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Genome-wide analyses of variance in blood
cell phenotypes provide new insights into
complex trait biology and prediction

Ruidong Xiang 1,2,3,4,5 , Chief Ben-Eghan2,6,7,8,9, Yang Liu1,2,6,7,8,9,
David Roberts10,11, Scott Ritchie 1,2,6,7,8,9, Samuel A. Lambert 1,2,6,7,8,9,
Yu Xu 2,6,7,8,9, Fumihiko Takeuchi 1,12 & Michael Inouye 1,2,6,7,8,9

Blood cell phenotypes are routinely tested in healthcare to inform clinical
decisions. Genetic variants influencing mean blood cell phenotypes have been
used to understand disease aetiology and improve prediction; however, addi-
tional information may be captured by genetic effects on observed variance.
Here, we mapped variance quantitative trait loci (vQTL), i.e. genetic loci asso-
ciated with trait variance, for 29 blood cell phenotypes from the UK Biobank
(N ~ 408,111). We discovered 176 independent blood cell vQTLs, of which 147
were not found by additive QTL mapping. vQTLs displayed on average 1.8-fold
stronger negative selection than additive QTL, highlighting that selection acts
to reduce extreme blood cell phenotypes. Variance polygenic scores (vPGSs)
were constructed to stratify individuals in the INTERVAL cohort (N ~ 40,466),
where the geneticallymost variable individuals had increased conventional PGS
accuracy (by ~19%) relative to the genetically least variable individuals. Genetic
prediction of blood cell traits improved by ~10% on average combining PGS
with vPGS. Using Mendelian randomisation and vPGS association analyses, we
found that alcohol consumption significantly increased blood cell trait var-
iances highlighting the utility of blood cell vQTLs and vPGSs to provide novel
insight into phenotype aetiology as well as improve prediction.

The complete blood count is amongst the most routinely ordered
clinical laboratory tests performed globally1. Blood cells play crucial
roles in a variety of biological processes, such as oxygen transport, iron
homoeostasis, and pathogen clearance2–4, and serve as key biological

conduits for interactions between an individual and their environment.
The genetic architecture of blood cell traits has been recently eluci-
dated by genome-wide association studies (GWAS)5,6 and, consistent
with their well-known role in disease and clinical testing, blood cell
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traits are both highly heritable and have been genetically linked to
many diseases, including cardiovascular diseases7, mental disorders8

and autoimmune diseases9.
Despite the success of GWAS, our understanding of the genetic

architectureof complex traits has been limitedby a focus onmean trait
values andhow these changewith respect to genotype. The genetics of
trait variance, how individual measurements deviate from the mean
trait value across genotypes, is far less studied. It has long been known
that trait variance, e.g. for gene expression10,11 and metabolic rate12,
plays a role in an organism’s fitness and phenotypic penetrance. The-
ories support the existence of selection on trait variance to improve
fitness13,14. However, there are limited observations of selection on
clinically significant traits. Variance quantitative trait loci (vQTLs) have
been identified for human body composition traits, such as bodymass
index (BMI)15,16, and for cardiometabolic biomarkers17. vQTLs have also
been linked to gene-by-environment interactions (GxE) or gene-by-
gene interactions (GxG)15–18. vQTL studies of blood cell traits are cur-
rently lacking, despite their central role in biological processes and
ubiquity in clinical testing.

Polygenic scores (PGS) are being intensively studied in variousways
to determine their utility in clinical practice19–21. PGS for blood cell traits,
in particular, are both highly predictive and show sex- and age-specific
interactions6,7. How to treat trait variance and vQTLs with respect to
phenotype prediction is relatively unexplored. A variance PGS (vPGS) to
predict the trait variance may be estimated from the effect sizes
obtained from a genome-wide vQTL analysis. In theory, a PGS is differ-
ent from a vPGS, where the former may be used to stratify individuals
based on the inherited trait level while the latter stratifies individuals
based on the inherited deviation of individuals from the population
mean. It is known that the accuracy of a PGS varies across individuals as
a function of the genetic distance from the reference population22. As a
vPGS may represent the outcome of GxE16 or GxG due to the nature of
vQTLs15, examining a PGS alongside vPGS may reveal individual varia-
bility in PGS accuracy that can be accommodated.

Here, we conduct genome-wide vQTL analysis for 29 blood cell
traits in individuals of European ancestries in UK Biobank6,7 and the
INTERVAL cohort23. We compared the discovered vQTL with conven-
tional QTL and analysed vPGS with conventional PGS in the prediction
of blood cell traits. We found novel vQTL which displayed strong
selection to reduce blood cell trait variances. Finally, we demonstrate
the use of vPGS in stratifying individuals, resulting in differing PGS
performance, and then show that PGS performance within vPGS strata
is associated with lifestyle factors.

Results
Genome-wide discovery and annotation of vQTLs in the UK
Biobank
We performed GWAS of variance in 29 blood cell traits from the
UKB17,18 (Average sample size = 402,142, Supplementary Data 1). The
processing of phenotypes and genotypes followed previously estab-
lished protocols with stringent quality control and normalisation
procedures5–7. Levene’s test24, a robust test for equality of variances24

across (genotype) groups, as implemented inOSCA25, was used tomap
vQTLs for each of the 29 blood cell traits.We also comparedOSCA and
an alternative method, the deviation regression model (DRM)26, by
checking their summed polygenic effects of vQTLs across INTERVAL
individuals, which exhibited a correlation of 0.904, suggesting high
consistency (Supplementary Fig. 1). The inflation factors and lambda
GC were assessed using LD Score regression (LDSC)27, a GWAS-
summary data-based genetic analysismethod. Across the 29 traits, the
average lambda GC and LDSC intercepts were 1.03 and 1.007,
respectively (Supplementary Data 2), indicating negligible inflation. At
a study-wide significance level of p < 4.6 × 10–9 and with clumping
r2 < 0.01, we identified 176 independent vQTLs (Fig. 1a, Supplementary
Data 3, “Methods”).

