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Reinforcement learning increasingly relates
to memory specificity from childhood to
adulthood

Kate Nussenbaum 1,2 & Catherine A. Hartley 1

In some contexts, abstract stimulus representations can effectively promote
reward pursuit, whereas in others, detailed representations are needed to
guide choice. Here, we ask how, across development, the reward statistics of
the environment influence the specificity of both value-guided learning com-
putations and recognition memory. Across two experiments (N = 224), we
show that participants ages 8 − 25 years adaptively up- and down-weight
detailed versus broader stimulus representations and that these learning
computations relate tomnemonic specificity. When participants place greater
weight on granular representations during learning, they better remember
stimulus details, whereas when they place greater weight on broader repre-
sentations, they show enhanced memory only for categorical information.
Moreover, the strength of the coupling between learning and memory speci-
ficity increases with age.We demonstrate that from early in life, reward shapes
the granularity with which the world is partitioned, and increasingly across
development, the specificity with which experiences are remembered.

Experiences can be represented at multiple, nested levels of abstrac-
tion. Last Friday, you may have eaten pasta at a restaurant and then
gone to a movie—but you may have also eaten carbonara at an Italian
bistro and seen Barbie in IMAX at the newly renovated cinema by your
apartment. The specificity with which you represent your experiences
has functional consequences for future behavior— representing your
meal as pasta may help you decide whether to eat an unfamiliar pasta
dish, but may prove unhelpful in the future if you face a choice
between carbonara and alfredo. More abstract representations may
facilitate the acquisition of generalizable knowledge, whereas more
specific representations can be leveraged to guide decisions that
require finer-grained distinctions between similar entities1. While
choices about eating pasta may be relatively unimportant, the speci-
ficity of our representations influences how we learn from the out-
comes of our actions2–5, form lasting memories that underpin our
mental models of the environment1,6–9, and ultimately, harness our
past experiences to guide our future behavior.

The generality or specificity with which experiences are repre-
sented may be particularly consequential early in life. Children, who
are equipped with more capacity-limited learning and memory

systems10,11, must navigate a world of less familiar structure. Recent
developmental studies of value-based learning and of episodic mem-
ory have suggested that there may be systematic increases in the
specificity with which experiences are represented from childhood to
adulthood. Younger children show broader generalization of threat
responses to novel stimuli12–14, provide reports of autobiographical
memories that lack rich detail15–17, and perform poorly on lab-based
tasks of mnemonic discrimination18–21. Theoretical proposals have
suggested that representing information with less specificity early in
life may be adaptive—a bias towardmore general representations may
promote the recognition of shared features across diverse experi-
ences, which may be particularly useful for children as they build
semantic knowledge of the world22–24.

Several recent findings, however, suggest that developmental
change in the specificity of learning and memory representations may
not follow a simple, context-invariant trajectory.While some studies of
value-based learning have indeed seen broader generalization in
younger participants12,13, others have found that generalization
increases with age25. Studies of developmental changes in episodic
memory have similarly revealed mixed findings, particularly in later
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childhood and adolescence. While some work has suggested that
mnemonic specificity increases through late childhood20, other
research has not found evidence for significant age-related change in
the granularity with which information is remembered26. Even at
younger ages, mnemonic specificity is not static; it can be enhanced if
information is made more salient27. Moreover, while theoretical pro-
posals posit advantages for reducedmnemonic specificity, it is unclear
whether the formation of less granular memories promotes adaptive
generalization. The extent to which specificity and generality trade off
may also change with age; detailed and more abstracted representa-
tions can compete for expression during learning28, but detailed
memories can also support generalization29, perhaps to a greater
extent in adults than in children30.

These varied developmental trajectories of the specificity of value
associations and episodic memory may reflect emerging adaptivity in
the representations used for learning. The relative costs andbenefits of
representing experiences more abstractly versus more specifically do
not just vary across the lifespan—they vary across themultiple, diverse
learning environments that children, adolescents, and adults experi-
ence every day. In some contexts, more general representations can
guide adaptive choice, and in others,more specific representations are
needed. At the dog park, for example, walkers should represent the
individuating features of each dog so they can learn to approach those
that are friendly and avoid those that bite; in the woods, however,
hikers can ignore the specific features of wolves and represent them
more generally because they should avoid all of them—attempting to
individuate each one may needlessly tax cognitive resources and
prevent effective generalization. Adaptive value-guided learning thus
requires the flexibility to adjust the specificity of value associations to
the reward statistics of the environment2,31–33. Some research suggests
that the ability to dynamically tune value-learning computations to the
optimal settings for particular environments improves fromchildhood
to adulthood34,35. Other work, however, suggests that adults may
approach new learning problems with stronger prior beliefs about the
information most relevant for guiding behavior and show less flex-
ibility in updating them in the face of new information36,37. Develop-
mental changes in the specificity of value-learning computations may
be driven by changes in the extent to which learning representations
are dynamically shaped by the statistics of varied learning
environments.

The specificity with which information is represented during
learning may, in turn, influence the specificity with which information
is encoded in memory, such that detailed information is preserved
when it is useful for guiding behavior. A growing body of work has
revealed a tight coupling between value learning and episodic
encoding38,39—across development, the statistics of the environment
(e.g., surprise, reward) govern both howvalue associations are learned
as well as what information is attended and prioritized in
memory27,40–48. Further, individual and developmental differences in
howpeople learn value associations relate to the information that they
subsequently remember41,49. Despite research that indicates a strong
influence of learning computations on what information is prioritized
in memory, it is unclear both how value-learning influences the adap-
tive specificity of memory representations, and how individual and
developmental differences in the specificity of value-learning compu-
tations are reflected in subsequent memory.

Thus, our goals in this study were twofold. First, we sought to
characterize how children, adolescents, and adults flexibly adapt the
specificity with which they represent information during value-guided
learning. We hypothesized that participants would rely onmore general
representations when such representations could support adaptive
choice, and represent more specific information when doing so was
necessary for making good decisions. We further expected the adaptive
modulationof the specificity of learning representations to increasewith
age. Second,weaskedhowthe specificityof the informationusedduring

value-based choice influences the specificity with which information is
represented in memory. We hypothesized that across age, participants
would demonstratemore specificmemory for information encountered
in the context inwhichdetailed informationwasneeded toguide choice.
Further, we hypothesized that individual and developmental differences
in the specificity of learning computations would be reflected in sub-
sequentmemory, such that people who placedmore weight on detailed
information during learning would show corresponding enhancements
in memory specificity.

We tested these questions across two reinforcement-learning
experiments inwhich stimuli comprised unique exemplars drawn from
broader categories.Whilemany prior studies of category learning have
examined how people learn to cluster novel stimuli, here we used
stimuli from familiar conceptual categories to ask how people learn to
effectively arbitrate between representations at different levels of
abstraction. We manipulated the reward structure of the learning task
across blocks, such that in some contexts, reward contingencies were
determined by unique exemplars, whereas in others, they were gov-
erned by the broader categories. In both experiments, we found that
participants across ageflexibly adapted their use of exemplar-level and
categorical information to make effective choices across contexts. In
line with our hypothesis, individual differences in learning were
reflected in subsequent memory, such that the specificity of memory
was shaped by the specificity of value-guided learning. Further, we
found that the influence of learning on memory strengthened across
development, such that adults demonstrated a tighter coupling
between the specificity of their learning computations and subsequent
memory representations. Our findings reveal that the specificity of
learning and memory does not follow a single developmental trajec-
tory; instead, the structure of the environment shapes the specificity of
the representations that children, adolescents, and adults use to guide
choice, which are in turn, increasingly reflected in memory across
development.

Results
Experiment 1 design
In our first experiment, 151 participants between the ages of 8 and 25
years completed a six-block “approach/avoid” reinforcement-learning
task across which the specificity of the representations that could best
guide choice varied (see Methods). Within each block of the learning
task, participants completed 51 trials in which they had to decide
whether to approach or avoid one of 15 unique stimuli, drawn from
three broader categories, to earn the most points (Fig. 1). The order of
stimulus presentation was randomized, and within each broader
category, two images repeated six times, one image repeated three
times, and two images were only shown once during learning, which
meant that novel images were introduced throughout each learning
block. Critically, in half of the task blocks (category-predictive blocks),
the three broader stimulus categories determined the average gains
and losses associated with approaching each stimulus. In category-
predictive blocks, stimulus values were sampled anew from Gaussian
distributions on every trial, where the mean of the distribution was
determined by stimulus category. One category was randomly deter-
mined to be “good” such that the mean of its reward distribution was
between 3 and 6; one category was “neutral” such that the mean of its
reward distribution was zero (though zero was never actually pre-
sented as anoutcome); andone categorywas “bad” such that themean
of its reward distribution was between −6 and −3. In the other half of
the task blocks (exemplar-predictive blocks), each unique exemplar
was assigned a deterministic positive or negative point value between
−9 and 9, distributed such that the broader stimulus categories could
not be used to guide effective approach/avoid decision making
(Fig. 1B). The order of the blocks was randomized for each participant,
with the constraint that the first two blocks were always of different
conditions.
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Learning to approach and avoid
We first analyzed whether participants across age learned to approach
stimuli with positive values and avoid those with negative values, via a
logistic mixed-effects model with continuous age, within-block trial,
block condition,within-conditionblocknumber, and their interactions
as predictors. Participants increasinglymade correct responses across
trials within each block, χ2(1) = 279.4, p <0.001, odds ratio (OR) = 1.66,
95% Confidence Interval (CI) = [1.60, 1.72] (Fig. 2A). Older participants
made more correct responses than younger participants, χ2(1) = 33.4,
p <0.001, OR = 1.25, 95% CI = [1.17, 1.35], increasingly so across trials
(age x trial interaction: χ2(1) = 27.4, p <0.001, OR = 1.11, 95% CI = [1.07,
1.16]). Across age, performance was better in category-predictive
relative to exemplar-predictive blocks, χ2(1) = 185.2, p <0.001, OR =
1.62, 95% CI = [1.54, 1.71], suggesting that participants leveraged
categorical information to guide their choices. Further, the effect of
block condition varied by age — older participants demonstrated
stronger benefits from the ability to exploit categorical information,
χ2(1) = 6.8, p =0.009, OR = 1.07, 95% CI = [1.02, 1.13]. Performance also
improved across blocks of the task, χ2(1) = 57.2, p < 0.001, OR = 1.26,
95% CI = [1.19, 1.33] (see Supplementary Note 1 for full details). Taken
together, these findings suggest that participants learned effectively
across block conditions, such that they could learn both from indivi-
dual exemplars as well as from the broader categories fromwhich they
were drawn.

