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Improving AI models for rare thyroid cancer
subtype by text guided diffusion models

FangDai 1,2,3,17, SiqiongYao 2,17,18 , MinWang4, YichengZhu5, XiangjunQiu6,
Peng Sun1, Cheng Qiu7, Jisheng Yin8, Guangtai Shen9, Jingjing Sun10,
Maofeng Wang11, Yun Wang12, Zheyu Yang13, Jianfeng Sang14, Xiaolei Wang 1,
Fenyong Sun 3,18 , Wei Cai 13,18 , Xingcai Zhang 15,18 &
Hui Lu 1,2,16,18

Artificial intelligence applications in oncology imaging often struggle with
diagnosing rare tumors. We identify significant gaps in detecting uncommon
thyroid cancer types with ultrasound, where scarce data leads to frequent
misdiagnosis. Traditional augmentation strategies do not capture the unique
disease variations, hindering model training and performance. To overcome
this, we propose a text-driven generative method that fuses clinical insights
with image generation, producing synthetic samples that realistically reflect
rare subtypes. In rigorous evaluations, our approach achieves substantial gains
in diagnostic metrics, surpasses existingmethods in authenticity and diversity
measures, and generalizes effectively to other private and public datasets with
various rare cancers. In this work, we demonstrate that text-guided image
augmentation substantially enhances model accuracy and robustness for rare
tumor detection, offering a promising avenue for more reliable and wide-
spread clinical adoption.

Recent advancements in medical artificial intelligence (AI) have sig-
nificantly aided clinical decision-making. However, the issue of insuf-
ficient sample collection has long been a concern for researchers1,2.
This is particularly true for the diagnosis of rare diseases or rare sub-
types, where low incidence rates result in limited data and sample

diversity, posing significant challenges in training AI models3–5. More
specifically, their low incidence rates lead to scarce data, often
resulting in collected data that cannot cover all features of the disease,
manifesting in a phenomenon of certain feature deficiencies6. Given
these limitations, contemporary research primarily focuses on
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achieving high predictive performance within the general or common
disease cohorts, making it challenging to estimate progress on rare
subpopulations. This leads to lower detection rates, higher mis-
diagnosis and underdiagnosis rates, and potentially increased mor-
tality rates among rare subpopulation groups7,8 and can lead to
potential medical AI unfairness9,10.

Although individual rare diseases or subtypes have low incidence
rates, the overall population affected by such conditions is substantial.
This disparity not only raises ethical concerns but also constitutes a
significant barrier to the widespread adoption and practical application
of medical AI models11,12. In the case of thyroid cancer, for instance,
current clinical guidelines generally follow standard procedures for
papillary thyroid carcinoma (PTC)13, such as fine-needle aspiration
biopsy and surgical treatment. However,more accurate pre-diagnosis of
subtypes, particularly rare ones, could enable the adoption of more
targeted approaches, such as conservative treatment strategies or fur-
ther diagnostic investigations in different directions. For example, while
PTC typically warrants total thyroidectomy with central compartment
neck dissection, the surgical approach for follicular thyroid carcinoma
(FTC) varies depending on tumor size and vascular invasion, sometimes
requiring only a hemithyroidectomy14. Conversely, medullary thyroid
carcinoma (MTC), which is associated with genetic factors, often
involves regional lymph node metastasis and distant metastases to the
lungs and bones, necessitating the observation of metastatic sites
before proceeding with treatment15. Some subtypes are prone to
metastasis and may not be suitable for surgical intervention16,17. Hence,
the precise diagnosis of rare subtypes is essential to refine the existing
ultrasound-based risk stratification systems.

Building on previous work10, in our AI model for the diagnosis of
thyroid cancer subtypes through ultrasound imaging, we identified
significant predictive imbalances. The scarcity of certain subtypes,
characterized by low incidence rates and features that are difficult to
distinguish from those of more common subtypes, means that
imbalances in sample categories and the uneven distribution of dis-
tinguishing features are the primary reasons for these predictive dis-
crepancies. This poses challenges to the training of deep learning AI
algorithms. Data augmentation is an approach to address sample size
limitations in AI18–21. Traditional augmentation methods such as basic
image manipulations (rotations, stretching, translation, scaling, arbi-
trary cropping, etc.), image mixing (overlaying two images), and ran-
dom erasing (obscuring certain parts of an image)19, are more suitable
for handling natural images. When applied to medical images, these
techniques can alter themorphological information of lesions, making
them unsuitable for medical AI training sets due to the changes in
clinical significance andpotentially leading to inaccuracies indiagnosis
or treatment recommendations. An increasing number of researches
are turning their focus to generativemodels, which automatically learn
and replicate the patterns in input images, enabling them to produce
examples that resemble those from the original dataset20,22. Such
generative methods, based on existing datasets for feature augmen-
tation, often face issues of insufficient sample diversity when applied
to rare diseases with limited sample sizes23. These problems directly
impact the generalization performance of model predictions.

Recently, generative models have demonstrated a performance
advantage in feature fusion between image and text24. This method uses
text-guided approaches to avoidmode collapse, producing high-quality
generated images in natural settings, resulting in significant perfor-
mance improvements for downstream tasks. For instance, Mohamed et
al.25 investigated the impact of using diffusion-based text-to-image data
augmentation methods on the classification of skin diseases, especially
focusing on the comparison between original medical datasets and
entirely synthetic images. Through this approach, the study aimed to
enhance the accuracy and generalization capability of skin disease
classificationmodels. Chambon et al.26 used the stable diffusionmethod
to guide the generation of CT images based on the names of various

diseases in chest radiographs, which improved the prediction accuracy
for different types of diseases. In fact, generative data augmentation
methods guided by disease knowledge are one of the more effective
means to enhance the diversity and authenticity of generated images27.
However, the majority of existing studies primarily employ category-
level classifications, such as disease types or subtype names, to direct
the generation of new images. This approach is suitable for augmenting
datasets with images of prevalent diseases or common subtypes, yet
may be faced with challenges when utilized for generating diverse
samples of insufficiently represented diseases or variations (rare
subtypes)28. To address this limitation, it is crucial to incorporate
detailed textual descriptions that highlight the unique features of these
rare subtypes at an attribute level. This addition will facilitate the gen-
eration of truly diverse and representative images of rare conditions.

In this work, we introduce the Tiger Model, a text-guided medical
image generation deep learningmodel to specifically address diversity
and generalization in the prediction of raremedical diseases. It enables
controlled generation of features at a fine granularity by introducing
extensive clinical knowledge of imaging. The model comes with text
and image control modules, aiming to enhance the diversity and
authenticity of rare subtype feature generation. The text-guided data
generation frameworkof theTigerModel showspromise indiagnosing
rare medical diseases, offering images that are more diverse and rea-
listic with enhanced user comprehensibility that could accelerate the
translation of medical AI advancements.

Results
Overview of the Tiger Model
To achieve models that realize detailed feature control in order to
generate new images with realistic diversity, we designed the Tiger
Model as outlined below. The overall usage process of the TigerModel
is illustrated in Fig. 1. Firstly, we constructed and summarized a disease
knowledge base detailing the imaging feature differences between
common and rare subtypes, based on literature search and clinical
reports including Composition, Echogenicity, Echotexture, Calcifica-
tion, Aspect, Shape, Margin, Halo, Diameter, Nodule Location, Exten-
sion and SonogramDirection.We categorized similar descriptions and
summarized the commonalities and distinctive features between
common and rare subtypes, forming a disease knowledge base. We
refer to Supplementary Table 1 for details. Next, utilizing the clinical
knowledge guidance mechanism of the Tiger Model, we trained the
model to generate features of benign and common tumors, and then
trained it to generate unique features of rare tumors through common
feature transfer. Finally, by combining the permutations of benign
nodules and common tumor features with the unique features of rare
tumors, we achieved the realistic and diverse synthesis of rare subtype
features.

The architecture of the Tiger Model is shown in Fig. 2, consisting
of two main phases: Coarse-Training and Fine-Training. Coarse-
Training utilizes ultrasound images and corresponding textual
reports as inputs (Fig. 2). Clinically, features of rare subtypes are
usually derived from combinations and permutations of benign and
common tumor features, with a few unique features29. Therefore,
transferring features from benign and common tumors can foster the
reconstruction of features for rare subtype tumors. During Fine-
Training, we conducted rule-based generative training according to
the characteristic combinations of disease subtypes. The ultrasonic
diagnosis of thyroid cancer subtypes often relies on comprehensive
judgment based on the co-occurrence and synergy features of ultra-
sonography. Considering the issue of intra-class imbalance between
the tumor area (foreground, abbr. FG) and background (abbr. BG)
information in ultrasound images, we designed detailed feature con-
trol methods for extracting features from the foreground (FG) and the
background (BG) separately, using FG-Encoder and BG-Encoder
(Fig. 2). The computation process of the attention mechanism in the
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j-th layer of each encoder can be expressed by the following formula:

Cj
m =Attention j

m Q, K, Vð Þ= softmax Wj
m Q j ,Kj
� �� �

� Vj ð1Þ

Where m 2 FG, BGf g. The output of FG-Encoder and BG-Encoder
(denoted as FFG and FBG) was combined with a weighted module for
foreground-background fusion represented in the formula (2) and (3).
Detailed implementations are elaborated in the Method section 2:
Tiger Model architecture and Method section 3: Training details. The
fusion design enhances the realism and rigor of the generated images,
including the following aspects: color and resolution consistency,
texture rationality, scanning plane authenticity, and the correctness of
the synthesized tumor subtype.

