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Mature tertiary lymphoid structures evoke
intra-tumoral T and B cell responses via
progenitor exhausted CD4+ T cells in head
and neck cancer

Hao Li 1,2,3, Meng-Jie Zhang1,3, Boxin Zhang1, Wen-Ping Lin 1, Shu-Jin Li1,
Dian Xiong1, Qing Wang1, Wen-Da Wang1, Qi-Chao Yang1, Cong-Fa Huang1,
Wei-Wei Deng 1,2 & Zhi-Jun Sun 1,2

Tumor tertiary lymphoid structures (TLS), especiallymature TLS (mTLS), have
been associated with better prognosis and improved responses to immune
checkpoint blockade (ICB), but the underlying mechanisms remain incom-
pletely understood. Here, by performing single-cell RNA, antigen receptor
sequencing and spatial transcriptomics on tumor tissue from head and neck
squamous cell carcinoma (HNSCC) patients with different statuses of TLS, we
observe that mTLS are enriched with stem-like T cells, and B cells at various
maturation stages. Notably, progenitor exhausted CD4+ T cells, with features
resembling follicular helper T cells, support these responses, by activating B
cells to produce plasma cells in the germinal center, and interacting with DC-
LAMP+ dendritic cells to support CD8+ T cell activation. Conversely, non-mTLS
tumors do not promote local anti-tumor immunity which is abundant of
immunosuppressive cells or a lack of stem-like B and T cells. Furthermore,
patients with mTLS manifest improved overall survival and response to ICB
compared to those with non-mTLS. Overall, our study provides insights into
mechanisms underlying mTLS-mediated intra-tumoral immunity events
against cancer.

Immune checkpoint blockade (ICB) is a paramount form of immu-
notherapy that has achieved unprecedented success in treating mul-
tiple forms of cancer, offering potential for prolonged survival1.
Following the initial approval of programmed death-1 (PD-1) inhibitors
for head and neck squamous cell carcinoma (HNSCC) in 2016, ICB
targeting the PD-1/PD-L1 axis, such as pembrolizumab or nivolumab,
has been associated with improved survival rates in patients with
HNSCC, and has become a primary therapeutic option for recurrent
and/or metastatic HNSCC2. Unfortunately, only ~20% of patients

experience durable clinical advantages from the ICB treatment that
targets the PD-1/PD-L1 axis1,3. Therefore, the search for predictive
biomarkers of ICB response in HNSCC cases, along with efforts to
increase response rates to ICB treatments, is becoming the primary
focus of research aimed at advancing precisionmedicine in the field of
cancer immunotherapy.

Intra-tumoral tertiary lymphoid structures (TLS) have been pro-
ven to be associated with improved outcomes and responses to ICB in
cancer patients4–6. TLS are ectopic lymphoid formations that develop

Received: 8 June 2024

Accepted: 18 April 2025

Check for updates

1State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key
Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology andMetabolism, Taikang Center for Life andMedical
Sciences, Wuhan University, Wuhan, China. 2Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University,
Wuhan, China. 3These authors contributed equally: Hao Li, Meng-Jie Zhang. e-mail: dww@whu.edu.cn; sunzj@whu.edu.cn

Nature Communications |         (2025) 16:4228 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7890-6772
http://orcid.org/0000-0002-7890-6772
http://orcid.org/0000-0002-7890-6772
http://orcid.org/0000-0002-7890-6772
http://orcid.org/0000-0002-7890-6772
http://orcid.org/0000-0001-7478-6454
http://orcid.org/0000-0001-7478-6454
http://orcid.org/0000-0001-7478-6454
http://orcid.org/0000-0001-7478-6454
http://orcid.org/0000-0001-7478-6454
http://orcid.org/0000-0001-6357-0674
http://orcid.org/0000-0001-6357-0674
http://orcid.org/0000-0001-6357-0674
http://orcid.org/0000-0001-6357-0674
http://orcid.org/0000-0001-6357-0674
http://orcid.org/0000-0003-0932-8013
http://orcid.org/0000-0003-0932-8013
http://orcid.org/0000-0003-0932-8013
http://orcid.org/0000-0003-0932-8013
http://orcid.org/0000-0003-0932-8013
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59341-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59341-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59341-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59341-w&domain=pdf
mailto:dww@whu.edu.cn
mailto:sunzj@whu.edu.cn
www.nature.com/naturecommunications


in non-lymphoid tissues subjected to chronic inflammation and anti-
gen persistence in autoimmune diseases, chronic infections, graft
rejection, and cancers7. TLS in tumormicroenvironment (TME) usually
includes a B cell zone surrounded by a T cell zone composed of a
mixture of CD4+ and CD8+ T cells and dendritic cells (DCs) as well as
natural killer (NK) cells. The presence and density of intra-tumoral TLS
correlate with a favorable prognosis in many cancer types8,9. Research
has identified two primary categories of TLS within tumors according
to their maturity10. Immature TLS (imTLS) consist of aggregates of T
and B cells, with a few present DCs, and are typically linked with T cell
exhaustion and an immunosuppressive TME11. In contrast, mature TLS
(mTLS) is characterized by the presence of a germinal center (GC),
which contains T follicular helper (Tfh) cells, follicular dendritic cells
(FDCs), and high endothelial venules. Existing findings suggest the
proposition thatGC-containingmTLS, rather than imTLSwithout aGC,
are associated with clinical benefits in lung cancer12, hepatocellular
cancer13, colorectal cancer14, and pancreatic cancer15. In the correlation
between TLS and therapeutic response, several clinical trials have also
examined the positive correlation between the presence of TLS and/or
TLS-associated gene signatures and the therapeutic responses to
chemotherapy and ICB therapy8. Furthermore, the status of TLS is also
associated with therapeutic responses, and recent evidence supports
the claim that the presence of mTLS is associated with improved
response rates of ICB in multiple types of cancer, including HNSCC16.

However, the mechanism causing mTLS to result in a positive
prognosis for cancer patients and abetter response to immunotherapy
is still unclear.While a recent studyhas shown that intra-tumoral B cells
in mTLS can generate and propagate plasma cells producing anti-
tumor antibodies17, it remains unclearwhether the induction of an anti-
tumorCD8+ T cell response, which ismost conducive to ICB treatment,
can occur in the local TME, particularly at the TLS site. Furthermore, it
remains ambiguous which immune cell subsets, such asmacrophages,
DCs, and T cells, participate and regulate immunity inmTLS induction.

In this study, we explore the function of mTLS as a center for the
initiation of local immunity in the TME. We observe that mTLS is
enriched with stem-like CD4+ and CD8+ T cells and the presence of B
cells at differentmaturation stages, supporting the generation of B and
T cell responses. Additionally, CD4+ progenitor exhausted T cells
(Texprog), which share features with Tfh such as CXCL13, PD-1, IL6ST,
and TCF1, can activate the B cells to generate plasma cells in the GC of
the B cell zone, and support the activation of stem-like CD8+ cells in
collaboration with mature DCs enriched in immunoregulatory mole-
cules (mregDCs) in the T cell zone. Our study suggests that mTLS
facilitates an anti-tumor immunity cycle within local TME and may
support the induction of mTLS as a strategy to improve therapeutic
outcomes in cancer treatment.

Results
Study design and overview of the study cohort
To analyze the impact of TLS on the local TME, we collected primary
tumor samples mainly from oral site in HNSCC, including fresh samples
(n= 14) and formalin-fixed paraffin-embedded (FFPE) samples (n=422)
from HNSCC patients (Fig. 1a, Supplementary Fig. 1 and Supplementary
Data 1 and 2). For each case, the TLS status was detected and assessed
through hematoxylin and eosin (H&E) staining, immunohistochemistry
(IHC) staining, andmultiplex IHC (mIHC), followedby annotation by two
certified pathologists who were blinded to the clinical data. TLS status
was determined by the aggregation of CD20+ and CD3+ cells, while
maturity was assessed based on the presence of CD23+ cells within TLS
(Supplementary Fig. 2). In order to further verify TLSmaturity, the status
was subsequently reconfirmed by mIHC staining of CD20, BCL6, CD23,
CD4, CD8, and TCF1. mIHC further verified the TLS status that mTLS is
characterized by GC formation, a dynamic region with a network of
CD23+ FDCs and CD20+BCL6+ B cells (Supplementary Figs. 3–5)6,10.
Among the fresh samples collected from primary tumors of HNSCC

patients, three TLS statuses were determined as TMEwithout TLS (nTLS,
n=4), imTLS (n=4), and mTLS (n=6) based on the appearance and
maturity of TLS. Each tumor sample was divided into three parts, and
each part was subjected to different treatments and analyses, including:
(1) scRNA-seq for whole tumor cells; (2) magnetic-activated cell sorting
(MACS) targeting CD45+ cells in tumor, followed by paired scRNA-seq
and scTCR/BCR-seq; and (3) spatial transcriptomic sequencing for fro-
zen tumor samples (Fig. 1a).

We obtained single-cell data of 248,336 cells after initial quality
control and constructed a cell-type atlas with 11 broad cellular lineages
spanning endothelial cells (ECs), lymphatic ECs, stromal cells (peri-
cytes, fibroblasts), lymphoid cells (T/NK cells, B cells, plasma cells),
myeloid cells, neutrophils and cancer cells (Fig. 1b, Supplementary
Figs. 6a–f and 7, and Supplementary Data 3). All of the single cells were
separated from a set of 14 tumor biopsies, from different treatments,
using unsorted tumor tissue and sorted CD45+ cells (Fig. 1c). The cells
included unsorted tumor cells and sorted CD45+ cells, and were clas-
sified into three different types based on TLS status (Fig. 1d, e).

Clonotype analysis by scTCR/BCR-seq revealed heterogeneity
among immune cell subsets with diverse TCR (n = 41,806) and BCR
(n = 10,208) after excluding ambiguous (n = 2,178) and multichain
(n = 122) clonotypes (Fig. 1f). The immune cell composition varied
across TLS status, with higher frequency of T/NK cells and B cells in
mTLS compared to non-mTLS (Fig. 1g and Supplementary Fig. 6g–l),
consistent with prior reports17. Interestingly, we observed that mast
cells were scarce in nTLS but highly enriched in mTLS (Fig. 1g). While
the relationship between mast cells and TLS has not been previously
reported, recent research suggests that mast cells may recruit cyto-
toxic T cells through the CCL2–CCR2 axis18. This finding indicates that
mast cells enriched inmTLSmaypossess similar pro-inflammatory and
chemotactic properties. A higher density of stromal area and expres-
sion of several immune cell markers were enriched inmTLS compared
to non-mTLS, including CD20, CD8, CD4, CD23, and TCF1, which were
identified via H&E and IHC staining (Fig. 1h). Additionally, we per-
formed a gene enrichment analysis of spatial transcriptomics data to
confirm the TLS status using the gene sets of both the classical 12
chemokine signature19 and the newly reported TLS imprint17. The
results show that both gene sets are able to determine the presence of
TLS, but when identifying mTLS, the TLS imprint signature performed
better (Fig. 1i). These findings also support our previous assessment of
TLS status in the TME.

Accumulation of stem-like CD8+ and CD4+ T cells in mTLS
As a central component of theTLS structure, the cell state and function
of T cells play a pivotal role in TLS induction and themounting of TLS-
mediated anti-tumor immunity. To analyze the distinct states and
functional heterogeneity of T cells within TLS, we identified 5 major T
andNK clusters with a total of 28 subclusters (Fig. 2a), broadly defining
CD8+ T cells (clusters 1–5), cycling T/NK cells (clusters 6–8), conven-
tional CD4+ T cells (Tconv, clusters 9–14), regulatory CD4+ T cells
(Tregs, clusters 15–21), NK cells (clusters 22–26), and other minor
clusters including γδT cells (cluster 27) and innate lymphoid cells
(ILCs, cluster 28). Clusters were annotated based on known marker
genes and cross-referenced with other published annotations20–22

(Supplementary Fig. 8 and Supplementary Data 3). The differentiation
of CD4+ exhausted T cells (Tex) into two distinct subclusters, namely
progenitor exhausted (Texprog/Tfh) and terminally exhausted (Texterm)
types, was observed (Fig. 2a, b). Conversely, CD8+ Tex cells have been
identified as comprising a single exhausted subcluster (Fig. 2a, b).