Generalization of learned category values to novel stimuli
Throughout each block of the learning task, participants encountered
novel stimuli that they had never seen before. In exemplar-predictive
blocks, the value of each stimulus was determined independently,
meaning participants could not infer the value of unseen stimuli based
on their previous experiences. In category-predictive blocks, however,
participants could respond optimally to completely novel stimuli by
generalizing learned category values. Indeed, in category-predictive
blocks, participants responded correctly to novel stimuli atwell-above-
chance levels (Fig. 2B), indicating successful generalization. Partici-
pants made more correct responses to novel stimuli in category-
relative to exemplar-predictive blocks, χ2(1) = 211.9, p <0.001, OR =

1.72, 95% CI = [1.63, 1.81], an effect that grew increasingly strong as
participants encountered more stimuli from each category (block
condition x category repetition interaction: χ2(1) = 156.3, p <0.001,
OR = 1.32, 95% CI = [1.26, 1.38]). In addition, the effect of block condi-
tion on correct responses grew stronger with increasing age,
χ2(1) = 6.6, p =0.010, OR = 1.07, 95% CI = [1.02, 1.13], indicating more
effective generalization in category-predictive blocks in older partici-
pants. Generalization also strengthened across blocks of the task
(block condition x block number interaction: χ2(1) = 16.0, p <0.001,
OR = 1.10, 95% CI = [1.05, 1.14]; see Supplementary Note 1 for full
details).

Though successful generalization was not possible in the
exemplar-predictive condition, participants may have nonetheless
attempted to generalize learned stimulus values to other, within-
category exemplars, particularly within the first few trials of each
block. For example, if participants approached a dog and were
rewarded, then they may approach the next dog they encounter, even
if its specific features differ. Likewise, if they approached adog and lost
points, they may avoid the next dog they encounter. To test whether
participants attempted to generalize learned category values, we
coded learning trials as “category win-stay” if participants repeated
winning responses (i.e., gaining points or avoiding point losses) and as
“category lose-shift” if participants avoided repeating losing responses
(i.e., losing points or avoiding point gains) that they made to the last,
previously encountered within-category stimulus, excluding trials in
which this stimulus was also the same exemplar. Thus, trials in which
participants demonstrated this signature of category generalization
were coded as 1, and those in which they did not were coded as 0. We
then examined how this behavior changed over trials within the two
block conditions. We expected that participants would show stronger
category win-stay lose-shift (WSLS) behavior in category-predictive
blocks, where it was adaptive, relative to exemplar-predictive blocks.

At the beginning of blocks across both conditions, participants
demonstrated this WSLS behavior, such that they tended to repeat
rewarded “approach/avoid” responses and switch unrewarded
responses upon their subsequent encounter with a different stimulus
from the same broader category. On average, in the first ten trials

Fig. 1 | Experiment 1 task design. A Each block of the reinforcement-learning task
included 15unique stimuli (shown in the gray box),which comprisedfive exemplars
each drawn from three broader categories. For each stimulus set, three additional
novel exemplars per sampled category and an additional category with eight novel
stimuli were used in a test of subsequent memory (see panelD). B In the category-
predictive condition, rewards on every trial were sampled from normal distribu-
tions centered on means determined by the stimulus categories. In the exemplar-
predictive condition, rewards on every trial were determined by the individual
exemplars. C On every trial of the reinforcement-learning task, participants chose

whether to approach or avoid a stimulus. Participants won or lost points if they
chose to approach the stimulus. While they did not win or lose any points if they
chose to avoid, they saw counterfactual feedback showing how many points they
would have won or lost had they approached. D Approximately 1 week after
completing the reinforcement-learning task, participants completed a test of
recognition memory in which they had to decide whether stimuli were old or new
on a four-point confidence scale. The images in thefigureare illustrative; actual task
stimuli differed slightly. Image credit: iStock/GlobalP (https://www.istockphoto.
com/portfolio/GlobalP), Life on White (https://www.lifeonwhite.com/).
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within each block, participantsmade categoryWSLS responses in both
category-predictive and exemplar-predictive blocks (mean proportion
WSLS: category: 0.67 (SE =0.01), exemplar: 0.59 (SE =0.01); Fig. 2C),
indicating that they began each block with a propensity to use cate-
gorical information to guide choice. But across trials, WSLS behavior
increased in category-predictive blocks, where it was an effective
choice strategy, and decreased in exemplar-predictive blocks, where it
was maladaptive (trial x block condition effect: χ2(1) = 175.8, p <0.001,
OR = 1.17, 95% CI = [1.14, 1.20]). WSLS behavior also diverged across
block conditions more strongly in later blocks of the task (block con-
dition x block number interaction: χ2(1) = 39.4, p <0.001, OR = 1.08,
95% CI = [1.05, 1.10]; see Supplementary Note 1 for full details).

Finally, we conducted an additional regression analysis in which
we examined how prior within-category rewards and prior same-

exemplar rewards influenced participants’ approach decisions (see
Supplementary Note 1 for full details). In accordance with our WSLS
analysis, we found that participants began each block with a tendency
to rely onbothwithin-category rewards and same-exemplar rewards to
guide their choices. In exemplar-predictive blocks, the influence of
within-category rewards was attenuated across trials, indicating that
participants learned through experience to stop over-generalizing.

Flexibility in the specificity of learning representations
Taken together, our learning data suggest that participants across age
could use both categorical and exemplar-level information to learn to
respond optimally to each stimulus. To what extent did participants
flexibly shift the extent to which they weighted categorical versus
exemplar-level information when making decisions across block

A.

B.

C.

D.
Choice Weight

E.

Fig. 2 | Participants across age flexibly adjusted the specificity of information
used for learning. A–CDepict participant responses in the learning task, while (D),
(E) showparameter estimates derived from the best-fitting computationalmodel of
reinforcement learning. A Over the course of each block, participants learned to
make more optimal responses to stimuli in both the category-predictive and
exemplar-predictive conditions, though performance was better in category-
predictive relative to exemplar-predictive blocks. B In the category-predictive
condition, participants increasingly generalized learned category responses to
respond optimally to novel stimuli. C Category win-stay lose-shift behavior
increased across trials in category-predictive blocks and decreased across trials in
exemplar-predictive blocks, increasingly so with age. D In the category-predictive
block condition, participants with higher category-level choice weights and higher
exemplar-level choice weights earned more points. In the exemplar-predictive
block condition, participants with higher exemplar-level choice weights earned

more points. E Participants across age demonstrated higher category-level choice
weights in category-predictive blocks, indicating that they increased the weight
they placed on category-level information during decision-making when doing so
was useful. In panels (A–C), (E), horizontal lines show individual participantmeans.
The points and error bars show age group mean values ± SEM. In panel (D), points
show individual participants’ total points summed across the three blocks within
each condition; lines show the best-fitting linear regressions through the points,
with the shaded region depicting 95% confidence intervals. In panels (D), (E),
choice-weight magnitude values reflect normally distributed parameter estimates,
which were exponentiated within each model. Negative values reflect low, positive
choice weights. All panels show data from 151 participants (n = 50 children, 50
adolescents, and51 adults). Statistical analyseswere conducted usingmixed-effects
models that assessed effects within participants while accounting for variation
across them.
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conditions? To address this central question, we fit our data with
variants of a reinforcement-learningmodel that differentiallyweighted
information across levels of abstraction during choice (see Methods).
Briefly, all model variants assumed that participants tracked the value
of approaching each stimulus at both the categorical and exemplar
level, such that on every trial, they incrementally updated one of three
categorical value estimates and one of fifteen exemplar-level value
estimates based on the reward feedback they received. At choice,
these value estimates were converted to choice probabilities via a
softmax function with inverse temperature parameters (which we will
refer to as ‘choice weights’) that determined the extent to which
decisions were guided by categorical and exemplar-level value esti-
mates. We fit variants of the model with a single choice weight (in
whichequalweightwasplacedon categorical and exemplar-level value
estimates), two choice weights (in which the weights placed on cate-
gorical and exemplar-level value estimates differed) and four choice
weights (inwhich theweights placedon categorical and exemplar-level
value estimates differed and varied across block conditions). We used
a Bayesian model-fitting and selection procedure (see Methods) to
determine the best-fittingmodel at the group level. Relative tomodels
with one and two choice weights, the four choice-weightmodel had an
exceedance probability of 1, indicating that it was the most frequent,
best-fitting model across participants.

Choice weights derived from the best-fitting, four choice-weight
model related to task performance. Participants with higher category
choice weights earned significantlymore points in category-predictive
blocks, t(149) = 8.0, p <0.001, b = 38.8, 95% CI = [29.2, 48.3], but not
exemplar-predictive blocks, t(149) = −1.0, p = 0.339, b = −6.6, 95% CI =
[−20.3, 7.0] (Fig. 2D). Participantswith higher exemplar choiceweights
earned more points in both exemplar-predictive (t(149) = 8.5,
p <0.001, b = 58.9, 95% CI = [45.3, 72.6]) and category-predictive
blocks (t(149) = 2.5, p = 0.014, b = 10.8, 95% CI = [2.2, 19.5]; Fig. 2D;
see Supplementary Note 1 for additional analyses that show that par-
ticipants considered exemplar-level information in category-
predictive blocks).

Participants’ category and exemplar choice weights varied across
block conditions, indicating that they shifted the specificity of the
representations used to guide choice in accordance with the reward
structure of the learning environment (block condition x specificity
interaction effect, F(1, 447) = 76.5, p <0.001, β =0.32, 95% CI = [0.25,
0.40]; Fig. 2E). Post-hoc analyses in which we separately examined
category and exemplar choice weights indicated that participants had
higher category choice weights in category- versus exemplar-
predictive choice blocks (F(1, 150) = 125.1, p <0.001, β =0.57, 95% CI =
[0.47, 0.67]), indicating that they down-weighted categorical infor-
mation when more granular information was needed to effectively
guide choice. Exemplar choice weights, however, did not significantly
vary across block conditions (F(1, 150) = 3.6, p =0.061, β = −0.08, 95%
CI = [−0.16, 0.003]). This indicates that participants continued to use
exemplar-level information even in category-predictive blocks. This
may reflect the fact that exemplar-level information could be used to
effectively gain reward across both block conditions (Fig. 2D), butmay
also reflect participants’ initial uncertainty about whether tracking
individuating details would be useful, or the difficulty of suppressing
attention to previously relevant types of information. In additional
analyses (see Supplementary Note 3), we further demonstrated that
category and exemplar choice weights did not significantly trade off—
we did not observe evidence that increases in category choice weights
correspond to decreases in exemplar choice weights.