W FG+BG = sigmoidðConvðFFG � FBGÞÞ ð2Þ

F = eFG+BGFFG + ð1�W FG+BGÞFBG ð3Þ

Data collection and experimental design
The data collection process strictly followed the inclusion and exclu-
sion criteria detailed in the Method section. We collected thyroid
ultrasound reports and pathological reports from 68,386 patients
across 10hospitals. After exclusion,weenrolled afinal cohort of 40,571
patients. Among these, there were 21,920 benign cases, 13,552 cases of
Papillary Thyroid Carcinoma (PTC,with an incidence rate of 90–95%)13,
4102 cases of the rare subtype Follicular Thyroid Carcinoma (FTC,with
an incidence rate of only 3–5%)30, 997 cases of the rare subtype
Medullary Thyroid Carcinoma (MTC, with an incidence rate of only
1–3%)31, and 274 cases of the rare subtypes Anaplastic Thyroid Carci-
noma (ATC, with an incidence rate of only 0.2%)32. For gender, the
male-to-female ratio was 0.46; for nodule sizes, they ranged from
0.1 cm to 1.9 cm, with the < 1 cm group accounting for 44%. We col-
lected a total of 186,812 thyroid cancer ultrasound images corre-
sponding to the 40,845 reports. Specifically, there were 93,220 images
for benign cases, 48,585 for PTC, 31,725 for FTC, 12,910 for MTC, and
372 for ATC (Table 1).

To validate the enhancement in model generalization through
data augmentation, we observed the impact on the benign-malignant

diagnosis task across four subtypes of thyroid cancer (one common
subtype, PTC, and three rare subtypes FTC,MTC, and ATC, as outlined
in Table 1a), focusing primarily on the malignancy degree of thyroid
nodules. To improve nodule identification, prior to constructing the
Tiger Model, we trained a thyroid and nodule segmentation network
using independent 4000 images annotated by medical professionals
(2000 benign and 2000 malignant). The dataset splits for Classifica-
tion, Generation, Segmentation, and CLIP tasks, including thyroid,
pediatric chest, and breast datasets, are detailed in Supplementary
Table 2.

Quantitative analysis of image generation quality
In Table 2, we utilize a comprehensive set of metrics to evaluate the
performance of our generative network, including the Structural
Similarity Index (SSIM)33, CLIP-MMD (CMMD)34, Gradient Similarity
(GS)35, and Density and Coverage (D&C)36. The SSIM scores for the
Tiger-Fmodel are significantly higher than those of the stablediffusion
model (SD-S) (by 13.16, 39.34, and 31.75%), indicating superior pre-
servation of structural information in the Tiger Model. In addition,
Tiger-F outperforms the stable diffusion model in both CMMD and GS
metrics, showing reductions of 37.14, 38.46, and 26.79% in CMMD and
18.65, 82.02, and 73.43% in GS. These results suggest that the Tiger
Model generatesmore realistic images. Furthermore, theD&C scoreof
the TigerModel surpasses that of the stable diffusionmodel, reflecting
amore compact and comprehensive clustering solution. Compared to
the stable diffusion model, images generated by the Tiger Model
exhibit improved authenticity, with a 16.69% reduction in FID and a
19.64% reduction in p-Hash, and greater diversity, as indicated by a
39.17% increase in IS. Detailed experimental results are provided in
Supplementary Table 3.

Doctor assessment of image generation quality
We conducted three Turing test experiments with medical profes-
sionals (Figs. 3 and 4) to qualitatively evaluate the diversity and quality
control of the images generated by the Tiger Model. We recruited 50
ultrasound physicians, evenly divided between senior clinicians (with
over 5 years of clinical experience) and junior clinicians (with 3–5 years
of clinical experience).

In the first test, doctors were shown images and asked to assess
whether they were real or generated. The images included real images,

Tiger Model

Benign Thyroid Disease 
image + report

Malignant Thyroid Cancer   
image + report 

Disease Information

Data Augmentation
Synthesis images

Classification Model
{Benign, Malignant}

Originate from journals:

Originate from hospitals

Physician Turning Test

Realism and Diversity

CLIPClassical 
Evaluation

Evaluation Indicators

Train set

Prompt

Fig.2 A A benign thyroid nodule with a well-defined margin, and

no calcifications (TI-RADS 2). B A low-suspicion nodule 

demonstrating smooth borders (TI-RADS 3). 

Figure X. Representative 

ultrasound images of thyroid

nodules with varying

malignancy risk. A

malignant thyroid nodule 

showing marked hypo

echogenicity, irregular 

margins, internal vascularity, 

and punctate echogenic foci

consistent with

microcalcifications (TI-

RADS 5).

Ultrasound Report Thyroid Evaluation
Patient Name: [Fake Name]
Date of Examination: [Fake Date]
Referring Physician: Dr. [Fake Name]
Indication: Evaluation for thyroid nodule
Findings: The thyroid gland is normal in size and echotexture. The right lobe measures 4.5

1.8 1.6 cm, and the left lobe measures 4.2 1.7 1.5 cm. The isthmus is mildly thickened

at 0.5 cm. A hypoechoic, irregularly marginated nodule is identified in the mid-pole of the

right thyroid lobe, measuring 1.8 1.2 1.1 cm. The nodule demonstrates internal

microcalcifications and increased vascularity on Doppler imaging. No significant cystic

components are noted.

Ultrasound Report Thyroid Evaluation
A hypoechoic nodule with irregular margins and microcalcifications is detected in the

right thyroid lobe, measuring 1.8 1.2 cm. Increased vascularity is noted on Doppler 

imaging. No significant cystic components. The lesion is classified as TI-RADS 5, 

highly suspicious for malignancy.

Fig. 1 | Training and Evaluation Process of Tiger Model. The Tiger Model is
trained and constructed based on the differences in disease subtype features,
utilizing disease knowledge(prompt). Through the model’s extraction of com-
monality and differences in the feature domain, it achieves the generation of true
diversity of features for rare subtypes. The training data of themodel are ultrasonic

images and ultrasonic reports. Tiger generates augmented datasets and merges
them with real data for training classification models. The realism and diversity of
the images are then tested by professionals and evaluated using computer vision
indices.
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Tiger-F generated images, and images generated by other methods
(PG-GAN, Diffusion Transformers, Imagen, and Stable Diffusion), with
500 images per category. As shown in Fig. 3a, doctors correctly iden-
tified real images as authentic in 98.0% of cases, Tiger-F generated
images in 92.2%, and images generated byothermethods in only 33.7%
of cases (Fig. 3b). This demonstrates the TigerModel’s strongpotential
in enhancing the realism of radiological data augmentation.

In the second test, doctors were asked to select the correct image
from four candidate images based on a provided description (Fig. 3c).
The correct images were randomly chosen from a dataset of both real
and Tiger-F generated images, covering benign, PTC, FTC, and MTC
types. For each correct image, three similar imageswere selected using
pHash values but paired with different textual descriptions. This test
aimed to evaluate whether physicians could accurately identify rare
subtypes, which are often prone to misdiagnosis. Each doctor parti-
cipated in 20 rounds, earning one point for each correct choice. The
results (Fig. 3d) revealed that, among the 25 junior clinicians, 12
answered all questions correctly, 8 achieved an accuracy rate above
90%, while 5 scored below 90%. Among the 25 senior clinicians, 20
answered all rounds correctly, while the remaining 5 achieved over
90% accuracy. Our method was compared with Stable Diffusion and

Imagen, demonstrating a superior average accuracy: a 31.09%
improvement over Stable Diffusion and 36.95% over Imagen for junior
clinicians, and a 37.01% improvement over Stable Diffusion and 44.58%
over Imagen for senior clinicians.

In the third test, doctors were asked to identify the presence of
10 specific radiological features in Tiger-generated images and to
annotate the images accordingly. Images containing all 10 features
received the highest scores. Each doctor assessed 30 images randomly
—a mix of real and generated images—across PTC, FTC, and MTC
subtypes, with 500 images per subtype (Fig. 4a). Figure 4b shows the
frequency of correct feature identification within the 500 images. The
results indicated high accuracy in feature estimation for the generated
samples: 84.1% for PTC, 81.5% for FTC, and 82.8% for MTC, which clo-
sely aligned with the accuracy for real samples (PTC 87.9%, FTC 85.3%,
MTC 84.2%). For comparison, we fine-tuned the CLIP model with
medical text and image features for the same task37. The CLIP model
achieved estimations of 81.5%, 81.2%, and 78.8% for PTC, FTC, andMTC
in generated images, respectively, which did not significantly differ
from the results for real images (85.3%, 83.8%, 83.9%). Examples
comparing CLIP with physician assessments are provided in Supple-
mentary Table 4. In addition, we tested the performance of Stable
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Fig. 2 | Tiger Model Architecture Design and Applications. The Tiger Model is
trained and constructed based on the differences in disease subtype features,
utilizing disease knowledge(prompt). The model identifies commonality and dif-
ferences within the feature domain, allowing it to generate diverse feature com-
binations reflecting true rare subtypes. The training data of the model encompass

ultrasonic images and ultrasonic report text. Tiger generates augmented datasets
and merges them with real data for training classification models. The realism and
diversity of the images are then tested by professionals and evaluated using com-
puter vision indices.
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Diffusion and Imagen. The physician evaluation indicated that our
method outperformed Stable Diffusion by over 13% (PTC 13.3%, FTC
17.7%, MTC 15.4%) and Imagen by over 10% (PTC 10.9%, FTC 10.3%,
MTC 11.6%). The CLIP model test also showed that our method out-
performed Stable Diffusion by over 6% (PTC 6.7%, FTC 17.2%, MTC
13.3%) and Imagen by over 9% (PTC 9.0%, FTC 13.6%, MTC 9.6%)
(detailed results are presented in Fig. 4c).

Through multi-level validation using both human and machine
assessments, it is evident that the Tiger Model generates highly rea-
listic images, capable of standing up to scrutiny. A model that is both
interpretable and trustworthy forms the cornerstone for widespread
clinical diagnostic applications. Moreover, our model’s training gen-
eration is based on learning the features of disease subtypes, allowing
it to interpret and predict the characteristics of each subtype. As such,
themodel can assist clinical experts in gaining deeper insights into the
disease.