T and NK cell clusters followed a gradient across uniform mani-
fold approximation and projection (UMAP) space (Fig. 2b), high-
lighting TLS-specific phenotypic differences that were quantified by
fitting a generalized linear model (GLM) of cluster composition
(Fig. 2c). Comparisons of TLS statuses within tumor samples showed
that naive/centralmemory and effectormemoryphenotypes of CD8+ T
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cells (clusters 1 and 2), which highly expressed memory/stem-like
markers including TCF7, CCR7 and IL7R, were enriched in mTLS sam-
ples and depleted in imTLS and nTLS samples. In contrast, CD8+ Tex

cells (cluster 4) were more closely associated with imTLS and nTLS
(Fig. 2c). Among the CD4+ T subclusters, almost all phenotypes (clus-
ters 9–13) were found to be more enriched in mTLS, moderately

Fig. 1 | TLS-associated immune landscape in HNSCC. a Workflow shows the
collection and processing of fresh samples of primary oral cavity HNSCC tumors
for scRNA-seq, scTCR/BCR-seq, and spatial transcriptomics repertoire analysis.
The collection of fresh tumor samples from HNSCC patients (n = 14 independent
samples) was used to identify the status of TLS by IHC staining and classified into
nTLS (n = 4 independent samples), imTLS (n = 4 independent samples), andmTLS
(n = 6 independent samples). Subsequently, the fresh tumor sample was divided
into three parts and subjected to different processes, including: (1) scRNA-seq of
whole tumor cells; (2) MACS targeting CD45+ cells in tumor, followed by paired
scRNA-seq and scTCR/BCR-seq; and (3) spatial transcriptomic sequencing for the
tumor sample. b UMAP plot of 248,336 cells profiled by all scRNA-seq, colored by
cell types. The 11 broad cellular lineages contain ECs, lymphatic ECs, stromal cells
(pericytes, fibroblasts), lymphoid cells (T/NK cells, B cells, plasma cells), myeloid
cells, neutrophils, and cancer cells. Below the UMAP plot, the number of identi-
fied cells for each cell type is included. c UMAP plot colored by patients (n = 14
independent samples) from whole tumor cells or sorted CD45+ cells profiled by
scRNA-seq. d UMAP plot colored by origin of the cells and the number of cells,

either from whole tumor cells (n = 123,432) or sorted CD45+ cells (n = 124,904).
e UMAP plot colored by nTLS (66,903), imTLS (61,415), and mTLS (120,018)—
three different TLS statuses profiled by scRNA-seq. f UMAP plot colored by TCR/
BCR information profiled by scTCR/BCR-seq. The cell types for scRNA-seq of
whole tumor cells and the composition difference of CD45+ cells (g), H&E and IHC
of tumor slides (h), and spatial transcriptomics of tumor tissue (i) in nTLS, imTLS,
and mTLS statuses. The analysis was conducted using a generalized linear
model (GLM) with a binomial distribution and a logit link function. Estimated
marginal means and contrasts were computed with P values indicating the sta-
tistical significance of the observed differences. The P values were adjusted using
the Bonferroni correction method. A color gradient, transitioning from red
(indicating enrichment) to blue (signifying depletion), encodes the log2-trans-
formed odds ratios, while the sizes of the depicted points are governed by
the Bonferroni-adjusted −log10(P values), accentuating the statistical significance
of observed variations. TLS tertiary lymphoid structures, OCT optimal cutting
temperature, H&E hematoxylin and eosin, IHC immunohistochemistry, ECs
endothelial cells.
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enriched in imTLS, and less abundant in nTLS, except for cluster 14,
referring to interferon-stimulated gene (ISG) T cell phenotype
(Fig. 2b, c). On the other hand, Treg clusters (clusters 15–21) were
found to be reduced in mTLS compared to non-mTLS (nTLS/imTLS),
except for the memory Treg (Fig. 2b, c). NK cells (clusters 22–26) were
more abundant in nTLS and imTLS, with varying levels of activity

among the different NK cell phenotypes (Fig. 2b, c). mIHC-stained
images confirm that memory (CD8+CCR7+) and stem-like (CD8+TCF1+)
CD8+ T cell phenotypes are enriched in mTLS (Fig. 2d and Supple-
mentary Figs. 9 and 10). The enrichment analysis revealed that clusters
with naive or memory characteristics (clusters 1, 2, 9–10, 15) were
enriched in thenaiveT cell signature,while thosewith effector features
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(clusters 3, 22–28) were enriched in the cytotoxic T cell signature
category (Fig. 2b). Clusters annotated as cycling (clusters 6–8) were
enriched in the proliferation T cell signature category, and exhausted
clusters exhibiting varying degrees of exhaustion-related gene
expression (clusters 4, 12, 13, 16–20) were enriched in different
exhausted categories (Fig. 2b). The cell pathway activity scores
demonstrated differences in signaling pathway activities across clus-
ters. T cell subsets with high expression of ISG (clusters 5, 14, 21)
showedenhanced activity in the JAK-STATpathway,while cyclingT/NK
cells (clusters 6–8) exhibited increased activity in the MAPK pathway
(Fig. 2b), consistent with previous reports23. Treg subsets (clusters
16–21) displayed enhanced activity in the TNFα pathway (Fig. 2b),
aligning with earlier findings24.

Generation of effector-molecule-expressing cytotoxic CD8+

T cells from stem-like CD8+ T cells within mTLS
To evaluate the infiltration of CD8+ T cells, we first performed differ-
entiation trajectories, which identified subclusters of CD8+ T cells at
different developmental stages. These subclusters demonstrated a
progression from memory/stem-like phenotypes towards an exhaus-
ted phenotype, as evidenced by follow-up partition-based graph
abstraction (PAGA) analysis (Fig. 2e). This transition was marked by a
decrease in naive/stem-like T cell markers (TCF7, CCR7 and SELL) and
an increase in cytotoxicity-associated markers (PRF1, GZMB, GZMA,
and GNLY). Additionally, exhaustion-associated markers (TOX, PDCD1,
HAVCR2, CXCL13, and CD101) were found to increase during the tran-
sition, as shown by pseudotime analysis (Fig. 2f). This aligns with
previous studies that have reported that exhaustion occurs after T cell
activation20,25.

Next, we utilized paired scRNA-seq and scTCR/BCR-seq for clo-
notype analysis of CD8+ T cells. We defined TCR clonotypes based on
paired α and β chains (TRA and TRB) to track clonal cell fates. Differ-
ential clonal diversity, measured by Shannon entropy and the D50
index, was revealed among CD8+ T cell clusters, and CD8+ Tex cells
were observed to have the least clonal diversity (Supplementary
Fig. 11a, b). The TCR clone information was mapped to the UMAP to
facilitate the visualization of clone size and its distribution across dif-
ferent subclusters and TLS statuses (Fig. 2g). mTLS status harbored a

larger number of expanded clonotypes of CD8+ T cells (Fig. 2g, h and
Supplementary Fig. 11c–f). In concordance with the result of enrich-
ment analysis, the naive/central memory and effector memory phe-
notypes of CD8+ T cells showed enrichment for larger clonotype sizes
in mTLS (Fig. 2i). We also used a heatmap to show the sharing of
clonotypes among clusters of CD8+ T cells (Fig. 2j) and noted a sig-
nificant sharing of clonotypes among neighboring functional clusters
of CD8+ T cells (clusters 1–4), consistent with the trajectory established
by PAGA analysis (Fig. 2e).

To investigatewhether cytotoxicCD8+ T cells arisewithin the local
TME, we categorized clusters 1 and 2, characterized by elevated
expression of memory/stem-like molecules (TCF7, CCR7, and IL7R), as
possessing a “stem-like” phenotype26,27. Subsequently, we character-
ized clusters 3 and 4, noted for their increased expression of cytotoxic
molecules (PRF1, GZMA, GZMB, and GNLY), as embodying a “func-
tional” phenotype. Notably, we observed a high degree of overlap of
shared clonotypes between the stem-like and functional CD8+ T cell
phenotypes within mTLS, indicating the existence of common path-
ways from stem-like to functional CD8+ T cell phenotypes withinmTLS
(Fig. 2k, l and Supplementary Fig. 11g, h). Consistent with these find-
ings, an increased frequency of shared clonotypes between stem-like
and functional phenotypes was identified amongst the expanded clo-
notypes of CD8+ T cells within mTLS (Fig. 2m). Gene enrichment ana-
lysis showed that stem-like clusters of CD8+ T cells enriched in mTLS
upregulated DC chemotaxis (Supplementary Fig. 11i). This suggested
the ability of these stem-like CD8+ T cells to attract and interact with
DCs, potentially activating a CD8+ T cell response28. In summary, mTLS
was associated with more enrichment of stem-like CD8+ T cell phe-
notypes, andmature CD8+ T cells toward functionalCD8+ T cells occur,
suggesting mTLS can generate an intra-tumoral CD8+ T cell response.

Predominance of CD4+ Texprog/Tfh cells over Tregs within mTLS
Next, we sought to elucidate the association between TLS statuses and
CD4+ T cells in the TME. Thedifferentiation trajectories projectedCD4+

T cells along two axes of Tex (clusters 9–14) and Treg phenotypes
(clusters 15–21) (Fig. 3a), as defined by the transcription factors TOX
and FOXP321 (Fig. 3b). Pseudotime analysis showed that both differ-
entiation trajectories showed a decrease in stem-like markers (CCR7,

Fig. 2 | TLS-associated heterogeneity of T and NK cell states in HNSCC. a UMAP
plot of T/NK cell subclusters identified from scRNA-seq. Subclusters are num-
bered and colored by identity: CD8+ T cells (clusters 1–5), cycling T/NK cells
(clusters 6–8), CD4+ T cells (clusters 9–14), Treg cells (clusters 15–21), NK cells
(clusters 22–26), γδT cells (cluster 27), and ILCs (cluster 28). b Left, GLM-based
dot plot showing TLS status-specific enrichment of T/NK cell subclusters. The
analysis was conducted using a GLM with a binomial distribution and a logit link
function. Estimated marginal means and contrasts were computed with P values
indicating the statistical significance of the observed differences. The P values
were adjusted using the Bonferroni correction method. A color gradient, transi-
tioning from red (representing enrichment) to blue (representing depletion),
encodes the log2-transformed odds ratios, while the sizes of the depicted points
are governed by the Bonferroni-adjusted −log10(P values), highlighting the sta-
tistical significance of observed variations. Middle, heatmap of average T cell
state scores across T/NK cell subclusters. Right, heatmap of signaling pathway
activity scores across T/NK cell subclusters. c Pairwise comparisons of kernel
density estimates in UMAP space. The color gradient from red to blue indicates
decreasing enrichment of T/NK cells and plasma cells in different TLS statuses.
d Images of a mIHC-stained different subclusters of CD8+ T cells in HNSCC tumor
with different TLS status. Regions with a high density of memory (CCR7+CD8+),
stem-like (TCF1+CD8+), cytotoxic (Granzyme B+CD8+), and exhausted (PD-1+CD8+)
CD8+ T cells. nTLS and imTLS were repeated four times independently with
similar results, mTLS were repeated six times independently with similar results.
Scale bars = 100μm. e PAGA analysis of CD8+ T cells. Each color represents a
subcluster of CD8+ T cell. f UMAP plot colored by pseudotime across subclusters
of CD8+ T cells. Scaledmodule scores within these subclusters of CD8+ T cells with
respect to pseudotime and stem-like, functional, and exhaustedmarkers. gUMAP

plot embedding for CD8+ T cell subclusters, colored by clone size (upper left) and
UMAP embedding for CD8+ T cell clusters in different TLS status, colored by
cluster, indicating the different clone size by dot size. h Boxplot showed the
number of clonotypes of CD8+ T cells in different statuses of TLS (n = 4 inde-
pendent samples nTLS, n = 4 independent samples imTLS, n = 5 independent
samples mTLS, one-tailed Mann–Whitney U-test; for box plots: box center line,
median; box limits, upper and lower quartiles; box whiskers, maximum and
minimum values). i Clone size in each CD8+ T cell subclusters separated by TLS
status (two-tailed Mann–Whitney U-test). j Heatmap and pie chart showing the
number of clonotypes shared between neighboring functional clusters of CD8+

