6.3–30.5)

Dupilumab (n = 535)
Topical steroid (n = 597)
Topical tacrolimus (n = 22)
Topical JAK inhibitor (n = 4)
Oral cyclosporine (n = 36)
Nemolizumab (n = 2)

Psoriasis 36
(Lesional: 18,
Non-Lesional: 18)

18 62.3
(52.5–78.0)

F: 4
M: 14

- Topical steroid/vitD3 (n = 13)
Topical vitamin D analog (n = 1)
Adalimumab (n = 10)
Guselkumab (n = 2)
Ustekinumab (n = 2)
Ixekizumab (n = 2)
Risankizumab (n = 2)

Normal 49 26 46.2
(34.6–57.9)

F: 7
M: 19

- -

Total 1036 200
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expression in prurigo nodules (PN) and lichen amyloidosis (LA), rare
chronic subtypes of AD skin symptoms30, and compared them with
non-lesional samples from the samepatients (PN: eight patients; LA: six
patients) (Supplementary Fig. 1B). Eachmetagene was associated with
distinct skin phenotypes (Fig. 4D and Supplementary Fig. 11A).
Specifically:

• Erythema: Negatively associated with SKITm2 and SKITm16
and positively associated with SKITm17, SKITm10, and
SKITm5.

• Papulation/Induration: Negatively associated with SKITm2 and
SKITm16, and positively associated with SKITm17, SKITm10, and
SKITm9.
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• Excoriation: Displayed marked SKITm10, SKITm8, and SKITm1
expression. Particularly, high SKITm1 expression suggested leu-
kocyte induction through scratching.

• Lichenification: Uniquely associated with SKITm8.
• PN: Associated with SKITm2, SKITm17, SKITm10, and SKITm8.
• LA: Exhibited significant expression of SKITm11 and SKITm8
metagenes. Notably, SKITm11 expression was distinct in LA.

Disease severity (EASI) and pruritus score were negatively asso-
ciated with SKITm2 and SKITm16, and positively associated with
SKITm17 and SKITm10. Even non-lesional sites displayed a weak but
significant association with disease severity and pruritus; EASI was
associated with SKITm10, SKITm8, SKITm5 and SKITm4, whereas
pruritus was associated with SKITm17 and SKITm15 (Fig. 4D and Sup-
plementary Fig. 11B).

These results suggested that the 1-mm skin sample serves as a
reliable indicator of both local skin phenotypes and overall severity in
AD patients. Our findings revealed distinct metagenes associated with
various local skin symptoms, highlighting their differential significance
in lesions and non-lesions.

Blood cytokine levels are associated with multiple skin
metagenes
We observed that most blood cytokines were associated with the
expression of multiple metagenes in the skin (Fig. 4E) using a mixed-
effects regression model (Eq. (2)). Notably, CCL27, IL-22, and TNF-α
levels in the blood were positively associated with SKITm17, SKITm10,
SKITm2, and SKITm16 in lesional sites, with CCL27 exhibiting the
highest level of significance. CCL17 (thymus and activation-regulated
chemokine, TARC) showed significant yet weaker associations with
SKITm17, SKITm10, and SKITm2. At lesional sites, eosinophil-derived
neurotoxin (EDN) was associated with SKITm17, a type 2 response
metagene, but not with other inflammation-related metagenes. Con-
versely, blood levels of IL-17 andCCL20, cytokines associatedwith type
17 inflammation31, positively correlated with SKITm10, validating the
metagene as a “type 17 response-related metagene.” Notably, CCL20
exhibited a stronger and more significant association with SKITm10
than with the IL-17 level. Furthermore, the expression levels of non-
lesional SKITm15, SKITm5, and SKITm4 were associated with more
blood cytokines than those of lesional samples. Among blood clinical
biomarkers, LDH demonstrated the highest association with the
expression of most skin metagenes and disease severity, whereas
eosinophil counts were specifically related to SKITm17, a type 2
inflammation response metagene (Supplementary Fig. 12) (Eq. (3)).

These results suggest that while most blood cytokines are related
to multiple metagenes and overall severity, EDN, IL-17, and CCL20
could potentially be utilized to assess immunophenotypes in AD
lesions.

Correlation between dupilumab treatment outcomes and
baseline metagene expression
In the longitudinal analysis, we examined skin samples from 24
patients sampled monthly during dupilumab treatment, with patient
demographics provided in Supplementary Table 9. Because

dupilumab can induce facial erythema with a distinct etiology from
pre-existing AD, we evaluated the treatment efficacy bymodified EASI
(mEASI), which is calculated by excluding the scores of the head and
neck from the total EASI score32–36 (clinical photo of a patient who
developed dupilumab-associated facial erythema is presented in
Supplementary Fig. 13). Patients were classified into three groups
based on mEASI during treatment: “early” responders, who achieved a
mild disease level (defined by mEASI ≤ 6.3) within the first month and
maintained that level for 6 months; “poor” responders, who did not
achieve the mild level during the entire 6-month study period; and
“intermediate” responders, who did not meet the criteria for either
“early” or “poor” responders (Fig. 5A). These response trends persisted
for over a year for most patients (Supplementary Fig. 14).

We then investigated the clinical and molecular features of the
response groups before treatment. Clinically, the pretreatment mEASI
significantly differed among the three groups, with lower disease
severity being associated with a better response to dupilumab
(Fig. 5B). Skin transcriptomic analysis revealed a significant correlation
between lesional SKITm16 expression and treatment responses
(p = 6.3e-03). Additionally, marginal associations were observed
between lesional SKITm10 expression and non-lesional SKITm5 and
SKITm4 expression (p = 2.5e-02, 3.6e-02, 1.8e-02, respectively, Fig. 5C).

To identify potentially useful standalone biomarkers, we further
assessed thepretreatment expression levelsof SKITm16, SKITm10, and
SKITm5 marker genes. SKITm4, lacking marker genes, was excluded
from this analysis. We found significant associations with treatment
outcomes in lesional samples for three SKITm16 genes (OGN, RECK,
PDGFRL) and one SKITm10 gene (FBLIM1). In non-lesional samples,
significant associations were found for SKITm5 genes (TOB2, EGR1,
MCL1, CBX4, IER2, PLK2, CSRNP1, EGR3, PMAIP1) (p <0.01, Fig. 5D).
Supplementary Fig. 15 displays marker genes with marginal correla-
tions (p <0.05). For these analyses, five patients who were receiving
cyclosporine at baselinewere excluded, and four patients with no non-
lesional sites on their trunks were excluded from the non-lesional skin
analysis.

Pretreatment levels of blood cytokines were also analyzed, which
showed significant associations with treatment outcomes for IL-22
(p = 2.4e-03) and IL-18 (p = 1.1e-03), while CCL20 exhibited marginal
significance (p = 5.0e-02) (Fig. 5E and Supplementary Fig. 16). Although
IL-17 did not exhibit a significant correlation, IL-17 blood levels in most
early responders were nearly zero. EDN, associated with skin SKITm17
expression (type 2 immune response) in the cross-sectional analysis,
was not significantly associated with treatment responses. To further
evaluate biomarkers for treatment effect, we validated the correlation
between pretreatment levels of skin and blood biomarkers and disease
severity after treatment. We found that pretreatment levels of lesional
SKITm10, non-lesional SKITm15, plasma IL-22, and IL-18 correlated
with the average severity score after 5 and 6 months of treatment
(Fig. 6A–C).

Dupilumab suppresses type 2 inflammation and restores the
epidermal barrier and ECM-related genes
We evaluated the chronological effect of dupilumab on skin mRNA
profiles (Fig. 7A) using a mixed-effects regression model (Eq. (4)).