Though we had hypothesized that the flexible weighting of
representations at different levels of abstraction would increase
across development, we did not observe evidence for an age-varying
block condition by choice weight interaction effect (age x block
condition x specificity: F(1, 447) = 2.33, p = 0.127, β = 0.06, 95% CI =
[−0.02, 0.13]); participants across age effectively reduced the weight

they placed on more general, categorical representations in accor-
dance with the reward structure of the environment (Fig. 2E). We did
find that older participants demonstrated higher values of choice
weights overall, F(1, 447) = 13.1, p < 0.001, β = 0.18, 95% CI = [0.08,
0.28], in linewith prior findings suggesting an age-related decrease in
choice stochasticity35.

An influence of the learning context on memory
Our learning data indicate that the reward statistics of the task envir-
onment influenced the specificity of the representations used for
value-based choice. Did environmental reward statistics similarly
influencememory? To address this question, we analyzed data from a
test of incidental memory, which was administered online 1 week after
the initial reinforcement-learning task session. Overall, participants
correctly categorized old and new images on 72.8% of trials (SE = 0.6%;
Children: 71.2% (SE = 1.1%), Adolescents: 72.9% (SE = 1.0%; Adults:
74.1% (SE = 1.1%)).

Importantly, our memory test was designed to allow us to mea-
sure mnemonic specificity. The test included novel exemplar foils,
which were drawn from the categories participants saw during learn-
ing (e.g., novel cows, horses, and goats; Fig. 1A) and novel category
foils, which were drawn from categories from each stimulus set that
were not presented (e.g., sheep; Fig. 1A). From these two classes of foil
images, we constructed categorical and exemplar-level receiver
operating characteristic (ROC) curves for each participant by exam-
ining their hit rates (i.e., responses to old images) and their false alarm
rates (i.e., responses to foils) at each memory response level (1–4,
“definitely new”, “maybe new”, “maybe old”, “definitely old”; Fig. 1D).
We then computed the area under each of these curves (AUC)50, to
derive two measures of memory: category memory, which reflected
the discrimination of old images from novel category foils, and
exemplar memory, which reflected the discrimination of old images
from novel exemplars drawn from the same categories they had seen
during learning. An AUC value of 1 indicates perfect discrimination of
old images from new foils, while an AUC value of 0.5 reflects chance-
level performance. Participants’ average category and exemplar-level
AUCs were 0.83 (SE =0.006) and 0.71 (SE = 0.006), indicating above-
chancediscriminationof old andnew items at both levels of specificity.

We further analyzedmemory separately for the images (and foils)
from category-predictive and exemplar-predictive blocks of the task,
to derive measures of category and exemplar memory performance
for each participant in each block condition. We originally hypothe-
sized that the block condition in which the stimuli were encountered
would influence memory 1 week later. We expected that in exemplar-
predictive blocks, participants’ greater attention to the individuating
features of each stimulus would enhance memory for those details,
whereas in category-predictive blocks, we expected that participants’
attention to the shared features of stimuli would impede encoding of
the individual exemplars. Thus, we expected to observe both a main
effect of block condition and a block condition × specificity interaction
effect on memory, such that participants would demonstrate better
memory, particularly at the exemplar-level, for stimuli encountered in
exemplar-predictive blocks.

Across task blocks, participants demonstrated better cate-
gory versus exemplar memory, reflecting the increased difficulty
of discriminating old items from novel, within-category exem-
plars, F(1, 451.2) = 605.5, p < 0.001, β = 0.060, 95% CI = [0.055,
0.065] (Fig. 3A). In line with our hypothesis, we observed a main
effect of block condition on memory, such that participants were
better able to distinguish old and new stimuli from exemplar-
predictive versus category-predictive blocks, F(1, 451.2) = 12.0,
p < 0.001, β = −0.008, 95% CI = [−0.013, −0.004] (Fig. 3A). In
contrast to our second prediction, however, we did not observe a
significant block condition x specificity interaction effect, F(1,
451.2) = 0.3, p = 0.602, β = 0.001, 95% CI = [−0.004, 0.006].
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Participants demonstrated a similar enhancement of exemplar
and category memory for stimuli encountered in exemplar-
predictive blocks —the reward statistics of the learning environ-
ment shaped overall memory, but we did not observe evidence
that they shaped memory specificity per se (see Supplementary
Note 2 for additional analyses demonstrating that the effect of
reward experienced during learning also differentially shaped
memory across block conditions.) Finally, we additionally
observed that overall memory performance improved with age,
F(1, 149.3) = 5.3, p = 0.023, β = 0.016, 95% CI = [0.002, 0.029],
though the influence of block condition on memory did not sig-
nificantly vary across development (F(1, 451.2) = 3.0, p = 0.085,
β = −0.004, 95% CI = [−0.009, 0.001]).

Individual differences in learning influence how reward shapes
mnemonic specificity
While our precedingmemory analyses take into account the specificity
of the representations that were useful for learning, they do not take
into account the extent to which representations were actually used to
guide choice. We expected the environment to influence memory via
its effects on value-guided learning, meaning that we expected to see
the largest influence of block condition on mnemonic specificity for
participants who effectively learned the task’s reward statistics, as
evidenced by their performance on the learning task. To test this
prediction, we re-ran our memory accuracy model, but included par-
ticipants’ total number of points earnedwithin each block condition as
an interacting fixed effect. Here, we found that participants who
earned the most points during learning demonstrated better memory
across levels of specificity, F(1, 579.2) = 4.2, p = 0.040, β =0.009, 95%

CI = [0.000, 0.018]. Critically, however, this benefit was particularly
pronounced for exemplar-level information encountered in exemplar-
predictive blocks, as evidenced by a points × block condition ×
specificity interaction, F(1, 437.9) = 5.6, p = 0.018, β = 0.007, 95% CI =
[0.001, 0.013] (Fig. 3B). In line with our hypothesis, these results
suggest that the participants who most effectively upregulated their
attention to and learning from the individuating features of the stimuli
in exemplar-predictive blocks showed the greatest specificity in their
memory for these stimuli. In other words, participants who were most
sensitive to the reward statistics of the learning context also demon-
strated the greatest influence of the learning context on subsequent
memory specificity. The relation between learning performance and
memory did not significantly vary with age (ps > 0.080).

The relation between reinforcement-learning computations and
memory increased with age
Next, we asked how individual differences in the representations used
for choice related to the effects of the learning environment on mne-
monic specificity. Our analysis of model-derived choice weights
revealed heterogeneity in the extent to which participants weighted
exemplar-level information. This heterogeneity may be reflected in
subsequent memory specificity, with participants who relied on more
specific representations during learning showing enhanced exemplar
memory and participants who relied on more general representations
during learning showing enhanced category memory.

We first examined how exemplar-level choice weights in each
block condition related to memory by adding them as an interacting
fixed effect in our memory model (Supplementary Table 1). We
observed a strong effect of choice weight magnitude onmemory, with

Fig. 3 | The learning context influenced memory across age. A Participants
demonstrated better memory for category-level versus exemplar-level informa-
tion, as well as for stimuli from the exemplar-predictive versus category-predictive
blocks of the task. Memory at both levels of specificity also improved with
increasing age. B Participants who earned the most points in the exemplar-
predictive blocks also demonstrated better memory for exemplar-level informa-
tion encountered in those blocks. Participants are binned into equal-sized perfor-
mance groups based on the number of points earned in each block condition for
visualization purposes only. In panels (A), (B), thin colored lines show individual
participants’ category (top row) and exemplar (bottom row)memoryperformance,
as indexed by AUC, within each block condition. The black points and error bars
indicate age group mean values ± 1 SEM. C Participants who weighted exemplar-
level information most strongly demonstrated the best exemplar memory. This

effect was stronger in the exemplar-predictive relative to the category-predictive
condition, and increased with age. Participants who weighted category-level
information most strongly demonstrated better category memory but worse
exemplar memory. The plots depict marginal effects from linear-mixed-effects
models examining the effects of age, block condition, specificity (exemplar and
category), choice weight magnitude (exemplar or category), and their interactions
on memory performance, as indexed by AUC. Age was analyzed continuously; the
lines show the predicted performance of participants at three different ages (the
mean age of the sample, ±1 SD), with the shaded regions depicting 95% confidence
intervals. All panels show data from 151 participants (n = 50 children, 50 adoles-
cents, and 51 adults). Statistical analyses were conducted using mixed-effects
models that assessed effects within participants while accounting for variation
across them.
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participants with higher exemplar choice weights exhibiting better
memory performance at both levels of specificity, F(1, 577.2) = 14.6,
p <0.001, β = 0.018, 95% CI = [0.009, 0.027] (Fig. 3C). This indicates
that participants’ whose choices were more driven by learning from
individual exemplars also demonstrated a stronger ability to dis-
criminate those learned exemplars from both novel category and
novel exemplar foils. We also observed a choice weight magnitude x
block condition interaction effect, F(1, 497.1) = 9.6, p =0.002,
β = −0.010, 95% CI = [−0.016, −0.004], such that the relation between
exemplar-level choice weights on memory was greater in exemplar-
predictive blocks. In other words, participants who placed more
weight on exemplar-level information during learning showed parti-
cularly enhanced exemplar-level memory when using that granular
information was necessary for effective learning.

Moreover, the relation between learning andmemory varied with
age, as evidenced by a choice weight magnitude x age interaction
effect, F(1, 534.7) = 8.3, p =0.004, β =0.016, 95% CI = [0.005, 0.027],
and a choice weight magnitude × age × block condition interaction,
F(1, 500.2) = 5.1, p = 0.025, β = −0.008, 95%CI = [−0.014, −0.001]. Older
participants demonstrated a stronger effect of exemplar choiceweight
magnitude on memory, particularly in the exemplar-predictive blocks
(Fig. 3C). Interestingly, though children, adolescents, and adults simi-
larly relied on exemplar-level information during learning, older par-
ticipants’ weighting of the exemplars more strongly related to how
well they remembered them 1 week later.

Weobserved a different pattern of results whenwe examinedhow
category choice weights related to memory (Supplementary Table 2
and Fig. 3C). Here, we found that participants who weighted category-
level information most strongly demonstrated better category mem-
ory but worse exemplar memory (choice weight magnitude ×
specificity interaction effect: F(1, 443.1) = 5.9, p =0.015, β =0.007, 95%
CI = [0.001, 0.013]; Fig. 3C). No other choice weight effects or inter-
actions reached significance (ps > 0.053).

Together, these results support our hypothesis that the statistics
of the learning environment influenced memory through their effects
on the representations that were used to guide value-based choice.
Participants who used exemplar-level representations to the greatest
extent during learning also demonstrated the best memory for the
exemplars they encountered, particularly in the environment in which
specific representationsweremost useful. Critically, it wasnot the case
that participants who were ‘better’ at learning were also better at
memory across the board—in category-predictive blocks, higher
category choice weights led to better learning performance but worse
memory for exemplars. The strength of the relation between learning
and memory varied across development; the extent to which older

participants weighted exemplar-level information during choice more
strongly related to their subsequent category and exemplar memory
1 week later.