T cells in different statuses of TLS. For the heatmap, the color represents the
number of shared clonotypes. For the pie chart, the color represents the status of
TLS, and the size represents the number of shared clonotypes. kDot plot showing
the overlaps of shared clonotypes between stem-like and functional CD8+ T cells,
sized by number of clonotypes and colored by TLS status. l Boxplot showing the
number of functional clonotypes shared with stem-like CD8+ T cells in different
status of TLS (n = 4 independent samples nTLS, n = 4 independent samples imTLS,
n = 5 independent samples mTLS, one-tailed Mann–Whitney U-test; for box plots:
box center line, median; box limits, upper and lower quartiles; box whiskers,
maximum and minimum values). m Boxplot showing the proportion of shared
stem-like and functional features in expanded clonotypes across different sta-
tuses of TLS (n = 4 independent samples nTLS, n = 4 independent samples imTLS,
n = 5 independent samples mTLS, one-tailed Mann–Whitney U-test; for box plots:
box center line, median; box limits, upper and lower quartiles; box whiskers,
maximum and minimum values). Tconv conventional T cell, NK natural killer,
mIHC multiplex IHC, ISG interferon-stimulated gene, ILC innate lymphoid cell,
Tfh T follicular helper cell, Treg regulatory T cell.
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IL7R,TCF7, and SELL) and an increase in exhaustion-associatedmarkers
(PDCD1, LAG3, CD101, and HAVCR2) (Fig. 3c). The exhaustion pathway
was accompanied by higher expression of cytotoxicity (IFNG, GNLY,
GZMB, and GZMH), while the Treg pathway demonstrated a reduction
in cytotoxic markers alongside an increase in the expression of
immune inhibitory and immunosuppressive molecules (IL2RA, CTLA4,

ENTPD1, and LGALS1) which are consistent with the immunosuppres-
sive function of Treg clusters (Fig. 3c, d).

Subsequently, we also used TCR clonotype analysis to character-
ize the phenotype and TCR clonality across all CD4+ T cell clusters and
TLS statuses (Supplementary Fig. 12a–d). The phenotypes of Tex and
Treg occupied a larger clonal expansion (Fig. 3e). Differential clonal

Article https://doi.org/10.1038/s41467-025-59341-w

Nature Communications |         (2025) 16:4228 6

www.nature.com/naturecommunications


diversity was revealed among CD4+ T cell subclusters, and CD4+

Texprog/Tfh were observed to have the least clonal diversity (Supple-
mentary Fig. 12a). Consistent with the analysis of differentiation tra-
jectories, significant clonotypes sharing between neighboring
functional clusters of CD4+ T cells were observed (clusters 9–21)
(Fig. 3g). Additionally, we noted a higher number of clonotype sharing
overlap between progenitor and terminal Tex compared to other
clusters, and mTLS accounted for the majority of these shared clo-
notypes and showed a slight increase in the clusters of CD4+ Tex
(Fig. 3g, Supplementary Fig. 12c). Interestingly, CD4+ Texterm phenotype
exhibited the highest expression of cytotoxic markers (PRF1, GZMA,
GZMB, IFNG, and GNLY) (Supplementary Fig. 12e), aligning with recent
discoveries indicating that cytotoxic CD4+ T cells within tumors can
directly kill cancer cells29,30. Moreover, recent studies have also shown
that CD4+ T cells have the ability to promote stem-like TCF1+CD8+ T cell
responses through IFNγ production27. This evidence is further sup-
ported by a high level of overlap in clonotype sharing between CD4+

Texterm and CD4+ Texprog/Tfh (Fig. 3g), further supporting the role of
CD4+ T cells in promoting CD8+ T cell immune responses. mIHC-
stained images also confirmed that CD4+ Texprog/Tfh (CD4+TCF1+PD-1+)
were enriched in mTLS, particularly in the GC of the mTLS (Fig. 3f).

Meanwhile, mTLS accumulated the clonotypes of total CD4+

T cells and subclusters of CD4+ Tconv cells along the exhaustion tra-
jectory, including naive/central memory and progenitor exhausted
clusters (Fig. 3h–n). On the contrary, nTLS had a larger clone size and
made up themajor proportion of the clusters of Treg (Fig. 3e–o), while
imTLS developed along both pathways of Tex and Treg and was in
between mTLS and nTLS (Fig. 3l–o). Gene enrichment analysis
revealed that the CD4+ Texprog/Tfh subset was significantly enriched
with features of Tfh-like functions, including B cell chemotaxis and GC
formation (Fig. 3d), which is consistent with previously reported
studies22,31. In conclusion, mTLS demonstrated greater enrichment of
CD4+ T cells predisposed to differentiate towards exhaustion pheno-
types. This includes the CD4+ Texprog/Tfh cell subtype, which is char-
acterized by Tfh-like functions crucial for B cell chemotaxis, immune
cell maturation, and GC formation.

Promotion of B cell maturation and plasma cell generation
by mTLS
We then subclustered 27,622 cells that were manually annotated as B
cells and plasma cells, subsequently obtaining 9 distinct subclusters
based on RNA expression profiles of established markers (Fig. 4a,
Supplementary Fig. 13 and Supplementary Data 3). These subclusters
were further cross-referenced with annotations from other published
studies32,33 (Supplementary Fig. 14). We identified all major stages of B

cell maturation in HNSCC, including naive B cells (cluster 1),memory B
cells (clusters 2 and 3), tissue-resident Fc receptor like 4 positive
(FCRL4+) B cells (cluster 4), GCB cells (cluster 5), ISG B cells (cluster 6),
and plasmablasts (cluster 7), and plasma cells (clusters 8 and 9)
(Fig. 4b). Naive B cells were characterized by a high expression of
IGHM, IGHD and FCER2 (CD23), CD72 and CD200 (Fig. 4b, d). The two
memory B cell clusters showed high expression of the classical CD27
gene for human memory B cells, but differed in that one had a higher
expression of the activation marker of CD69 (Fig. 4d and Supplemen-
tary Fig. 13d). Additionally, GC B cells were annotated with higher
levels of BCL6, LMO2, RGS13 and HMCES that may increase their ability
to reside in the GC or differentiate to plasma cells33 (Fig. 4d and Sup-
plementary Fig. 13d). We also identified tissue-resident FCRL4+ cells in
HNSCC (Fig. 4d), which are rare in the marginal zone of B cell follicles
in the spleen and lymph nodes33,34. The plasmablasts showed the
highest expression of MKI67 as well as other cell cycle-related genes,
underscoring their proliferative capacity (Fig. 4d and Supplemen-
tary Data 3).

We next explored the differences in B cell subclusters among
various TLS statuses. Although mTLS and imTLS enriched B cells as
expected (Fig. 4b, c), the subclusters of these B cellswere different.We
observed that all major stages of B cell maturation, including naive B
cells, memory B cells, and GC B cells, were significantly enriched in
mTLS (Fig. 4b, c). Additionally, imTLS were found to be abundant in
many B cells, including ISG B cells and FCRL4+ B cells, but not many
plasma cells (Fig. 4b, c). This suggests that the B cells in imTLS do not
possess the ability to produce plasma cells or that this process is hin-
dered by an obstacle. Interestingly, nTLS showed minimal numbers of
B cells, except for an enrichment of plasma cells, suggesting that these
plasma cells may have originated from outside the TLS (Fig. 4b, c).
Differential expression analysis revealed increased gene expression
related to activation/effector molecules, B cell-mediated immunity,
antigen presentation, and cell migration in B cells between mTLS and
non-mTLS (nTLS/imTLS) (Fig. 4h). In line with this, gene enrichment
analysis showed that the mTLS-enriched GC B cells exhibit immu-
noglobulin (Ig) production and antigen presentation through major
histocompatibility complex class II (Fig. 4e).

Subsequently, we conducted a trajectory inference to better
understand the differentiation trajectories of B cells and plasma cells.
Our results showed a pseudotemporal ordering of naive B cells,
memory B cells, GC B cells, plasmablasts, and plasma cells (Fig. 4f),
which is consistent with previous reports on the generation of B cell
immunity within lymphoid follicles33. Additionally, the differentiation
trajectory of B cells involves deletional recombination of the IgM and
IgD constant domain genes (IGHM and IGHD) and the expression of

Fig. 3 | TLS-associated heterogeneity of CD4+ T cell states in HNSCC. a PAGA
analysis of CD4+ T cells. Each color represents a subcluster of CD4+ T cells.
b UMAP plots showing normalized expression profiles of cell-type-specific mar-
kers in CD4+ T cell subclusters. c Left, UMAP plot showing pseudotime trajec-
tories of CD4+ T cell clusters, revealing two potential differentiation trajectories:
exhaustion and Treg. Right, scaled module scores within these subclusters of
CD4+ T cells with respect to two pseudotime trajectories and stem-like, func-
tional, exhausted, and immunosuppressive markers. d Dot plot showing the
analysis of enrichment for the four most significant Gene Ontology (GO) Biolo-
gical Process terms across CD4+ T cell subclusters. A color gradient, transitioning
from red (representing enrichment) to blue (representing depletion), encodes
the Z-score normalized enrichment score, while the sizes of the depicted points
are governed by the Benjamini–Hochberg-adjusted −log10(P values), highlighting
the statistical significance of observed variations. Benjamini–Hochberg-adjusted
P values were obtained by a two-tailed Wilcoxon rank-sum test. e UMAP plot
embedding for CD4+ T cell subclusters, colored by clone size (upper left) and
UMAP embedding for CD4+ T cell subclusters in different TLS status, colored by
subcluster, indicating the different clone size by dot size. f Images of a mIHC-
stained different subcluster of CD4+ T cells in HNSCC tumor with TLS status.
Regions with a high density of central memory (CXCR5+CD4+) CD4+ T cells and

progenitor exhausted (TCF1+PD-1+CD4+) CD4+ T cells. nTLS and imTLS were
repeated four times independently with similar results, mTLS were repeated six
times independently with similar results. Scale bars = 100μm. g Heatmap and pie
chart showing the number of clonotypes shared between neighboring functional
clusters of CD4+ T cells in different statuses of TLS. For the heatmap, the color
represents the number of shared clonotypes. For the pie chart, the color repre-
sents the status of TLS, and the size represents the number of shared clonotypes.
h–k Box plots showing the number of clonotypes of total CD4+ T cell, CD4+ Tconv
cell, naive/central memory CD4+ T cell, and progenitor exhausted CD4+ T cell in
different TLS status (n = 4 independent samples nTLS, n = 4 independent samples
imTLS, n = 5 independent samples mTLS, one-tailed Mann–Whitney U-test; for
box plots: box center line, median; box limits, upper and lower quartiles; box
whiskers, maximum and minimum values). l–o Boxplot showing fraction clono-
types of naive/central memory CD4+ T cell, progenitor exhausted CD4+ T cell,
CD4+ Tconv cell (clusters 9–13) and Treg (clusters 15–20) in total CD4+ T cell
clonotypes across different TLS status (n = 4 independent samples nTLS, n = 4
independent samples imTLS, n = 5 independent samples mTLS, one-tailed
Mann–Whitney U-test; for box plots: box center line, median; box limits, upper
and lower quartiles; box whiskers, maximum and minimum values). Tconv con-
ventional T cell, Treg regulatory T cell, Tfh T follicular helper cell.
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different downstream constant domain genes (IGHG1, IGHG2, IGHG3,
IGHG4, IGHA1, and IGHA2) (Fig. 4b)35. The pseudotime analysis of B cell
clusters showed increased expression of genes associated with acti-
vation (CD27, CD40, EBI3, MIF, and BATF), as well as genes associated
with the class switch recombination machinery (APEX1, APEX2, XRCC5,
XRCC6, POLD2, and POLE3) and class switch recombination interactors

(NPM1, SERBP1) (Fig. 4g). These findings are consistent with previously
reported roles of these genes in B-cell activation33.