Fig. 2 |Metagenes obtainedusingnon-negativematrix factorization (NMF) and
comparison of metagene expression across diseases. A Density plot depicting
representative genes associated with cellular components in the skin. The 1-mm
punch whole-skin sample used formRNA-seq included abundant keratinocyte- and
fibroblast-derived transcriptomes. 1036 samples were used for analysis.BHeatmap
illustrating 2368 highly-weighted genes in metagenes obtained from the decom-
position analysis using NMF. Each value represents the gene weights, and the
representative genes of each metagene are indicated in the right column. The
bubble plot below the heatmap depicts the scaled gene weights (z-scoreg) of the
genes that are representative of cellular components. 1036 samples were used for

analysis. C The bottom heatmap represents the statistical significance of the
comparison between normal samples and lesional AD, non-lesional AD, lesional
psoriasis, and non-lesional psoriasis samples, tested byWilcoxon test. The p values
were corrected using the Bonferroni method for multiple comparisons. Blue indi-
cates lower expression, and red indicates significantly higher expression than that
in normal samples. Statistically insignificant results are highlighted in gray. All tests
were two-sided.n (samples) = 49 (normal), 246 (lesional AD), 170 (non-lesional AD),
18 (lesional psoriasis), and 18 (non-lesional psoriasis). Source data are provided as a
Source Data file. AD atopic dermatitis, Pso psoriasis.
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Fig. 3 | Correlation between qRT-PCR–quantified cytokines expression levels
and RNA-seq-derived metagenes. The expression levels of cytokines, quantified
by qRT-PCR, were correlated with metagene expression levels derived from RNA-
seq data, both obtained from the same set of skin samples (n = 33). The y-axis
represents the cytokine levels quantified by qRT-PCR, and the x-axis represents the

metagene expression levels derived from the decomposition analysis of RNA-seq
data. The r and p indicate the correlation coefficient and the significance obtained
through Spearman’s correlation analysis, respectively. The linear regression line is
shown with a blue shaded area indicating the 95% confidence interval of the fitted
line. Source data are provided as a Source Data file. *p <0.01.
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Average metagene expression levels in the 24 patients during treat-
ment were compared with respective pretreatment levels. The most
notable changes were observed in SKITm17 (associated with a type 2
immune response) and SKITm16 (ECM-related gene signature) in both
lesional and non-lesional samples, with expression levels almost
shifting to the normal range after 3 months. Lesional SKITm2 expres-
sion also recovered slowly but did not reach the normal range.
SKITm10, SKITm6, and SKITm5 in the lesional samples and SKITm4 in
the non-lesional samples showed a partial response. SKITm11 expres-
sion was low among the sampled patients, showing no change in the
first 6 months of dupilumab treatment. Blood CCL27, CCL17, IL-22, IL-
16, and IL-18 levels consistently decreased (Supplementary Fig. 17) (Eq.
(5)). These results confirmed the strong effect of dupilumab in sup-
pressing type 2 inflammation and restoring the epidermal barrier.
Additionally, the findings suggested that dupilumab also helps restore
the pathological gene expression in fibroblasts, while the effect on
type 17 response in the skin is limited.

Long-course sampling demonstrates skewed inflammation in
patients with poor responses
Our subsequent interest was to investigate skin immunophenotypes
under dupilumab treatment. Among the three responder groups, the
average transition in skin metagene expression exhibited notable pat-
terns (Fig. 7B). Specifically, SKITm17, associated with a type 2 immune
response, was strongly suppressed across all three responder groups.
Conversely, SKITm10, associated with a type 17 response, was con-
sistently elevated in the poor-response group. Furthermore, SKITm15
and SKITm5 expression were higher in non-lesional sites of poor
responders during treatment (Fig. 7B and Supplementary Fig. 18). The

average transition in blood cytokine/chemokine levels was not notably
different among the responder groups (Supplementary Fig. 19).

The residual expression of lesional SKITm10 in poor responders
persisted over the long term. In the longitudinal analysis, eight
patients were sampled sequentially for over 1 year; two patients were
classified into the early, two into the intermediate, and four into the
poor-response groups in the previous analysis. The transition in
metagene expression and its relative expression compared with
those at baseline in poor responders are presented in Fig. 8A, B,
respectively (results of all 12 metagenes and blood cytokines are
presented in Supplementary Figs. 20 and 21). SKITm17 expression
was suppressed in almost all patients throughout dupilumab ther-
apy, with the exception of Pt12, where SKITm17 increased when the
dosing interval was extended from every other week to once per
month. Conversely, poor responders exhibited skewed expressions
toward SKITm10. Skewing toward type 17 response-associated cyto-
kines was less evident in the blood (Fig. 8B).

Further observation of individual patients revealed notable
results. Two poorly responsive patients (Pt21 and Pt23) showed per-
sistently high expression of SKITm5 (IEGs) at non-lesional sites
(Fig. 8A); both patients had common clinical phenotypes of general-
ized erythema (Fig. 8B). Pt17 had extensive areas of LA, consistently
observed in the longitudinal study. These results suggested that LA
eruptions were persistently associated with high SKITm11 expression
(indicating type 1 inflammation). Notably, SKITm10 expression, initi-
ally low before dupilumab treatment, increased in LA lesions following
dupilumab initiation. No patients developed any evident new skin
phenotypes throughout treatment (Supplementary Fig. 22). Finally,
the marker genes showed trends similar to those of metagene

Table 2 | Summary of metagenes differentially expressed in AD or psoriasis

Metagenes Top 10 highly-weighted genes Top 10 marker genes for each
metagene

Biological implications of highly-weighted genes

SKITm1 MMP1, MMP3, SELE, SOD2, CXCL8, MT2A,
THBS1, CTSL, G0S2, IL6

MMP1, CTSL, FPR1, IL6, MT2A, IL1RL1,
SERPINB1, CXCL8, PI15, PLAUR

Leukocyte adhesion, leukocyte translocation, wound
healing

SKITm2 LOR, KRT77, FLG2, KRT10, KRT1, KPRP, CDSN,
KRT14, UGT3A2, CACNA1H

UGT3A2, PHYHIP, BTC, CACNA1H Epidermal barrier function and homeostasis, negative
immune regulation

SKITm4 KRT10, KRT5, KRT1, GFBP1, HSPA8, KRT14,
KRT2, LMNA, NCL, AQP3

- Structural genes expressed in keratinocytes, immuno-
genic cell death

SKITm5 NR4A1, CYR61, ATF3, FOSB, NR4A2, EGR1,
FOSL1, AREG, EGR2, JUN

SRF, NR4A1, PTGER4, ATF3, NR4A2,
TGIF1, CSRNP1, RND3, ERRFI1, ITPRIP

Immediate early genes, transcription factors, epidermal
growth factor receptor (EGFR) ligands

SKITm6 FOS, EGR1, ATF3, JUN, DUSP1, HSPA1B,
TOP2A, HSPA1A, KRT1, KRT5

- Immediate early genes (IEGs), cellular proliferation

SKITm8 KRT2, FLG, KRT16, ASPRV1, HRNR, KRT6C,
CALML5, CALML3, FLG2, LCE6A

HRNR, FABP5 Genes expressed in stratum granulosum associated with
terminal differentiation and cellular proliferation

SKITm9 PI3, S100A9, LCN2, ATP12A, S100A8, SPRR2A,
SERPINB4, S100A7A, S100A7, SPRR2D

GM2A, DEFB4A, LCN2, KLK13 Keratinocyte differentiation, skin response to microbes,
neutrophil degranulation;
Type 17 inflammation-induced genes and cytokines
derived from keratinocytes

SKITm10 KRT6C, KRT6B, KRT6A, KRT16, SERPINB4,
S100A7A, KRT17, S100A8, PI3, GJB2

KRT6C, KRT6A, PI3, UPP1, CD24, SER-
PINB4, MXD1, DSC2, EPGN, JHDM1D-AS1

Keratinocyte differentiation, skin response to microbes,
neutrophil degranulation;
Type 17 inflammation-induced genes and cytokines
derived from keratinocytes

SKITm11 IFI6, MX1, OAS2, IFI44L, HERC6, IFI44, IFI27,
IFIT1, XAF1, RSAD2

IFI44L, IFIT1, IFIT3, DDX60 Interferon-induced proteins, enzymes, and transcrip-
tional regulators, interferon-gamma induced chemo-
kines;
Type 1 inflammation-induced genes and cytokines
derived from keratinocytes

SKITm15 SPRR2G, S100A7, S100A9, SPRR2B, SPRR2E,
S100A8, SPRR2D, SPRR2A, CHI3L2, S100A7A

SPRR2G Keratinocyte differentiation, skin response to microbes,
neutrophil degranulation;
Type 17 inflammation-induced genes and cytokines
derived from keratinocytes

SKITm16 COL3A1, COL1A2, COL1A1, SPARC, PI16,
CCDC80, DCN, MFAP5, LINC01279, FBN1

DCN, RECK, PDGFRL, OLFML1, OLFML3,
PI16, FAM180B, LOX, ITGBL1, PAM

Extracellular matrix (ECM) organization

SKITm17 CCL18, COL6A6, MMP12, SERPINB4, POSTN,
LTF, COL6A5, CCL13, ALOX15, KRT16

MMP12, COL6A6, ALOX15, CCL18, CISH,
CCL13, LURAP1L

Type 2 inflammation-associated chemokines and
collagens
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expression in eight patients (Supplementary Fig. 23), highlighting the
potential utility of marker genes for disease monitoring and as addi-
tional therapeutic targets in poor responders to dupilumab.