Experiment 2 design
In Experiment 1, we found thatpeople across age adapted the extent to
which they weighted exemplar-level versus categorical representa-
tions when learning to make good choices, and that individual differ-
ences in the specificity of the representations used to guide choice
were reflected in subsequent memory. Somewhat unexpectedly, we
also found that the strength of the relation between the specificity of
the representations used for value-based choice and memory
increased with age. In Experiment 2, we aimed to replicate and extend
these findings.

Experiment 2 followed the same general structure as Experiment
1, but the reinforcement-learning task differed in several ways (Fig. 4).
Our Experiment 1 design did not penalize the use of exemplar-level
information in category-predictive blocks—the reward statistics of the
task meant that in category-predictive blocks, exemplar-level infor-
mation could still be used to guide optimal decision-making. This may
explain why we did not observe shifts in exemplar-level choices
weights across conditions, and why we observed global memory
enhancements, rather than specificity enhancements, for stimuli
encountered in exemplar-predictive blocks. Unlike in Experiment 1, in
real-world environments, one advantage to using more abstract
representations to guide choice is that they are more robust to sto-
chasticity or noise—a single aberrant experience will shift value
representations of broader categories to a lesser degree, and for a
shorter periodof time, because onewillmore rapidly accrue additional
experiences with other category members. Further, using more
abstract representations is less computationally demanding and
requires learning a much smaller set of stimulus-action values. In our
Experiment 1 task, exemplar-level reward distributions were not
very noisy, and the computational demands of tracking individual
exemplars may not have been sufficiently costly for participants to
ignore or downweight exemplar-level representations during decision
making. Thus, inExperiment 2,we changed the reinforcement-learning
task to (a) induce more noise in reward distributions by making out-
comes binary and (b) make tracking exemplar-level information more
computationally demanding by having participants select between
three actions on every trial (Fig. 5C). In addition, because the age
effectsweobserved in Experiment 1weremonotonic,we includedonly
children (n = 34; ages 8–12 years) and adults (n = 39; ages 18–25 years),
between whom we expected to see the largest performance
differences.

Fig. 4 | Experiment 2 task design. A Each block of the reinforcement-learning task
included nine unique stimuli, which comprised three exemplars each drawn from
three broader categories. Each stimulus set also included an additional stimulus
category with five novel stimuli, as well as two additional novel exemplars per
sampled category. B In the category-predictive condition, rewards on every trial
were sampled fromBernoulli distributionswithwin probabilities determinedby the
stimulus categories. In the exemplar-predictive condition, rewards on every trial
were sampled fromBernoulli distributionswithwin probabilities determinedby the

individual exemplars. The optimal action (depictedby the shaded color) resulted in
wins on 90% of trials and losses on 10% of trials. The two other actions resulted in
wins on 10% of trials and losses on 90% of trials. C On every trial of the
reinforcement-learning task, participants saw a stimulus and three choice options.
After selecting an option, they viewed the outcome of their choice: either a win (+1
point) or a loss (−1 point). The images in thefigureare illustrative; actual task stimuli
differed slightly. Image credit: iStock/GlobalP (https://www.istockphoto.com/
portfolio/GlobalP), Life on White (https://www.lifeonwhite.com/).
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Replication of Experiment 1 learning results
As in Experiment 1, participants made increasingly correct responses
across trials (ps < 0.001; Fig. 5A),with increasing age (p =0.001), and in
the category-predictive relative to the exemplar-predictive condition
(p < 0.001). Older participants continued to demonstrate larger ben-
efits from being able to use categorical information to guide choice,
χ2(1) = 4.0, p =0.045, OR=0.89, 95% CI = [0.79, 1.0].

Increasingly with age, participants used category values to guide
their responses to novel stimuli, demonstrating generalization of
correct responses to novel stimuli from previously encountered
categories in the category-predictive block (Main effect of category
repetition: χ2(1) = 10.0, p = 0.002, OR = 1.12, 95% CI = [1.04, 1.20]; cate-
gory repetition x block condition interaction: χ2(1) = 43.0, p <0.001,
OR = 1.26, 95%CI = [1.17, 1.35]; age group x block condition interaction:
χ2(1) = 6.8, p =0.009, OR =0.89, 95% CI = [0.81, 0.97]; Fig. 5B). As in
Experiment 1, participants also demonstrated increasing category win-
stay lose-shift (WSLS) behavior in the category-predictive blocks and

decreasing category WSLS behavior in the exemplar-predictive blocks
(trial × block condition interaction effect: χ2(1) = 49.0, p <0.001, OR =
1.14, 95% CI = [1.11, 1.18]), an effect that was stronger in adults than
children (block condition × age group interaction: χ2(1) = 10.0,
p =0.002, OR =0.9, 95% CI = [0.84, 0.96]).

When we fit reinforcement-learning models to the Experiment 2
choice data, the best-fitting model again included four choice weights,
reflecting differences in the weighting of categorical and exemplar-level
representations across block conditions. As in Experiment 1, choice
weights related to task performance: Category choice weights positively
related to the number of points participants earned in category-
predictive blocks (t(71) = 8.5, p<0.001, b= 39.8, 95% CI = [30.5, 49.2])
but not exemplar-predictive blocks (t(71) =−1.8, p=0.069, b= −6.8., 95%
CI = [−14.1, 0.54]). Exemplar choice weights positively related to the
number of points participants earned in both exemplar-predictive
(t(71) = 7.5, p<0.001, b= 19.2, 95%= [14.1, 24.4]) and category-predictive
blocks (t(71) = 2.6, p=0.012, b= 16.5, 95% CI = [3.8, 29.2]).

Fig. 5 | Results from Experiment 2 replicated key findings from Experiment 1.
AOver the course of eachblock, participants (n = 34children;n = 39adults) learned
to make more optimal responses to stimuli in both the category-predictive and
exemplar-predictive conditions, though performance was better in category-
predictive relative to exemplar-predictive blocks. B In the category-predictive
condition, participants increasingly generalized learned category responses to
respond optimally to novel stimuli.C Participants across age groups demonstrated
higher category-level choice weights in category-predictive blocks. Choice-weight
magnitudes reflect normally distributed parameter estimates, which were expo-
nentiated within each model. Thus, negative values reflect low, positive choice
weights. D Participants demonstrated better memory for stimuli from the
exemplar-predictive versus category-predictive blocks of the task. E Participants
who earned the most points in the exemplar-predictive blocks also demonstrated
better memory for exemplar-level information encountered in those blocks. Par-
ticipants are binned into equal-sized performance groups based on the number of

points earned in each block condition for visualization purposes only. In panels
(A–E), horizontal lines reflect individual participant means. The points and error
bars indicate group means ± 1 SEM. Statistical analyses were conducted using
mixed-effectsmodels that assessed effectswithin participantswhile accounting for
variation across them. F Participants who weighted exemplar-level information
most strongly during learning also demonstrated better category and better
exemplar memory. The strength of this relation between learning and memory
increased with increasing age. Participants who weighted category-level informa-
tionmost strongly demonstrated better categorymemory but not better exemplar
memory. The plots depict marginal effects from linear-mixed-effects models
examining the effects of age group, block condition, specificity (exemplar and
category), choice weight magnitude (exemplar or category), and their interactions
on memory performance, as indexed by AUC. The shaded regions depict 95%
confidence intervals.
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Participants flexibly adapted the extent to which they weighted
categorical versus exemplar-level representations across conditions
(block condition × abstraction interaction effect: F(1, 213) = 6.14,
p =0.014, β = 0.14, 95% CI = [0.03, 0.24]; Fig. 5C). Here, we expected
that by making exemplar-level information less useful in category-
predictive blocks, we might observe changes in both category and
exemplar choice weights across block conditions. We found, however,
that as in Experiment 1, changes in the weighting of representations
across blockswere still largelydriven by changes in the extent towhich
participants weighted categorical representations (F(1, 72) = 7.8,
p =0.007, β = 0.18, 95% CI = [0.05, 0.31]) rather than the extent to
which they weighted exemplar-level representations (F(1, 72) = 2.6,
p =0.112, β = −0.09, 95% CI = −0.22, 0.02]). Participants continued to
use exemplar-level information to guide choices, even in category-
predictive blocks, where they could have fully relied on broader sti-
mulus categories.

Replication of Experiment 1 memory results
One week after learning, participants correctly categorized 75.8%
(SE = 1.3%) of images presented during the memory test as old or
new. Replicating the results of Experiment 1, participants demon-
strated better memory for stimuli encountered in exemplar-
predictive relative to category-predictive learning blocks, F(1,
213) = 20.0, p < 0.001, β = −0.018, 95% CI = [−0.026, −0.010], (Fig. 5D).
While we initially hypothesized that exemplar memory would be
specifically enhanced in exemplar-predictive blocks, we did not
observe a significant block condition x abstraction level interaction
effect: F(1, 213) = 3.74, p = 0.054, β = 0.008, 95% CI = [−0.000, 0.016].
(Fig. 6B). When we added participants’ total number of points earned
within each block condition as an interacting fixed effect, we found
that participants who earned the most points demonstrated the best
memory, F(1, 254.5) = 14.9, p < 0.001, β = 0.040, 95% CI = [0.020,
0.061], and that as in Experiment 1, this effect was strongest for
exemplar-level memory for stimuli encountered in exemplar-
predictive blocks, F(1, 192.4) = 4.1, p = 0.043, β = 0.014, 95% CI =
[0.000, 0.027] (Fig. 5E).

Individual differences in the extent to which participants weigh-
ted exemplar-level representations during learning, as indexed by
exemplar choice weights, also robustly related to memory, F(1,
265.4) = 19.1, p <0.001, β =0.035, 95% CI = [0.019, 0.050] (Fig. 5F and
Supplementary Table 3). As in Experiment 1, the relation between
learning and memory strengthened with age (choice weight magni-
tude x age group interaction effect: F(1, 265.4) = 4.1, p =0.045,
β = −0.016, 95% CI = [−0.032, −0.000]; see Supplementary Note 2 for
analyses with continuous age). In other words, adults who weighted
exemplar-level information to the greatest degree during learning also
demonstrated the best memory for those exemplars, but children did
not show this effect. While this effect was strongest in exemplar-
predictive blocks in Experiment 1, here, we did not observe a sig-
nificant choice weight magnitude × age group × block condition
interaction (p = 0.181); older participants demonstrated a stronger
effect of exemplar choice weight magnitude on memory across
conditions.