Next, we performed BCR clonotype analysis of B cells and plasma
cells, definingBCR clonotypes through the sequencing of IGH, IGK, and
IGL (Supplementary Fig. 13a–c). TheUMAP incorporates the BCR clone
data to facilitate visualization of clone size and distribution across
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various B cell phenotypes and TLS statuses (Fig. 4i). The analysis
indicated a correlation between mTLS status and an enrichment of
clones from both B cells and plasma cells (Fig. 4i), andmore expanded
clonotypes of B cells, plasmablasts, and plasma cells (Fig. 4k–m). The
analysis of clonotype sharing showed that plasma cells predominantly
originated frommemoryB cells andplasmablasts (Fig. 4j). Thisfinding,
in conjunction with clonotype analysis, suggests that mTLS in HNSCC
has the ability to produce plasma cells. Conversely, imTLS was asso-
ciated with an enrichment of B cells, but rare plasma cells and more
expanded clonotypes of FCRL4+ B cells (Fig. 4i, n). This suggests that
the B cells with imTLS do not possess the ability to produce plasma
cells. Additionally, nTLS was associated with an enrichment of plasma
cells, but few B cells (Fig. 4i), which was similar to the enrichment seen
in the clusters of CD8+ T cells (CD8+ Tex cells) within nTLS, suggesting
that plasma cells in nTLS may have originated from outside the TME.

Accumulation of DCs in mTLS
Within TLS, while B and T lymphocytes constitute the predominant
fraction of immune cells, these structures are also significantly popu-
lated by diversemyeloid cells, notably DCs7.We further focused on the
myeloid cell compartment and re-clustered 70,093 cells into fourmain
clusters of myeloid cells with 16 subclusters, including DCs, macro-
phages, neutrophils, and mast cells (Fig. 5a and Supplementary
Fig. 15)20. The DC compartment is comprised of conventional DCs
(cDC1s, cDC2s) (clusters 1 and 2), mregDCs (clusters 3), and plasma-
cytoid DCs (pDCs) (clusters 4) (Fig. 5b). mregDCs were enriched in
maturation and immunoregulatory molecules (CD274, CCR7, CCL22,
BIRC3, IDO1, IL4I1, and notably LAMP3, a highly expressed DC
lysosomal-associatedmembraneglycoprotein (DC-LAMP)) (Fig. 5d and
Supplementary Data 3). In addition, seven clusters of classical and
alternatively activated macrophages were identified (clusters 5–11), as
well as phagocytic macrophages (cluster 12) and cycling macrophages
(cluster 13). Neutrophils (clusters 14 and 15) and mast cells (cluster 16)
were also identified in the TME of HNSCC. Clusters of myeloid cells
differed by expression of MHC-encoding genes (Fig. 5b).

We next explored the differences in myeloid cell subclusters
among various TLS statuses. We observed that DC, specifically cDC2,
and pDC were significantly enriched in mTLS (Fig. 5b, c). In contrast,

imTLS were found to be abundant in M2-like macrophage subclusters
(M2.Macro, M2.MMP9, and M2.MMP12), but contained few DCs
(Fig. 5b, c). nTLS were predominantly composed of neutrophils that
have previously been demonstrated to have an immunosuppressive
function and are associated with poor clinical outcomes36 (Fig. 5b, c).
Interestingly, there appeared to be a correlation between the content
ofmast cells and the status of TLS,with an increase inmast cell content
observed in mTLS (Fig. 5b, c).

The gene enrichment analysis demonstrated that the cDC2 sub-
set, prominently present in mTLS, showed significant enrichment for
features associated with the processing and presentation of exogen-
ous antigens, as well as Ig production (Fig. 5e). These findings suggest
that cDC2s play a crucial role in regulating antibody responses through
the induction of GC responses and plasma cell formation37.

Spatial transcriptomics reveals the co-occurrence of cells
involved in intra-tumoral T andB cell immunitywithin themTLS
To analyze the influence of TLS status on the TME architecture, we
used spatial transcriptomics technology from the Visium platform to
identify TLS status (Fig. 1i), complementing findings from paired
scRNA-seq and scTCR/BCR-seq.Despite the limitations of theVisiumv1
platform in providing single-cell resolution data, the Cell2location38

tool was utilized to spatially map cell types annotated from scRNA-seq
datasets within the TME. This method facilitated the identification of a
cell cluster associated with TLS, which included B cells, T cells, DCs,
and myeloid cells (Fig. 6a–c).

In mTLS, we delineated the progression from the naive B cell to
the GC B cell and subsequently to the plasma cell, establishing a con-
tinuum from the inner GC of the mTLS to the adjacent tissue (Fig. 6c).
Andwe also discovered a high level of enrichment inGCB cells, plasma
cells, exhausted CD4+ T cells, and CD8+ T cells, as well as DCs that were
enriched in mTLS (Supplementary Fig. 16). This sequence adheres to
the previously outlined developmental pathway of B cells to plasma
cells (Fig. 4f). Subclusters of CD4+ Tconv, including naive/central
memory CD4+ T cells and Texprog/Tfh cells were observed to be notably
enriched within the interior of mTLS (Fig. 6c). Consistent with the
above results, CD8+ T cell subclusters were seen to follow a previously
established developmental trajectory, presenting a gradient from the

Fig. 4 | TLS-associated heterogeneity of B cell states inHNSCC. aUMAPplot of B
cell subclusters identified from scRNA-seq. Subclusters are numbered and colored
by identity: B cells (clusters 1–6) and plasma cells (clusters 7–9). b Left, GLM-based
dot plot showing TLS status-specific enrichment of B cell subclusters. The analysis
was conducted using a GLM with a binomial distribution and a logit link function.
Estimated marginal means and contrasts were computed with P values indicating
the statistical significance of the observed differences. The P values were adjusted
using the Bonferroni correction method. A color gradient, transitioning from red
(representing enrichment) to blue (representing depletion), encodes the log2-
transformed odds ratios, while the sizes of the depicted points are governed by the
Bonferroni-adjusted −log10(P values), highlighting the statistical significance of
observed variations. Middle, heatmap of signaling pathway activity scores across B
cell and plasma cell subclusters. Right, heatmap of normalized expression of genes
associatedwith immunoglobulin heavy chain constant region, which correlate with
types of Ig across B cell subclusters. c Pairwise comparisons of kernel density
estimates in UMAP space. The color gradient from red to blue indicates decreasing
enrichment of B cells and plasma cells in different TLS statuses. d UMAP plots
showing normalized expression profiles of cell-type-specific markers in B cell
subclusters. e Ranking of GO Biological Process terms in subclusters of B cells.
A color gradient, transitioning from red (representing enrichment) to blue
(representing depletion), encodes the Benjamini–Hochberg-adjusted −log10
(P values), highlighting the statistical significance of observed variations.
Benjamini–Hochberg-adjusted P values were obtained by a two-tailed Wilcoxon
rank-sum test. f PAGA analysis of B cells and plasma cells. Each color represents a
subcluster of B cells or plasma cells. g Left, Schematic illustrates that as B cells
differentiate from naive B cells to GC B cells, the maturation progressively
increased, and the GC reaction time was extended. Right, scaled module scores

within these subclusters of B cells with respect to two pseudotime trajectories
and genes associated with activation, class switch recombination machinery and
class switch recombination interactors. h Volcano plot showing differentially
expressed genes (DEGs) of total B cells between non-mTLS (imTLS/nTLS) and
mTLS statuses (red dots: Benjamini–Hochberg-adjusted P <0.05 and log2(fold
change) > 10, gray dots: adjusted P > 0.05, blue dots: adjusted P < 0.05 and
log2(fold change) < −10). Benjamini–Hochberg-adjusted P values were obtained
by a two-tailed Wilcoxon rank-sum test. i UMAP plot embedding for subclusters
of B cells and plasma cells, colored by clone size (upper left) and UMAP
embedding for subclusters of B cells and plasma cells in different TLS status,
colored by subcluster, indicating the different clone size by dot size. A color
gradient, transitioning from red (representing enrichment) to blue (representing
depletion), encodes the Z-score normalized enrichment score, while the sizes of
the depicted points are governed by the Benjamini–Hochberg-adjusted −log10
(P values), highlighting the statistical significance of observed variations.
Benjamini–Hochberg-adjusted P values were obtained by a two-tailed Wilcoxon
rank-sum test. jHeatmap and pie chart showing the number of clonotypes shared
between neighboring functional subclusters of B cells and plasma cells in dif-
ferent statuses of TLS. For the heatmap, the color represents the number of
shared clonotypes. For the pie chart, the color represents the status of TLS, and
the size represents the number of shared clonotypes. k–n Boxplot showing
number of clonotypes of total B cells, plasmablasts, plasma cells, and FCRL4+ B
cells in different TLS status (n = 4 independent samples nTLS, n = 4 independent
samples imTLS, n = 5 independent samples mTLS, one-tailed Mann–Whitney
U-test; for box plots: box center line, median; box limits, upper and lower quar-
tiles; box whiskers, maximum and minimum values). Ig immunoglobulin, MHC
major histocompatibility complex, Th2 T helper 2 cell, GC germinal center.
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inner GC of mTLS extending towards the adjacent tumor tissue
(Fig. 6c), suggesting that mTLS can locally generate anti-tumor T cell
immunity. DCs including notably cDC1, cDC2 and mregDC were loca-
lized within mTLS (Fig. 6c). Furthermore, co-occurrence analysis sup-
ported the close spatial association among B cells, CD4+ T cells, CD8+

T cells and DCs in mTLS (Fig. 6f). While imTLS also contain these
cellular types, they do not demonstrate a closely associated spatial
distribution (Fig. 6e). Moreover, Tregs were shown to have a closely
associated spatial relationship with both CD8+ and CD4+ T cells in

imTLS (Fig. 6e), suggesting Tregs may impede local anti-tumor
immunity in the TME. In nTLS, the spatial relationship between these
cells is comparatively diminished (Fig. 6d), indicative of the absence of
cellular interactions.