Basophil cell count (baso) and basophil percentage of white cells
(baso_p) yielded the largest number of independent vQTLs (N = 27 and
23, respectively), whereas high light scatter reticulocyte count (hlr) did
not have any study-wide significant vQTLs (Supplementary Data 4).
Most vQTL were associated with the variance of only one or two traits
and many of these traits were correlated (Supplementary Fig. 2 and
Supplementary Data 3). By counting the number of blood cell traits
associated, the most pleiotropic lead vQTL was located in gene HBM
(haemoglobin subunit mu) and was associated with the variance of
four traits (red blood cell count, mean corpuscular volume, mean
corpuscular haemoglobin and mean corpuscular haemoglobin con-
centration, Supplementary Data 3). The second-most pleiotropic lead
vQTL related to long intergenic non-coding RNA LINC02768 was
associatedwith 3 traits [monocyte percentage of white cells (mono_p),
baso and baso_p, Fig. 1b]. To account for the phenotypic correlations,
the pleiotropy of trait variance was further assessed using HOPS28,
which found that 495 SNPs (out of 71,216 input SNPs) showed sig-
nificant pleiotropy (Supplementary Data 5). In this analysis, the most
significant pleiotropic locus was LINC02768 (Supplementary Data 5).

vQTLswere largely distinct fromadditiveQTLs.Of 176 lead vQTLs,
147 were not detected as additive QTLs by Vuckovic et al.6, the largest
GWAS to date of blood cell traits. vQTLs had an average r2 of 0.33
(SD = 0.12) with the lead additive QTLs from Vuckovic et al. 6 (Sup-
plementary Fig. 3). We repeated the OSCA25 analysis fitting the trait
level as a covariate, i.e. effects of vQTL conditioned on the trait level.
The correlation of the effects of these vQTLs between the original and
conditional analysis was 0.99 (Supplementary Fig. 4), consistent with
vQTL effects being independent of those for mean trait level.

Across 29 traits, themagnitude of the genetic correlation between
trait variance and trait level, as estimated by LDSC27, was on average
0.328 (SD =0.24) (Fig. 1c, Supplementary Data 6) and the genetic
correlation between trait variance and value was not significant for 21
out of 29 traits after adjusting for multi-testing (FDR corrected, same
below). Notably, red cell distribution width (rdw) and neutrophil per-
centage of white cells (neut_p) had significant negative genetic corre-
lations between their levels and variances after adjustment formultiple
testing, indicating genetic control of trait variance so it is reduced at
high levels of rdw or neut_p. Rdw is itself a measure of variation of red
cell widths, and high rdw is an indicator of iron or other nutrient
deficiencies. Therefore, our results suggest a potential simultaneous
genetic stabilisation when rdw is genetically high. Similarly, high
neut_p is an indicator of microbial or inflammatory stress, thus a
negative genetic correlation between the level and variance suggests a
stabilisation at genetically high neut_p levels.

With many known trait-associated alleles under negative
selection29, we also assessed the extent to which QTLs for trait varia-
bility were under selection. We used Bayes(S)29, a Bayesian method to
detect the relationship between SNP effect size and minor allele fre-
quency, to compare the selection coefficient (S) between vQTLs and
additive QTLs across 29 blood cell traits (Fig. 1d). We found that, on
average S was 1.8 times stronger on trait variance (–0.82, SD = 0.07)
than trait level (–0.45, SD =0.05) (Fig. 1d, Supplementary Data 7).
These results show a much stronger negative selection on blood cell
trait variance than on trait level. The correlation of S between trait
variance and level was positive but not significant (r = 0.14, p =0.46,
Supplementary Fig. 5).While it can be difficult to differentiate between
negative and stabilising selection, our results indicate negative selec-
tion is acting on both vQTLs and additive QTLs (somewhatmore so on
the former than the latter) to remove extreme blood cell phenotypes
from the population.

We applied FUMA25, a platform to annotate, prioritize, visualize
and interpret GWAS results to the lead vQTLs for each trait (Supple-
mentary Data 8–9) and performed a trait enrichment analysis with
GWAS Catalogue23. We found multiple significant overlaps between
vQTL and additive QTL related to alcohol consumption. Significant
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vQTLs (rs191673261 in LDwith lead vQTL rs572454376) for platelet crit
(pct) were located proximal to ALDH2, a well-known gene contributing
to alcohol consumption30 (Fig. 2a). Lead vQTLs were also significantly
enriched for GxE interactions (“Methods”) with age, sex, BMI, smoking
status, and alcohol consumption (Supplementary Fig. 6; study
FDR < 5.5 × 10–5, Supplementary Data 10), with alcohol consumption
having the largest number of significant effects of interactions with
lead vQTLs on blood cell traits. The genetic correlation between
alcohol consumption and blood cell trait variance estimated using
LDSC had an average magnitude of 0.1 (SD = 0.08) (Supplementary
Data 11).