Replicating our Experiment 1 findings, we did not observe a main
effect of category choice weight on memory (p =0.264; Supplemen-
tary Table 4), but rather a choice weight magnitude × specificity
interaction (F(1, 202.7) = 7.8, p = 0.006, β =0.011, 95% CI = [0.003,
0.019]; Fig. 5F), indicating that participants who weighted category-
level representations most strongly demonstrated better category
memory, but not better exemplar memory. Here, we additionally
observed an age group × choice weight magnitude × block condition
interaction effect, F(1, 212.9) = 6.5, p =0.012, β = .012, 95% CI = [0.003,
0.020] (Fig. 5F), such that children demonstrated a more positive
influence of category choice weight magnitude on memory in the
category-predictive blocks. As inExperiment 1, while higherweights on

exemplar-level representations during learning related to enhanced
memory across levels of specificity, higher weights on categorical
representations during learning only related to better category
memory.

In Experiment 2, we made learning the optimal responses to
individual exemplars in the reinforcement-learning taskmore costly by
making reward values binary and presenting three choice options on
every trial. Despite these differences from the task used in Experiment
1, we continued to observe adaptive flexibility in participants’
weighting of representations at different levels of abstraction, as well
as reflections of learning weights in subsequent memory specificity.
Critically, we also replicated our finding that the coupling between
reinforcement learning and mnemonic specificity increased with age:
Individual differences in the extent to which people weighted
exemplar-level representations during learning were more tightly
linked to individual differences in memory in adults versus children.

Discussion
Across two developmental studies, we examined how the specificity of
the representations used for value-guided learning and memory are
shaped by the statistics of the environment. We found that from
childhood to early adulthood, participants adapted their learning
representations to match the level of abstraction most useful for
guiding behavior across environments. Originally, we hypothesized
that more specific information would be preserved in memory only
when it was useful for adaptive choice. We found, however, that spe-
cific information was remembered not when it was useful, but rather
when it was used: The use of specific representations to guide reward
learning related to better memory for both category and exemplar-
level information. The use of broader, categorical representations for
learning related to better category memory only, and in some cases,
related to impaired exemplar memory. Moreover, the strength of the
relation between learning and memory increased with age, such that
relative to children, adults demonstrated a stronger relation between
the specificity of their reinforcement-learning representations on
subsequent memory. These findings suggest that the environment
shapes memory specificity through its influence on reward learning,
with the strength of the coupling between learning and memory
increasing across development.

Our experiments revealed early-emerging flexibility in the speci-
ficity of value-guided learning. One challenge for learning within
complex environments is determining which stimulus dimensions are
relevant for choice51. In our learning task, there were no explicit cues
that signaled whether idiosyncratic exemplar features ormore general
stimulus categories determined reward contingencies; instead, parti-
cipants had to learn through experience the specificity of the repre-
sentations that could most effectively guide choice. We expected that
over the course of each block, reciprocal interactions between atten-
tion and reinforcement learning would increasingly cause participants
to attend to either the shared or individuating features of stimuli
within a category52–54. We found that participants across age demon-
strated adaptive up- and down-weighting of categorical information
basedon the environment’s reward structure. Ourworkbuilds onprior
research demonstrating that adults can learn reward contingencies
acrossmultiple levels of abstraction55,56; here, we extend these findings
and show that across development, in accordancewith the predictions
of theoreticalmodels31, individuals can flexibly arbitrate betweenmore
specific and more general representations to guide behavior.

In our learning task, participants began each block with a ten-
dency to use categorical representations; as they accumulated more
experiencewithin each environment, they up- or down-weighted these
categorical representations based on whether they were useful in
obtaining the reward. This bias toward more abstract representations
likely emerged due to the nature of our task stimuli; in our experi-
ments, stimulus categories were at the ‘basic-level’57, meaning they
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reflected a middle level of abstraction and grouped items with a high
degree of similarity. In our task, stimuli within each task category
shared greater perceptual similarity with one another thanwith stimuli
in other categories. However, participants’ baseline bias toward cate-
gorical representations and their better performance in category-
predictive blocks was likely facilitated not just by increased perceptual
similarity, but also by the natural category groupings that they had
learned through extensive experience with them prior to the task.
While we specifically chose stimuli from categories that would be
highly familiar to participants across our age range (e.g., chairs, apples,
dogs), future work could use more abstract stimuli to separate the
influence of perceptual similarity from prior experience. Future work
could also manipulate different features of the task stimuli to better
elucidate how learning from reward statistics in real-world environ-
ments across development constrains or facilitates the flexibility of
value-learning representations in new contexts. For example, the
granular features of different stimuli may become particularly salient
or ecologically relevant at different developmental timepoints—ado-
lescents may be particularly attuned to socially relevant stimuli like
clothing brands or iPhone variants. Importantly, our findings suggest
that while people may initially be guided by prior experience and
knowledge of useful ways of carving up the world, their learning is
remarkably flexible. Children as young as 8 years old could learn to
overcome the tendency to generalize across category members.

Though participants across age flexibly modulated their use of
categorical information toguide choice, inboth experiments, they also
relied on exemplar-level information even in category-predictive
blocks. Participants continued to attend to, consider, and encode
details of individual exemplars, in environments with reward statistics
determined solely by theirmore abstract categorymembership. There
aremultiple reasonswhy thismay be the case. First, as with categorical
information, participants may have learned through real-world
experience that drawing on specific past experiences is useful for
reward-guided choice, such that they began each task with a strong
prior to attend to the individual exemplars. Though general repre-
sentations are useful for guiding behavior in novel situations, in
familiar situations, the most similar, past experiences are often the
best guide for how to behave38. In addition, it may be the case that
general representations depend on specific, exemplar-level
representations30,58–61, though we did not observe significant rela-
tions between exemplar and category choice weights in category-
predictive blocks. Still, while our model posited separate, non-
interacting representations for category and exemplar value esti-
mates, in reality, participants may derive category-level value esti-
mates from their representations of individual exemplars. Specific
features of our task design may have also promoted the continued
reliance on exemplar-level information. The costs of individuation
were low— perceptual discrimination of the individual exemplars was
relatively easy, and, even in category-predictive blocks, using
exemplar-level information to guide choice did not impede reward
gain. Further, when we increased the difficulty of tracking individual
exemplar values by increasing the number of choices in Experiment 2,
we also increased the difficulty of tracking category values, perhaps
attenuating the difference in cognitive costs each strategy imposed. In
addition, at the beginning of each block participants were not aware of
whether categories or exemplars determined optimal actions, requir-
ing some initial tracking of exemplar-level information to discern the
environment’s structure. By further manipulating the cognitive diffi-
culty and explicit reward costs of individuation, future studies can test
age-related change in both the extent to which general value repre-
sentations depend on exemplar-level representations, as well as the
conditions under which the use of exemplar-level information can be
flexibly modulated.

Though younger participants made fewer optimal responses in
the learning task, our modeling results revealed that age-related

improvements in learning were not driven by changes in a bias toward
generality or specificity, or by reduced flexibility in learning across
levels of abstraction. Instead, we found that younger participants had
overall lower choice weight magnitudes, indicating that their poorer
learning performance was driven by greater choice stochasticity35,62,63.
The potential sources and adaptive benefits of stochasticity or noise
has been a longstanding puzzle in cognitive science64, and our obser-
vation of greater noise at younger ages aligns with many develop-
mental reinforcement-learning studies35. Though greater choice
stochasticity is often interpreted as heightened exploration35,65, we
likely attenuated exploratorymotivations in Experiment 1 byproviding
full information about reward outcomes on every trial. Choice sto-
chasticity may also reflect a mismatch between the model’s proposed
value-learning algorithm and participants’ true value-learning algo-
rithm—whichhere,may have been greatest at younger ages. Additional
cognitive processes, like working memory or sustained attention,
which our learning algorithm does not account for, could, in theory,
differentially influence reinforcement learning across age. How-
ever prior work66, suggests that developmental changes in working
memory likely do not account for age-related changes in reinforce-
ment learning67 and further, given the limited capacity of working
memory, we would expect its contribution to modulate the use of the
small number of category-level value estimates but not the large
number of exemplar-level value estimates66, leading to greater age-
related differences in category relative to exemplar choice weights. In
addition, while it is possible that children had a harder time remaining
engaged in the task, we found that across our age range, performance
improved across blocks in the experiment. Thus, while developmental
improvements in sustained attention may have contributed to better
task performance at older ages68, we did not observe evidence that
attention over the course of the study differentially waned across age.

Here we also extended past work showing that reward learning
relates to memory41,42,45,49,69, demonstrating that memory reflects the
level of abstraction of reward-learning computations. When partici-
pants used specific representations for choice, they preserved more
detailed information in memory, whereas when they used more
abstract representations, they demonstrated better generalization but
poorer memory for individual exemplars. This tight link between
between learning andmnemonic specificity aligns with the predictions
of models of categorization; exemplar-based models70–72 posit that
memories for individual exemplars facilitate inferences about novel
instances, whereas prototypemodels57,73 suggest that individuals store
and use more abstracted features to represent meaningful groupings
of the world. More recent category-learning models posit adaptive
flexibility in representations, such that individuating features are
represented only when needed for successful classification and
inference2. A key property of all these models is that the way in which
the world is parsed directly influences the specificity of the repre-
sentations that are stored in memory over time. Merging multiple
conceptual frameworks that propose mechanistic links between
learning computations and memory39,74, our work demonstrates that
across development, reward shapes the granularity with which the
world is partitioned, and in turn, the specificity of the information
preserved in memory.

Moreover, we found that the strength of the relation between
learning andmemory specificity increased across development, which
may be due to age-related increases in the influence of goals on
feature-based selective attention at older ages75,76. Adults may have
learned through experience to attend to the information most useful
for guiding choice, such that their exemplar choiceweightmagnitudes
reflected the extent to which they both used and attended to
exemplar-level information. Children, however, may have still atten-
ded to individuating features of stimuli even after learning that such
features were irrelevant for decision-making. Indeed, prior research
has suggested that category learning recruits different attentional
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mechanisms at different developmental timepoints: The ability to
focus on relevant featuresmay emerge earlier than the “filtering” of, or
suppression of attention to, irrelevant information77,78. Acrossmultiple
domains of learning, children demonstrate broader patterns of
attention relative to adults, such that they attend to and learn about
information that is irrelevant for the task at hand79–84. This greater
breadth of attention also influences memory, with children demon-
strating better subsequentmemory for information that they were not
cued to attend to during learning79,83,84. While much of this prior work
has focused on younger, preschool-aged children, the executive con-
trol systems thought to underlie selection-based category-learning
systems continue to change across adolescence78,85. Thus, in our task,
children may have shown a greater dissociation between the repre-
sentations used for choice and their allocation of selective attention
during learning. Their learning representations may therefore relate
less strongly to the specificity of their subsequent memory. Future
work can more directly test hypotheses about age-related change in
attention during learning by using stimuli with spatially segregated
features (e.g., ref. 52) and measuring how differences in patterns of
visual gaze during learning relate to subsequent memory specificity.