To investigate the mechanisms of cell–cell communication
within TLS, theCellPhoneDBdatabase39was utilized for TLS-associated
cell clusters including B cell, T cell and DC to reveal ligand–receptor
interactions among annotated clusters. Among all cell clusters, cDC2
exhibited the greatest number of significant interactions among other

Fig. 5 | TLS-associated heterogeneity of myeloid cell states in HNSCC. a UMAP
plot of myeloid cell subclusters identified from scRNA-seq. Subclusters are num-
bered and colored by identity: DCs (clusters 1–4), macrophages (clusters 5–13) and
neutrophils (clusters 14 and 15), and mast cells (cluster 16). b Left, GLM-based dot
plot showing TLS status-specific enrichment of myeloid cell subclusters. The ana-
lysis was conducted using a GLM with a binomial distribution and a logit link
function. Estimated marginal means and contrasts were computed with P values
indicating the statistical significance of the observed differences. The P values were
adjusted using the Bonferroni correction method. A color gradient, transitioning
from red (representing enrichment) to blue (representing depletion), encodes the
log2-transformed odds ratios, while the sizes of the depicted points are governed
by the Bonferroni-adjusted −log10(P values), highlighting the statistical significance
of observed variations.Middle, heatmap of signaling pathway activity scores across
myeloid cell subclusters. Right, heatmap of normalized expression of genes

associated with MHC across myeloid cell subclusters. c Pairwise comparisons of
kernel density estimates in UMAP space. The color gradient from red to blue
indicates decreasing enrichment of myeloid cells in different TLS statuses. dUMAP
plots showing normalized expression profiles of cell-type-specific markers in
myeloid cell subclusters. eDot plot showing the analysis of enrichment for the four
most significant GO Biological Process terms across myeloid cell subclusters. A
color gradient, transitioning from orange (representing enrichment) to purple
(representing depletion), encodes the Z-score normalized enrichment score, while
the sizes of the depicted points are governed by the Benjamini–Hochberg-adjusted
−log10(P values), highlighting the statistical significance of observed variations.
Benjamini–Hochberg-adjusted P values were obtained by a two-tailed Wilcoxon
rank-sum test. Ig immunoglobulin, MHC major histocompatibility complex, DC
dendritic cell, cDC conventional DC, mregDC mature DC enriched in immunor-
egulatory molecules, pDC plasmacytoid DC.
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cell types (Supplementary Fig. 18a). cDC2 and GC B cells, which are
enriched in mTLS, exhibit a notably enhanced costimulatory signaling
interaction involving in B cell activation, such as TNFSF13B
(BAFF)–TNFRSF13C (BAFFR) and TNFSF13B (BAFF)–TNFRSF17 (BCMA)
(Fig. 6g, Supplementary Fig. 18b and Supplementary Data 4), con-
sistent with the function analysis of cDC2 (Fig. 5e). Another important

subcluster for B cell immunity is CD4+ Texprog, which also shares fea-
tures of Tfh. We found that CD4+ Texprog/Tfh has the ability to attract
and activate GC B cells through CD40LG–CD40 and CXCL13–CXCR5
(Fig. 6g). Recent studies demonstrated the association between TLS
and T cell immunity via mregDC expressing DC-LAMP (LAMP3)4,28, we
therefore revealed that the cell clusters participate in this process.
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Using ligand–receptor mapping, we showed the expression of candi-
date molecules that might promote interactions between mregDC,
CD4+ Texprog/Tfh and effectormemory CD8+ T cells (Fig. 6h).We found
that mregDC expressed the highest levels of the CCR4 ligands (CCL22,
CCL17); the naive or central memory T cell chemokine ligand CCL19,
costimulatory genes (CD80, CD86, PVR, ICOSLG and CD40); cytokines
thatmodulate T cells, such as IL12B, which is known to promoteCD4+ T
cell differentiation, and IL15, known for its role in promoting CD8+

T cells survival. In addition, the expression of regulatory genes CD274
(encoding PD-L1) and PDCD1LG2 (encoding PD-L2) was also increased
in mregDC. Finally, leveraging spatial transcriptomics data, we identi-
fied that receptor–ligand pairs, such as CXCL13–CXCR5,
CD40LG–CD40, and CD70–CD27 were highly expressed in the mTLS
site (Fig. 6i, Supplementary Fig. 17a–c). The significance of these
receptor–ligand communications was further corroborated by analy-
sis using CellphoneDB (Supplementary Data 4).

mTLS is associated with better survival and response to ICB
therapy in HNSCC
To investigate the prognostic value of mTLS in HNSCC, we used bulk
RNA-seq from The Cancer Genome Atlas (TCGA) HNSCC dataset
(TCGA-HNSC). This dataset was subjected to deconvolution, utilizing
our scRNA-seq data as a reference for characterizing cellular popula-
tions, incorporating a deep learning model as described40. Subse-
quently, we conducted further analysis on the data using non-negative
matrix factorization clustering, which led to the development of a TLS-
based classification for HNSCC (Supplementary Fig. 19a). We assigned
the TLS classification upon the expression levels of the TLS imprint
signature. It is observed that the “mTLS” category manifests a high
expression of this signature. Conversely, the “imTLS” category displays
an intermediate expression of the signature, and the “nTLS” class is
characterized by a low expression of the same (Fig. 7a). Furthermore,
the category denoted as “mTLS”has consistently exhibited augmented
signatures of various cell types, with the enrichment of these cell types
corroborated by preceding scRNA-seq data (Fig. 7a). This includes B
cells at the naive and GC stages, effector memory CD8+ T cells, naive/
central memory CD4+ T cells and CD4+ Texprog/Tfh, as well as
cDC2 (Fig. 7a).

Uponvalidating theTLS classification,we advanced to explore the
survival outcomes correlated with TLS status in HNSCC. It was
observed that patients manifestingmTLS exhibited the longest overall
survival in contrast to individualswith either imTLSornTLS (Fig. 7b). In
concordance with these observations, two specific cell types that are
abundant in mTLS—GC B cells and effector memory CD8+ T cells—
demonstrated a notable association with increased overall survival
rates (Fig. 7c, d), suggesting a potential contribution of B cells and
CD8+ T cells towards a better prognosis. Additionally, when clinical
factors were integrated into a multivariate model, the status of mTLS
was found to be significantly correlatedwith enhanced overall survival,
disease-specific survival, and progression-free interval (Fig. 7e and
Supplementary Fig. 19b, c). These results highlight the potential
importance of mTLS as a prognostic marker in the clinical manage-
ment of HNSCC.

To support these findings obtained from the scRNA-seq and
spatial transcriptomics, we turned to a separate patient cohort,

comprising 422 FFPE tumor specimens collected from individuals
diagnosed with HNSCC (Supplementary Data 2). We utilized H&E
staining along with mIHC to stain and distinguish the distinctive
markers of B cells, T cells, DCs, and chemokines in the tumor tissues,
thus allowing us to classify the TLS status of each sample (Fig. 7f,
Supplementary Data 5). In accordance with our earlier analyses, mTLS
is associated with a high density of CD20+ B cells, CD4+ T cells, CD8+

T cells, and DC-LAMP+ mregDC (Fig. 7g–j). Notably, this includes a
high concentration of CD8+TCF1+ T cells and CD4+TCF1+CXCL13+

T cells, which are primarily categorized as stem-like CD8+ T cells con-
taining naive/central memory and effector memory phenotypes,
and as progenitor exhausted phenotypes within CD4+ T cells, respec-
tively, according to scRNA-seq data (Fig. 7k, l). This investigation
uncovered that specific cell types, specifically stem-like CD8+ T cells
and CD4+ Texprog/Tfh, demonstrated a moderate correlation with B
cells (Fig. 7m).

TLS status, as revealed by scRNA-seq and spatial transcriptomics,
notably influences cellular interactions through increased receptor–-
ligand expression and alters the spatial organization of cellular neigh-
borhoods in the TME (Fig. 6d–f). To identify the cell type most closely
associated with mTLS in a large dataset, we quantified the spatial dis-
tances between every pair of cell types in the TME. Our analyses
uncovered that CD4+ Texprog/Tfh, characterized by CXCL13+TCF1+CD4+

expression and primarily localized within the T cell zone of mTLS, not
only resided in close proximity to B cells, but also demonstrated an
aggregation near stem-like CD8+ T cells andmregDCs (Fig. 7n), forming
a cellular niche as previously reported28,31. mIHC not only showed that
CD4+ Texprog/Tfh cells (CD4+CXCL13+TCF1+) were enriched in the T cell
zone within mTLS, but also provided confirmatory evidence for the
existence of cellular triads, comprised of mregDCs, stem-like CD8+

T cells, and CD4+ Texprog/Tfh in T cell zone of mTLS (Fig. 7n, Supple-
mentary Fig. 19d). Although there appears to be no difference in the
general cellular neighborhoods among CD20+ B cells, CD4+ and CD8+

T cells across different TLS statuses, our findings indicate that the
highest frequencies and shortest nearest-neighbor distances between
CD4+ Texprog/Tfh and B cells, as well as stem-like CD8+ T cells occur in
mTLS (Fig. 7o, Supplementary Fig. 20). In addition, we used our patient
cohort with HNSCC to verify the relationship between CD4+ Texprog/Tfh
cells, cDC2, andGCB cells (Supplementary Fig. 21).We found that both
the CD4+TCF1+PD-1+ Texprog/Tfh cells and CD20+BCL6+ GC B cells
increased in mTLS (Supplementary Fig. 21d, e). Furthermore, the cell-
cell interactions between CD4+TCF1+PD-1+ Texprog/Tfh cells and CD1C+

cDC2, as well as between CD1C+ cDC2 and CD20+BCL6+ GC B cells, also
increased in mTLS (Supplementary Fig. 21f, g).

We then assessed the relationship between mTLS and the patient
responses to ICB therapy, which were evaluated by analyzing publicly
available datasets from four published clinical trials25,41–43. In the
scRNA-seq data of pre-treatment tumor samples from 6 patients with
HNSCC undergoing ICB therapy25, we initially migrated the cell anno-
tation from our scRNA-seq dataset to this dataset utilizing the TOSICA
model44 (Supplementary Fig. 22). It was observed that cell types enri-
ched with mTLS were linked to a favorable response to ICB therapy,
including naive/central memory and effector memory phenotypes of
CD8+ T cells, mregDCs, as well as CD4+ Texprog/Tfh and CD4+ Texterm

(Fig. 7p). Although a comprehensive RNA expression dataset from

Fig. 6 | Spatial distribution of intra-tumoral TLS throughout different TLS
status of HNSCC. a–c Spatial mapping of granulosa cell types from the scRNA-seq
to spatial transcriptomics of nTLS, imTLS, and mTLS HNSCC using Cell2location.
Spatial mapping of lineage of B cell, CD4+ and CD8+ T cell, and DC from the human
scRNA-seq dataset to a respective spatial transcriptomics slide ofHNSCCwith nTLS
(a), imTLS (b), and mTLS (c) statuses with cell2location. Estimated abundance for
cell types (color intensity) to each Visium spot (color) shown over the H&E images.
Scale bars = 1mm. d–f heatmap of co-occurrence of B cells, CD4+ T cells, CD8+

T cells, and DCs across different TLS status. g Ligand–receptor pair expression
analysis across B cells, CD4+ Tconv cells, DC, and B cell subclusters in B cell zone of
mTLS, showing average gene expression by scRNA-seq h Ligand–receptor pair
expression analysis across CD8+ T cell, CD4+ Tconv cell, andDC subclusters in T cell
zone ofmTLS, showing average gene expression by scRNA-seq. i spatial distributed
expression of the CXCL13–CXCR5, CD40L (encoded by CD40LG)–CD40, and
CD70–CD27 signaling axis in different TLS status. The color gradient indicates the
gene expression (red, high expression; white, low expression). Scale bars = 1mm.
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ICB-treated HNSCC patients was not accessible, it was recognized that
squamous cell carcinomas (SCCs) arising from diverse anatomical
locations frequently exhibit somatic mutations, gene amplifications,
and deletions in critical regulators of cell cycle progression and
chromatin remodeling45. Therefore, we employed SCC datasets as a
proxy to infer potential associations between the presence of mTLS

and response to ICB therapy in HNSCC. In a patient cohort combining
HNSCC and lung SCC using pembrolizumab and nivolumab for PD-1
blockade41, it was observed that tumor sampleswith a high TLS imprint
signature demonstrated a more favorable response to ICB therapy.
Additionally, a significantly elevated signature of GC B cells and CD4+

Texprog/Tfh, which was linked to mTLS, was noted (Fig. 7q). Overall,

Article https://doi.org/10.1038/s41467-025-59341-w

Nature Communications |         (2025) 16:4228 13

www.nature.com/naturecommunications


these findings demonstrate that mTLS was associated with improved
response to ICB therapy in HNSCC.