We subsequently performed Summary-data-based Mendelian
Randomisation (GSMR)31 between GWAS of alcohol consumption (as
exposure, obtained fromCole et al.32) and variances of blood cell traits
(as outcome). Of note, Mendelian randomisation is a technique that
uses SNPs as instrumental variables to infer potential causal

associations between phenotypes33. Sensitivity analyses to the
assumptions underlying GSMR were performed using MR-PRESSO34

and MR-weighted median35 (Supplementary Data 11). We did not find
statistically significant causal links between alcohol consumption and
pct. However, at multi-testing adjusted p <0.05 level, increased alco-
hol consumption was genetically predicted to increase variance in
mean corpuscular volume (mcv) and mean sphered corpuscular
volume (mscv) (Fig. 2b–d). At nominal significance (p <0.05 for eachof
the three MR methods), increased alcohol consumption was geneti-
cally predicted to increase variance in red blood cell count (rbc) and
neutrophil percentage of white cells (neut_p) (Fig. 2b). The positive
effects of alcohol consumption on neutrophil count (neut) were sig-
nificant in GSMR (nominal p = 0.014) and MR-PRESSO (nominal
p =0.008), but insignificant (nominal p =0.1) in MR-weighted median.
Overall, our results support alcohol consumption as affecting parti-
cular blood cell trait variances. There was a significant correlation

Fig. 1 | vQTLs for 29 blood cell traits and their comparison with additive QTLs.
a Miami plot showing the best (smallest nominal p value, Levene’s test, see meth-
ods) vQTL across 29 blood cell traits (top plot) and the corresponding best additive
QTLs (bottom plot). Red dots are genome-wide significant independent vQTLs.
b Example of pleiotropic effects of the C allele of rs10803164 for the long non-
coding RNA LINC02768on blood cell trait variance. Blue indicates the effect on trait
variance had p < 4.6 × 10−9 (nominal study-wide GWAS significance, Levene’s test,

see “Methods” and Data Availability). c Genetic correlation (LDSC) between blood
cell trait variance and trait level. Blue indicates the correlation had multi-testing
adjusted p <0.05 (Supplementary Data 6). d Selection coefficient estimated by
BayesS29 for trait variance and level. All analyses used UK Biobank data with sample
size ~N ~ 408,111. In panels (b–d), data are presented as mean values ± SEM. Full
names of blood cell traits can be found in Supplementary Data 1.
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between genetic correlation coefficients and the effects of Mendelian
randomisation (r =0.5,p = 0.006, SupplementaryFig. 7). Together, our
results support the genetic link between alcohol consumption and the
variance of blood cell trait variances.

FUMA-enabled ANNOVAR24 was used to study the enrichment of
vQTLs in different functional annotation classes. We found that
vQTLs for mean sphered corpuscular volume (mscv), reticulocyte
count (ret) and reticulocyte fraction of red cells (ret_p) were sig-
nificantly enriched in exonic variants related to protein-coding func-
tions (Supplementary Fig. 8a). However, vQTLs for many other traits
were enriched in regulatory regions. For example, vQTLs for mean
corpuscular haemoglobin concentration, red blood cell count and
haemoglobin concentration (hgb) were enriched for upstream gene
regulatory sites. vQTLs for eosinophil count (eo), mean corpuscular
haemoglobin and mean corpuscular volume were enriched for
downstream regulatory sites of genes. vQTLs for platelet distribution
width (pdw) and basophil percentage of white cells (baso_p) were
enriched for UTR-3’ sites (Supplementary Fig. 8a). We used pathway
enrichment analyses within FUMA to further investigate whether
vQTLs were enriched for gene regulation, finding that vQTLs for
mean corpuscular haemoglobin were enriched for many epigenetic

regulatory mechanisms including DNA methylation and histone
modifications (Supplementary Fig. 8b).

Polygenic scores of blood cell trait variance
Polygenic scores, a predictor of an individual’s genetic predisposition
for a given phenotype21, are conventionally constructed for differences
in trait level. Using the vQTL results from the UK Biobank and applying
the same concept of estimating PGSs,we constructedpolygenic scores
for blood cell trait variance (vPGS) using PRSICE36 and the INTERVAL
study as an external validation cohort (Supplementary Data 1, “Meth-
ods”). For conventional PGSweutilised those fromXuet al. 7. Across 27
blood cell traits available in INTERVAL, there was nearly zero Pearson
correlation between vPGS and PGS (mean 0.00028, range [-0.018,
0.023]; Supplementary Fig. 9), consistent with PGS for trait variance
being independent from those for mean trait levels.

A potential use of vPGS is to stratify a population by trait variance,
thus identifying subgroups where predictive models may have
increased performance. For each trait, we stratified individuals into the
top and bottom 5% of vPGS. As vPGS were trained to estimate SNP
effects on trait variance, individuals with lower or higher vPGS were
expected to display less or more variation around the trait mean,