Discussion
Human clinical research often struggles to balance invasiveness and
information richness. To address this, we profiled gene expression in
large-scale whole-skin samples using an unbiased approach to explore

the molecular heterogeneity of AD. Consequently, our 1-mm punch
method yielded ample samples for comprehensive analyses with
minimal invasion. Additionally, unsupervised decomposition success-
fully captured various keratinocyte and fibroblast gene expression
profiles, revealing both recognized and unrecognized gene signatures
underlying AD pathogenesis. This is the first comprehensive study to
examine the gene expression profiles associated with local AD phe-
notypes, overall severity, and treatment outcomes.
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Conventional analytical approaches often fall short due to disease
population diversity and potential sampling bias. Techniques such as
gene set variation analysis and CYBERSORT have been used to assess
inflammatory pathways in AD2,8,37; however, detailed reference data for
various cell populations in the skin are limited. Single-cell studies can
identify novel cell populations1, but comprehensive understanding
requires many patient samples, and single-cell analysis is typically
performed on a limited cohort.

We overcame these challenges using unsupervised learning with
NMF to profile numerous whole-skin samples in an unbiased manner,
revealing the molecular heterogeneity of AD and responses to differ-
ent inflammatory signals. NMF, a potent decomposition method
widely used in bioinformatics38,39, extracts gene sets that are co-
expressed in the original data, providing a low-rank approximation of
high-dimensional expression data. The gene sets, or metagenes,
obtained by NMF, have the following features: (1) genes with high
weights across multiple metagenes uncover the contribution of single
genes tomultiple pathways, and (2) genes that are highly weighted in a
single metagene serve as specific biomarkers for each pathway. For
example, KRT17 is upregulated in both normal sebaceous glands and
interfollicular keratinocytes in psoriasis40, highlighting the need for
caution when evaluating the disease state solely based on the gene
expression levels per se. In addition, genes such as FLG, FLG2, and LOR,
widely recognized as skin-barrier-related genes, exhibited high
weights in multiple metagenes, suggesting their involvement in var-
ious skin processes. This may explain why the epidermal barrier
metagene (SKITm2) did not significantly correlate with the skin mod-
ules in our previous study using weighted gene co-expression network
analysis (WGCNA), where each gene is clustered to a single module
(Supplementary Fig. 9)29. The identifiedmarker genes specific for each
metagene serve as potential clinical biomarkers for assessing diverse
skin barrier and inflammatory states, as well as for future precision
medicine in AD.

Thus,NMFuncovered a significant collectionof gene signatures in
AD skin tissue reflecting responses to different inflammatory signals,
with minimal influence from sample bias related to skin appendages
and technical factors.

In previous studies, gene expression signatures in AD have been
compared among lesional, non-lesional, and normal skin, but their
relevance to different AD eruptions has been less explored. Our study
clarifies the contribution of “AD-associated” molecular profiles to
various AD skin phenotypes. The following discusses the metagenes
identified by NMF, comprising genes involved in linked to type 2, 17,
and 1 inflammatory responses, as well as barrier-related genes.

The SKITm17 metagene, associated with type 2 response, corre-
lated strongly with clinical signs of AD, including local symptoms,
severity, and pruritus. Signature genes included key chemokines such
as CCL18 and CCL13 produced by macrophages andMMP12 expressed
in DCs, and genes such as COL6A5, POSTN, CCL2, and CCL19 expressed
in a recently reported unique fibroblast population in AD skin1,41. Th2-
responding fibroblasts expressing COL6A5, POSTN, and IL13RA1 have
also been identified in eosinophilic fasciitis in humans42. Our findings
emphasize the crucial role of fibroblasts and macrophages in the skin
with type 2 inflammation.

Multiple metagenes, including SKITm9, SKITm10, and SKITm15,
shared common high-weight genes known to be inducible by type 17
inflammation in keratinocytes17,19,21–24. Our findings revealed distinct
correlations among these metagenes, marker genes, and clinical
parameters. SKITm10 was linked to lesional sites, while SKITm15 was
associated with non-lesional sites. The involvement of these meta-
genes in our samples may be influenced by race, as all participants
were Japanese, a population shown to have type 17 polarization inAD18.

The SKITm11 metagene, linked to LA, a chronic AD type, includes
genes implicated in type 1 inflammation. In AD, genes such as MX1,
STAT1, CXCL9, and CXCL10 have been implicated in type 1 inflamma-
tion with “chronic” lesions and African-American AD; however, other
studies have shown conflicting results37,43,44. The inconclusive results in
these studies may stem from inadequate consideration of local skin
phenotypes and inconsistent definitions of “chronic disease.” Dis-
crepancies arise, as some define “chronic AD” based on the disease
duration (e.g., childhood-onset adult AD)44, whereas others focus on
the local skin lesion duration (e.g., >72 h)43. By examining eruption
types, we confirmed the clinical significance of type 1 inflammation in
AD skin rather than relying on divergent definitions across studies.

Within the barrier-related metagene SKITm2, we identified
unrecognized genes as potential biomarkers for barrier disruption.
The high-weighted genes in SKITm2, such as FLG, FLG2, and LOR, are
well-known as genetic risk factors inAD7,45. Nevertheless, their utility as
universal biomarkers for barrier function has not been shown46,47.
Here, within the barrier-related metagene SKITm2, we identified
unrecognized genes, namely PHYHIP, UGT3A2, CACNA1H, and BTC, as
potential biomarkers for barrier disruption. Their roles in skin barrier
functions, however, remain to be explored48. Our emphasis on
potential markers resulting from unbiased analysis warrants a com-
prehensive evaluation of skin barriers in AD, transcending conven-
tional gene markers rooted in one-sided hypotheses.

SKITm8, linked to epidermal terminal differentiation in the
granular layer49,50, was upregulated in chronic AD phenotypes, such

Fig. 4 | Association between metagene expression and clinical symptoms or
blood cytokine levels based on the cross-sectional study. A The y-axis repre-
sents the metagene expression score, which was calculated by the sum of expres-
sion values of 12 disease-associated metagenes, namely, SKITm17, SKITm10,
SKITm9, SKITm15, SKITm11, SKITm8, SKITm6, SKITm5, SKITm4, SKITm1,
SKITm2 and SKITm16. All the expression values of each sample were divided by the
maximum expression value in each metagene for normalization (relative expres-
sion values). The expression values for SKITm2 and SKITm16 were then subtracted
from 1 before the calculation of the metagene expression score. The relative
expression value was used for analysis throughout the cross-sectional and long-
itudinal analysis. The metagene expression score between normal samples and
lesional AD and non-lesional AD were tested by Wilcoxon test. The p values were
corrected using the Bonferroni method for multiple comparisons. In box plots, the
center line represents the median; the lower and upper bounds of the box repre-
sent the 25thand75th percentiles, respectively;whiskers extend to the smallest and
largest values within 1.5× the interquartile range from the lower and upper quar-
tiles. N (samples) = 49 (normal), 246 (lesional AD), and 170 (non-lesional AD).
*p <0.01. B The y-axis represents the local severity score, calculated by the sum of
clinical severity scores of erythema, papulation/induration, excoriation, and
lichenification of the sampled sites. n (samples) = 49 (normal), 235 (lesional AD),
and 159 (non-lesional AD). *p <0.01. C The y-axis represents the total disease