Discussion
Here, we investigated the role of TLS status in HNSCC and explored
their respective roles in anti-tumor immunity. Employing an inte-
grative approach that combines single-cell and spatial multi-omics
technologies, we aimed to uncover the underlying mechanisms gov-
erning T and B cell responses, particularly emphasizing the distinc-
tions observed among distinct TLS statuses (Fig. 7r).

We revealed that the cellular composition within different TLS
statuses exhibits variations,with a higher frequencyofT/NK cells andB
cells in mTLS. Utilizing the scTCR/BCR-seq, we detected a greater
number of clonotypes in T and B cells within mTLS, thus implying a
higher probability for mTLS to recognize tumor neoantigens. Further,
we identified stem-like CD8+ T cells, specifically effectormemory CD8+

T cells that strongly express GZMK and TCF7, which are notably enri-
ched in mTLS. These cells demonstrate the capacity to develop into
fully functional CD8+ T cells31,46,47, suggesting that mTLS fosters an
in situ CD8+ T cell response. This observation aligns with recent find-
ings that stem-like CD8+ T cells are likely to supply an influx of tumor-
specific activated CD8+ T cells into the tumor48. However, it should be
noted that non-mTLS also contain CD8+ T cells, yet the dominant
subset of these CD8+ T cells displays a phenotype characterized by
cytotoxicity and exhaustion. These cells express high levels of genes
typically associated with exhaustion, such as TOX, PDCD1 (PD-1), and
HAVCR2 (TIM-3), and they lack significant proliferative potential. Our
earlier study and multiple other studies have confirmed the associa-
tion between TLS and TCF1+ T cells, demonstrating their role in pre-
dicting favorable prognoses9,49–51. Moreover, contemporary research
points out that GZMK+ effector (memory) CD8+ T cells with stem-like
features are positively correlated with a better response to ICB,
whereas CD8+ Texterm cells (PD-1hiTIM-3+TOX+) predominate in non-
responders28,31,52,53. In subclusters of CD4+ T cells, based on the single-
cell level data, we observed that mTLS exhibit more enrichment of
CD4+ T cells which have tendency to differentiate towards exhaustion
phenotypes instead of Treg phenotypes. There is accumulating evi-
dence indicating that CD4+ Tex cells exhibiting Tfh-like functions are
positively associated with a favorable response to ICB therapy30,31.

Regarding the B cell lineage, we found that mTLS harbored
diverse subtypes of B cells and plasma cells, supporting that mTLS

generates anti-tumor B cell immunity in situ, in line with previous
research findings17. In contrast, imTLS displayed an enrichment of B
cells without concurrent plasma cells, hinting at a possible immuno-
suppressivemilieu, possibly due to the higher prevalence of Tregs and
M2 macrophages within imTLS, which could suppress the generation
of plasma cells. nTLS showed a predominance of plasma cells without
corresponding B cells, suggesting that these plasma cells might be
produced at alternative sites, such as tumor-draining lymph nodes
(tdLNs), as reported previously30.

To elucidate the cellular contributors to intra-tumoral production
of T cell immunity and B cell immunity within mTLS, we employed
spatial transcriptomics and mIHC to precisely determine the localiza-
tion of distinct subclusters of T cells, B cells, and DCs within the TME.
The findings indicate that triads comprising CD4+ T cells, GC B cells,
and cDC2 are potentially instrumental in the local differentiation of B
cells into plasma cells within mTLS. Concurrently, CD4+ Texprog/Tfh
cells, mregDCs, and effector memory CD8+ T cells form another cel-
lular triad that is likely to facilitate the local differentiation of CD8+

Texprog cells into effector CD8+ T cells within these mTLS. Through
ligand–receptor mapping, we further hypothesize the signaling path-
ways involved in the generation of plasma cells and effector CD8+

T cells. Current evidence suggests that mregDCs can form immune
niches alongside CD4+ and CD8+ T cells28, where CXCL13+PD-1+ CD4+

T cells interact with TCF1+CD8+ stem-like T cells, leading to the gen-
eration of effector CD8+ T cells responsive to ICB therapy as reported31.
Moreover, mTLS that contain GCs can efficiently produce plasma cells
and are capable of generating in situ antibodies within the TME10,17. In
our work, we bridge the processes by which mTLS locally generate
both T and B cell immunity within the TME and identify key cellular
subsets mediating these critical processes, and identify a key cellular
subtype that mediates both these critical processes, as CD4+ Texprog/
Tfh cells. These CD4+ T cells, which exhibit Tfh-like functionality,
engage in collaborative interactions with cDC2 cells. They have the
potential to promote the activation and subsequent differentiation of
GCBcells into antibody-producing plasma cells. Simultaneously, in the
context of T cell immunity, these same CD4+ T cells cooperate with
mregDCs to activate CD8+ T cells, eventually giving rise to cytotoxic
CD8+ T cells.

Our study has several limitations. Firstly, while our trajectory and
scTCR/BCR-seq sharing analyses support the intra-tumoral differ-
entiation of CD8+ and CD4+ T cells as well as B cells in mTLS, the origin

Fig. 7 | mTLS is associated with better survival and response to ICB therapy
in HNSCC. a Heatmap plot showing TLS status in HNSCC (TCGA-HNSC) database
(n = 500 independent samples) identified by the different immune cell types. A
color gradient, transitioning from purple (representing enrichment) to white
(representing depletion). The Benjamini–Hochberg adjusted P values obtained
from two-sided Kruskal–Wallis tests. b Overall survival of patients with HNSCC by
TLS status (n = 499 independent samples). Overall survival of patients with HNSCC
by GC B cells (c) and CD8+ effector memory T cells (d) was analyzed using log-rank
test results, which indicated statistical significance. eMultivariate Cox proportional
regression outcome, with clinical variables. For every variable included in the
analysis, the reference level is the first one. A gray bar symbolizes a P value > 0.05;
and blue and red bars symbolize P value < 0.05 positively and negatively, respec-
tively. Error bars represent the 95% confidence interval. f Scheme of mIHC for
HNSCC tissue. g–l Proportion of CD20+, CD4+, CD8+, DC-LAMP+, CD8+TCF1+, and
CD4+TCF1+CXCL13+ cells in total cells of HNSCC tissue with different TLS status,
respectively (n = 303 independent samples nTLS, n = 83 independent samples
imTLS, n = 36 independent samples mTLS, two-tailed Mann–Whitney U-test, for
box plots: box center line, median; box limits, upper and lower quartiles; box
whiskers, maximum and minimum values). m Heatmap showing the Pearson cor-
relation among cell subcluster abundances. The color gradient indicates the
P value of Pearson correlation (red, high expression; white, low expression).
n Images of an mIHC-stained HNSCC tissue with different statuses of TLS showing
co-localization of B cell (CD20), T cell (CD4, CD8, and TCF1), mregDC (DC-LAMP),
and chemokine (CXCL13) in HNSCC across. nTLS were repeated 303 times

independently with similar results, imTLS were repeated 83 times independently
with similar results, mTLS were repeated 36 times independently with similar
results. Scale bars = 200μm. o The Distance between each type of cell in each core
of the TMAs, with cores grouped by TLS status. Vertical dotted lines indicate the
median distance. p Relationship between differential prioritization ΔAugur score
for parenting between response and no response, and Augur score for HNSCC
patients treated with ICB therapy. The scRNA-seq data of pre-treatment tumor
samples from six patients with HNSCC undergoing ICB therapy GSE20099625 were
used for Augur analysis. Each dot represents a cell type in the TME of HNSCC. Gray
symbolizes aΔAugur score of <0.02; and the colored dot symbolizes positively and
negatively a ΔAugur score’s absolute value of >0.02, respectively. q Heatmap plot
showing the response to anti-PD-1 therapy and abundance of different immune cell
types. GSE9315741 was used for this analysis. The Benjamini–Hochberg adjusted
P values obtained from a two-tailed Mann–Whitney U-test. r Sketch map showing
the TME of HNSCC with nTLS, imTLS, and mTLS. nTLS are unable to generate local
anti-tumor immunity due to a lack of stem-like T cells and B cells. Meanwhile,
imTLS, which is also enriched with B cells, cannot produce in situ anti-tumor
immunity due to obstruction by immunosuppressive cells, including Tregs andM2
macrophages. mTLS enriched with stem-like CD4+ and CD8+ T cells and the pre-
senceof B cells at differentmaturation stages, supporting the generation of T andB
cell responses. CD4+ Texprog/Tfh collaboratedwith cDC2andmregDCsplay a crucial
role in regulating B cell and T cell responsewithinmTLS. CR complete response, PR
partial response, SD stable disease, PD progressive disease.
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of the T and B cells, whether already in the site of tumor or from the
organ, such as tdLNs or blood, is unclear. Secondly, due to the lim-
itations of technology, we were unable to investigate the TCR/BCR
repertoire in a spatial context within the TME. Future studies could
benefit from spatial transcriptomics of B and T cell receptors, which
may reveal lymphocyte clonal dynamics as previously reported54.
Thirdly, the localization of different immune cell subtypes was deter-
minedusingVisiumv1 technologywith relatively low resolution (55μm
in diameter) and may encompass 5–30 cells per spot; thus, we
employed bioinformatic tools to deconvolute the spatial tran-
scriptomewithout directly observing cell-cell interactions. To enhance
this research further, it is recommended to adopt newer methodolo-
gies featuring higher resolutions, such as Visium HD technology,
multiplexed ion beam imaging by time-of-flight or imaging mass
cytometry (CyCIF), to more accurately delineate the precise structure
of mTLS and ligand–receptor interactions55. In our study utilizing TMA
withHNSCCpatients, considering thefinite size of each tissue core and
the inherent complexity of the three-dimensional organization of
TLS56, there exists a possibility of underestimation or uneven repre-
sentationofTLSmaturation stages across different regions,whichmay
introduce a degree of bias into our assessment of TLS status in the
samples. Fourthly, our study does not include direct functional assays
to confirm the results obtained from single-cell and spatialmulti-omics
technology data. Our research aimed to study the different statuses of
TLS in HNSCC tumors employing an integrative approach that com-
bines single-cell and spatial multi-omics technologies.

Nevertheless, our study revealed that mTLS functionally involves
CD4+ Texprog/Tfh cells, along with DCs, acting as drivers of the intra-
tumoral differentiation of cytotoxic CD8+ T cells and antibody-
producing plasma cells. These novel insights can enhance our under-
standing of the mechanistic function of mTLS and potentially inform
strategies to induce mTLS formation within the TME, thereby max-
imizing the prognostic and predictive value of mTLS presence for
HNSCC patients. Our study provides insights into the mechanisms
underlying mTLS-mediated intra-tumoral immunity cycle against
cancer.