Fig. 2 | Relationships between alcohol consumption and blood cell trait var-
iances. a LocuzZoom plot of variance QTL mapping for platelet crit (pct) variance
at ALDH2 gene (Levene’s test, see “Methods”); (b) Mendelian randomization (MR)
of alcohol consumption on variance of blood cell traits using GSMR31, MR-PRESSO
(presso)34 and weighted-median (wm)35. Diamonds: significant in 3 methods.
c Effects of MR of alcohol consumption on variance of corpuscular haemoglobin
concentration (mscv); d Effects of MR of alcohol consumption on variance of

corpuscular volume variance (mcv). Dashed fitted lines indicate the coefficient of
Mendelian Randomisation (bxy = 0.07, sexy = 0.019 for mscv and bxy = 0.064,
sexy = 0.0188 for mcv). In panels (c, d), multi-test adjusted p values are shown. All
analyses used UK Biobank data with sample size ~N ~ 408,111. In panels (b–d), data
are presented asmean values ± SEM. Full names of blood cell traits can be found in
Supplementary Data 1.
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respectively. We then compared the correlation of PGSs for each trait
between these more (high-vPGS) or less variable (low-vPGS) groups.
Across the 27 blood cell traits, we found the high-vPGS group (top 5%
of vPGS) had a significantly higher PGS-trait correlation than the low-
vPGS group (bottom 5% vPGS) (Fig. 3). Across all traits, the mean
relative difference in PGS-trait correlation (Pearson) between the high-
vPGS and low-vPGS groups was +6.5% [-7%, 18%] (Fig. 3), with a mean
difference of +6.6% [–9%, 19%] for spearman correlation (Supplemen-
tary Fig. 10). We expanded this analysis using 10 vPGS bins and com-
pared this result with the stratification using 10 PGS bins
(Supplementary Fig. 11). While the results regarding vPGS stratification
remained largely the same as described above (Supplementary
Fig. 11b), individuals within the top and bottom PGS bins had the
highest PGS accuracy compared to thosewithin themiddle bins of PGS
(Supplementary Fig. 11a).

Next, we analysed the effects of interaction between PGS and
vPGS for each trait.We found that6out of 27 blood cell traits displayed
statistically significant (p <0.05) effects of interaction between PGS
and vPGS (Fig. 4a), suggesting that associations between PGS and
blood cell trait level can depend on vPGS (Fig. 4b, c). For seven traits
(eo, rbc, plt, neut, mcv, baso and lymph, Supplementary Data 12), the
main effects of their corresponding vPGS were also significant. As
expected, the effects of vPGS were much smaller than PGS on trait
levels, as the PGSs are directly estimated from trait levels.

Next, for all INTERVAL individuals, we examined whether adding
vPGS to PGS increased the prediction of blood cell trait level. For each
blood cell trait, we estimated the difference in the variance explained
(R2) between PGS models with or without vPGS (Fig. 5, “Methods”).
Across all 27 traits, themeanR2 increasewas +1.8% (range [0%, 5%]) and
9 traits showed a statistically significant37 increase in R2 (Fig. 5,
“Methods”). We further tested whether multi-trait vPGSs also increase
prediction power38, and found that adding multi-trait vPGSs to PGS

increased R2 by amean of +3.5% (range [0%, 10%]) and the increasewas
statistically significant in 16 traits (Fig. 5).

Lifestyle effects on blood cell trait variance
To investigatewhy some individuals hadhighly variable blood cell trait
levels we assessed the effects of alcohol consumption alongwith other
lifestyle variables such as smoking behaviour, age, BMI and sex. We
first identified distinct groups of individuals with high or low trait
variance in INTERVAL. For the high variability trait group, we identified
individuals who were in the top 5% of vPGS for at least 4 blood cell
traits and, for the low variability trait group, with individuals in the
bottom 5% of vPGS for at least 4 traits (“Methods”, Fig. 6). Our analysis
found that those in the high variability trait group were more likely to
be current or previous consumers of alcohol (Fig. 6a). Further, we
applied this analysis to mcv, neut_p and rbc, finding significant puta-
tive causal effects of alcohol consumption in GSMR analyses (Fig. 2a,
mscv not available in INTERVAL). Consistent with the results from
GSMR, individuals with high variability in mcv, neut_p and rbc were
more likely to be alcohol consumers (Fig. 6b). These results are also
supported by additional analyses testing for association between
observed phenotypic variances in blood cell traits and alcohol con-
sumption in the UKB (Supplementary Fig. 12). Together, our results
support the hypothesis that alcohol consumption increases variation
in blood cell traits.

Discussion
The analysis of vQTL and vPGS may yield new insights into locus and
GxE discovery as well as the use of human genetics for patient strati-
fication, as shown by previous studies15,17. Our study explored vQTL
analysis in 29 blood cell traits in the UK Biobank, where the majority
(84%) of vQTLs did not overlap with and were largely independent of
genetic variants identified in conventional GWAS of trait mean. We

Fig. 3 | The variation in the accuracy of PGSs for 27 blood cell traits (Pearson
correlation) between the top andbottomvPGS groups. aAccuracy of PGS in the
top vPGS group (more variable group, grey colour) and the difference (orange) of
PGS between the top vPGS group (most variable group) and the bottom vPGS
group (less variable group). #: count; % percentage; vol: volume; conc: con-
centration. b Difference of accuracy of PGS between the top and bottom vPGS

groups across 27 blood cell traits. ****p (2-side test) <0.0001. For each box, the
minimum is the lowest point, the maximum is the highest point, whiskers are
maxima 1.5 times of interquartile range, the bottom bound, middle line and top
bound of the box are the 25th percentile, median and the 75th percentile,
respectively.
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Fig. 5 | The difference in the variance explained (R2) between PGS models with
or without vPGS. Each bar represents the relative increase in R2 (model
goodness of fit) for the blood cell trait when the PGS model added vPGS. In
the left panel, the single-trait vPGS was added to PGS. In the right panel,

multi-trait vPGS was added to PGS. #: count; % percentage; vol: volume; conc:
concentration. *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001. nominal
2-sided p values were estimated by comparing models with and without vPGS
using r2redux37.