severity (EASI). n (samples) = 49 (normal), 234 (lesional AD), and 156 (non-lesional
AD). *p <0.01. For (B, C), the severity scores of normal samples were set to 0. The r
and p indicate the correlation coefficient and the significance obtained through
Spearman’s correlation analysis, respectively. The linear regression line is shown
with a gray shaded area indicating the 95% confidence interval of the fitted line.
DHeatmapdepicting p values obtained from a regression analysis of the severity of
skin phenotypes (erythema, papulation/induration, excoriation, lichenification),
the overall severity (EASI), and pruritus score. Results from PN and LA lesions were
comparedwith those of non-lesional samples from the samepatients using a paired
t-test. Red and blue indicate a significant positive and negative association with
metagene expression and the severity of symptoms, respectively. Statistical sig-
nificance was assessed using a two-sided test. Sample sizes: erythema/papulation/
excoriation/lichenification (n = 212), LA (n = 12), PN (n = 16), pruritus (lesional,
n = 230; non-lesional, n = 151), EASI (lesional, n = 235; non-lesional, n = 159).
E Heatmap displaying p values obtained from regression analysis of plasma/serum
cytokine levels. Statistical significance of regression coefficients was assessed using
a two-sided test. EDN eosinophil-derived neurotoxin, TSLP thymic stromal lym-
phopoietin. Sample sizes: lesional, n = 224 samples (206 for CCL17); non-lesional,
n = 148 (140 for CCL17). For (D, E), no adjustments for multiple comparisons were
made, as the analyses were exploratory in nature. Source data are provided as a
Source Data file.
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as lichenification, PN, and LA resulting from repetitive scratching51.
These eruptions also share common histological features, such as
hyperkeratosis and hypergranulosis52. HRNR, a paralog of FLG2 and a
marker gene of SKITm8, has shown conflicting expression pat-
terns in AD lesions in previous studies53,54, highlighting the impor-
tance of considering eruption types. Thus, genes in SKITm8 may

reflect “abnormal” epidermal differentiation following scratching in
AD skin.

Our investigation on non-lesional sites indicated distinctive
pathology in AD compared with that of psoriasis. In AD, even clinically
asymptomatic skin exhibits barrier dysfunctions and subclinical
inflammation55,56, whereas, in psoriasis, non-lesional skin resembles
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healthy control skin57. This distinction emphasizes the importance of
evaluating non-lesional sites in AD.

This study revealed unique associations between detailed clinical
symptoms and conventional AD-associated genes. Unlike previous
transcriptomic studies that often lacked comprehensive clinical data,
our study included this crucial information, allowing us to uncover the
intricate relationships between molecular profiles and clinical mani-
festations. This integrated approach underscores the importance of
detailed clinical data in understanding the heterogeneous nature of
diseases, such as AD, and provides consistent, accurate insights into
complex disease pathogenesis.

Beyond the reidentification of known AD-associated genes, our
unbiased approach revealed two significant gene clusters not well-
recognized in previous AD studies: IEG-related genes (SKITm5) and
fibroblast-derived genes associated with ECM organization
(SKITm16)58.

The role of IEGs in AD pathogenesis is not well understood;
however, in vitro studies suggest their association with “tissue-
based memory.” IEGs are transcription factors rapidly and tran-
siently transcribed in response to acute stress or proliferation sig-
nals, with expression levels that are sensitive to timing59,60.
Repetitive IL-13 stimulation in alveolar epithelial cells leads to sus-
tained IEG activation and hyper-reactivity, resulting in increased
cytokine and chemokine production61, implying a role in chronic
type 2 inflammation in asthma, known as “tissue-based memory”62.
Our results suggest that IEG-related genes (SKITm5) in non-lesional
sites could serve as biomarkers for disease severity and dupilumab
treatment outcomes (Figs. 4D and 5C). This supports the idea that
IEG expression may reflect “latent inflammation” in non-lesional AD
skin. Additionally, the inclusion of epidermal growth factor receptor
ligands in the same metagene suggests underlying activation of
keratinocytes.

SKITm16, comprising fibroblast-derived genes, showed a strong
negative association with disease severity and dupilumab treatment
outcomes. Skin fibroblasts are crucial in ECM organization and
immune regulation63, but the molecular features of hypofunctional
fibroblasts and their clinical impact on skin diseases are largely
unknown. Single-cell studies have highlighted fibroblast hetero-
geneity in normal skin58, yet their utility as biomarkers in diseased
skin remains uncertain. Genes in SKITm16, specifically fibroblast-
derived genes, have been linked to other skin diseases. For example,
CCDC80 was identified in a genome-wide association study of AD64,
and LOX, overexpressed in the lungs and skin of patients with sys-
temic sclerosis65, was associated with dupilumab treatment out-
comes in our study. Downregulation of LOX expression impairs ECM
cross-linking, affecting its structural integrity and stability63. RECK
and PI16, expressed in endothelial cells, inhibit MMP2 involved in
ECM breakdown and are suppressed by inflammatory cytokines such
as IL-6 in human endothelial cells66, suggesting their responsiveness
under inflammatory conditions. The downregulation of RECK is also
linked to poor prognosis in multiple cancers66,67. These findings
highlight the significant role of impaired ECM organization in the
inflammatory pathogenesis of AD and suggest that these genes could
be important biomarkers for assessing disease severity and treat-
ment responses.

To achieve personalized AD therapy, understanding both the
immunophenotypes and personal molecular signatures under tar-
geted treatments is essential. Identifying pretreatment molecular
markers can help predict dupilumab responses, while understanding
treatment dynamics can inform alternative strategies.

In the longitudinal study, we found that four metagenes
(SKITm10, SKITm16, SKITm5, and SKITm4) and clinical severity were
associated with treatment response to dupilumab. Notably, the
expression of SKITm10 and its marker genes, linked to type 17
response, were associated with limited treatment outcomes, unlike
those linked to barrier impairment and type 2 inflammation
(Fig. 5C). Of note, the pretreatment severity of patients was strongly
correlated with an increased type 17/type 2 ratio, characterized
by skewed expression of SKITm10 relative to SKITm17, and
severe patients who exhibited a pure type 2 profile were rare (Sup-
plementary Fig. 24). Given that many biomarkers related to dupi-
lumab response were confounded by disease severity, further
investigation is necessary to assess their independence from disease
severity.

Temporal analysis of the cohort revealed that dupilumab had the
most robust effect on SKITm17, a type 2 response-related metagene,
consistentwithprevious reports2,41. This effectwas continuous for over
a year, with recovery observed in barrier-related and ECM
organization-related metagenes, SKITm2 and SKITm16.

In contrast, poor responders exhibited skewed expression of
SKITm10, characterized by high weights of keratinocyte-derived
genes responsive to type 17 inflammation (Figs. 7B, 8A, B). The
potential skewing toward a Th17 response under Th2 pathway
blockade has been reported68,69, while other reports have been
inconsistent2,70–72. Our study’s unique features, including shorter
sampling intervals and stratified analysis, provided new insights. This
suggests that patients with inadequate dupilumab response might
benefit from JAK inhibitors, known to downregulate type 1, 2, and 17
responses73.

Furthermore, sustained upregulation of IEGs (SKITm5 metagene)
in some poor responders suggests an additional therapeutic target.
Recently developed topical drugs that inhibit the nuclear transport of
transcription factors, such as AP-1, amajor component of IEGs74, might
aid in further disease control for those patients with sustained IEG
expression during systemic treatment. Our findings help identify
potential genetic biomarkers to stratify populations thatwould benefit
from IEG-targeted therapy in AD.