Diagnoses for rare thyroid cancer subtype - downstream task
In the binary classification of benign andmalignant cases in rare subtype
thyroid cancer, we present the comparative efficacy of the Tiger Model
in Table 3, benchmarking it against baselines that include four

traditional visual augmentation methods (Basic image manipulation38,
Mixing image39, Random erasing40, Feature space augmentation41), and
four deep learning augmentation methods (PG-GAN42, Diffusion
Transformers43, Imagen44, Stable Diffusion24). Details of the training
processes are provided in Supplementary Method 1. To assess the
effectiveness of feature descriptions in our promptdesign,we evaluated
the performance of the Tiger Model guided by two types of prompts:
Tiger Name-Guided (abbr. Tiger-N; prompts including only benign-
malignant labels and pathological subtypes) and Tiger Feature-Guided
(abbr. Tiger-F; prompts including benign-malignant labels, pathological
subtypes, and feature descriptions of nodules and background; default
settings for the Tiger Model). For each augmentation method, we
applied it to the original training set to create an augmented set and
then trained a binary classification model based on ResNet5045 on the
augmented data. We compared the predictive performance of classifi-
cation models derived from each augmentation method.

It is worth noting that the Tiger Model is also adaptable for multi-
class classification tasks, as demonstrated in external evaluations
outlined in subsequent sections. Each method augmented the dataset
to 30,000 images. The results in Table 3 demonstrate that, compared
to the baseline, Tiger-F showed the most significant improvement in

Table 1 | Description of Dataset

Thyroid Ultrasound ALL Benign Malignancy

PTC FTC MTC ATC*

Patient 40,845 21920 13552 4102 997 274

Image 186,812 93220 48585 31725 12910 372

Report 40,845 21920 13552 4102 997 274

Breast Ultrasound ALL Benign Malignancy

Sum IDC* ILC* PBC*

Patient 4581 3058 1523 1042 58 423

Image 6275 3383 2892 2274 89 529

Report 4581 3058 1523 1042 58 423

Chest X-ray ALL Benign Malignancy

Bronchitis Pneumonia Broncho-pneumonia Bronchiolitis

VinDr-PCXRΔ 2032 \ 842 148 545 497

The dataset includes 186,812 ultrasound images from 40,845 thyroid patients, along with their corresponding ultrasound and pathological reports. In addition, breast ultrasound images and chest
X-ray (VinDr-PCXR) images are incorporated for external evaluation.
In the Breast Ultrasound and Chest X-ray dataset, each patient has only one image and one report about the image.
PTC Papillary Thyroid Carcinoma, FTC Follicular Thyroid Carcinoma,MTCMedullary Thyroid Carcinoma, ATC Anaplastic Thyroid Carcinoma, IDC Invasive Ductal Carcinoma, ILC Infiltrating Lobular
Carcinoma, PCB Papillary Carcinoma of the Breast.
All the classification experiments adopted random 5-fold cross-validation.
*External validation set for ATC(Thyroid), IDC(Breast), ILC(Breast), PCB(Breast).
ΔPublic dataset for chest.

Table 2 | Comparative analysis of generated Image quality

Method PTC Synthesis Image (30k) FTC Synthesis Image (30k) MTC Synthesis Image (30k)

SSIM CMMD GS D&C SSIM CMMD GS D&C SSIM CMMD GS D&C

PG-GAN 0.72 0.54 3.25 × 10−3 0.08 0.52 0.78 5.82 × 10−3 0.04 0.55 0.84 4.82 × 10−3 0.03

DiT 0.77 0.35 2.22 × 10−3 0.07 0.48 0.66 4.94 × 10−3 0.06 0.63 0.72 4.15 × 10−3 0.05

Imagen 0.79 0.43 1.93 × 10−3 0.10 0.63 0.56 3.94 × 10−3 0.08 0.72 0.63 3.03 × 10−3 0.03

SD-S 0.76 0.35 8.41 × 10−4 0.8 0.61 0.52 5.46 × 10−3 0.05 0.63 0.56 4.14 × 10−3 0.03

SD-C 0.73 0.39 7.28 × 10−4 0.06 0.68 0.52 3.42 × 10−3 0.06 0.69 0.74 4.20 × 10−3 0.04

Tiger-N 0.82 0.27 6.39 × 10−4 0.14 0.75 0.35 2.41 × 10−3 0.13 0.69 0.48 2.16 × 10−3 0.07

Tiger-F 0.86 0.22 6.84 × 10−4 0.22 0.85 0.32 9.82 × 10−4 0.17 0.83 0.41 1.10 × 10−3 0.08

Tiger-N refers to Tiger Name-Guided, Tiger-F refers to Tiger Feature-Guided; SD-S refers to Stable Diffusion + Segmentation Model; SD-C refers to Stable Diffusion +ControlNet.
SSIM scores range from0 to 1, and 0.8means the generated images retainmost of the structural and perceptual qualities of the reference images. If CMMD value is close to 0, real images and fake
images are very similar; if the two sets differ significantly, theCMMDvaluewill be relatively high. A lowerGS indicates that thegenerateddata ismore topologically similar to the real data. D&C refers
to Density/Coverage, the high Density and high Coverage indicate that the generative model can produce high-quality images that also cover the diversity of real images.
The real dataset involved in the calculation of evaluation indicators (SSIM, CMMD, GS, D&C) are from test sets of PTC, FTC and MTC in Table 1.
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predictive performance, with AUC increases of 14.64%, from
0.7364(95% Cl:0.69–0.75) to 0.8442(95% Cl:0.75–0.85) and 9.45%,
from 0.7523(95% Cl:0.67–0.79) to 0.8234(95% Cl:0.78–0.85) for the
rare subtypes FTC and MTC, respectively. In addition, we observed an
increase in sensitivity for FTC classification, from 0.5833(95%
Cl:0.54–0.61) to 0.7983(95% Cl:0.77–0.82), and in specificity, from
0.6250(95% Cl:0.60-0.65) to 0.8404(95% Cl:0.82–0.86). For MTC,
sensitivity improved from 0.6529(95% Cl:0.63–0.68) to 0.7891(95%
Cl:0.76–0.80), and specificity rose from 0.6976(95% Cl:0.68–0.82) to
0.8325(95% Cl:0.80–0.85). While Tiger-N also exceeded baseline per-
formance (FTC andMTC) with AUC improvements of 5.01% and 6.71%,
respectively, it fell short of Tiger-F by 3.81% and 2.58%. Our approach

demonstrates robustness even when limited to disease names alone,
with substantial performance gains when labels incorporate compre-
hensive feature descriptions. Additional comparative analysis
demonstrated statistical significance of the findings (Supplementary
Table 5). Further details of the Tiger model compared to baseline
models are shown in Supplementary Fig. 1.

We thenquantitatively assessed thepredictive performanceof the
Tiger Model across varying sample size proportions in classification
tasks (Fig. 5a). The results show that the Tiger Model consistently
achieved higher predictive efficiency across all three subtype tasks
compared to other methods. As the volume of generated data
increased, the Tiger Model exhibited a steeper rise in AUROC than

Tested Synthesis 
Image

+
Prompt

Junior 
Doctors Which image matches the sentence?

c

Generation Methods Percentage of right answers Junior doctors (N = 25) Senior doctors (N = 25)

Tiger-F
(n = 500)

100% right 12 7
> 90% right 8 5
<90% right 5 13
Average 90.96% 87.30%

Stable Diffusion
(n = 500)

100% right 1 0
> 90% right 4 4
<90% right 20 21
Average 69.39% 63.72%

Imagen
(n = 500)

100% right 0 0
> 90% right 5 3
<90% right 20 22
Average 66.42% 60.38%

Alternative Options Images*
(Benign, PTC, FTC, MTC)

d

{malignant}, {follicular},
{solid, extracapsular, 
hypoechoic, unclear}

{Sonogram transverse 
right, contrast, bright}

* The candidate options are the three images with
pHash values closest to the correct answer.

a
Turing Test

choices
The Accuracy of the X images being real images 

X
(n = Sample 

size) 

Real

(n = 500)

Tiger

(n = 500)

PG-GAN

(n = 500)

DiTs

(n = 500)

Imagen

(n = 500)

Stable 
Diffusion
(n = 500)

Other 
Methods
(n=2000)

Yes 98.0%
(490/500)

92.2%
(461/500)

31.6%
(158/500)

31.0%
(155/500)

42.6%
(213/500)

29.4%
(147/500)

33.7%
(673/2000)

No 2.0%
(10/500)

7.8%
(39/500)

62.4%
(342/500)

69.0%
(345/500)

57.4%
(287/500)

70.6%
(353/500)

66.3%
(1327/2000)

Yes or No

Turing Test set
Real image (n=500)
Tiger (n=500)
Other Methods  (n=2000) DiTs refers to Diffusion Transformers

Other Methods refers to the sum of PG-GAN, DiTs, Imagen and Stable Diffusion 

3 Senior Doctors

Senior 
Doctors

Correct

b
Is this a real ultrasound image?

Each method is tested with 500 questions. 20 questions for each doctor, the correct answer has the same proportion of PTC, FTC, MTC.
n indicates the number of images to be evaluated, N is the number of doctors. Both junior and senior doctors evaluate all methods.

× × ×      

Fig. 3 | Design and results of the first two Turing tests. a Turing test 1: Three
doctors judged each picture to be real or fake. The images are randomly selected
from theTuring Test Set.b In Turing test 1, compared to other generativemethods,
the TigerModel (Tiger-F) received the closest scores to real images. c Turing test 2:
The expert chooses the one that corresponds to the text from four pictures. The

four choices include one correct choice that corresponds to the sentence, and
three different images randomlychosen fromtheTuringTest Set.d In Turing test 2,
compared to other generative methods, images generated by the Tiger Model
received the highest scores from medical experts in selecting the correct ones.
Source data are provided as a Source Data file.
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other methods. In contrast, other generative augmentation methods
showed an initial rise in performance, followed by a decline when data
augmentation reached a certain threshold. Tiger Model, however,
demonstrated a more stable and sustained increase in predictive effi-
ciency, with Tiger-F delivering the best results. A lack of diversity in the
generated samples appeared to limit the sustained performance
improvements of other models, leading to potential mode collapse.
Tiger Model addressed this issue by enhancing its ability to accom-
modate a broader range of features, effectively elevating the upper
limit of predictive performance.