Fig. 4 | Effects of interaction between PGS and vPGS on blood cell traits.
a Effects of interaction across 27 traits in INTERVAL (Supplementary Data 12). The
vertical dashed line indicates the z-score test statistic value = 1.96 which equals
nominal p value =0.05 and barswith z-score value > 1.96 (nominal 2-sided p <0.05)

are in orange colour. #: count; % percentage; vol: volume; conc: concentration.
b, c Examples of visualised effects of interaction for eosinophil percentage of white
cells (eo_p) and neutrophil count (neut). Data are presented as mean values ± SEM.
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investigated the functional annotation, pathway-level associations and
selection of vQTLs. The potential utility of using vQTLs to construct
vPGS and using the latter to stratify the population into groups of trait
variance was demonstrated. Finally, our analysis also showed trait
variance to be related to non-genetic factors, finding that alcohol
consumption had a putatively causal effect on increasing blood cell
trait variances.

Both blood cell trait variances and levels displayed significant
negative selection. Stabilising selection of human traits has been
reported14. However, to our knowledge, negative selection on blood
cell trait variance, particularly its strength relative to that on trait level,
has not yet been identified. Evolutionary theories show that stabilizing
selection will reduce phenotypic variations to maintain population
fitness13,39–42. Our results are in line with these theories, although we
caution not to overinterpret with respect to themagnitude of negative
selection. However, the highly significant negative selection of blood
cell trait variances suggests that extreme blood cell levels and
morphologies (some of which may be indicative of disease) have not
generally been favoured. Selection to reduce phenotypic variances
implies stabilising selection for blood cell trait levels, which has been
reported for other human traits14. For example, weobserved stabilising
selection for neutrophil percentage of white blood cells alongside
negative selection for neutrophil levels. Neutrophils are innate
immune cells that act as first responders against infection by releasing
cytotoxic antimicrobial peptides; damaging proximal tissue at their
site of activity43. Increased neutrophil abundance and activity are
associated with myriad chronic inflammatory conditions and are pre-
dictive of long-term risk of cardiovascular risk and mortality44,45.
Importantly, hyperactivity of the innate immune response from severe
infection events (such as COVID-19) can lead to “cytokine storms”;
causing extensive tissue damage and rapidly leading to organ failure
and death46. Therefore, selection to reduce both extremely high levels
of neutrophils and their variancemay reflect evolutionarymechanisms
acting on immune systems to improve survival.

Many vQTLs tagged loci implicated in GxG, GxE and under epi-
genetic regulation, consistent with previous studies of vQTLs18,47. We
foundblood cell vQTLs tagged genes related to diet. Previous GWASof
diet identified loci related to blood lipids48 and glycated
haemoglobin49 but not to blood cell traits analysed here; however,
others have reported that alcohol intake increases mean corpuscular
volume independent of the genetic contribution to the level of mean
corpuscular volume50. The association between alcohol and macro-
cytosis is well-established51,52. In our study, alcohol consumption-
related loci significantly overlapped with vQTLs for platelet count, the
function of which can be significantly affected by alcohol drinking53.

Stratification by vPGS was shown to identify groups with sig-
nificantly different PGS prediction accuracy, indicating that some
groups are intrinsically harder to predict by PGSs than others. Illus-
trating this point, our analysis found multiple significant interactions
between PGS and vPGS. This implies that the effects of PGS on the
phenotype can depend on vPGS, which suggests that the non-additive
and GxE components related to PGSs could impact prediction accu-
racy. These findings are consistent with previous observations54,55 and
may be important for PGS translation. However, to be clear, our
observation of the interactions between PGS and vPGS is purely sta-
tistical. Future research integrating further molecular data in obser-
vational or experimental settings may refine our understanding of
these interactions. Nevertheless, we speculate that vPGS could add to
PGS to increase genomic prediction performance for those patients at
risk. In addition, we identified a list of vQTLs significantly enriched in
genomic and epigenomic regulations (Supplementary Data 1), high-
lighting genes which may be useful for future research on therapeutic
targets.

Our results also showed that alcohol consumption and, to some
extent increased BMI, were significant contributors to increased
genetic variability in blood cell traits. Previously reports have found
that blood cell traits can be significantly influenced by alcohol intake56

and BMI57. However, to our knowledge, this is the first study to report
lifestyle risk factors contributing to genetically predicted variation in
blood cell traits. In the Mendelian Randomisation analysis, we have
chosen alcohol consumption as the exposure as established evidence
supports the adverse effects of alcohol drinking on blood cell
morphologies56,58,59, likely due to mediation by inflammation and
immune responses60. We used GSMR as a discovery tool forMendelian
Randomisation analyses and verification with MR-PRESSO and weigh-
ted median. While GSMR andMR-PRESSO both correct for pleiotropic
confounders, there could exist other confounders not accounted for in
the current study, thus we caution that this is evidence for, but not
proof of, a potentially causal interpretation of the effects of alcohol
consumption on blood cell trait variances.