Methods
Patient samples
This study was approved by the Medical Ethics Committee of the
School and Hospital of Stomatology, Wuhan University. Written
informed consent was obtained from each patient. HNSCC samples
were derived from the Department of Oral and Maxillofacial Surgery,
Wuhan University School and Hospital of Stomatology. All patients
had histologically proven HNSCC and were suitable candidates for
surgical resection. The TNM classification at diagnosis was based on
the 8th edition of the TNM Classification of Malignant Tumors (Union
for International Cancer Control). The pathological grade was diag-
nosed according to the 4th World Health Organization classification
of head and neck tumors. A total of 14 HNSCC patients were enrolled
for scRNA-seq, paired scRNA-seq, and scTCR/BCR-seq, as well as
spatial transcriptomics. All 14 patients includedwere confirmed to be
human papillomavirus (HPV) negative through both P16 protein
staining and in situ hybridization dual testing. More detailed clinical
characteristics of the patients are summarized in Supplemen-
tary Fig. 1.

Sample processing
Fresh samples of HNSCC, mainly from the oral site, were collected
from the primary tumor site during surgery. All tissues for sequencing,
spatial analysis, and furtherworkwere stored in tissue storage solution
(Miltenyi) at 2–8 °C until processing. Subsequently, the tissue was
divided into three portions: one portion will be used for preparing
single-cell suspensions, another portion will be utilized for sorting
CD45+ cells, and a third portion will undergo optimal cutting

temperature (OCT) embedding for spatial transcriptomics as well as
IHC staining to identify the status of TLS.

IHC and mIHC to determine the status of TLS
For H&E staining, OCT-embedded tissues were cut into 6–8μm sec-
tions, separated from the largest diameter of the tumor. Sections were
also taken from1/4depth and 3/4depthof the tumor and stainedusing
a Leica automated slide stainer. The TLS status was then further
determined by IHC and mIHC57–59. CD20, CD3, and CD23 immunos-
taining were used to determine the status of TLS as previously
described16. Briefly, IHC assays were performed using anti-human
CD20 (1:200, Cell Signaling Technology), CD3 (1:150, Abcam), and
CD23 (1:200, Abcam) antibodies, as previously described9. Then, the
mIHC staining was conducted using the Opal 6-Plex Manual Detection
Kit (Akoya Biosciences) to further detect the TLS status as previously
described9. Briefly, FFPE tissue slideswerefirst deparaffinized and then
incubated sequentially with primary antibodies CD20 (1:1000, Cell
Signaling Technology), CD4 (1:1000, Abcam), CD8 (1:800, Cell Sig-
naling Technology), BCL6 (1:600, Cell Signaling Technology), CD23
(1:900, Abcam), TCF1 (1:600, Cell Signaling Technology). This was
followed by incubationwith secondary antibodies (Akoya Biosciences)
and corresponding reactive Opal fluorophores. Nucleic acids were
stained with DAPI. Seven-color stained slides were scanned using a
Vectra 3 Imaging System (Akoya Biosciences). Scanning was con-
ducted at a magnification of 20×. The channel employed for multi-
spectral imaging included DAPI, FITC, Cy3, Texas Red, and Cy5. The
scanned data was subsequently processed by the inForm software
(v.2.4, Akoya Biosciences) for analysis of multispectral imaging.
Autofluorescence was acquired by assessing the region of the slides
that did not contain fluorophores. mTLS refers to GC formation, a
dynamic region with a network of CD23+ FDCs and CD20+BCL6+ B
cells6,10. The evaluation criteria for TLS status are as follows, as a pre-
vious study described57: if a sample contains only imTLS and notmTLS,
it will be classified as imTLS. If a sample contains mTLS or both mTLS
and imTLS, it will be defined as mTLS. Dilutions and catalog numbers
for each antibody used for IHC and mIHC are provided in Supple-
mentary Data 6.

Single-cell suspension preparation
Tumor tissue was cut into approximately <2mm3 in tissue storage
solution and then enzymatically digested using RPMI-1640 medium
modified with collagenase IV (Biosharp, catalog no. BS165), DNase I
(BioFroxx, catalog no.1121MG010), and hyaluronidase (BioFroxx, cat-
alog no.1141MG100) in a C-tube using the gentleMACS system (Milte-
nyi, catalog no.130-093-237) at 37 °C for 1 h. After digestion, the cell
suspension was added to 20mL of RPMI-1640 medium, then passed
through a 40-μm filter and pelleted by centrifugation at 300 × g at 4 °C
for 10min.

MACS
To isolate CD45+ cells in tumor tissue, we first removeddead cells from
the single-cell suspensionbyusing theDeadCell Removal Kit (Miltenyi,
catalog no. 130-090-101) according to themanufacturer’s instructions.
Then, the CD45+ cells were magnetically labeled with CD45 (TIL)
MicroBeads (Miltenyi, catalog no. 130-118-780) and loaded onto a
MACS LS-Column (Miltenyi, catalog no. 130-042-401) for positive
selection. After centrifugation at 300 × g at 4 °C for 10min, the selec-
tive CD45+ cells were stored in PBS with 0.04% BSA for further
processing.

scRNA-seq library preparation and sequencing
For the scRNA-seq experiments, the single-cell suspension
(1 × 105 cells/mL) was loaded onto a microwell chip according to the
manufacturer’s protocol for the GEXSCOPE Single Cell Kit (Singleron
Biotechnologies, catalog no. 4180012). The scTCR-seq/scBCR-seq
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libraries were constructed according to the protocol of GEXSCOPE
Single Cell Immuno-TCR/BCR Kit (Singleron Biotechnologies, catalog
no. 41831251). Sequencing libraries suitable for the Illumina sequen-
cing platform were constructed after partial cDNA fragments and
splicing. The remaining cDNA was enriched for the immune receptor
(TCR/BCR), and the enriched products were amplified by PCR to
construct a sequencing library suitable for the Illumina sequencing
platform. Finally, each library was sequenced on Illumina HiSeq X,
generating 2 × 150 bp PE reads.

Spatial transcriptomics library preparation and sequencing
The tissues were frozen in isopentane and then embedded in OCT.
OCT-embedded tissues were cryosectioned and placed on a Visium
Spatial Gene Expression Slide following Visium Spatial Protocols-
Tissue Preparation Guide (10x Genomics). Briefly, fresh tissues were
coated carefully and thoroughly with room temperature OCT without
any bubbles. OCT-coated tissues were then placed on a metal block
chilled in dry ice until the OCT turned solidified and white. After
assessing RNA quality using the TapeStation system (Agilent) and
checking tissue morphology through H&E staining of the OCT-
embedded tissues, the blocks were trimmed down to a suitable size
fitting theCaptureAreas. Samplefixing and imaging have been done in
sample preparation, and section permeabilizationwill be performed as
follows. Permeabilizationwas carried out for a duration determined by
tissue optimization. The first strand of cDNA is synthesized via reverse
transcription, and the second strand of cDNAwas synthesized via PCR.
Then the cDNA is denaturation, making the second strand of cDNA
dissociated from slide. Free cDNA was then transferred from slides to
tubes for further amplification and library construction. The final
libraries contain the P5 and P7 primers used in Illumina amplification.

Downstream analysis of scRNA-seq data
Overview. The pipeline was built using the CeleScope pipeline fra-
mework (Singleron Biotechnologies). CeleScope software (version
1.13.0) was used to perform read alignment, barcode filtering, and
unique molecular identifier (UMI) quantification using the human
reference genome (GRCh38-2020-A) and generate a raw counts
matrix.

Doublet detection. We used Scrublet for cell doublet calling on a per-
library basis60. Cells with predicted doublets scores greater than 0.2
were excluded from the following analysis.

scRNA-seq data processing. CeleScope-filteredmatriceswere loaded
into individual AnnData objects using the Scanpy package (version
1.10.3) with the pipeline following their recommended standard prac-
tices, which are mainly based on the scverse ecosystem61,62. We
excluded genes expressed by fewer than three cells and excluded cells
expressing fewer than 200 genes ormore than 4000 genes, more than
20% mitochondrial content, or with a total UMI count of more than
25,000. Cell cycle phase was assigned using the “score_genes_cell_-
cycle” function in Scanpy. After normalizing with the “normalize_total”
and “log1p” functions with their default parameters, highly variable
genes withmeanexpressions between0.0125 and 3, and aminimumof
normalized dispersions greater than 0.5, were identified using the
“Seurat” method.

We regressed out the effect of the percentage of mitochondrial
genes and the total count of UMI and scaled the data. Principal-
component analysis (PCA) was calculated using the PCA function, and
nearest neighborhood graphs were built using the neighbors function
using 50 principal components. Then the harmony (version 0.0.9) was
used for batch correction to remove the patient-specific effects63. And
the community algorithm was applied for clustering using the Leiden
function (resolution = 1)64, and UMAP embeddings of major cell-type
supersets (see below) were based on the 50 batch-corrected harmony

components. Differential expression between identified clusters was
computed using a two-sided Wilcoxon rank-sum test.

Clustering and cell subtype identification. We first annotated the 14
major cells types identified in our dataset on the basis of well-known
marker genes, including PTPRC (CD45), CD3D, CD3E, CD8A, CD4,
FOXP3,TRDC,NKG7,MIK67,CD79A,MS4A1, IGHG1 for lymphoid lineage
(CD8+ T, CD4+ Tconv, Treg, NK/NKT, cycling T cells, B cells and plasma
cells); CD14, CD68, CD163, CD1C, LAMP3, JCHAIN, GZMB, TPSAB1 and
CSF3R formyeloid lineage (monocytes,macrophages, cDC,mDC, pDC,
mast cells and neutrophils); PLVAP, VWF, PROX1, COL1A1, LUM, FAP,
PDGFRA, ACTA2 for stromal cells (ECs, lymphatic ECs, fibroblasts and
pericytes); and KRT14, KRT6A and EPCAM for cancer cells.

For T/NK cell subclustering, to avoid the dominant effect of T cell
receptor variable genes in T cell clustering analysis, all TRAV, TRBV,
TRDV, and TRGV genes related to the TCRwere removed from the high
variable gene list25. Similarly, for B cell subclustering, all IGLV, IGKV,
and IGHV genes related to Ig were removed from the highly variable
gene list to avoid somatic hypermutation-associated variances30. The
list of genes related to TCR and Ig was acquired from the international
ImMunoGeneTics information system. For each subcluster, the har-
monywasalsoused for batch correction to remove thepatient-specific
effects63. Owing to the variable amount and properties of cells in each
major cell type, different parameters for clustering were used. For the
clustering of T/NK cells, the top 40 batch-corrected harmony com-
ponentswere selected on the basis of 2000HVGs. For the clustering of
B cells and myeloid cells, the top 30 batch-corrected harmony com-
ponents were selected on the basis of 3500 HVGs.