Our studyhadsome limitations. For example, all participantswere
Japanese, warranting further research on other races. Additionally, we
could not directly evaluate immune cells, presumably due to their
small numbers in the samples. Nevertheless, our unbiased approach,
fortified by minimally invasive skin sampling and integrative analysis
with comprehensive unsupervised decomposition method and
detailed clinical information, helped elucidate the complex links
between heterogeneous molecular signatures and clinical AD features
in skin tissue. The cross-sectional analysis highlighted the distinct
clinical significance of both recognized and previously unrecognized
gene sets in AD skin. The longitudinal analysis identified potential
biomarkers and additional targets for dupilumab treatment. The
marker genes identified offer a robust framework for assessing each

Fig. 5 | Metagene expression and blood cytokine features of patients with
different dupilumab responses, basedon the longitudinal study. ATime-course
of disease severity (modified Eczema Area and Severity Index: mEASI) in patients
treated with dupilumab (n = 24 patients). The blue line represents 6.3, which is the
cutoff for mild disease severity in the mEASI. B Correlation between the disease
severity score (mEASI) and treatment response groups before treatment. The x-axis
represents the responder group: +++ “early responders,” ++ “intermediate
responders,” and + “poor responders.” n = 5 (early responders), 11 (intermediate
responders), 8 (poor responders). Correlation between treatment outcomes and

the expression of skin metagenes (C), skin marker genes (D), and blood cytokines
(E) before treatment. n (samples) = 19 (lesional AD skin), 15 (non-lesional AD skin),
19 (blood). In (C, D), the red and blue dots represent lesional and non-lesional
samples, respectively. In (B–D), in box plots, the center line represents themedian;
the lower and upper bounds of the box represent the 25th and 75th percentiles,
respectively; whiskers extend to the smallest and largest values within 1.5× the
interquartile range from the lower and upper quartiles. The p values indicate the
significance obtained using Spearman’s correlation analysis. *p <0.01, †p <0.05.
Source data are provided as a Source Data file.
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Fig. 6 | Correlation between pretreatment skin gene expression, blood cyto-
kine levels, and disease severity after dupilumab treatment. Analysis of pre-
treatment levels of (A) skin metagene expression, (B) marker gene expression of
SKITm10, and (C) blood cytokines. The x-axis represents the averaged values of AD
disease severity score (mEASI) after 5 and 6 months of dupilumab treatment, and

the r and p indicate the correlation coefficient and the significance obtained
throughSpearman’s correlation analysis, respectively.n (samples) = 19 (lesionalAD
skin), 15 (non-lesional AD skin), 19 (blood). *p <0.01, †p <0.05. Source data are
provided as a Source Data file.
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pathway, with potential applications across various study settings,
including other datasets and small-sample-size research. Altogether,
our findings provide comprehensive insights into the complex mole-
cular heterogeneity of AD, paving the way for future rational use of
molecular-targeted treatments in personalized medicine.

Methods
Patients and sample collection
The study protocol was approved by the Keio University School of
Medicine Ethics Committee (Approval Numbers: 20160377, 20150325,
and 20130384), NipponMedical School Ethics Committee (29-03-916),

Fig. 7 | Transition in metagene expression during dupilumab treatment based
on the longitudinal study. A Average expression of skin metagenes during
dupilumab treatment in 24 patients. The p values indicate the significance of the
differences in metagene expression compared with the pretreatment level (month
0) as determined by a linear mixed-effects regression analysis. n = 24 (AD), 26
(normal). *p <0.01. P values were corrected using the Bonferroni method for
multiple comparisons. Source data are provided as a Source Data file. B Averaged

transition in skin metagene expression among different responder groups. In
(A, B), the mean and SEM (standard error of the mean) are presented as red and
blue points and bars, respectively, for lesional and non-lesional AD skin samples.
Green highlighted shadows represent the 95% confidence interval (CI) for themean
expression in healthy individuals. n = 5 (early responders), 11 (intermediate
responders), 8 (poor responders).
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Fig. 8 | Long-term observation of skin metagenes and blood cytokines in
dupilumab-treatedpatients.ADynamics of skinmetagene expression and blood
cytokines in individual patients during the long-term course of dupilumab
treatment. Green highlighted shadows represent the 95% CI for the mean
expression in healthy individuals. B Transition in relative values compared with

the baseline skin metagene expression and blood cytokines in four poorly
responding patients. C Clinical images of the four poorly responding patients
before and after treatment. No apparent changes in clinical phenotypes were
observed during the course of treatment.
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Tokyo Teishin Hospital (1054), and RIKEN Yokohama Ethics Review
Committee (Approval Number H28-24), aligning with the Declaration
of Helsinki. Patients with AD, plaque-type psoriasis visiting Keio Uni-
versity Hospital, Nippon Medical School Hospital, and Tokyo Teishin
Hospital between 2018 and 2022 were invited to participate. AD was
diagnosed according to the criteria of Hanifin and Rajka75, and psor-
iasis diagnosis was based on clinical symptoms or previously obtained
skin histopathology, reviewed by at least two board-certified derma-
tologists. Normal control skin was obtained from healthy volunteers
who were recruited at Keio University Hospital, defined as individuals
with no inflammatory skin diseases. Exclusion criteria included age <15
years, pregnancy, and ahistory of lidocaine allergy, bleedingdisorders,
and complications of other inflammatory skin diseases. Written
informed consentwas obtained fromall participants: 160 patients with
AD, 18 patients with psoriasis, and 26 healthy volunteers (Supple-
mentary Fig. 1). Participants who underwent skin sampling were
compensated with 10,000 JPY. The sex (biological attribute) of the
participants was determined based on self-reporting.

A 1-mm punch biopsy (Kai Medical, Japan, #BPP-10F) was used for
skin sampling, using local anesthesia with topical lidocaine/prilocaine
cream (EMLA cream; Sato Seiyaku, Tokyo, Japan, #1219800N1023) or
1% lidocaine injection (Xylocaine Injection Polyamp1%; Sandoz Pharma
K.K., Tokyo, Japan, #1214400A7055). Lesional and non-lesional sam-
ples were obtained based on consent, and “lesional” samples were
defined by the presence of one or more skin symptoms: erythema,
papulation/induration, excoriation, and lichenification. Sampling sites
were primarily selected based on the most severe or characteristic
lesions of the posterior trunk in patientswithADorpsoriasis. Sampling
was performed atmultiple timepoints after obtaining patient consent.

During sampling, we avoided hair follicles by selecting sampling
sites through dermoscopy, a microscopy tool commonly used in der-
matological clinical practice. This precaution was adopted to mitigate
potential confounding effects on the transcriptomic data. However, in
some patients, hair follicles were undetectable, likely owing to edema
or thickening of the epidermis. To acquire control data, we collected
two skin samples from healthy volunteers: one from a non-hair follicle
site and the other from a hair follicle site.

Each sampling site was rated from 0 to 3 based on the local
severity of erythema (redness), papulation/induration (swelling of the
skin), excoriation (erosion due to scratching), and lichenification
(leathery thickening of the skin with exaggerated skin markings), fol-
lowing the EASI scoring system for AD patients76. Excoriated samples
were obtained from epithelialized skin adjacent to excoriated erosions
to avoid bias arising from a lack of epidermis. Prurigo nodules (PN,
hard bumps) and lichen amyloidosis (LA, discrete, hard, small reddish-
brown papules), which are rare chronic subtypes of AD skin
symptoms30, were also evaluated. Examples of skin symptom annota-
tions are presented in Supplementary Fig. 1B.

For ADpatients, the severity of thewhole bodywas assessed using
EASI, and the patient-oriented pruritus score was recorded at the time
of sampling. The Modified EASI (mEASI) was calculated by excluding
the scores of the head and neck from the total EASI score32. Upon EASI
scoring, PN was assessed as lichenification scores in accordance with
the Harmonizing Outcome Measures for Eczema (HOME) guidance76.
LA, another subtype of chronic AD skin symptoms, was also scored as
lichenification. The suggested EASI range for a “mild” condition is 0–7,
7.1–21.0 for “moderate,” and 21.1–50 for “severe,” based on previous
literature33. Therefore, the “mild” mEASI was set at 6.3, calculated as
7×64.8/72 (based on the maximum score of EASI being 72 and that of
mEASI being 64.8). The diagnosis of skin diseases, evaluation of
severity scores, and selection of sampling sites involved at least two
board-certified dermatologists.

Medications for AD, psoriasis vulgaris, and other complications
within 1 week of skin sampling were recorded. AD patient treatments
included topical moisturizers, steroids, tacrolimus, JAK inhibitors, oral

cyclosporine, nemolizumab, and dupilumab. Psoriasis patient treat-
ments included topical steroids, topical vitamin D analogs, TNF-alpha
inhibitors, and IL-17 inhibitors. Topical treatments were marked as
“used” if the ointment had been applied to the sampled area within
1 week of sampling. Dupilumab was administered to adults with severe
AD meeting the indication criteria under the Japanese national insur-
ance; these included a body surface area percentage >10%, a Validated
Investigator Global Assessment score higher than 3, and EASI > 16,
despite a history of treatment with topical steroids (strong class or
higher) or topical calcineurin inhibitors for at least the last 6 months,
or patients with hypersensitivity to topical medications, rendering it
difficult to continue topical treatments.