Our study has several limitations. For example, this study uses
existing methods to understand vQTLs and vPGS, which are still being
explored. Our vPGS was computed using parameters implemented in
PRSice-236 and reported by Miao et al.16, which may provide a con-
servative estimate of the effects of vPGSs as PGSs developed by
pruning+thresholding are usually underpowered61,62. Future studies in
developing and comparing different methods, and testing them in
cohorts and ancestries beyond the UK Biobank and INTERVAL will
deepen our understanding of vQTLs and vPGSs. While our study pro-
vides proof-of-concept evidence for vPGS to be informative on top of

Fig. 6 | Association between BMI, age, alcohol drinking and smoking and
individuals to be genetically variable across blood cell traits in INTERVAL. aAn
overall Z score test estimate across 27 blood cell traits. b Z score test estimates for
mean corpuscular volume (mcv), neutrophil percentage of white cells (neut_p) and

red blood cell count (rbc) which were significant Mendelian Randomisation ana-
lyses. Z score = beta (effects) / se (standard error). * (nominal 2-sided): p <0.05; **:
p <0.01; ***: p <0.001 and **** p <0.0001.
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conventional PGSs, the current results are still several steps away from
clinical application. Therefore, any potential future role in clinical
practice with vPGS will depend on myriad factors, including the
infrastructure to deploy even conventional PGSs, quantification of
clinical utility, and assessments of demographic transferability. To
provide this proof-of-concept, our study was also limited to only Eur-
opean ancestries. However, the challenge of transferability of genetic
signals and PGS across ancestries is of high importance and much
further research in diverse human populations with paired genomic
and blood cell trait data is necessary. Such research should initially
focus on multi-ancestry vQTL mapping, combining single-ancestry
vQTLmapping results using sophisticatedmeta-analysismethods, and
extend to the latest polygenic score approaches that prioritise ances-
try transferability, such as PRS-CSx63. While we employed multiple
methods to infer putative causal relationships between alcohol con-
sumption and blood cell variances, to confirm these relationships
there will be a need for further triangulation, e.g. via experimental or
trial-based evidence.

In conclusion, our study provides an in-depth analysis of human
genetic effects on the variance of blood cell traits, including the dis-
covery of loci and strong negative selection, improved genomic pre-
diction and stratification, and identification of GxE, such as the effect
of alcohol consumption is genetically linked to blood cell variances.
vPGSsmay provide a generalisable approach to incorporate individual
differences to improve trait and disease risk prediction. This study
demonstrates that there is substantive human biology and potential
clinical utility in studying trait variances alongside conventional stu-
dies of trait means.

Methods
Study cohorts and methods
UK biobank. The UK Biobank64,65 (https://www.ukbiobank.ac.uk/) is a
cohort including 500,000 individuals living in the UK who were
recruited between 2006 and 2010, aged between 40 and 69 years at
recruitment. Our research complies with all relevant ethical regula-
tions. Ethics approval was obtained from the North West Multi-Centre
Research Ethics Committee. The current analysis was approved under
UK Biobank Project 30418. The participants with themeasurements of
the 29 blood cell traits and who were identified as European ancestry
based on their genetic component analysis were included in our study.
The detailed sample sizes used for vQTL detection were shown in
Supplementary Data 1.

INTERVAL Study. INTERVAL23 (https://www.intervalstudy.org.uk/) is a
randomised trial of 50,000 healthy blood donors, aged 18 years or
older at recruitment. The participants with measurements of the 27
considered blood cell traits were included in our study. The detailed
sample sizes were shown in Supplementary Data 1. All participants
have given informed consent and this study was approved by the
National Research Ethics Service (11/EE/0538). All participants have
given informed consent and this study was approved by the National
Research Ethics Service (11/EE/0538).

Data quality control. For trait levels of 29 blood cell traits in the UK
Biobank and matching 27 traits in the INTERVAL, we adopted
previously established protocols for quality controls5–7 to adjust
technical and other confounders and the first 10 genetic principal
components. For trait levels, adjusted technical variables include the
time between venepuncture and full blood cell analysis, seasonal
effects, centre of sample collection, the time-dependent drift of
equipment, and systematic differences in equipment; other adjusted
variables included sex, age, diet, smoking and alcohol consumption.
The rationale for such adjustments was detailed in Astle et al. 5. Briefly,
after adjustment for age, sex, BMI and variables measuring smoking
habits and alcohol consumption covariates still explained >= 0.5%

of variance blood cell traits. Therefore, all relevant environmental
variables were included in the adjustments. We used the Kolmogorov-
Smirnov Test to check the normality of phenotypes where the null
hypothesis is the data comes from a normal distribution. The smallest
p value was 0.82 (Supplementary Data 13) so all traits are expected
to be normally distributed after quality control done previously.
Quality control and imputation of the genotype data have been
described previously5,65, which filtered the samples to the European
ancestry only.

vQTL analysis. Genome-wide analysis of vQTL used Levene’s test. As
detailed in refs. 11,15, the test statistic of Levene’s test is:

ðn� kÞ
ðk � 1Þ

Pk
i= 1niðzi: � z::Þ2

Pk
i = 1

Pni
j = 1ðzij � zi:Þ2

ð1Þ

where n is the total sample size, k is the number of groups (k = 3 in
vQTL analysis), ni is the sample size of the ith group (one of three
genotypes), zij is the absolute difference between the phenotype value
in sample j fromgenotype and themedian value in genotype i, zi: is the
average z value in genotype i, and z:: is the average z value across all
samples. OSCA-implemented Levene’s test also provides beta and se
estimates based on p value and minor allele frequency15 and the beta
estimates were used to construct vPGSs described later. Levene’s test
relies on the assumption of normal distribution15,24 which was for all
blood cell traits as described above.