As a result, we identified 5 CD8+ T cells, 6 CD4+ Tconv, 7 Treg, 3
cycling T/NK, 2 NKT, 3 NK, 1 γδT, 1 ILC for T/NK lineage, 6 B cell and 3
plasma cell clusters for the B cell lineage, 4 DC, 9 macrophage, 2
neutrophil and 1mast cell for themyeloid lineage, and 2 EC, 1fibroblast
and 1 pericyte for the stromal components (Fig. 2b and Supplementary
Fig. 7). Clusters were annotated on the basis of known marker genes
and cross-referenced against other published annotations (Supple-
mentary Figs. 8, 14 and 15)20–22,32,33. Clusters or cellsmanually annotated
as doublets or dissociatedwill be removed in the downstream analysis.

scTCR/BCR-seq data processing. Sequencing data for TCR sequen-
ces and BCR sequences was aligned and quantified using CeleScope
against the GRCh38 human VDJ reference genome. Filtered annotated
contigs for TCR sequences and BCR sequences were analyzed using
Scirpy (version 0.17.2)65. In TCR/BCR quality control, cells expressing
bothBCR andTCR chains are categorized as “ambiguous,” and those in
which more than two receptor pairs are detected are labeled as
“multichain.” Both of “ambiguous” and “multichain” categories of
scTCR/BCR-seq data were excluded from the following analysis. For
TCR analysis, we selected CD8+ T and CD4+ T cells that were annotated
via scRNA-seq analysis. Each unique TRA and TRB pair was defined as a
TCR clonotype. Clonotypes were defined based on CDR3 nucleotide
sequences with receptor_arms = “all.” If one clonotype was present in
at least two cells, cells harboring this clonotype were considered to be
clonal, and the number of cells with such pairs indicated the degree of
clonality of the clonotype. For BCR analysis, we selected B cells and
plasma cells that were annotated via scRNA-seq analysis. Each unique
heavy chain (IGH) and light chain (IGK or IGL) pair was detected, and a
relaxed definition of B cell and plasma cell clonotypes by Immcanta-
tion Portal (version 4.5.0)66. Specifically, the optimal threshold for
trimming the hierarchical clustering into B cell clones was firstly cal-
culated by shazam package66. We then used the hierarchical clustering
method67 by the SCOPer package68 to cluster B cell receptor sequen-
ces. This clustering was based on the similarity of junction region
sequences within partitions that shared the same V gene, J gene, and
junction length, while accommodating ambiguous V or J gene
annotations.
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TCR/BCR sharing was calculated as the number of unique TCRs
shared between sample types (exact CDR3 nucleotide match). Using
barcode information, T cells with prevalent TCR clonotypes and B cells
with prevalent BCR clonotypes were projected on UMAP embedding.

Single-cell pseudotime analysis. To characterize the developmental
trajectories in T and B cells, we applied the PAGAmethod69 in a part of
the single-cell analysis package Scanpy in Python to infer the potential
differential trajectory. Moreover, we used PAGA to assess the most
likely trajectories of cell progression among CD8+ and CD4+ T and B
cells in HNSCC. The computations were carried out using default
parameters. The edge connectivity between each subpopulation node
for all edges is further compared by using an unpaired two-sided
Student’s t-test. We also applied Palantir to complement the trajectory
analysis using default parameters70.

GLMs of cluster composition and kernel density estimates. To
estimate the effect of TLS status specificity on the composition of cell
clusters, refer to the previous study20. We considered a GLMwhere we
included interactions between TLS status and cluster identity for each
major cell type defined in the scRNA-seq, H&E, andmIHC data. Using a
binomial linear model, one can analyze counts of repeated observa-
tions of cell types or cell states as binary choices.We also use amethod
of kernel density estimation to determine the effect of TLS status
specificity on the composition of cell clusters, as referenced in the
previous study20. First, we performed kernel density estimation on the
UMAP of each cell cluster for each TLS status using the kde2d function
from theMASS package. Then, we calculated the contrast between the
kernel density estimates of each twodifferent groups of TLS status and
visualized it in the UMAP space using the ggplot2 package.

Calculationof gene set activity score.We applieddecoupleR (Python
package) to evaluate the activity score of a gene set in each single cell
based on transcriptome profiles71. For TLS signature scores, we cal-
culated the score using a manually curated list of genes as input to the
AUCell method72. We calculated the signaling pathway activity scores
using the gene list provided by PROGENy73, a comprehensive reposi-
tory that contains curated sets of pathways and their associated target
genes, as input for the multivariate linear model based on the
recommendation. We calculated the functional enrichment scores
using a manually curated list or gene list derived from Gene Ontology
(GO) Biological Process terms as input for the overrepresentation
analysis based on the recommendation. To verify the accuracy of cell
annotation results from scRNA-seq, we compared the cell annotation
using the AUCell algorithm with previously reported single-cell
annotations.

The classical 12 chemokine signature contained19: CCL2, CCL3,
CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11,
CXCL13. The TLS imprint signature contained17: IGHA1, IGHG1, IGHG2,
IGHG3, IGHG4, IGHGP, IGHM, IGKC, IGLC1, IGLC2, IGLC3, JCHAIN,CD79A,
FCRL5, MZB1, SSR4, XBP1, TRBC2, IL7R, CXCL12, LUM, C1QA, C7, CD52,
APOE, PTLP, PTGDS, PIM2, DERL3. The naive T cell signature contained:
CCR7, IL7R, and TCF7, as derived from a previous publication20. The
cytotoxicity T cell signature contained: GZMA, GZMB, GZMH, PRF1,
NKG7, and GNLY, as derived from a previous publication25. The pro-
liferation T cell signature contained: STMN1, TUBB, and MKI67. The
Texprog/Tfh cell signature contained: CXCL13, TCF7, and PDCD1. The
Texterm cell signature contained: TOX, HAVCR2, CD101, PDCD1, LAG3,
CXCL13, ENTPD1, and TIGIT.

Cell–cell interaction analysis. We used the CellphoneDB tool, based
on the CellphoneDB database (version 4.1.0), to infer cell–cell inter-
actions of selected ligand–receptor pairs between T cell subclusters, B
cell subclusters, and DC subclusters. The potential strength of inter-
action between two cell subsets was predicted using the

“statistical_analysis_method” function, which retrieves interactions
where the mean expression of the interacting partners displays sig-
nificant cell state specificity by employing a random shuffling metho-
dology.Weextracted significant ligand–receptorpairswith a P valueof
less than 0.01. The results perform some exploratory analysis of the
results obtained from CellphoneDB.

The cell abundance estimated from bulk gene expression profiles.
To identify the cell-type proportions in the HNSCC, we used a bulk
deconvolution tool called Bulk2Space (version 1.0.0)40 based on deep
learning frameworks to generate single-cell expression profiles from
bulk transcriptome in several databases. The gene expression from
TCGA-HNSC was downloaded from the TCGA data portal (https://
portal.gdc.cancer.gov/). Other gene expression from these bulk RNA-
seq datasets was downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/, GSE93157).

Annotation transfer of cell-type annotation from scRNA-seq. To
demonstrate the correlation between mTLS and immunotherapy of
HNSCC, we used TOSICA (version 1.0.0)44, a new AI-based cell-type
label transfer tool, to annotate cell types from our scRNA-seq data to a
published dataset. Additionally, we verified our transferred annotation
using classical markers for cell types.

Based on the annotated scRNA-seq data, we applied Augur (ver-
sion 1.0.0)74, a technique designed for prioritizing cell types that
exhibit significant responses to biological perturbations within single-
cell datasets. This approach facilitated the identification of correla-
tions between various cell types and their responses to ICB.Other gene
expression data from these scRNA-seq datasets was downloaded from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/, GSE200996).

Location of cell types in spatial transcriptomic data. To spatially
ascertain the positions of cell states on the Visium transcriptomics
slides, we employed Cell2location (version 0.1.3) for the purpose of
establishing a spatial mapping of cell types. As a reference framework,
we utilized general cell annotations derived from the primary analysis
of scRNA-seq data, which comprised the cellular clusters of immune
cells. We adhered to the default parameters, with the sole modification
being the adjustment of cells_per_spot to 20. Each Visium section
underwent independent analysis. The results were thereafter visualized
in accordancewith the guidelines provided in theCell2location tutorial.

For co-occurrence analysis, due to the Visium v1 technology, a
spot typically contains multiple cells (55μm in diameter). We used the
normalized distribution of cell types from Cell2location to analyze
the co-occurrence of cell types. In order to predict the co-occurrence
of two cell types in the spatial data, we multiplied the predicted
cell abundance of each spot by the two cell types, added all values,
and divided by the total number of spots, utilizing the following
formula (1):

Co� occurrence scoreAB =

PN
j = 1 CA_J ×CBj

� �

N
× 1000 ð1Þ

whereCijdenotes the predicted abundanceof the ith cell type in the jth
spot, N represents the total number of spots, and A and B are the two
specific cell types of interest. This calculation was performed by mul-
tiplying the relevance factor by 1000.

mIHC. For mIHC staining, FFPE tumor tissue blocks were serially sec-
tioned into 4–6mm sections. mIHC staining was conducted using the
Opal 6-Plex Manual Detection Kit (Akoya Biosciences) as previously
described9. Briefly, FFPE tissue slideswerefirst deparaffinized and then
incubated sequentially with primary antibodies CD20 (1:1000, Cell
Signaling Technology), CD4 (1:1000, Abcam), CD8 (1:800, Cell Sig-
naling Technology), CXCL13 (1:600, Abcam), DC-LAMP (1:600, Atlas
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Antibodies), TCF1 (1:600, Cell Signaling Technology), PD-1 (1:600, Cell
Signaling Technology), CCR7 (1:1200, Abcam), CXCR5 (1:1200,
Abcam), Granzyme B (1:800, Cell Signaling Technology), BCL6 (1:600,
Cell Signaling Technology), CD23 (1:900, Abcam) and CD1C (1:1000,
Abcam). This was followed by incubation with secondary antibodies
(Akoya Biosciences) and corresponding reactive Opal fluorophores, as
shown in Figs. 2f, 3f and 7n, and Supplementary Figs. 3–5, 9,
19d and 21a–c. Following the Series 2 experiments, part of the tissue
cores in TMAsweremissing, as illustrated in Supplementary Fig. 21a–c.
Nuclei acids were stained with DAPI. Seven-color stained slides were
scanned using a Vectra 3 Imaging System (Akoya Biosciences). Scan-
ning was conducted at a magnification of 20×. The channel employed
for multispectral imaging included DAPI, FITC, Cy3, Texas Red, and
Cy5. The scanned data are subsequently processed by the inForm
software (v.2.4, Akoya Biosciences) for analysis of multispectral ima-
ging. Autofluorescence was acquired by assessing the region of the
slides that did not contain fluorophores. Dilutions and catalog num-
bers for each antibody used for mIHC are provided in Supplemen-
tary Data 6.

For the quantitative analysis, we carried out nuclear segmentation
based on DAPI with an expected nucleus area ranging between 5 and
20μm2. Membrane segmentation was based on CD20, CD4, CD8,
CXCL13, and DC-LAMP intensity by the inForm software (v.2.4, Akoya
Biosciences). We observe ~20–30 positive cells in the field of view and
set a threshold for determining positive cells basedon their expression
levels on the cell membrane or nucleus. Calculations for the distances
between each cell were performed using a distance matrix based on
the X and Y positions of each cell in the field of view, which can be
obtained from inForm software. Following the identification of the
distances for each cell, summary statistics regarding these distances
were compiled for each status of TLS under examination.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data deposited and made public are compliant with the regula-
tions of theMinistry of Science and Technology of China, and have get
the accessions in theMinistry of Science and Technology of China. The
raw scRNA-seq, scTCR/BCR-seq, and spatial transcriptomic data gen-
erated in this study have been deposited in the Genome Sequence
Archive at the National Genomics Data Center (China) under the
accession code GSA-Human (HRA007402) [https://ngdc.cncb.ac.cn/
gsa-human/browse/HRA007402]. The matrix of scRNA-seq, scTCR/
BCR-seq, and spatial transcriptomic data has been uploaded to the
OMIX database under accession code OMIX009480 with open access
[https://ngdc.cncb.ac.cn/omix/release/OMIX009480]. The public data
used in this study include RNA-seq data are available from TCGA
datasets (https://portal.gdc.cancer.gov/). Previously published scRNA-
seq data and gene expression data are available from the GEO
datasets (https://www.ncbi.nlm.nih.gov/geo/) under accession codes
GSE200996 and GSE93157, respectively. All data are included in the
Supplementary Information or available from the authors, as are
unique reagents used in this Article. The raw numbers for charts and
graphs are available in the Source Data file whenever possible. Source
data are provided with this paper.

Code availability
Codes used in this study are available at the GitHub website (https://
github.com/lihaowhusos/TLS_in_HNSCC).
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