In our task, participants completed the memory test after a
1-week delay. Prior research has suggested that both the influence of
reward statistics on memory86–88 and individual differences in
memory specificity26, may strengthen as the delay between encod-
ing and retrieval increases. The strengthening of these effects over
time suggests that post-encoding consolidation processes play an
important role in mnemonic specificity. Models of systems con-
solidation suggest that over time, memoriesmay increasingly reflect
generalized knowledge extracted from commonalities across mul-
tiple reactivated episodes89,90. In our experiments, it may be the case
that age differences in the influence of reinforcement learning on
memory were partially driven by age-related changes in consolida-
tion in the week between the learning and memory tasks26,91. It may
be the case that in adults, useful information is more strongly
prioritized during consolidation, such that representations used to
guide decision making are “replayed” or reactivated88,92–94 to a
greater extent than in children. Because all participants in our
experiments completed thememory task after a week-long delay, we
cannot determine how encoding versus consolidation mechanisms
may have differentially contributed to memory for specific versus
more general information across age. Future studies can test
memory at different delay periods to examine the influence of
consolidation time on the development of adaptive mnemonic
specificity.

The ability to flexibly adjust the specificity of value learning and
episodic memory is critical for building adaptive mental models of
the environment across the lifespan. Here, we demonstrate that
children, adolescents, and adults can dynamically adapt the relative
weight they place on more specific versus more general information
during reward learning. Further, we show that across development,
the specificity of memory increasingly reflects the specificity of
learning computations. The coupling of early-emerging flexibility in
learning and a more protracted developmental timecourse of the
influence of learning on memory may be adaptive95,96. Memory that
is less constrained by beliefs about the usefulness of information
may promote the acquisition of broad knowledge of the world, while
protecting against adverse consequences of learning representa-
tions at ineffective levels of abstraction. Across development, indi-
viduals’ adaptive parsing of the world’s structure may increasingly
shape memory, and these lasting traces may guide adaptive beha-
vior over increasingly long timescales.

Methods
All study procedures were approved by New York University’s Insti-
tutional Review Board (IRB-FY2021-5654).

Experiment 1
Participants. A priori, we determined a target sample size of 150 par-
ticipants based on our prior studies of learning across age-continuous
samples of children, adolescents, and adults97,98. One hundred and
fifty-one participants aged 8–25 years completed the two-part online
study and were included in all analyses. An additional 24 participants
(n = 5 children, n = 9 adolescents, n = 10 adults) completed both parts
of the study but were excluded from all analyses for: (a) interacting
with their browser window (minimized, maximized, or clicked outside
the window) more than 20 times throughout either the learning or
memory task (n = 15), (b) failing to respond on more than 10% of the
306 learning trials (>30 trials) or 10% of the 192 memory trials (>20
trials) (n = 7), or (c) responding in less than 100msonmore than 10%of
learning or memory trials (n = 2). In addition, one additional partici-
pant was excluded due to a glitch that prevented data from being
saved. Participants were compensated with a $20 Amazon gift card for
completing both parts of the study. They also received a bonus that
ranged from $0 to $5 depending on their performance in the learning
task. Adult participants and parents of minors provided informed
consent; participants under 18 years assented to participate.

The 151 participants included in the final sample comprised n = 50
children (8.0–13.0 years; Mean age = 10.4 years, n = 24 females), n = 50
adolescents (13.1–17.8 years; Mean age = 15.4 years, n = 28 females),
and n = 51 adults (18.2–25.9 years, Mean age = 21.8 years, n = 31
females). Gender was determined by self-report; we aimed to recruit a
roughly equal distribution ofmale and female participants, but did not
include gender as a covariate in our analyses due to no a priori
hypotheses about effects of gender on our constructs of interest. All
participants reported normal or corrected-to-normal vision and no
diagnosed psychiatric or learning disorders. 57.6% of participants were
White, 22.5% were Asian, 10.6% were Black, and 9.3% were of two or
more races. In addition, 10.6% of participants were Hispanic. We
include a more detailed description of participant demographics in
the Supplementary Methods.

As with our previous online studies34,99, participants were pri-
marily recruited from ads on Facebook and Instagram, as well as via
word-of-mouth, science fairs, events, and fliers distributed around
New York University. Prior to entering our participant database and
being eligible to complete the online study, all potential participants
completed a 5-min zoom call with a researcher. During this zoom call,
all participants (and a parent or guardian, if the participant was under
18 years of age) were required to be on camera and confirm the full
name and date of birth they provided when they signed up for our
database. Adult participants and parents of child and adolescent par-
ticipants were further required to show photo identification.

Experimental procedure. Participants completed three experimental
tasks across two sessions. All tasks were coded in jsPsych version
6.3.1100 and hosted on Pavlovia. In the first session, participants com-
pleted a reinforcement-learning task, which took ~40min. In the sec-
ond session, participants completed a test of recognition memory,
which took ~15min. Participants who completed the learning task
during the first sessionwere invited to complete the second session six
days later and had five days to complete it (e.g., if a participant com-
pleted the first session on a Wednesday, they would be invited to
participate in the second session on Tuesday, andwould have until the
following Saturday to complete it). On average, participants com-
pleted the second session 7.1 days after completing the second
session.

To examine howparticipants used categorical and exemplar-level
representations to guide learning, we developed a value-based learn-
ing task in which participants had to choose whether to approach or
avoid a stimulus on every trial. If participants chose to “approach” the
stimulus, they would win or lose points depending on its value. If they
chose to “avoid” the stimulus, they would not win or lose any points,

Article https://doi.org/10.1038/s41467-025-59379-w

Nature Communications |         (2025) 16:4074 11

www.nature.com/naturecommunications


but they were provided with full counterfactual information, meaning
they would see howmany points they would have won or lost had they
chosen to approach the stimulus.

The task comprised six blocks, each with its own stimulus set
(Table 1). The stimulus set assigned to each of the six blocks was ran-
domized for each participant. The six stimulus sets included 32 unique
images, divided into four broader categories (Fig. 1A). The broader
categories were selected to be familiar to children as young as 8 years
old (Fig. 1E). All stimulus images were taken from Google images and
edited such that they showed a single item on a white, square, uni-
formly sized background. The instructions for each task block fol-
lowed the same format but varied depending on the stimulus set. For
example, in the “Pets” block, participants were instructed that petting
animals would sometimes make them happy, causing them to win
points, and sometimes make them angry, causing them to lose points,
whereas in the ‘Vehicles’block, participantswere instructed that taking
their friend for a ride in some vehicles would make them thrilled and
other vehicles would make them upset.

In each block of the reinforcement-learning task, participants saw
15 unique images. For each participant, five images were randomly
selected from three of the four categories in each block to serve as
learning stimuli. Within each category, two images repeated six times,
one image repeated three times, and two images were only shown
once during learning. The order of image presentation was rando-
mized within each block for each participant.

Critically, participants completed three blocks in the category-
predictive condition and three blocks in the exemplar-predictive
condition. In the category-predictive condition, stimulus values were
sampled from Gaussian distributions (SD = 1.5) on every trial, where
the mean of the distribution was determined by stimulus category.
One category was randomly determined to be good such that the
meanof its reward distributionwas between 3 and 6; one category was
randomly determined to be neutral such that the mean of its reward
distribution was zero (though zero was never actually presented as an
outcome); and one category was randomly determined to be bad such
that themean of its reward distributionwas between −6 and −3. Values
were rounded to the nearest non-zero integer. Values were sampled
from these distributions anew on every trial, meaning the reward
associated with approaching the same stimulus might differ across
repetitions.

In the exemplar-predictive condition, each stimulus was pseudo-
randomly assigned a deterministic reward value between −9 and 9. To
ensure that categorical information could not be used to effectively
guide choice, one stimulus within each category was assigned a value
between −9 and −6, one was assigned a value between −5 and −3, one
was assigned a value between −2 and 2, one was assigned a value
between 3 and 5, and one was assigned a value between 6 and 9. In
addition, within each block, no two stimuli were assigned the same
value, and no stimulus was assigned a value of zero. Thismeant that all
broader categories included two or three stimuli that should be avoi-
ded, and two or three stimuli that should be approached.

The condition of the first block was counterbalanced across par-
ticipants within each age group, such that roughly half of the children,
adolescents, and adults experienced a category-predictive block first,
and the other half experienced an exemplar-predictive block first. For
each participant, the first two blocks of the task were always different
conditions. The latter four blocks included two additional exemplar-
predictive blocks and two additional category-predictive blocks, in a
random order.

To ensure participants had equal exposure to all stimuli, all trials
lasted 3 seconds, regardless of how quickly participants made their
response. Within the 3-s time limit, participants made their approach
or avoid selection by pressing 1 or 0 on a standard keyboard, respec-
tively. After making their selection, participants saw their choice
highlighted for 500ms, and then the outcome of their choice for the

remainder of the trial (Fig. 1B). For “approach” decisions, winning
outcomes were displayed in green text and losses were displayed in
red text. For “avoid” decisions, the points that the participant would
have won or lost were always displayed in gray text, inside a red or
green box. The colors of the boxes corresponded to whether they
made an optimal or suboptimal choice on that trial. Missed wins were
displayed in red boxes and avoided losses were displayed in green
boxes—this color cuewas intended to help participants across agewith
counterfactual learning. In addition, the choice screen displayed coins
in each of its corners, which were animated depending on the choice
outcome: The coins would bounce for wins, fall off the screen for
losses, and become grayed out for avoid decisions. Trials were sepa-
rated by a 500ms inter-trial interval in which no stimuli appeared on
the screen. Participants lost five points each time they failed to
respond within the 3-s time limit.

Prior to completing the real trials of the learning task, participants
completed an extensive tutorial, which included child-friendly
instructions that were both written on the screen and read aloud via
audio recordings. Participants were unable to advance past each
instruction page until the audio recording finished playing. The
tutorial also included a short practice block in which participants had
to approach or avoid different pieces of sports equipment. Partici-
pants completed twelve practice trials. Stimuli on each trial were
sampled (with replacement) from eight images across two categories
(balls and rackets), and their values were randomly sampled on each
trial from −9 to 9, with replacement. In this way, the reward structure
of the practice block did not align with either the category-predictive
or exemplar-predictive condition, but still allowedparticipants to learn
the mechanics of the learning task. After the tutorial, participants
answered three True/False comprehension questions about the task. If
they answered a question incorrectly, they would see (and hear) the
correct answerwith an explanation, and have to try to answer the same
question again. On average, participants answered all three compre-
hension questions correctly in 3.05 attempts (Mean number of
attempts: Children: 3.06; Adolescents: 3.08; Adults: 3.00). There was
not a significant effect of age on the number of question attempts
required (b = −0.005, SE = 0.003, p =0.15).