We estimated the study-wise significance for vQTL as
4.6 × 10–9 = 5 × 10–8 / 10.2 where 10.2 is the effective number of traits
analysed in the study. The effective number of traits is estimated using

ðPp
k = 1λkÞ

2

Pp
k = 1λk

2
ð2Þ

where λ1 :: λp is principal component variances or the ordered
eigenvalues15,17. To identify lead vQTL with relative independence, we
first used LD-clumping66 using ap value thresholdof 4.6 × 10–9

, r2 < 0.01
and window size of 5000 kb (the same parameter used by ref.15). The
LD analysis between vQTL and lead QTL reported by Vuckovic et al. 6

used plink 1.9 with the function of --ld. Second, as there are between
trait correlations, i.e., blood cell phenotypes correlate with each other,
a novel vQTL was defined as follows: (1) was a lead vQTL from the
above described clumping analysis, (2) clumped lead vQTL did not
have p value < 4.6 × 10-9 for any blood cell trait levels in Vuckovic et al.
and (3) was not in strong LD (r2 < 0.8) with reported lead QTL for any
trait in Vuckovic et al. For vQTLmapping results of each trait, we used
LDSC27 to estimate lambda-GC and intercept to check inflation.Wealso
used FUMA67 to annotate significant vQTL for each trait with default
settings. Results from FUMA functions of SNP2GENE and GENE2FUNC
were presented in the results.

The targeted analysis ofGxEused identified leadvQTLs and tested
their effects of interaction with each one of the environmental factors
of age, alcohol consumption, BMI, sex and smoking on blood cell
traits. The formula of interaction analysis was

y=μ+βgXg +βEXE +βgEXgXE
+ e ð3Þ

where βwas the fixed effects, Xg were the genotype of SNP and XE was
the environmental factor. Blood cell phenotypes were adjusted by the
top 10 genetic PCs for non-related UKB-EUR participants, using --king-
cutoff 0.0884 (to prune out first and second-degree relatives), age and
sex; e.g., when testing for genotype-sex interactions, the phenotypes
were adjusted for PCs and age; for genotype-age interactions, the
phenotypes were adjusted for the PCs and sex. To test the significance
of the overall association study of GxE, we employed the study false
discovery rate estimated as the number of associations that were
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significant to the number expected by chance68,69:

FDRstudy =
Pð1� A

TÞ
A
T ð1� PÞ ð4Þ

where P was the p value threshold hold, A was the number of sig-
nificant associations andT was the total number of associations tested.
FDRstudy < 0.05 is interpreted as a significant association study. For this
analysis, only vQTLs with MAF > =0.001 were considered.

To explore the potential causal relationships between alcohol
consumption and blood cell trait variances, we used GSMR31 to dis-
cover the putative causal relationships and used MR-PRESSO34 and
weighted-mean implemented in MendelianRandomisation35 as valida-
tion. A key confounder of Mendelian randomisation is pleiotropy
where variants can be naturally associated with multiple traits70.
Employingmultiple methods that account for pleiotropy is a common
strategy to reduce false positives. TheGWAS summarydata for alcohol
consumption was obtained from Cole et al. 32. Default settings for
nominated software were used and SNPs with p value < 5e–8 and
r2 < 0.05 were used in the analysis. Significant results were defined as
the multi-testing adjusted p value from GSMR<0.05 and the nominal
significance was defined as the Mendelian Randomisation had raw p
value < 0.05 in all 3 methods.

Analysis of vPGS and PGS. PGS trained using the elastic net from Xu
2022 et al. 7 was used. For training vPGS, we followed the protocol
described byMiao et al. 16 reported successful implementation of vPGS
for BMI using PRSICE36, we used the same procedure described by
Miao et al. to construct vPGS in the INTERVAL using PRSICE, i.e.,
–clump-p1 1 –clump-p2 1 –clump-r2 0.1 and –clump-kb 1000. When
vPGS was computed for each trait, they were used to rank INTERVAL
individuals where the top and bottom 5% of individuals were stratified.
As vPGS was trained based on SNP effects on phenotypic variance, i.e.,
the extent to which the individual measurement deviates from the
mean, vPGS was expected to genetically predict such variation of
individuals for the corresponding trait. Therefore, individuals ranked
in the top 5% of vPGS were called the genetically more variable group
and individuals ranked in the bottom 5% of vPGS were called the
genetically less variable group. Then, for each trait, within the more
variable and less variable groups, we estimated the PGS accuracy, i.e.,
the correlation between PGS and the corresponding trait. We then
compared the PGS accuracy between the more variable and less vari-
able groups for each trait and the relative increase was calculated as

rless variable � rmore variable

rmore variable
ð5Þ

where rless variable is the PGS accuracy in the less variable group defined
by vPGS and rmore variable is the PGS accuracy in themorevariable group
defined by vPGS. The choice of the 5% top/bottom grouping is arbi-
trary, although the choice of 1% top/bottom would result in a very
small sample size in each group. The results for the top/bottom 10%
are consistent with the choice of the 5% top/bottom are shown in
Supplementary Fig. 11, 13.

The effects of interaction between PGS and vPGS on the corre-
sponding trait in INTERVAL were tested on corrected blood cell traits
(described above). As the traits were already corrected for covariates,
only the main effects and interaction of PGS and vPGS were fitted for
each blood cell trait in the lm() function in R:

y =PGS+ vPGS+PGS � vPGS ð6Þ

where y was each of the blood cell trait. The effects of interaction on
specific traits (e.g., eo_p and neut)were visualised using the function of
plot_model in the R package sjPlot (version 2.8.15).