RNA extraction and sequencing
Samples for RNA transcriptome analysis were immediately submerged
and stored in RNAlater solution (Thermo Fisher Scientific, Waltham,
MA, USA, #AM7020) at 4 °C and subsequently frozen at −80 °C for
storage. RNA was extracted from the samples using TRIzol (Thermo
Fisher Scientific, Waltham, MA, USA, #15596026) and the Direct-Zol
RNA MiniPrep Kit (ZYMO RESEARCH, Irvine, CA, USA, #R2052) fol-
lowing the manufacturer’s protocol. For quality control, the RNA
integrity number (RIN) was calculated using an RNA Pico 6000 kit
(Agilent Technologies, Santa Clara, CA, USA, #5067-1513) and Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA,
#G2939A) with 2100 Expert software (version B.02.07; Agilent Tech-
nologies, Santa Clara, CA, USA), following the manufacturer’s
instructions. The RNA concentration was measured using a Qubit
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Samples
with RNA concentrations below the measurement range of the Qubit
fluorometer (below 1 ng/μl) were measured using a Quantus Fluo-
rometer (Promega Benelux, Leiden, the Netherlands) or estimated
from the electrophoresis results using the bioanalyzer. The libraries
were prepared using a NEBNext Ultra RNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA, USA, #E7530). A total of 10 ng of
RNA (for smaller samples, 1 ng) was used for library preparation (18 or
21 PCR cycles, depending on the amount of extracted RNA). Sequen-
cing was performed using an Illumina HiSeq 1500 or 2500 to obtain
15–20million reads using a 50 bp single-end read configuration. Reads
were aligned to the Ensembl GRCh38 human genome assembly using
STAR77, and gene counts and Transcripts Per Kilobase Million (TPM)
were calculated using the R package Rsubread78. The quality data for
RNA-sequence has been shown in Supplementary Data 5.

Sample filtering and patient demographics
We excluded low-quality samples from the analysis, specifically sam-
ples with low expression of representative structural genes from the
stratum corneum, epidermis, and dermis were excluded. Specifically,
we excluded samples with counts fewer than 101.5 TPM for CDSN (used
as a marker of the stratum corneum of the epidermis) or 103 TPM for
KRT10 (used as a marker of the spinous layer of the epidermis). No
outliers were observed in the distribution of COL1A1 (used as a dermal
fibroblast marker). The criteria were set based on gene distribution
(Supplementary Fig. 25). In addition, we removed three samples with a
read count lower than 106.5 and seven samples with a RIN (an index of
RNA degradation) lower than 2 or unmeasurable. To evaluate the
sample quality of samples with lower RIN scores (<6), we conducted a
correlational analysis of disease severity (EASI) and metagene
expression in AD samples, stratified by RIN scores of the samples (<6
and ≥6). The results demonstrated a consistent trend across both RIN
groups, with similar correlational relationships to disease severity
(Supplementary Fig. 26). Notably, the correlations involving the four
key metagenes (SKITm2, SKITm16, SKITm17, SKITm10) in the samples
with low RIN score (<6) exhibited the same trend as observed in the
regression analysis which used all samples with RIN scores between 2
and 10 (Fig. 4D).
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Based on these criteria, 25 of the 1061 samples were excluded.
Thus, for further investigation, we used 1036 samples: 951 AD samples
(529 lesional and 422 non-lesional samples of 156 patients), 36 psor-
iasis samples (18 lesional and 18 non-lesional samples of 18 patients),
and 49 normal control samples (26 healthy individuals). The patient
and sample demographics are presented in Table 1. In addition, 43
patients with AD and two healthy volunteers were sampled multiple
times on different dates (Supplementary Table 2). Table 1 presents the
age and severity at the time of initial sampling for patients fromwhom
samples were collected at multiple time points. Detailed information
on the sampled regions and local symptoms is summarized in Sup-
plementary Tables 1 and 3.

mRNA expression analysis
All bioinformatic and statistical analyses were conducted using R
(version 3.6.3)79. Figures were created using the ggplot2 package
(version 3.3.2)80, pheatmap package (version 1.0.12)81, Complex-
Heatmap (version 2.2.0)82, VennDiagram (version 1.7.3)83, or the pals
package (version 1.6)84. Gene counts were normalized based on a
variance-stabilizing transformation (vst) using the DESeq2 R package
(version 1.26.0)85. The normalization of gene counts and differentially
expressed gene analysis was also performed using DESeq2 R package.
Each sample was assigned to one of the five categorical variables
according to the disease and presence of symptoms (“lesional AD,”
“non-lesional AD,” “lesional psoriasis,” “non-lesional psoriasis,” and
“normal”). This variable was included in the design option of theDEseq
function, followed by the vst function. The differentially expressed
genes were defined as those with an adjusted p < 0.01 and a log fold
change greater than 1 or less than -1. For hierarchical clustering using
all samples, we selected the 100 genes with the highest variance in the
dataset (Supplementary Fig. 2B). Clustering was performed using the
ward. D2 method, applying the Euclidean distance.

Quantitative real-time PCR (qRT-PCR)
qRT-PCR was performed to quantify the expression levels of IL17A,
IL17C, IL17F, IL23A, CCL20, IL13, CCL13, CCL18, CCL26. Of the samples
used in the cross-sectional analysis, 33 samples of lesional AD skinwere
used for analysis due to considerations of sample quality and the
availability of remaining material for PCR analysis. Total RNA
(50–100 ng)was reverse-transcribed into complementaryDNA (cDNA)
using the SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Sci-
entific, #11754050) in a reaction volume of 20 µL, according to the
manufacturer’s instructions. TaqMan assays were performed using the
TaqManFast AdvancedMasterMix for qPCR (ThermoFisher Scientific,
#4444556) in a reaction volume of 20 µL, containing 0.2 µL of the
reverse transcription product. The details of the TaqMan Gene
Expression Assays used in this study are provided in Supplementary
Table 10. Reactionswere runonaQuantStudio 12 KFlexReal-TimePCR
System (Thermo Fisher Scientific) under the recommended cycling
conditions. Gene expression data were analyzed using ExpressionSuite
Softwarev1.3 (ThermoFisher Scientific) following theΔΔCtmethod. Ct
values of the target genes were normalized to that of the reference
gene (HPRT1) and expressed relative to the reference sample. Corre-
lational analysis with metagene expression derived from RNA-seq
analysis was performed using Spearman’s correlation method (Fig. 3).

Blood cytokine levels
CCL17 levels were measured in serum samples, and other cytokines
were measured in plasma samples. IL-17 levels were measured using a
fully automatic, highly sensitive immune analyzer (HI-1000; Sysmex
Corp., Hyogo, Japan). Levels of other plasma cytokines (CCL27, IL-4, IL-
5, EDN, CCL20, IL-17, IL-22, CXCL9, IL-16, IL-18, CCL5,MMP9, IL-6, TNF-
α, TSLP, IL-10)weremeasuredusing a fully automatic immune analyzer
(HISCL-5000 or HISCL-800; Sysmex Corp., Hyogo, Japan)86,87. The
normal serumCCL17 level rangewas obtained froma previous study88.

Since the distribution of cytokine levels was right-skewed, we used log-
logarithmically transformed values for analysis to correct skewness
and enhance data visualization and interpretability (Supplementary
Fig. 27). A constant of 0.1 was added before the log transformation to
prevent undefined values at 0 pg/mL.

NMF and rank estimate
NMF is mathematically formulated as the problem of decomposing a
two-dimensional matrix A, as the product of two matrices, W and H.
Unlike PCA methods, NMF does not require an orthogonality
assumption based on the matrix W. In this study, A was the original
RNA expression N×Mmatrix (N genes andM samples). MatrixW had a
size of N×k, where each of the k columns represents a metagene, and
element wij represents the weight of gene i for metagene j. Matrix H
had a size of k×M, where each of the M columns represents the
metagene expression pattern of a sample, and element hij represents
the expression values of metagene i in sample j.