Next, we evaluated the impact of sample size on the predictive
performance of the TigerModel. As illustrated in Fig. 5b, we compared
the performance of binary classification models trained on different
proportions of basic real data x (Task 1), Tiger Model-generated
datasets y added to real data (Task 2,3), and models trained with an
equal number of real samples Y added to the training set (Task 4). The
results indicate significant improvements in the predictive ability of
models utilizing Tiger Model sample augmentation, particularly in the
benign-malignant classification of rare subtypes (FTC and MTC). The
Tiger Model achieved a 7.61% and 10.18% improvement for FTC and

PTC

MTC

FTC

Real image Tiger Feature -GuidedPrompt
Attributes Synthesis PTC Accuracy, n = 500

Doctors CLIP
Composition ( ) 80.4% (402/500) 82.4% (412/500)
Echogenicity ( ) 84.8% (424/500) 80.8% (404/500)
Echotexture ( ) 85.8% (429/500) 74.2% (371/500)
Calcification ( ) 81.0% (405/500) 77.4% (387/500)
Aspect ( ) 79.4% (397/500) 79.8% (399/500)
Shape ( ) 77.2% (386/500) 75.0% (375/500)
Margin ( ) 83.2% (416/500) 84.0% (420/500)
Halo ( ) 71.4% (357/500) 72.2% (361/500)
Diameter ( ) 99.2% (496/500) 96.8% (484/500)
Direction ( ) 98.2% (491/500) 89.4% (467/500)
Average 84.1% 81.5%
Real image (100) 87.9% 85.3%

Attributes Synthesis FTC Accuracy, n = 500
Doctors CLIP

Composition ( ) 76.2% (381/500) 75.8% (379/500)
Echogenicity ( ) 84.2% (421/500) 82.2% (411/500)
Echotexture ( ) 64.4% (322/500) 74.2% (371/500)
Calcification ( ) 83.0% (415/500) 83.4% (417/500)
Aspect ( ) 76.2% (381/500) 79.2% (396/500)
Shape ( ) 81.2% (406/500) 75.6% (378/500)
Margin ( ) 83.2% (416/500) 83.4% (417/500)
Halo ( ) 67.4% (337/500) 85.4% (427/500)
Diameter ( ) 99.8% (499/500) 84.2% (421/500)
Direction ( ) 99.2% (496/500) 89.6% (448/500)
Average 81.5% 81.2%
Real image (100) 85.3% 83.8%

Attributes Synthesis MTC Accuracy, n = 500
Doctors CLIP

Composition ( ) 73.2% (366/500) 76.4% (382/500)
Echogenicity ( ) 76.2% (381/500) 74.6% (373/500)
Echotexture ( ) 84.2% (421/500) 91.2% (456/500)
Calcification ( ) 74.2% (371/500) 79.0% (395/500)
Aspect ( ) 84.2% (421/500) 83.8% (419/500)
Shape ( ) 84.0% (420/500) 72.4% (362/500)
Margin ( ) 80.2% (401/500) 71.4% (357/500)
Halo ( ) 74.4% (372/500) 63.2% (316/500)
Diameter ( ) 99.2% (496/500) 84.8% (424/500)
Direction ( ) 98.4% (492/500) 91.2% (456/500)
Average 82.8% 78.8%
Real image (100) 84.2% 83.9%

malignant, medullary
solid,
isoechoic,
heterogeneous
calcification absent,
round, 
irregular
unclear extension
no halo,
middle nodule
sonogram longitudinal

Doctor's judgment

Doctors agree that the nodule has the feature    
Doctors agree that the nodule doesn't have the feature 

a b

Generation Methods* Evaluation Synthesis PTC Accuracy
(n = 500)

Synthesis FTC Accuracy
(n = 500)

Synthesis MTC Accuracy
(n=500)

Imagen
Doctors

70.8% (354/500) 60.4% (302/500) 68.2% (341/500)
Stable Diffusion 73.2% (366/500) 62.6% (313/500) 69.2% (346/500)
Tiger Name -Guided 81.2% (406/500) 68.4% (342/500) 76.4% (382/500)
Imagen

CLIP
75.0% (375/500) 63.6% (318/500) 65.6% (328/500)

Stable Diffusion 72.6% (363/500) 68.2% (341/500) 67.2% (336/500)
Tiger Name -Guided 77.4% (387/500) 73.6% (368/500) 74.6% (373/500)

* Stable Diffusion and Imagen are the only two models in the comparison that use text generation.

c

malignant follicular
solid,
hypoechoic
cystic changes, 
calcification absent,
wider-than-tall, 
regular
clear
unevenly thick,
large nodule
capsular invasion, 

sonogram longitudinal

malignant, papillary
solid, 
hypoechoic,
heterogeneous,
macrocalcifications,
taller-than-wide,
irregular, 
unclear,
no halo,
middle nodule,
inferior pole, 

sonogram longitudinal

Fig. 4 | Design and results of the Turing test 3. a Presents the assessment of 50
doctors based on 10 prompts regarding the correspondence of features between
real images and Tiger-F generated images. Annotations illustrate doctors’ associa-
tions of feature descriptions with image features in ultrasound images. b Compiles
the results of correct feature judgments by doctors and the CLIP model. Both the
doctors and the CLIP model exhibit similar proficiency in feature judgment

between generated images and real images. c The results of three alternative
models (Stable Diffusion, Imagen, and Tiger-N) evaluated using physician assess-
ments and the CLIP evaluation method. The performance of these models is
inferior compared to that of Tiger-F in Fig. 5b. Source data are provided as a Source
Data file.
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MTC, respectively, compared to models without data augmentation,
and performed only 1.8% worse on average in FTC and MTC when
compared tomodels augmented with an equal number of real images.
This suggests that Tiger Model-generated data closely aligns with the
realism and diversity of real data distributions, making it a viable
method for augmenting real data samples.

With 30,000 images each forbenign andPTCcases, adding 10, 50,
and 100 images of FTC and MTC led to improvements in malignancy
diagnosis. Notably, adding 50 images increased the average AUC for
classification by0.07 ormore (SupplementaryTable 6). In addition, we
varied the volumeof benign and PTCdata in the TigerModel’s training
set to observe changes in model performance (Supplementary
Table 7). Generated images obtained from training the Tiger Model
exclusively on rare datasets are shown in Supplementary Fig. 2b.

External evaluation of the Tiger Model on public datasets
Wecarried out external evaluation experiments using both private and
public ultrasound datasets to validate the generalizability of the Tiger
Model (Tiger-F).

First, weassessed themodel’s performanceon abenign-malignant
binary classification task. The private data utilized includes 372 images
from 274 patients diagnosed with Anaplastic Thyroid Carcinoma46

(ATC, a rare thyroid cancer subtype), as well as images from patients
with specific types of breast cancer, including Fibroadenoma of the
Breast (benign; 2894 patients, 3987 images), Invasive Ductal Carci-
noma (IDC; 2083 patients, 3468 images), Infiltrating Lobular Carci-
noma (ILC; 77 patients, 100 images), and Papillary Carcinoma of the
Breast (PCB; 389 patients, 639 images). Experiments were conducted
separately on ATC data (trained on benign, PTC, FTC, MTC, and ATC;

tested on ATC) and breast cancer data (trained on benign, IDC, ILC,
and PCB; tested on IDC, ILC, and PCB, respectively), with the results
summarized in Table 4. More details of the results can be found in the
Supplementary Table 8

The results in Table 4 demonstrate that Tiger-F achieved sig-
nificantly higher testAUCand improved calibration compared toother
models. Notably, ATC served as out-of-distribution data relative to the
thyroid data previously used, and the results indicated a 12.6%
improvement in AUC over the baseline, highlighting the Tiger Model’s
capability to adapt effectively to out-of-distribution rare cancer types.
The results on the three breast cancer subtypes, particularly the rare
subtypes ILC and PCB, further validate the effectiveness of the Tiger
Model in capturing relevant features specific to these conditions.
Additional results from the external validation tests (Breast Ultrasound
BrEaST and BUSI datasets) are provided in Supplementary Table 9.