In the second experimental session, which took place between 6
and 10 days after the first (Mean delay = 7.1 days, SD = 1.3 days) parti-
cipants completed a test of recognition memory (see Supplementary
Note 2 for an analysis of the effects of delay duration on memory). On
each trial, participants saw an image and had to determine whether it
was Definitely New, Maybe New, Maybe Old, or Definitely Old, by
pressing the 1, 2, 3, and 4 keys on their keyboard, respectively (Fig. 1D).
Participants had 10 s to make each response. They did not receive any
feedback.

The memory test comprised 192 trials, which included all 32
images from each of the six stimulus sets. This meant that for each of
the six stimulus sets, participants saw the 15 old images used during
the learning task, nine new exemplars from the three presented cate-
gories, and eight new images from a fourth category that was not
presented during learning. All images from all six stimulus sets were
intermixed and presented in a random order at the test. As with the

Table 1 | Stimulus sets used across blocks

Block Stimulus categories

Farm animals Cows, goats, horses, sheep

Fruit Apples, bananas, oranges, strawberries

Furniture Beds, chairs, sofas, tables

Pets Cats, dogs, rabbits, rodents

Plants Bushes, cacti, flowers, trees

Vehicles Boats, planes, trains, trucks
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learning task, participants completed a child-friendly tutorial and
several practice trials prior to beginning the real memory test.

Analysis approach. To examine participant performance during the
learning task, we coded a correct response variable as 1 if participants
chose to approach stimuli with positive values and avoid stimuli with
negative values, and 0 if they chose to avoid stimuli with positive
values and approach stimuli with negative values. For analyses of
correct responses, we excluded trials involving stimuli from the neu-
tral category in the category-predictive condition.

To examinememory performance, we used participants’memory
confidence ratings to construct receiver operating characteristic
curves for each participant by computing the proportion of old and
new images that they responded to at or below each confidence level
(ranging from 1, definitely new, to 4, definitely old). We constructed
four separate curves for each participant: one for each block condition
(category-predictive, exemplar-predictive) at each level of stimulus
abstraction (category, exemplar). We analyzed levels of stimulus
abstraction separately to probe the specificity of memory repre-
sentations— we aimed to examine, for example, whether participants
remembered that they had seen images from broader categories (e.g.,
cows) or whether they had seen specific exemplars (e.g., a specific
black-and-white cow). The same sets of “old” images were included in
the analyses across both levels of abstraction, but the novel foils that
were included in the computation varied: Novel category foils were
used to construct the category ROC curves and novel exemplar foils
were used to construct the exemplar ROC curves (Table 2). In this way,
we could examine whether participants could distinguish old from
new categories (e.g., cows vs. sheep) separately from whether they
coulddistinguishold fromnew exemplars (e.g., an oldblack-and-white
cow from a new brown cow). We then used the ‘pROC’ R package101 to
compute the area under each of these curves (AUC), as ourmeasure of
memory performance. AUC is a theory-neutral metric of memory
performance that avoids the incorrect all-or-none (i.e., remembered or
forgotten) assumptions that are inherent to measures like corrected
recognition, and is instead sensitive to graded confidence levels50. AUC
values of 1 indicate perfect memory, while values of 0.5 indicate
chance-level performance.

In addition to the memory analyses described in the results, we
also examined how memory varied as a function of the delay (in
days) between the learning and memory tasks, and as a function
of the number of times each stimulus was repeated during the
learning task. While we observed effects of both delay (i.e., worse
memory with increasing delays) and stimulus repetition (i.e., better
memory with increasing repetitions), these effects did not interact
with any of our predictors of interest. As such, for simplicity, we
collapsed across these variables in the models described in the
main text, and report delay and repetition analyses in Supplemen-
tary Note 1.

We used the ‘afex’ package (version 1.3-1)102 for R (version 4.3.1) to
fit mixed-effects models to our data. All continuous variables were z-
scoredprior to their inclusion in themodels.Dependent variableswere
not standardized. Models included random intercepts for each parti-
cipant and randomslopes acrossfixedeffects and their interactions for
each participant. When models failed to converge, we pruned inter-
actions between randomslopes and then randomslopes themselves103.
We analyzed continuous dependent variables with linear models and
binary dependent variables with logistic models; we confirmed via
visual inspection that continuous variables were roughly normally
distributed but did not formally test for normality or equal variances.
For logisticmixed-effectsmodels, we assessed the significance of fixed
effects with likelihood ratio tests. For linear-mixed-effects models, we
assessed the significance of fixed effects with F tests using the Sat-
terthwaite approximation to estimate the degrees of freedom. All
reported statistical tests are two-sided.

To test how participants learned and used categorical and
exemplar-level information to choose whether to approach or avoid
each stimulus, we fit our data with variants of a temporal difference
reinforcement learning model104. Due to the number of model
variants we considered, we performed model comparison and
selection in stages, which we describe below. Model-fitting and
comparison were conducted using the computational and beha-
vioral modeling (cbm) package105 within Matlab 2020b106. Because
the cbm package relies on normally distributed parameters, within
each model, we exponentiated choice weight parameters to ensure
they were positive, and transformed learning rate parameters to be
between 0 and 1, using sigmoidal functions. We first fit all models to
each participant’s choice data individually. For first-level fitting, we
used common, relatively uninformative priors for all model para-
meters: Normal(mean = 0, variance = 6.25). We also scaled all reward
outcomes to be between −1 and 1 by dividing by the maximum
absolute reward value that participants experienced (11). We
similarly scaled initial Q values within each model by dividing
them by 10.

These first-level fits were then fed into a second-level fitting and
model comparison algorithm. The second-level fitting procedure
performs simultaneous hierarchical parameter estimation and Baye-
sian model comparison, in which each participant is treated as a ran-
dom effect (i.e., different participants may be best fit by different
models). We determined the best-fitting model at the group level by
examining exceedance probabilities (XP), which reflect the probability
that a given model is the most frequent best-fitting model for a group
of participants107.

The baseline model assumed that participants tracked the overall
value of each category of stimuli (three value estimates per block) as
well as the value of each individual exemplar (15 value estimates per
block). On every trial, the probability that a participant would
approach the stimulus was determined via a softmax function with
choice weight parameters (inverse temperatures; βc, βe) that scaled
the category- and exemplar-level value estimates ðQ cð Þ,Q eð ÞÞ.

p approachjsð Þ= eβc*Q cð Þ+βe*QðeÞ

eβc*Q cð Þ+βe*QðeÞ + e0
ð1Þ

The choiceweights thus govern the extent towhich category-level
and exemplar-level information influence choices, with higher weights
indicating choices that aremore driven by the category- and exemplar-
level value estimates.

After choosing to approach or avoid each stimulus, participants
update their category-level and exemplar-level value estimates such
that:

Q cð Þt + 1 =Q cð Þt +α*ðr � Q cð ÞtÞ ð2Þ

Q eð Þt + 1 =Q eð Þt +α*ðr �Q eð ÞtÞ ð3Þ

where r is the reward for approaching the stimulus on that trial, and α
is a participant-specific learning rate, governing the extent to which
recent rewards influence value estimates.

We tested variants of thismodel with one choice weight, two, and
four choiceweights, (allowing them to vary across levels of abstraction
and allowing them to vary across both levels of abstraction and block
conditions, respectively). At the group level, the best-fitting model
included four choice weights (i.e., “fourB”, model frequency =0.78;
exceedance probability (XP) = 1). In Supplementary Note 3, we include
additional comparisonswithmodels inwhich learning rates also varied
across levels of abstraction and block conditions; we continued to
observe that the model with four choice weights and a single learning
rate best captured participant behavior.
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Next, we assessedwhethermodelfit could be further improvedby
allowing initial stimulus value estimates to vary (rather than being
fixed at0).We tested three variants of the fourBmodel that allowed for
0, 1, or 2 initial Q values (across levels of abstraction). At the group-
level, the best-fitting model included a single free parameter for initial
Q values (i.e., “fourB_oneQ”, model frequency =0.70, XP = 1).

Finally, we assessedwhether participants updated value estimates
equivalently after approach and avoid decisions. We tested three var-
iants of the fourB_oneQ model: the winning model from our prior
comparisons, which included full counterfactual learning, as well as a
model that allowed for separate learning rates after approach versus
avoid decisions, and amodel with no counterfactual learning, in which
value estimates were not updated on “avoid” trials. At the group-level,
the best-fitting model included full counterfactual learning (four-
B_oneQ, model frequency =0.76, XP = 1; see Supplementary Note 3 for
age group analyses).

To ensure that models within each comparison set were distin-
guishable from one another, we conducted recoverability analyses in
which we generated 100 simulated datasets of 151 simulated agents.
Parameters for each simulated agent were drawn randomly from uni-
form distributions with minima and maxima determined by the mini-
mum and maximum fitted values from the empirical data. In addition,
for the model with two initial q values, we constrained their non-
transformed values to be at least 1 apart. For themodel with a separate
counterfactual learning rate, we constrained the non-transformed
values of the counterfactual learning rates to be greater than −2 (so
that its transformed value would be distinguishable from 0) and to be
at least 1 apart from the choice learning rate. We then fit each simu-
lated dataset with all three models in each model comparison set, and
fed these first-level fits through the same second-level fitting and
model comparison algorithm that we usedwith our empirical data. We
then examined the proportion of the 100 simulated experiments for
which themodel with the highest exceedance probabilitymatched the
true, generating model.

The model with four choice weights was highly distinguishable
from the models with one or two choice weights (Fig. 6A). Similarly,
the model with full counterfactual learning was highly distinguishable
from the model with a separate counterfactual learning rate and the
model without counterfactual learning (Fig. 6C). However, while dis-
tinguishable from the model that initialized value estimates at 0, the
model with one initial q value was not distinguishable from the model
with two initial q values (Fig. 6B), indicating thatwith our experimental
design, we could not measure whether participants initialized cate-
gorical stimulus values differently from exemplar stimulus values.

We extracted parameter estimates from our best-fitting model
(fourB_oneQ) to examine their relation with other variables of interest
(e.g., age, memory performance). Because we were interested in indi-
vidual differences in parameter estimates, we examined estimates
from the first level of model-fitting, in which models were fit to indi-
vidual participants’ data using common, uninformative priors.