We performed NMF with the NNLM R package89 using the vst-
normalized data. Before the analysis, we filtered genes with a variance
less than 0.1 or a mean less than 5.5 to exclude insignificant genes and
genes potentially related to measurement noise. Additionally,
Y-chromosome genes were excluded from the dataset to avoid sex-
biased results. Consequently, we used the expression data of 11,270
genes from 1036 samples for NMF analysis. The minimum expression
value was set to zero by subtracting the minimum value of each gene
from the expressionvalue of eachgene.We estimated the optimal rank
k according to the masking approach90,91. Specifically, 1% of elements
were randomly deleted fromtheoriginalmatrix and then imputedwith
NMF through ranks 1 to 50.We then compared the imputed valueswith
the original values by calculating the mean squared error (MSE)
between the values to evaluate the reconstruction errors. The eva-
luation procedure was performed as follows:
1. Randomly select 1% of elements to be deleted.
2. Substitute NA for the selected element of the original matrix A to

obtain Adel.
3. Decompose Adel into Wdel and Hdel using the nnmf function with

default parameters in the NNLM package.
4. Compute the product ofWdel andHdel to obtain the reconstructed

matrix Arecon.
5. Compute the MSE between the original matrix A and the recon-

structed matrix Arecon for the deleted elements only.

The aforementioned steps were repeated 20 times for each rank,
and the median reconstruction error for ranks 1–50 was used to
determine the optimal rank k (Supplementary Fig. 2C). Next, among
the optimal ranks of 25–34 that presented the smallest median errors,
k = 29 was chosen as the factorization rank for our dataset. Finally, we
decomposed the dataset based on the optimal rank k using the nnmf
function with max.iter = 10,000 to calculate the metagenes and the
loading matrix.

The “metagene” matrix resulted in 11,270 rows and 29 columns,
with each value wij, which was the weight of gene i in metagene j. The
“loading”matrix had 29 rows and 1036 columns; value hij represented
the expression level ofmetagene i in sample j. The distribution of gene
weights and expression levels in each metagene are shown in Sup-
plementary Figs. 3 and 5.

We declared results with a p < 0.01 as significant throughout the
analysis after NMF. As R does not store values smaller than 2.225074e-
308 (obtained based on.Machine$double.xmin), an output p value of
0.e + 00 by R was denoted as a p < 2.2e-308 in the figures and text.

Definition of “highly-weighted” and “marker” genes
To interpret the cellular components andpathways associatedwith the
metagenes, we defined the “highly-weighted” genes in the metagene
matrix, which were evaluated from the right-skewed distribution
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(Supplementary Fig. 3), as genes with z-scores > 3. These were
obtained by z-normalizing theweights of ametagene (z-scoreg). Of the
11,270 genes, 2368 were selected as “highly weighted” genes. The raw
weights of the highly weighted genes within the 29metagenes are as a
heatmap in Fig. 2B. The z-scoreg of the highly-weighted genes within
the 29 metagenes are presented in Supplementary Data 2 and 3. The
maximum number of “highly-weighted” genes in a metagene was 263,
with a minimum of 57, averaging 137.

Furthermore, to search for candidate biomarkers of each meta-
gene, we searched for “marker” genes specifically included in each
metagene. The z-score (z-scorem), a measure of the specificity of a
particular metagene, was calculated by z-normalizing the z-scoreg
again across themetagene.We extracted geneswith a z-scorem > 3 that
were highly correlated (Pearson’s correlation coefficient > 0.7,
p <0.01) withmetagene expression in all skin samples (Supplementary
Fig. 28). These genes were defined as “marker” genes. SKITm3,
SKITm4, SKITm6, SKITm13, SKITm14, and SKITm20 had no marker
genes that met these criteria. The top 10 “highly-weighted” and “mar-
ker” genes are presented in Supplementary Data 4.

As for the biological roles of the metagenes, we verified them
using knowledge-based approaches in reference to previous in vivo
and in vitro studies based on their documented roles, involvement,
or activation in skin disorders. For example, SKITm9, SKITm10, and
SKITm15, had high weights of genes activated in the skin through IL-
17 or IL-22 and related cytokine stimulation. The representative
enrichment analysis of the highly weighted genes in SKITm10 with
KEGG pathway analysis performed with enrichR92 and Fisher’s exact
test are presented in Supplementary Fig. 4 and Supplementary
Table 4. The KEGG pathway enrichment analysis included “IL-17 sig-
naling pathway” in the top 10 enriched KEGG pathways (Supple-
mentary Fig. 4). Additionally, we used Fisher’s exact test to evaluate
the significance of the overlap between highly weighted genes
(Supplementary Table 4) and marker genes (Supplementary Table 5)
with genes reportedly induced by IL-17 and its related cytokines in
keratinocytes21,25–28. We constructed a 2 × 2 contingency table to cal-
culate p values and odds ratios.

Statistical analysis of the sample quality and sequence batch
We further studied the association between metagene expression and
the symptoms or treatment effects using relative expression values,
whichwere calculated by dividing the expression value of each sample
by the maximum expression value in each metagene. The relative
expression value was used for analysis throughout the cross-sectional
and longitudinal analysis.

Pearson’s correlation coefficients were used to evaluate the cor-
relation between metagene expression and the RIN, total read counts,
and the amount of extracted RNA (Supplementary Fig. 6A–C). The
amount of RNA was too low to be measured in seven samples, and
these samples were thus excluded from this analysis. The RNA amount
and total read counts were log10-transformed. Metagenes with corre-
lation coefficients >0.3 or <−0.3 and a p < 0.01 were considered
relevant.

The sequence batch effect was also assessed because RNA
sequencing was carried out in nine separate sessions owing to the
large number of samples. For this analysis, we compared two linear
regression models fitted to the data, specifically model 1 with
sequence sessions (SQ1–SQ9) as an explanatory variable andmodel 2
without these sessions. The models were built using a linear model
(lm function) and compared by performing an ANOVA test (anova
function). To evaluate the effect of sequence sessions on metagene
expression depending on the patient background, both models were
controlled for sex, the use of cyclosporine, months used after the
initiation of dupilumab (0 if not on dupilumab, 1–5 for the first
5 months, and ≥6 months as month 6), disease activity, and the
calendar month of the sampled date. The p values in these analyses

were corrected using the Bonferroni method for multiple compar-
isons (Supplementary Fig. 6D).

In summary, SKITm28 was weakly correlated with the RIN (Sup-
plementary Fig. 6A, r = −0.32, p < 2.2e-308). SKITm29 was negatively
correlated with the read counts (Supplementary Fig. 6B, r = −0.49,
p < 2.2e-308). In addition, SKITm28 and SKITm29 were most sig-
nificantly associated with sequence sessions (Supplementary Fig. 6D).
Thus, we considered SKITm28 and SKITm29 to be related to the
sample quality and sequence batch. SKITm14 and SKITm20 were
highly expressed in only one sample each (Supplementary
Figs. 5 and 6); therefore, we assumed that these two samples were
outliers owing to unknown sample bias. The expression of three
metagenes (SKITm2, SKITm7, and SKITm10) was correlated sub-
stantially with the amount of RNA extracted (Supplementary Fig. 6C).
However, the expressionof thesemetagenes did not correlatewith the
RIN (Supplementary Fig. 6A), and thus, they were considered inde-
pendent of sample quality.

To evaluate the effect of sample biases on the expression data, we
conducted a UMAP analysis using the expression of all metagenes
(Supplementary Fig. 7A), as well as a subset of metagenes that was
considered unrelated to sample bias (Supplementary Fig. 7B). Speci-
fically, for Supplementary Fig. 7B, we excluded data corresponding to
metagenes associatedwith skin appendages and reticulocyte inclusion
(SKITm22–27, SKITm19), outlier samples (SKITm14, SKITm20), and
samples affected by quality issues and sequence batch effects
(SKITm28, SKITm29). The UMAP analysis was performed using the
umap function from the uwot package (version 0.1.8)93.

The association between skin metagenes identified in this study
and transcriptomic modules in our prior study was verified as
follows29. The previous study was conducted on 315 skin samples,
including lesional, non-lesional AD, and normal samples. Of these,
219 samples were common to the present study. First, we assessed the
similarity between the highly weighted genes in the 29metagenes and
the highly contributing genes in the 21 skin gene modules using the
Jaccard index, which was calculated by dividing the intersection by the
union of the genes (Supplementary Fig. 9A). Next, we calculated
Spearman’s correlation between the weights of common genes inclu-
ded in the skin module with the highest Jaccard index and the corre-
sponding skin metagene (Supplementary Fig. 9B). For better
interpretability, negative weights of skin modules were converted to
positive values, and the minimum value was shifted to zero before
calculation.