Then, we expanded the task categories to a multi-class classifi-
cation task. We used the VinDr-PCXR dataset, which comprises 9125
pediatric chest radiography studies retrospectively collected from a
major pediatric hospital in Vietnam between 2020 and 202147. Each
scan has been manually annotated by experienced radiologists,
identifying 36 critical findings and 15 diseases, with each abnormal
finding marked by a rectangle bounding box on the image. To the
best of our knowledge, this is a pediatric CXR dataset containing
lesion-level and image-level labels for multiple findings and diseases.
The dataset is segmented into 7728 training samples and 1397 test
samples, making it suitable for algorithm development. The images
were labeled for a total of 36 findings and 15 diagnoses. To test the
capabilities of the Tiger Model, we used the 36 findings from the
training set as prompts and paired them with images from the

Table 3 | Comparative analysis of Tiger Model against other data augmentation methods in the classification of benign and
malignant rare subtypes of thyroid cancer

Augmentation Method
(Augmentation data
number = 30 k)

AUROC (95% CI)

Benign vs PTC (Resnet50) Benign vs FTC (Resnet50) Benign vs MTC (Resnet50)

Valid Test Valid Test Valid Test

① No Data Augmentation 0.8532
(0.83–0.93)

0.8677
(0.83–0.92)

0.7312
(0.68–0.75)

0.7364
(0.69–0.75)

0.7438
(0.63–0.78)

0.7523
(0.67–0.79)

Basic Data Augmentation

② Basic image manipulation38 0.8763
(0.85–0.88)

0.8614
(0.84–0.87)

0.6999
(0.68–0.72)

0.6872
(0.65–0.69)

0.6988
(0.63–0.70)

0.6511
(0.63–0.66)

③ Mixing image39 0.8321
(0.81–0.84)

0.8563
(0.82–0.87)

0.6761
(0.65–0.69)

0.6321
(0.60–0.64)

0.6947
(0.64–0.72)

0.6827
(0.63–0.72)

④ Random erasing40 0.8426
(0.83–0.86)

0.8637
(0.82–0.89)

0.6590
(0.56–0.72)

0.6472
(0.62–0.73)

0.6743
(0.63–0.69)

0.7182
(0.65–0.72)

⑤ Feature space
augmentation41

0.8532
(0.83–86)

0.8452
(0.81–0.87)

0.6842
(0.65–0.73)

0.6828
(0.60–0.72)

0.7083
(0.67–0.73)

0.7427
(0.72–0.75)

Deep Learning Generation

⑥ PG-GAN42 0.8427
(0.82–0.86)

0. 8453
(0.82–0.86)

0.7022
(0.68–0.75)

0.6732
(0.63–0.72)

0.7529
(0.68–0.81)

0.7468
(0.72–0.79)

⑦ Diffusion Transformers43 0.8743
(0.84–0.92)

0.8703
(0.85–0.92)

0.7380
(0.71–0.75)

0.7328
(0.69–0.75)

0.7121
(0.65–0.73)

0.7252
(0.69–0.76)

⑧ Imagen44 0.8538
(0.82–0.86)

0.8412
(0.84–0.86)

0.7543
(0.72–0.80)

0.7577
(0.68–0.82)

0.7574
(0.74–0.82)

0.7581
(0.63–0.79)

⑨ Stable Diffusion24 0.8694
(0.84–0.89)

0.8503
(0.85–0.89)

0.7471
(0.73–0.79)

0.7737
(0.76–0.82)

0.7627
(0.74–0.82)

0.7582
(0.73–0.76)

⑩ Stable Diffusion +
ControlNet63

0.8473
(0.84–0.89)

0.8527
(0.83–0.87)

0.7033
(0.65−0.75)

0.7172
(0.69–0.74)

0.7261
(0.69–0.76)

0.7425
(0.71–0.76)

⑪ Tiger-N 0.8882
(0.84–0.89)

0.8969
(0.84–0.92)

0.8067
(0.79–0.82)

0.8132
(0.78–0.83)

0.7733
(0.76–0.83)

0.8027
(0.79–0.82)

⑫ Tiger-F 0.9127
(0.90–0.93)

0.9263
(0.85–0.94)

0.8338
(0.76–0.83)

0.8442
(0.75–0.85)

0.8043
(0.75–0.83)

0.8234
(0.78–0.85)

① refers to the baseline without any data augmentation. ② refers to Flipping, Cropping, Rotation, Translation, and Noise injection operations. ⑥⑦ refers to the type of image-to-image generation
models. ⑧⑨⑩⑪⑫ refers to the type of Text-to-image generation models. ⑧⑨⑩⑪⑫ are fine-tuned using our thyroid image-level features. ⑪ is the Tiger Model trained and generated solely using
disease subtype names as prompts. ⑫ is a Tiger Model trained and generated using the nodule image’s detailed description text as prompts.
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training dataset. We selected four diseases (Bronchitis, Pneumonia,
Bronchopneumonia, Bronchiolitis) and used their image-text pairs to
train the Tiger Model. To validate the effectiveness of our method on
rare cancer types, we under-sampled the Pneumonia class to form a
‘rare’ class, making its representation in the training set 10% of the
most common class, Bronchitis. The results in Table 5 compare the
four-class classification models with and without various types of
data augmentation. After augmentation, the four-class classification
task showed an improvement in ACC by 20.3%, and the AUC for
category Bronchopneumonia improved by 13.4%. The lowest AUC
improvement was 11.6% for category Bronchitis. In addition, the Brier
Score decreased by 44.7%. It is evident that the Tiger-F method

achieved the best performance, thereby validating the effectiveness
of the proposed model architecture on the dataset.

Discussion
This study conducted training and validation of a text-guided image
generationmodel, TigerModel, marking an instance of its application in
improving the diagnosis of rare subtypes. Indeed, although the inci-
dence rate of individual rare tumors might be low, the total number of
individuals affected by rare diseases is substantial around the world5.
Diagnostic prediction differences in specific populations can lead to
misdiagnosis, missed diagnosis, and poor prognosis, raising issues of
unfairness10. In clinical practice, the diagnosis of rare subtypes often

Fig. 5 | Effects of the number of generated images. a Comparative evaluation of
the effect of downstream tasks based on different amplification ratios of different
amplification methods in benign-malignant binary thyroid cancer prediction tasks.
The results reveal performance limitations of other methods, possibly due to
insufficient diversity in the detailed features of generated samples, while the Tiger
Model shows substantial advantages by continuously improving performance.
b Tiger data amplification and the addition of an equivalent amount of real image
amplification were compared with the results of the downstream classification of

rare subtypes. The FTC andMTCmalignant tumor classification tasks showed that
the model trained on the Tiger Model enhancement data was significantly better
than the unamplified model, and the results were similar to the real image ampli-
fication. TheAUC results are presented asmeanvalues,with error bars representing
95% confidence intervals derived from n = 50 experimental replicates for each task
setting. In each replicate trial, the basic real images (x) were selected through
bootstrap sampling from the real image set. Source data are provided as a Source
Data file.

Table 4 | External Evaluation of Tiger Model on private datasets with rare cancer subtypes

Augmentation Method Benign vs ATC* Benign vs IDC** Benign vs ILC** Benign vs PCB**

Test
(ACC, 95%CI)

Test
(AUC, 95%CI)

Test
(ACC, 95%CI)

Test
(AUC, 95%CI)

Test
(ACC, 95%CI)

Test
(AUC, 95%CI)

Test
(ACC, 95%CI)

Test
(AUC, 95%CI)

None Augmentation 0.7661
(0.69, 0.83)

0.7686
(0.72, 0.83)

0.8905
(0.89, 0.93)

0.8326
(0.80,0.86)

0.8158
(0.68, 0.92)

0.8011
(0.71, 0.98)

0.5000
(0.33, 0.67)

0.6889
(0.59, 0.93)

Stable Diffusion 0.8682
(0.83, 0.90)

0.8552
(0.82, 0.86)

0.9089
(0.90, 0.94)

0.8340
(0.81, 0.86)

0.8684
(0.76, 0.97)

0.8466
(0.72, 0.98)

0.6382
(0.60, 0.65)

0.7467
(0.70, 0.81)

Tiger-F 0.8468
(0.78, 0.90)

0.8658
(0.83, 0.88)

0.9344
(0.92, 0.95)

0.8670
(0.84, 0.89)

0.8421
(0.78, 0.88)

0.8665
(0.79, 0.88)

0.7857
(0.69, 0.87)

0.8533
(0.80, 0.89)

* the train set of augmentation models are {Benign (93220) + PTC (48585) + FTC (31725) +MTC (12910) + ATC (310)}.
** the train set of augmentation models are {Benign (3383) + IDC (2774) + ILC (80) + PCB (529)}.
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requires detailed observation of disease characteristics. Healthcare
professionals frequently misjudge rare subtype cases as common sub-
types due to their similar features. For example, Follicular Thyroid
Carcinoma (FTC) often resembles benign nodules, and Medullary
Thyroid Carcinoma (MTC) cases can be similar to Papillary Thyroid
Carcinoma (PTC) cases48,49. Misdiagnosis or missed diagnosis can
severely impact prognosis. For example, MTC can easily metastasize to
regional lymphnodes anddistant organs such as the lungs and bones. In
such scenarios, accurate preoperative diagnosis is highly beneficial. On
the other hand, Ultrasonography is one of the preferred non-invasive
methods for determining the nature and type of thyroid tumors in
clinical practice13. Ultrasound ismore cost-effective compared toCT and
MRI, and can clearly display key features for benign– malignant diag-
nosis including size, location, boundaries, and internal structure (such
as echogenicity, calcification, and vascular distribution) of thyroid
nodules50,51. Meanwhile, it can guide fine-needle aspiration biopsy
(FNAB), increasing the accuracy and safety of sampling, which is parti-
cularly important for diagnosing indeterminate nodules52. Ultrasound
can also assess the condition of cervical lymph nodes, helping to eval-
uate the presence of metastatic lesions, which is crucial for staging and
treatment planning of thyroid cancer53,54. Therefore, improving the
diagnostic performance of thyroid ultrasound imaging is of significant
clinical importance, especially for the diagnosis of rare subtypes.

The scarcity of rare disease samples can lead to issues of insuffi-
cient sample diversity and representativeness, which is addressed by
this study. Literature examining the ultrasonic diagnosis of thyroid
cancer subtypes often relies on a comprehensive judgment based on
the co-occurrence and synergistic features of ultrasonography55. The
training of the generative model is a process of systematically arran-
ging and combining ultrasonographic features according to disease
subtypes. This approach enabled the generation of images corre-
sponding to rare subtypes through clinical knowledge-guided image
generation. In diagnostic tasks, the Tiger Model exhibited a notable
improvement in detecting rare subtypes, with an increase of over 10%.
It is pertinent to note that the features of rare subtypes are mostly
composed of combinations and permutations of benign and common
features, along with their own unique characteristics56,57. The incor-
poration of text-guided feature training with extensive sample sizes
significantly aids the model in migrative learning of features in rare
diseases, which effectively addresses the challenges posed by sample
scarcity in training. Consequently, the Tiger Model has enhanced the
generalization ability of diagnostic models across different subtype
data, demonstrating effectiveness across multiple datasets and
ensuring equitable benefits for specific populations. This study pri-
marily focuses on the application of the Tigermodel in thyroid cancer.
However, external evaluations also demonstrate that the Tiger model
exhibits excellent generalization performance and can be effective in
other cancer types.