To ensure that parameter values were recoverable108, we simu-
lated data from 15,100 participants (e.g., 100 simulations of 151-
participant “experiments”). For each simulated participant, we

randomly sampled a task stimulus and reward sequence from one of
our participants. We sampled parameter values from uniform dis-
tributions with minima and maxima determined by the minimum and
maximum parameter estimates from fitted participant data. We then
performed first-level model-fitting on these simulated datasets, and
examined the correlationbetween simulated and recoveredparameter
values. Across all parameters, recoverability was high, with correla-
tions ranging from 0.73 to 0.91 (Fig. 7A). When exemplar choice
weights were high (e.g., >1), exemplar values dictated participants’
choices and category choice weights were pulled toward the mean of
the prior (0), such that they demonstrated poorer recover-
ability (Fig. 7B).

Finally, we also examined the extent to which model simulations
recapitulated key aspects of our behavioral results. We describe these
posterior predictive checks in the Supplementary Methods, but note
here that simulations from our winning model can successfully
reproduce important signatures of participant task performance.

Experiment 2
Participants. Seventy-three participants completed the two-part
online study and were included in all analyses. An additional 13 parti-
cipants (n = 9 children; n = 4 adults) completed both parts of the study
but were excluded from all analyses for: (a) interacting with their
browser window (minimized, maximized, or clicked outside the win-
dow) more than 20 times throughout either the learning or memory
task (n = 8), (b) failing to respond on more than 10% of learning or
memory trials (n = 1), or (c) responding in less than 100ms on more
than 10% of learning or memory trials (n = 4). In addition, three addi-
tional participants were excluded due to a glitch that prevented data
from being saved. Participants were recruited, tested, and compen-
sated as in Experiment 1, though base payment was increased to $23
because the learning task was slightly longer. All study procedures
were approved by New York University’s Institutional Review Board.
Adult participants and parents of minors provided informed consent;
participants under 18 years assented to participate.

The 73 participants included in the final sample comprised n = 34
children (8.1–12.9 years; Mean age = 10.9 years, n = 17 females) and
n = 39 adults (18.4–25.8 years, Mean age = 21.9 years, n = 27 females).
52% of participants were White, 32% were Asian, 2.7% were Black, 12%
were two or more races, and 1.3% were Pacific Islander or Native
Hawaiian. In addition, 9.3% of participants were Hispanic (see Supple-
mentary Methods for more demographic details).

Experimental procedure. The reinforcement-learning task used in
Experiment 2 was similar to that used in Experiment 1, but partici-
pants had to select from three choice options on every trial (Fig. 6C).
Each stimulus was associated with an optimal choice that would
usually cause the participant to win a point, and two suboptimal
choices that would usually cause the participant to lose a point. As in
Experiment 1, the task comprised six blocks, each with its own sti-
mulus set. We used the same six stimulus sets as in Experiment 1,
though they were modified to include fewer images. Here, the six
stimulus sets each included 20 unique images, divided into four

Table 2 | Stimuli used in memory analyses

Block condition Memory specificity Old images New images

Category-predictive Category 45 old images from category-predictive learn-
ing blocks

24 novel category foils from stimulus sets used in category-
predictive learning blocks

Exemplar 27 novel exemplar foils from stimulus sets used in category-
predictive learning blocks

Exemplar-predictive Category 45 old images from exemplar-predictive
learning blocks

24 novel category foils from stimulus sets used in exemplar-
predictive learning blocks

Exemplar 27 novel exemplar foils from stimulus sets used in exemplar-
predictive learning blocks
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Fig. 7 | Experiment 1 parameter recovery for the fourB_oneQ model.
A Correlations between simulated and recovered parameter values for the four-
B_oneQ model ranged from 0.73 to 0.91. Choice data were simulated for 15,100
agents, with parameter values sampled from uniform distributions with minima

andmaxima determined by theminimumandmaximumparameter estimates from
the fitted data.B Exemplar choice weight values influenced category choice weight
recoverability, such that category choice weights could be better recovered when
exemplar choice weights were lower.

Fig. 6 | Experiment 1 model recoverability. For each model within each stage of
model comparison, 100 simulated “experiments” were conducted in which choice
data were simulated from 151 agents, with parameters sampled from uniform dis-
tributions with ranges determined by the empirical fits. Data from each simulated
experiment were then fit with each model within the comparison set. The top
panels show confusion matrices, where the values within each tile represent the
proportionof experiments for which each fittedmodel had the highest exceedance
probability (top panels). The bottom panels show inversion matrices, where the
valueswithin each tile represent the proportion of experiments for which the fitted
model had the highest exceedance probability that were generated by each of the
models. Black lines outline the model that best fits the empirical data within each

comparison stage. AModels with different numbers of choice weights were highly
distinguishable fromone another.BModels inwhich exemplar and category values
were initialized with either one or two free parameters were distinguishable from a
model in which exemplar and category values were both initialized at 0. However,
models with one or two initial values were not distinguishable from one another.
C The winning model, in which participants learned equivalently from experienced
and counterfactual outcomes, was highly distinguishable from a model in which
participants learned with separate learning rates for experienced and counter-
factual outcomes, as well as a model in which participants did not learn from
counterfactual outcomes.
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broader categories (Fig. 4A). Three stimuli from three broader
categories were used during each block of the learning task. The two
unused stimuli fromeach of the three broader categories, and all five
stimuli from the remaining, fourth category were used as novel
exemplar and category images, respectively, in the subsequent test
of recognition memory.

As in Experiment 1, the instructions for each task block varied
slightly depending on the stimulus set. For example, in the Farm Ani-
mals block, participants were instructed that they had to return ani-
mals to the barns where they lived. Returning animals to the correct
barn would usually make them happy, causing participants to win a
point, and returning animals to the incorrect barn would usually make
them sad, causing participants to lose a point.

Participants completed three category-predictive blocks and
three exemplar-predictive blocks, in a pseudorandom order (as in
Experiment 1). In category-predictive blocks, the broader stimulus
categories determined the stimulus-action reward probabilities,
such that all members of a broader category were associated with
the same optimal choice (Fig. 4B). In exemplar-predictive blocks,
one exemplar from each broader category was randomly paired with
each of the three choice options, such that within a broader cate-
gory, the optimal choices for all three exemplars differed. Selecting
the optimal choice for a stimulus resulted in winning one point on
90% of trials and losing one point on 10% of trials; selecting either of
the two other choices resulted in winning one point on 10% of trials
and losing one point on 90% of trials. All stimuli were repeated eight

times within each block, in a random order, such that each block
comprised 72 trials. Block order was pseudorandomized for each
participant as in Experiment 1.

All trials lasted 4 s, regardless of how quickly participants made
their response.Within the4-s time limit, participantsmade their choice
selection by pressing 1, 2, or 3 on a standard keyboard. After making
their selection, participants saw their choice highlighted for 500ms,
and then the outcome of their choice for the remainder of the trial
(Fig. 4C). Participants saw green checkmarks with a bouncing anima-
tion and “+1” if they won a point, and red X’s with a swinging animation
and “−1” if they lost a point. Trials were separated by a 500ms inter-
trial interval in which no stimuli appeared on the screen. The positions
of the choice images were randomized on every trial.

As in Experiment 1, participants completed an extensive, child-
friendly tutorial prior to beginning the reinforcement-learning task.
After the tutorial, participants answered three True/False compre-
hension questions about the task. If they answered a question incor-
rectly, they would see (and hear) the correct answer with an
explanation. On average, participants answered 2.7 comprehension
questions correctly (Age group means: Children: 2.68; Adults: 2.71).
There was no significant effect of age group on the number of ques-
tions answered correctly (p =0.71).

The memory test was identical to that used in Experiment 1. Par-
ticipants completed the memory test between 6 and 9 days after they
completed the reinforcement-learning task (except for one adult who
completed the memory test on day 5, and one child who completed it

Fig. 8 | Experiment 2 model recoverability. For each model within each stage of
model comparison, 100 simulated experiments were conducted in which choice
data were simulated from 73 agents, with parameters sampled from uniform dis-
tributions with ranges determined by the empirical fits. Data from each simulated
experiment were then fit with each model within the comparison set. The top
panels show confusion matrices, where the values within each tile represent the
proportionof experiments for which each fittedmodel had the highest exceedance
probability (top panels). The bottom panels show inversion matrices, where the
valueswithin each tile represent the proportion of experiments for which the fitted

model had the highest exceedance probability that were generated by each of the
models. Black lines outline the model that best fit the empirical data within each
comparison stage. AModels with different numbers of choice weights were highly
distinguishable fromone another.BModels inwhich exemplar and category values
were initialized with either one or two free parameters were moderately distin-
guishable from one another.CModels with a single learning rate, separate learning
rates for experienced and inferred counterfactual outcomes, and no counterfactual
learning were highly distinguishable from one another.
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on day 10; Mean delay = 7.1 days; SD = 1.1 days; See Supplementary
Note 2 for an analysis of the effects of delay duration on memory).

Analysis approach. Our analysis approach largely aligned with our
approach in Experiment 1. Here, however, because we did not collect
data from adolescents, rather than analyzing age as a continuous
variable, we treated age group (children and adults) as a categorical
variable.

We fit the same computational models to our data, with several
modifications to take into account the different reward structure
of the task. First, rather than tracking three category values and
15 exemplar values, here, the models track 9 (3 categories × 3 choi-
ces) category-action values and 27 (9 exemplars × 3 choices)
exemplar-action values. We re-coded the binary rewards as 0 and 1,
and constrained initial Q values to fall in this range. In addition,
in Experiment 1, counterfactual feedback was presented explicitly
to participants on “avoid” trials in which they did not experience
gains or losses. Here, no counterfactual feedback was presented.
Instead, our counterfactual learning models assumed that partici-
pants might infer that the unselected choice options would have
yielded gains when the selected choice option yielded a loss and
vice versa.

We followed the same model-fitting and stage-wise selection
approach as in Experiment 1, and found that the best-fittingmodel also
included four choice weights and one initial Q value. Here, rather than
exhibiting equivalent learning from experienced and counterfactual
outcomes, we found that participants’ choices were best fit by amodel
(fourB_oneQ_CF) that included separate learning rates for experienced
outcomes from selected options and inferred outcomes from unse-
lected choice options. Models (Fig. 8) and parameter values from the
winning model (Fig. 9) both showed good recoverability, with corre-
lations between simulated and fitted parameters ranging from 0.65 to
0.91. In addition, model simulations recapitulated key features of
participant choice behavior (see posterior predictive checks in
the Supplementary Methods).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed data are publicly available on Github: https://doi.
org/10.5281/zenodo.15121783109.

Code availability
Task and analysis code is publicly available on Github: https://doi.org/
10.5281/zenodo.15121783.
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