Analysis of association among metagene expression in
disease, clinical symptoms, and disease severity in the cross-
sectional study
In the cross-sectional study, we analyzed the association between
metagene expression levels and the disease severity and local severity
of various types of eruptions. Samples from patients not receiving
dupilumab treatment were used in this analysis (lesional AD, n = 246;
non-lesional AD, n = 170; lesional psoriasis, n = 18; non-lesional psor-
iasis, n = 18; normal, n = 49; patient demographics are presented in
Supplementary Tables 6–8).

Metagene expression between diseases (normal vs. lesional AD,
normal vs. non-lesional AD, normal vs. lesional psoriasis, and normal
vs. non-lesional psoriasis) was tested using the Wilcoxon test. P values
were corrected using the Bonferronimethod formultiple comparisons
(Fig. 2C and Supplementary Fig. 8). We determined a negative or
positive association based on the subtraction of the expected value
from the statistical value, with a negative or positive sign indicating the
direction of the association. To assess the effect of skin symptom
severity (EASI, pruritus score, local severity of erythema, papulation/
induration, excoriation, and lichenification) on metagene expression
in the sampled skin, we used a linear mixed-effects regression model
with random intercepts for each patient. The following model was
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used for this purpose:

Metagene expression �α + β1 ðsymptom severityÞ+β2+ . . . :

+βk ðcovariatesÞ+μ ðpatient idÞ+ ε ð1Þ

whereα is the overall intercept, β1 is the fixed effect coefficient for the
skin symptom levels, β2 to βk are the fixed coefficients for the cov-
ariates (age, sex, and treatments; oral cyclosporine, topical steroids,
tacrolimus, and moisturizers within 1 week of sampling, as categorical
values of 0 or 1), μ represents the random intercept for the patients,
and ε is the residual term. We used patient ID as a random effect
variable because 23 patients were sampled at least twice, and samples
from 59 and three patients were obtained simultaneously from more
than two regions at the lesional and non-lesional sites, respectively.
The use of topical JAK inhibitors and nemolizumabwas not included in
the regression model because of the small sample size (four samples
from two patients on a topical JAK inhibitor and two samples fromone
patient on nemolizumab). In the analysis of PN and LA, which are rare
skin symptoms of AD, we compared metagene expression in lesional
and non-lesional sites obtained from the same patients (PN, eight
patients; LA, six patients) using a paired t-test. The results are
presented in Fig. 4D and Supplementary Fig. 11. The effects of blood
cytokine levels and clinical biomarkers on metagene expression were
analyzed using the following model:

Metagene expression � α+β1 ðblood cytokine levelsÞ+ β2 + . . . :

+βk ðcovariatesÞ+μ ðpatient idÞ+ ε
ð2Þ

Metagene expression �α+β1 ðblood clinical biomarkersÞ+β2+ . . . :

+βk ðcovariatesÞ+μ ðpatient idÞ+ ε
ð3Þ

where β1 represents the fixed effect coefficient for the blood cytokine
levels (adding 0.1 and log10-transformed). The same fixed effect vari-
ables in β2 to βk were used in the analysis of the skin symptoms. The
results are summarized in Fig. 4E and Supplementary Fig. 12. The 95%
confidence interval (CI) of predicted values in Supplementary Fig. 11
was visualized using the ggpredict function in the ggeffects package
(version 1.1.2)94.

In the analysis of expression profiles of samples with the same
local severity andphenotypeobtained from the samepatients (n = 7) at
different time points (Supplementary Fig. 29), the local severity was
assessed by the total score of erythema, lichenification, and indura-
tion/papulation. The clinical phenotypes that exhibited distinctive
expression profiles (excoriation, PN, and LA) were not included to
exclude the effect of the clinical phenotypes on the expression pro-
files. In addition, patients on systemic treatment were not included to
exclude treatment effects. A paired Wilcoxon test was used to assess
the difference in the metagene expression values.

Transition in skin metagenes and blood cytokines in the long-
itudinal study of patients treated with dupilumab
In the study involving 24 patients treated with dupilumab, we
employed a linear mixed model with random intercepts for each
patient. Twenty-four patients from whom a sample could be obtained
on the dayof dupilumab initiation (month0) andmore than four times
in the first sequential 6 months based on calendar months (months
1–6)were included in the analysis. Awindowof ±7 dayswas allowed for
all time points. The patient demographics are presented in Supple-
mentary Table 9. We tested the changes in metagene expression and

blood cytokine levels during treatment using the following model:

Metagene expression �α +β1 ðmonths since the start of treatment by dupilumabÞ
+β2+ . . . : +βj ðcovariatesÞ+μ ðpatient idÞ+ ε

ð4Þ

Blood cytokine level �α +β1 ðmonths since the start of treatment by dupilumabÞ
+β2+ . . . : +βj ðcovariatesÞ+μ ðpatient idÞ+ ε

ð5Þ

where β1 is the fixed effect coefficient for the number of months since
the start of dupilumab, which was transformed into seven categorical
variables (months 0–6), β2 to βk are the fixed coefficients for the
treatment covariates (oral cyclosporine, topical steroids, tacrolimus,
and moisturizers within 1 week of sampling, as categorical values of 0
or 1), μ represents the random intercept for the patients, and ε is the
residual term.All skin samples used in this analysis were obtained from
the posterior trunk and, whenever feasible, were sequentially sampled
from the same skin phenotype within each patient. In addition, the
analysis of skin did not include samples with excoriation scores ≥1,
since skin excoriation was observed only sporadically in the patients.
P-values were corrected using the Bonferroni method for multiple
comparisons. The results of the regression analysis on skin metagene
expression and blood cytokine levels are presented in Fig. 7A and
Supplementary Fig. 17. The upper and lower limits of the 95%CI for the
mean of normal controls were calculated by subtracting or adding
1.96× the standard error to the mean. The linear mixed models
employed in all analyses were fitted using the lmer function in the
lmerTest package (version 1.1-23)95.

Response to dupilumab treatment
The mEASI reduction rates in dupilumab-treated patients were asses-
sed in 22 patients from whom the EASI was available at baseline and
month 6 (data for two patients were unavailable) (Supplementary
Table 9). After 6 months of treatment, 14 of 22 patients achieved a
mEASI75 (75% improvement in the EASI from baseline), and 20 of 22
patients achieved a mEASI50 (50% improvement in the EASI); no data
were available for two patients.

However, the absolute value of severity scores, rather than the
reduction rate, has recently been discussed as a better measure for
assessing treatment outcomes and long-term disease control in real-
world clinical settings96–98. Accordingly, we classified the patients
into three groups based on their absolute severity scores during
treatment: the “early” responders achieved and maintained a mild
disease level (defined by mEASI ≤ 6.3) within the first month and
throughout 6 months of dupilumab treatment, “poor” responders
never reached the mild level during the entire 6-month study, while
“intermediate” responders did not meet the criteria for “early” or
“poor” (Fig. 5A).

We then assessed differences in pretreatment metagene expres-
sion and blood biomarkers among the three patient clusters using
Spearman’s correlation analysis. For this analysis, response categories
were converted to numeric variables (“early” = 1, “intermediate” = 2,
“poor” = 3), and correlations were calculated with respect to the
expression values of metagenes, marker genes, and blood cytokine
levels (Fig. 5C–E, Supplementary Figs. 15 and 16).We also evaluated the
correlation between disease severity scores post-dupilumab treatment
and pretreatment levels of skin and blood biomarkers using Spear-
man’s correlation (Fig. 6). Marker genes from SKITm15, which did not
exhibit significant results, are not included.

Five patients receiving cyclosporine at the start of dupilumab
treatment were excluded from the correlation analysis. Additionally,
four patients with no non-lesional regions in the posterior trunk area
were excluded from the correlation analysis of non-lesional samples.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
New unique reagents were not generated in this study. The RNA-
seq data generated in this study have been deposited in the
National Bioscience Database Center (NBDC) Human Database
under accession code JGAS000780. The RNA-seq data are available
under restricted access for issue on privacy in informed consent by
participants, access can be obtained by application for hum0413 at
the NBDC. All data are included in the Supplementary Information
or available from the authors. The raw numbers for charts and
graphs are available in the Supplementary Information or the
Source Data file whenever possible. Source data are provided with
this paper.

Code availability
This paper does not report the original code.
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