Compared to conventional image generationmethods, text-guided
image augmentation yields more diverse and clinically relevant data,
significantly elevating the predictive performance of models. Our
experimental results reveal that traditional training methods pre-
dominantly rely on image characteristics, which poses a challenge in
generating varied images from the limited samples available for rare
diseases (more high-quality and defective generated ultrasound images
of thyroid in the Supplementary Fig. 3). In diagnostic tasks, the accuracy
of conventional methods plateaus after 30k images. Conversely, the
Tiger Model leverages text-guided image generation to produce a
broader range of images with richer features, leading to continued
enhancements in predictive accuracy. Rare diseases, characterized by
their low prevalence and insufficient sample sizes, often lack cases
demonstrating specific feature combinations. This is a key obstacle for
prevalent research that employs category-level text descriptions to
guide the generation of data for prevalent diseases or common sub-
types in this area, because the efficiency of feature extraction from
existing images is limited, which canbe remedied through supplemental
guidance using extensive, literature-based descriptions of disease
characteristics. This approach aims to align the sample distribution
more closely with actual datasets. In addition, images generated from
literary sources carry significant medical interpretability and clinical
relevance, offering potential for application in clinical studies where
actual samples are scarce but theoretical support exists.

This study designed three types of Turing Tests to comprehen-
sively evaluate the authenticity and diversity of generated images, as
well as the model’s control over feature details and user comprehen-
sibility. Compared to other state-of-the-art generative sample ampli-
fication methods, the Tiger Model shows superior performance of
more than 10% higher in terms of scores for realism and diversity,
lending to its level of being clinically comprehensible. In addition, the
ability of the Tiger Model to control fine details in image generation
enhances user interaction, improving the system’s operability and
editability. Such features make the Tiger Model particularly suitable
for practical clinical applications in the medical field. The Tiger Model
holds significant potential for assisting doctors in accurately identify-
ing detailed disease characteristics, particularlywhen dealingwith rare
diseases and subtypes. It can aid in confirming diagnoses and reducing
the risk of misdiagnosis and missed diagnoses. This is crucial for
enhancing the overall quality of healthcare services and ensuring
patient safety. In addition to assisting with diagnosis, doctors can
utilize clinically guided disease feature generation to visualize and
explain the decision-making process. This helps doctors understand
the complex manifestations and detailed differences of diseases, par-
ticularly in cases that are less frequently encountered in daily practice.
Through interaction with the advanced model, clinicians may also
continuously update their knowledge base and experience level
(Supplementary Fig. 4 for more details).

Table 5 | External Evaluation of Tiger Model on VinDr-PCXR dataset

Augmentation Methods VinDr-PCXR: Four-Classification {Bronchitis, Pneumonia, Broncho-pneumonia, Bronchiolitis}(ResNet-50)

Test
(ACC, 95%CI)

Test
(AUC, 95%CI)

Brier Score

Mean Bronchitis Pneumonia Broncho-
pneumonia

Bronchiolitis

None Aug 0.6842
(0.66–0.71)

0.7031
(0.66–0.72)

0.6982
(0.67–0.73)

0.6742
(0.64–0.69)

0.7173
(0.70–0.73)

0.6491
(0.63–0.67)

0.3321

Stable Diffusion 0.7301
(0.72–0.74)

0.7423
(0.72–0.75)

0.7214
(0.71–0.73)

0.7341
(0.71–0.74)

0.7323
(0.71–0.75)

0.6930
(0.68–0.71)

0.2472

Tiger-F 0.8229
(0.81–0.84)

0.8303
(0.82–0.85)

0.7791
(0.76–0.79)

0.8302
(0.83–0.84)

0.8131
(0.80–0.83)

0.7291
(0.70–0.73)

0.1837

The number of augmentation image are Bronchitis (0) Pneumonia (606) Bronchopneumonia (237) Bronchiolitis (275). Generate data to reduce the imbalance between classes.
All generationmodels are trained by VinDr-PCXR train set including images and texts. ‘Stable Diffusion’ refers to Stable Diffusionmethods with image-level feature prompts. ‘Tiger-F’ refers to Tiger
Model with image-level feature as prompts. Prompts are 36 findings of chest radiography, and the foreground-background segmentation model for chest X-rays uses TorchXRayVision71.
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The study validated the few-shot generation capabilities of the
Tiger Model using a small dataset. The results demonstrated that even
with a limited set of 20 images, the model could generate diverse,
realistic, detailed, and comprehensible images, contributing to
improved diagnostic performance. Currently, there are numerous
advanced artificial intelligence algorithms designed for diseases with
abundant standardized data. These algorithms rely heavily on high-
qualitymedical sample annotations for initial training, especially in the
burgeoning era of large-scale models58. However, this ideal often
deviates from reality. Statistics indicate the existence of hundreds of
rare diseases and subtypes59, where data collection is hampered by
limited samples, patient privacy concerns, and data security chal-
lenges. Moreover, the annotation of medical images incurs substantial
costs, requiring specialized tools and the expertise of medical
professionals60. A representative existing method utilizes semantic
knowledge from diffusion models to identify semantic corre-
spondences in natural images, which is locating positions with the
same semantic meaning across multiple images61. This approach
optimizes the prompt embeddings of generative models to maximize
attention to regions of interest. These optimized embeddings capture
semantic information about locations, which can then be used to
prompt semantic positions on another image. For datasets with little
segmentation labels, this type of approach can be combined with the
proposed Tiger Model to achieve text-guided segmentation of nodule
regions. Despite the scarcity of data in rare subtypes, the feature dis-
tribution for specific attributes remains relevant and in-domain, con-
sistent with clinical diagnosis. During the training of the Tiger Model,
textual guidanceassists in thedisentanglement of features andenables
the reutilization of attributes learned from common subtypes. This
method shows potential for advancing the understanding of rare dis-
eases and influencing the development of related health policies in the
future.

This study, however, is not without limitations and areas for fur-
ther exploration. Primarily, due to constraints in sample collection, the
study’s focus was restricted to thyroid cancer subtypes. Future
research should extend this approach to a wider range of rare diseases
and patient subgroups, including different age, gender, nation or
ethnic groups, to evaluate its broader medical significance. Addition-
ally, while this study concentrated on the improvement in diagnosing
rare diseases through text-guided image generation, it did not provide
adetailedquantitative analysis of the relationshipbetween the number
of generated samples and predictive accuracy. Future studies should
investigate these dynamicsmore thoroughly. Furthermore, during the
training process, a small fraction of generated samples exhibited
quality issues, likely attributable to the unique challenges of medical
imaging. Future efforts will aim to identify factors influencing medical
image quality and develop strategies to address these challenges.

Tiger Model, as a text-guided image generation methodology, is
adept at synthesizing clinically relevant and trustworthy high-fidelity
medical data based on detailed disease feature descriptions. Its ability
to control the generation of lesion features at a granular level is crucial
for disease understanding and facilitating user-friendly human-
machine interactions. Looking ahead, it is anticipated that the Tiger
Model will find applications in the analysis of rare diseases and sub-
groups, improving equitable access for minority populations and
enhancing the system’s generalizability and expedite the translation of
medical AI innovations into practical applications.

Methods
Ethical issues
This study was approved by the institutional review board (IRB) of
Shanghai Tong Ren Hospital and undertaken according to the
Declaration of Helsinki. Informed consent from patients with thyroid
cancer and controls was exempted by the IRB because of the retro-
spective nature of this study.

Data collection and literature collection process
We retrospectively collected preoperative thyroid ultrasound images of
patients undergoing thyroidectomy. Inclusion criteria include: age
between 18 and 75 years old, with a median age of 38, and female
patients accounted for 63%, thyroid nodules size ranging from0.1 cm to
1.9 cm, with an average size of 0.44 cm, postoperative pathologically
confirmed thyroid cancer; 68,386 patients met one of the following
conditions: (1) postoperative pathologically confirmed thyroid cancer or
benign diagnosis; (2) After more than one year of follow-up by experi-
enced radiologists, it was diagnosed as benign. After inclusion, patients
who met one of the following criteria were excluded: (1) other life-
threatening disease comorbidities; (2) Preoperative ultrasound reports
were lacking or incomplete; (3) Poor ultrasonic image quality; (4) Dis-
puted pathological diagnosis; (5) History of thyroidectomy or other
head and neck tumors. The patient’s demographic information, Thyroid
Imaging Reporting and Data Systems (TIRADS) grade62, and post-
operative pathology were collected at the same time. Specifically, for
benign patients, there are two groups: one group consists of patients
who underwent surgery and were confirmed to be benign (initially
suspected to have a high likelihood ofmalignancy), and the other group
includes patients who were confirmed to be benign through 5 years of
follow-up. Sex information was based on self-report and ultrasound
report, but not included as variables in the analytical framework, as the
study focused on rare thyroid images generations. We included all eli-
gible patients from four top-tier hospitals from July 2013 to October
2023 (List of hospitals see Supplementary Method 2) and divided the
patients into training set and a validation set, and includedpatients from
six independent institutions as the external test set. The acquisition and
quality control of thyroid ultrasound images were conducted using
various ultrasound machines, with specific model details and quality
control measures outlined in Supplementary Method 3. Our study
population came from different regions of China, includingmulti-ethnic
groups. 50 senior physicians supervised the entire data collection pro-
cess and data Quality control, all of which passed Quality validation by
doctors. Their average clinical duration was more than 5 years, and the
correct diagnosis rate of common thyroid cancer subtypes (PTC) was
more than 87.9%. TIRADS scores were evaluated and recorded by
experienced sonographers. The correspondence between text and fea-
tures is derived from the descriptions in the ultrasound reports. If
descriptions are lacking, they are added by two ultrasound specialists
with over five years of experience, based on the ultrasound images and
corresponding pathological diagnosis reports. Patient information is
used to link the ultrasound images, reports, and pathological informa-
tion. The subtyping diagnoses from the ultrasounds are confirmed by
pathological results.