To evaluate if adding vPGS improves PGSmodel predictability, we
tested two sets of vPGS, where one set is the original single-trait vPGSs
for 27 traits computed by PRSICE, and the other set is estimated using
the multi-trait BLUP (SMTpred38) combining information from single-
trait vPGSs. Following the instructions from https://github.com/
uqrmaie1/smtpred, we used the LDSC27 wrapper (ldsc_wrapper.py)
with default options in SMRpred to estimate the genetic parameters
for each trait which are required inputs by the multi-trait BLUP. Then,
the script smtpred.py was used by default options with the estimated
genetic parameters to combine single-trait vPGSs to construct multi-
trait vPGSs. Then, we used r2redux37 to quantify the difference in
variance explained (R2) betweenPGSmodelswith andwithout vPGS.As
described by Momin et al. 37, r2redux can powerfully detect R2 differ-
ences between models for the out-of-sample genomic prediction
which is suitable to our case where the PGS and vPGS models were
trained in the UK Biobank and predicted into INTERVAL. We followed
the instructions provided by (https://github.com/mommy003/
r2redux) to compare the R2 of models with vPGS and without PGS
using the nestedmethod andobtainedp values testing the significance
of the increase in R2 when adding vPGS. The relative increase in R2 was
expressed as the absolute difference in R2 divided by the heritability
estimated using LDSC27. LDSC was also used to estimate the inflation
factors, lambda GC and genetic correlation using default parameters.
For estimating genetic correlations between alcohol consumption and
blood cell genetic variances, the GWAS summary of alcohol con-
sumption used Cole et al.32.

To characterise the individuals that were identified as
genetically variable across traits, we first counted the number of
times (out of 27 blood cell traits) an individual was ranked in the
top 5% by PGS for each trait. We also counted the number of
times an individual was ranked in the bottom 5% by PGS for each
trait. We then identified 2,465 individuals who always ranked in
the top 5% vPGS, and 2,362 individuals who always ranked in the
bottom 5% vPGS across multiple blood traits. Individuals in the
top group were ranked in the top 5% vPGS for 4 to 17 traits with a
mean of 5 and individuals in the bottom group were ranked in the
bottom 5% vPGS for 4 to 23 traits with a mean of 9. Then, the top
group was labelled as 1 and the bottom group was labelled as 0
and this 0/1 vector was analysed as a binary outcome for a logistic
regression analysis against lifestyle factors:

y=age+ sex +BMI + smoking status +drinkingstatus ð7Þ

where the average age is 46.1 (SD = 14.3) and the average BMI is 26.2
(SD = 4.6); for sex, there are 2,419women; for smoking status, there are
2728 people never smoked, 378 current smokers, 1634 previous
smokers and 87 with no answers; for alcohol drinking status, there are
118 who never drunk, 4178 current drinkers, 323 previous drinkers and
208with no answers. The logistic regression used the function glm() in
R and for sex the male was set to the reference level, for smoking the
level of never smoked was set to the reference and for drinking the
level of never drunkwas set to the reference.We also tested the effects
of alcohol intakewhich showedconsistent resultswith less significance
[most_days (N = 251), one_to_three_monthly (N = 725), one_two_weekly
(N = 1630), three_five_weekly (N = 1062), and special_occasions (refer-
ence, N = 600), Supplementary Fig. 14]. The analysis with drinking
status was also applied to individual blood cell traits of mean cor-
puscular volume (mcv), neutrophil percentage of white cells (neut_p)
and red blood cell count (rbc) which were significant in Mendelian
Randomisation analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Full summary statisticsof vQTLmapping generated fromthis study are
available via the GWASCatalogue (https://www.ebi.ac.uk/gwas/) under
the accession numbers GCST90565679-GCST90565707. Variance
polygenic scores are available at the PGS Catalogue (https://www.
pgscatalog.org/) under the accession number PGP000723 and scores
PGS005172-PGS005197. TheUKBiobankdata are available through the
UK Biobank subject to approval from the UK Biobank access com-
mittee. See https://www.ukbiobank.ac.uk/enable-your-research/apply-
for-access for further details. INTERVAL study data from this paper are
available to bona fide researchers from helpdesk@intervalstudy.
org.uk and information, including the data access policy, is available at
http://www.donorhealth-btru.nihr.ac.uk/project/bioresource.

Code availability
Code using existing software is accessible via https://github.com/
rxiangr/vQTL (Zenodo: https://sandbox.zenodo.org/account/settings/
github/repository/rxiangr/vQTL; https://doi.org/10.5072/zenodo.
187912). vQTL mapping used OSCA (v0.46): https://yanglab.westlake.
edu.cn/software/osca/#Overview; genetic correlation analysis used
LDSC (v1.01): https://github.com/bulik/ldsc; pleiotropy analysis:
https://github.com/rondolab/HOPS. Mendelian randomisation used
GSMR (v1.1.1): https://yanglab.westlake.edu.cn/software/gsmr/, MR-
PRESSO: https://github.com/rondolab/MR-PRESSO and Mende-
lianRandomisation (v0.1): https://cran.r-project.org/web/packages/
MendelianRandomization/index.html; Analysis of selection used
GCTB-BayesS (v2.05): https://cnsgenomics.com/software/gctb/#
SummaryBayesianAlphabet; vPGS analysis used PRSICE-2 (v2.3.5):
https://choishingwan.github.io/PRSice/ and plink2 (alpha4): https://
www.cog-genomics.org/plink/2.0/; multi-trait GBLUP used SMTpred:
https://github.com/uqrmaie1/smtpred; significance tests ofR2 increase
used r2redux (v1.0.18): https://github.com/mommy003/r2redux;
logistic regression analysis used glm(): https://www.rdocumentation.
org/packages/stats/versions/3.6.2/topics/glm.
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