The literature search conducted in this study involved keywords
such as “thyroid ultrasonic image”, “PTC,” “FTC,” “MTC,” and similar
terms. Articles were selected based on the presence of statistical tables
illustrating ultrasonic features or the inclusion of ultrasonic images
with specific feature descriptions in the text. The results of the litera-
ture collection are presented in the Supplementary Table 10, encom-
passing summaries of Benign characteristics, PTC features, FTC
features, MTC features, and a collection table for the four ultrasound
image prompts (Supplementary Data 1).

The utilized textual reports are divided into those from the hos-
pital and those from the literature. The reports from the hospital were
generated by ultrasound specialists and clinical surgeons with over 5
years of experience. All the reports were carefully verified by 20
ultrasound specialists and clinical surgeons using standardized ter-
minology. The data processing details of the Condition FG image and
Condition BG image are in Supplementary Method 4.

Tiger Model architecture
The devised Tiger Model primarily consists of three functional mod-
ules, namely the Coarse-Training module, Fine-Training module, and
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Attentional Fusionmodule. The image generated byCoarse-Training is
displayed in Supplementary Fig. 2a. The Fine-Trainingmodule consists
of an FG-Encoder and a BG-Encoder, each of which incorporates a
ControlNet structure formulated by replicating and finetuning the
encoder and middle blocks from the pretrained Stable Diffusion
model, following63. The outputs of both the FG-Encoder and BG-
Encoder are channeled into an Attentional Fusion module for inte-
gration before being incorporated into the middle block and the
decoder of the Stable Diffusion model. Within both FG-Encoder and
BG-Encoder, we implement a condition encoder f e for text conditions
(prompt) and f i for image conditions (mask image or Sobel map).

Weighted-spatialtransformer
We implement the basic Stable Diffusion (SD) model as a Coarse-
Training module24. We utilized a standard U-Net model with encoder
blocks (12 blocks), a middle block (1 block), and decoder blocks (12
blocks) to form the backbone of the SD model. Denote the U-Net
model as ϵθ. During inference, given a text prompt y, a text encoder
(CLIP encoder) first extracts its text representation f e yð Þ, With
classifier-free guidance (CFG)64 and Denoising Diffusion Implicit
Models (DDIM) sampling65, the U-Net predicts a latent representation
ϵθ f e yð Þ� �

, which is then used by an image decoder to construct the
output image via the latent representation.

The latent representation is obtained through the StableDiffusion
process24. Through time t 2 Uniformf1, : : : ,Tg, themodel ϵθ predicts a
denoised variant of its input image xt, which is a noisy version of the
original image x with noise ϵ. It is learned through the objective:

L=Ex, ϵ�Nð0, IÞ, t kϵ� ϵθðxt , tÞk22
h i

ð4Þ

Where,Nð0, IÞ refers to the standard normal distribution. However, in
our thyroid ultrasound data, the images directly generated by the
coarse trained Tiger Model are plagued by issues pertaining to details.
For example, the edges of nodules are often deformed; The nodules
are usually cavernous and do not contain the details of the lesion; The
thyroid is often simple in shape and lacks diversity; The authenticity of
surrounding tissues, such as trachea and blood vessels are insufficient
(see Supplementary Fig. 1a).

To overcome the issues pertaining to detail in Stable Diffusion
model-generated images, we borrowed from ControlNet and imple-
mented two symmetric ControlNet structures, namely an FG-Encoder
and a BG-Encoder. The two Encoders are formulated to implement
different functions in the Fine-Training module, each containing 12
Encoder Blocks (three blocks per size, encompassing sizes 64 × 64,
32 × 32, 16 × 16, and 8 × 8). FG-Encoder is used for detailed feature
control of nodule generation, while BG-Encoder is used for back-
ground detail generation.

During model fine-training, we used segmentation model to seg-
ment the tumor (foreground, abbreviated as FG) region, generating
the Condition FG image (here we employ YoloV866), while the Sobel
edge detection algorithm67 is employed to generate feature edgemaps
for obtaining the region outside the tumor (background, abbreviated
as BG), resulting in the Condition BG image. The segmentation model
serves to localize the relative positions of the thyroid and nodules
within the training dataset, supplementing textual descriptions with
detailed descriptions of nodule locations. Particularly, by analyzing the
location statistics of nodules, they can be categorized into the inferior
pole, middle pole, or upper pole in the “Nodule Location” section.
During downstream image generation, models trained with detailed
location descriptions can customize the shape and position of the
nodules relative to the thyroid according to user requirements. The
prompt includes detailed descriptions of foreground-background
information, such as morphological features, positional details, and
multiple characteristics guiding clinical assessments of malignancy
levels (Fig. 1 and Supplementary Table 1). These conditions prompts

aid in optimizing the model to generate images with more precise
detailed features that better align with the actual data distribution.

The Condition FG image and Condition BG image are separately
fed into the FG-Encoder and BG-Encoder. In addition, images with
added noise are simultaneously directed into both encoders. Fur-
thermore, the Condition FG prompt and Condition BG prompt
undergo embedding before entering the model. Adjustments are
made to the Cross Attention weights during forward propagation of
the FG-Encoder to enhance focus on rare samples. Moreover, a Fusion
Module is integrated between the FG-Encoder and BG-Encoder,
enabling feature fusion of corresponding outputs from the FG-Block
and BG-Block at each layer. These fused features, combined with
outputs from the SD-Encoder, enter the SD-Decoder. Injected noise
latent vectors are inputted into theU-Net to estimate noise, and the KL
divergence loss is computed by comparing these estimated noise
outputs with the true noise information labels, subsequently updating
the model parameters. Zero convolution layers, initialized with zero
weights to protect the pretrained backbonemodel from initial training
noise, are gradually optimized during ControlNet training through
backpropagation63.

An image x fixedwith aMarkov chain that gradually addsGaussian
noise and xt (t is uniformf1 . . .Tg) is considered a noisy version. For a
conditional image, we first obtain the condition FG image xFG and the
BG image xBGfromx. xFG used pretrained yolov8 to mask the nodule
regions of x, the mask map input contains the position and shape
information of the nodule. xBG is the background map input of x
generatedby the Sobel edgedetection algorithm. Then, xt , xFG, xBG are
encoded through distinct encoders f i into zt , zFG and zBG. Meanwhile,
for the given prompt y, we use keyword detection based on keywords
shown in Table 2. We divide y into two prompts, describing the edge
and internal morphology of the nodule and background information,
as yFG and yBG respectively. Through the text encoder to get their
representation f e yFG

� �
and f e yBG

� �
, f e here is a type of the public

training CLIP model of text encoder37.
FG-Encoder takes zFGt = zt + zFG as input and f e yFG

� �
as a condition

to infer the characteristics of the detailed content of the nodular
region, denoted as FFG; BG-Encoder takes zBGt = zt + zBG as input and
f e yBG
� �

as a condition to infer the detailed content of the background
region, denoted as FBG. Within both FG-Encoder and BG-Encoder, we
mapped the condition to the intermediate layers of themodel through
a cross-attention layer, based on the following formula:

Q=φi zFGt
� �

Wi
Q ð5Þ

K = fe yFG
� �

Wi
K ð6Þ

V = fe yFG
� �

Wi
V ð7Þ

Attention Q,K ,Vð Þ= softmax
W ðQKT Þffiffiffi

d
p

 !
V ð8Þ

Where, φi z
FG
t

� �
is the (flattened) intermediate representation at the ith

layer, while Wi
Q, W

i
K and Wi

V are the learnable parameters of the
attention layer; d is the representation dimension; W 2 fW FG,WBGg is
an auxiliary weight matrix used to scale the impact of different key-
words in y. In BG-Encoder,WBG = I is an identity matrix; In FG-Encoder,
W FG = ωij

� �
is determined based on the following formula:

ωij =a+
b

1 + e bδj
ð9Þ

Where, ωij can be viewed as the scaling factor of the attention weight
between tokeni and tokenj; a and b are hyperparameters determined
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through experiment, we set a = 0.6 and b = 5, b is approximately
obtained from rare subtypes samples/total samples; δj is determined
based on the following formula:

δj =

0 , tokenj 2 f txt yprFG
� �� �

τj , tokenj 2 f txt yjnFG
� �n o

1, otherwise:

8>><
>>: ð10Þ

Here, τj is the term frequency of tokenj in the one training batch68,
which is the number of times a word appears divided by the total
amount in one batch. yprFG and yjnFG refers to the particular terms and
joint terms (according to Supplementary Table 1) within yFG respec-
tively. ‘Otherwise’ means common terms and others. In the experi-
ment, during training, we calculate τj within every batch.

Attentional fusion
The Attentional Fusion module integrates the outputs of FG-Encoder
and BG-Encoder in ControlNet module and incorporate them into the
Stable Diffusion module.

Due to the differing focus and scope of information encoding
between the FG-Encoder and BG-Encoder, the features extracted by
them cannot simply be concatenated together. Instead, they require
interdependent training of foreground and background features.
Specifically, the foreground is determined based on background
details to define the edge morphology, while the background gen-
erates textures of reasonable scales based on the foreground position.
To facilitate this interaction, we employed an attentional fusion
module, composed of two convolutional modules.

The FusionModule69 is responsible for integrating the foreground
feature FFG and the background featureFBG during the trainingprocess
of the two encoders. Thismodule strengthens the connection between
foreground and background, avoiding later separate generation pro-
cesses from producing unrelated errors that deviate from natural data
patterns. The blue blocks represent the FusionModule, which consists
of two convolutions (Fig. 2). Conv1 comprises {Point-wise Conv + ReLU
+ Point-wise Conv}, while Conv2 comprises {GlobalAvgPooling + Point-
wise Conv +ReLU+ Point-wise Conv}.

F fusion =CðFFG ⊚ FBGÞ� FFG �ð1� CðFFG ⊚ FBGÞÞ� FBG ð11Þ

FFG ⊚ FBG = FFG+BG � sigmoid Conv1 FFG+BG

� ��Conv2 FFG+BG

� �� �
ð12Þ

Here, ⊕ denotes the broadcasting addition; ⊗ denotes the element-
wise multiplication; FFG+BG = FFGFBG. When feeding F fusion back into
Stable Diffusion, we employ CFG Resolution Weighting. The final
output of the model is:

FPRED = FSD +βCFGðFfusion � FSDÞ ð13Þ

Where, FSD is the direct output of the Stable Diffusionmodule, F fusion is
the output after passing through the Fusion Module, and βCFG repre-
sents the scaling hyperparameter introduced by CFG metric.

Training details
During model training, we initially train the basic Stable Diffusion
model with the <prompt-image> pairs to enable themodel to learn the
general characteristics of thyroid cancer ultrasound images. Impor-
tantly, during Coarse-Training, the Fine-Training Module is not inclu-
ded in the training process. After completing the pre-training, to
achieve controllability in the generated images, we further train the
Coarse-Trainingmodulewithin the TigerModel using both the prompt
and the generated condition image as condition information. More

Training parameter details about the Tiger Model are in Supplemen-
tary Method 4.

The FG-Encoder needs to focus on generating the nodular part.
Therefore, we use amasked image to highlight the nodular area, which
is then passed into themodel for targeted training. During the training
process, only the parameters of the FG-Encoder and the FG-Middle
sections are updated. The loss function guiding the updates to the FG-
Encoder model during training is as follows:

LFG =MSEðx̂FG, xFGÞ ð14Þ

During training, themodel only updates parameters related to the
BG-Encoder and BG-Middle sections. The loss function guiding the
model’s updates based on the BG-Encoder model during training is as
follows:

LBG =MSEðx̂BG, xBGÞ ð15Þ

In the experiment, due to a limited variety of corresponding
prompts for background organization, achieving controlled genera-
tion was challenging. Therefore, Sobel edge detection operators were
utilized to retain essential structural attributes of the images. These
edge detection operators were incorporated as crucial distribution
information for the background during joint training with prompts
(illustrative effects of Sobel edge detection operators can be observed
in Supplementary Fig. 5). Sobel edge detection operators derive
essential structures from real thyroid images, such as trachea, thyroid
lobe, carotid artery, resembling sketches or outlines.

Notably, both FG-Encoder and BG-Encoder are equipped with
individual optimizers (both utilizing AdamW) and undergo parameter
updates by backpropagating their respective losses. The training is
conducted using 32 A100 Graphics Processing Units (GPUs) and con-
tinuous for 82 h. More Training parameter details about YoloV8, CLIP,
Resnet50 are in Supplementary Method 5.

Inference details
TigerModel’s application scenarios (inference) can bedivided into two
categories (Supplementary Fig. 6). The first type is Diversify Inference,
which involves generating thyroid feature textual prompts based on
prompt input combinations. Tiger Model generates synthetic images
based on the prompt content, controlling the synthesis of corre-
sponding fine-grained foreground-background features within the
model. The second type is Refinement Inference, where the input
comprises real images. Tiger Model generates images consistent with
the subtype of the input image. Both generation scenarios allow for the
control of corresponding foreground-background features as needed
during the generation process.

During the Inference process, the FG-Encoder and BG-Encoder
trained in this context can be used separately or in combination. To
meet the data augmentation requirements, the choice can be made to
solely utilize the FG-Encoder to diversify nodules within images.
However, it’s crucial to consider that when the augmentation quantity
is substantial, leaving the background unchanged may lead to model
overfitting and local optima. Therefore, we recommend a methodol-
ogy that involves using theFG-Encoder to generate the foregroundand
subsequently using the BG-Encoder to generate the background. All
the results in the results section of this work follow this approach.
Generate foreground and background pictures respectively, and dis-
play them in Supplementary Fig. 5b.

Source of the text used by the FG-Encoder in the Inference pro-
cess: During the augmentation process, the diversity and accuracy of
the text directly impact the final model’s performance. In this task, for
the substantially larger datasets of Benign and PTC, the text used
during inference is randomly selected from the entirety of the Benign
and PTC datasets. However, for the smaller datasets of FTC and MTC,

Article https://doi.org/10.1038/s41467-025-59478-8

Nature Communications |         (2025) 16:4449 13

www.nature.com/naturecommunications


leveraging prior knowledge from medical literature summarizing the
characteristics of these rare subtypes and instances appearing in arti-
cle illustrations serves as descriptions for FTC and MTC. This ensures
that the guiding text for the generated images is derived from real-
world existent descriptions. (Supplementary Method 6).

Source of the Sobelmaps used by the BG-Encoder in the Inference
process: In background generation, the Sobel maps determine the
specificpositions and shapes of various areaswithin thebackground. It
is recommended to derive Sobel maps from authentic data sources, as
manually created Sobel maps may introduce significant distortions.
Sobel maps can be derived from a substantial volume of existing data,
such as benign, PTC, and normal thyroid images. Sobel maps extract a
large number of commondata backgrounds as the background of rare
data, which greatly improves the diversity of rare data backgrounds
and ensures the effectiveness. See Supplementary Fig. 5a for more
details. We opt to generate Sobel maps from real images (i.e., Benign
and PTC), ensuring that surrounding organs appear in their correct
positions during background generation. The Tiger Model then com-
plements different subtypes nodule details based on this generated
structure. During the experiment, we guarantee that the Sobel maps
are not come from any test set and verification set, and test set and
verification set are completely independent. In background genera-
tion, we distinguish between two kinds of ultrasonic positions, one is
transverse and the other is longitudinal. This setting follows standard
practices in the clinician’s diagnostic process. See Supplementary
Fig. 5b formore details. Ablation study of the Tigermodel is presented
in Supplementary Table 13.

To effectively generate the attributes of Nodule Location and
Extension (Supplementary Table 1), we rely on a well-trained thyroid
shape segmentation model to obtain the thyroid’s segmented
region(Supplementary Fig. 7). The results of different segmentation
methods are compared in Supplementary Tables 11 and 12. During FG-
Inference for Condition FG image preparation, we alter the mask’s
region (white area) positions. For the Nodule Location definition,
altering the mask’s position relative to the thyroid’s edge is necessary
based on textual guidance. The thyroid region is vertically divided into
three equal parts—the inferior pole, middle pole, and upper pole. For
instance, when the text specifies “middle pole,” the model randomly
changes themask region’s positionwhile ensuring its centroid remains
within the middle pole area. Implementing Extension involves setting
themask region’s edge to intersect with the upper edge of the thyroid,
defining the maximum distance of intersection within the range of [0-
10] indices, as depicted in Supplementary Fig. 5c.

The evaluation criteria used in this article, including AUROC,
Accuracy, Sensitivity, Specificity, CLIP Score, SSIM, CMMD, GS, D&C,
FID, IS, Brier Score, among others, are detailed in Supplementary
Method 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its Supplementary Information files. The minimum thyroid
dataset required to interpret, verify, and extend the results of this
study — including model predictions and performance metrics — has
been deposited in Hugging Face under accession code: https://
huggingface.co/datasets/FangDai/Thyroid_Ultrasound_Images. The
Source Data file containing the detailed model outputs and key eva-
luation metrics is also available at https://github.com/fangdai-dear/
Tiger-Model/blob/master/dataset/SourceData.xlsx. This includes: -
Pre-processed imaging data (ultrasound images with anonymized
metadata). - Clinical feature tables (age, gender, tumor size) with all
direct identifiers removed. -Due to ethical restrictions and patient

confidentiality agreements, the full dataset (e.g., raw imaging data,
detailed clinical records) cannot be made publicly available. This per-
tains to detailed clinical records and high-resolution imaging data that,
even after de-identification, may pose a risk of re-identification given
the unique characteristics of thyroid cancer cases. Researchers who
wish to access additional data for non-commercial academic purposes
may submit a formal request to the corresponding author. Requests
will be reviewed by the institutional ethics committee and data cus-
todians. The following conditions apply: -Purpose: Data will only be
shared for research purposes that align with the original study objec-
tives. -Access Restrictions: Requesters must sign a data use agreement
prohibiting re-identification or redistribution. -Data Retention:
Approved data will be available for 2 years from the date of publica-
tion. -The chest X-ray dataset is sourced from https://physionet.org/
content/vindr-pcxr/1.0.0/, and the breast cancer ultrasound dataset
used in the Supplementary is available from https://github.com/best-
ippt-pan-pl/BrEaST/ and https://scholar.cu.edu.eg/?q=afahmy/pages/
dataset. The data for each figure/table in this study are included in the
Source Data section, with the file named Source Data.xlsx. This file can
also be downloaded from the following link: https://github.com/
fangdai-dear/Tiger-Model/blob/master/dataset/Source
Data.xlsx. Source data are provided in this paper.

Code availability
The code and models are available on both GitHub (https://github.
com/fangdai-dear/Tiger-Model.git) and Hugging Face (https://
huggingface.co/FangDai/Tiger-Model). Installation instructions are
provided in both repositories. We have provided the permanent
reference for the version of the code used in this study70. The code is
open-source and released under the Apache License 2.0, which allows
free use, modification, and redistribution under its terms. The imple-
mentation is based on multiple publicly available open-source pro-
jects. We have retained all original license information and copyright
notices in the corresponding sourcefiles. Specifically, we acknowledge
the following contributions: Diffusers by HuggingFace (Apache 2.0):
https://github.com/huggingface/diffusersStable Stable Diffusion by
Rombach et al. (Apache 2.0): https://github.com/CompVis/stable-
diffusion. ControlNet (MIT): https://huggingface.co/papers/2302.
05543. Fusion Module by Yimian Dai (MIT): https://github.com/
YimianDai/open-aff.
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