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Interpolation and differentiation of
alchemical degrees of freedom in machine
learning interatomic potentials

Juno Nam , Jiayu Peng & Rafael Gómez-Bombarelli

Machine learning interatomic potentials (MLIPs) have become a workhorse of
modern atomistic simulations, and recently published universal MLIPs, pre-
trained on large datasets, have demonstrated remarkable accuracy and gen-
eralizability. However, the computational cost of MLIPs limits their applic-
ability to chemically disordered systems requiring large simulation cells or to
sample-intensive statistical methods. Here, we report the use of continuous
and differentiable alchemical degrees of freedom in atomistic materials
simulations, exploiting the fact that graph neural network MLIPs represent
discrete elements as real-valued tensors. The proposed method introduces
alchemical atoms with corresponding weights into the input graph, alongside
modifications to the message-passing and readout mechanisms of MLIPs, and
allows smooth interpolation between the compositional states of materials.
The end-to-end differentiability of MLIPs enables efficient calculation of the
gradient of energy with respect to the compositional weights. With this
modification, we propose methodologies for optimizing the composition of
solid solutions towards target macroscopic properties, characterizing order
and disorder in multicomponent oxides, and conducting alchemical free
energy simulations to quantify the free energy of vacancy formation and
composition changes.

Atomistic simulations are a cornerstone of computational modeling of
the dynamic behavior of materials. Achieving predictive and efficient
simulations necessitates a balance between the quality and cost of the
description of interatomic interactions and exhaustive sampling to
achieve converged thermodynamic averages. Density functional the-
ory (DFT) calculations are typically taken as a gold standard for accu-
racy in materials simulations. Ab initio molecular dynamics (AIMD)
simulations1 propagate dynamics using these high-quality DFT forces,
but their high computational cost limits scalability. Machine learning
interatomic potentials (MLIPs)2,3, trained on electronic structure cal-
culation results, offer a low-cost alternative to DFT energies and forces
in MD. Beginning from the seminal works of the Behler–Parrinello
network4 and GAP5, various architectures of MLIP have been proposed
to offer a selection within a trade-off between accuracy and speed,

such as SchNet6, PaiNN7, NequIP8, Allegro9, MACE10,11, and CACE12.
Recently, universalMLIPs, such asM3GNet13, CHGNet14, andMACE-MP-
015, have emerged, providing atomistic modeling capabilities across a
substantial portion of elements in the periodic table and their com-
binations. All these models are trained on DFT energies and gradients
extracted from a large-scale materials database such as the Materials
Project16. The benchmark results17,18 demonstrate that they offer high-
fidelity modeling of atomic interactions and phonon dispersion,
thereby serving as reliable foundation models in the context of
downstream atomistic simulation applications.

While interatomic potentials are primarily intended to operate on
atomic positions with fixed elemental identities, it is intriguing to
consider their alchemical degrees of freedom, wherein the elemental
identities can be altered continuously. In the realm of electronic
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structure methods, von Lilienfeld and colleagues have pioneered the
molecular grand-canonical ensemble DFT and have advanced sub-
sequent lines of research on alchemical transformations, which enable
the alteration and optimization of chemical compositions19–23. From
the standpoint of MLIPs, Ceriotti and colleagues introduced an
alchemical compression scheme based on an atom-centered density
framework and applied the approach tomodel high-entropy alloys24–26.
They demonstrated that compressing the representation of physical
elements onto low-dimensional subspaces of pseudoelements enables
efficient modeling of compositionally complex systems and inter-
polation to elements not encountered during training. Additionally,
Chen et al.27 demonstrated that pre-trained materials property pre-
dictors can be applied to disordered crystals by using linear inter-
polation of low-dimensional elemental embeddings. While continuous
representations of elements correspond to atomic embeddings in
graph-based MLIPs, most universal MLIPs typically use much higher-
dimensional atomic embeddings to ensure that the model is suffi-
ciently expressive. Since models are only trained with discrete atom
identities, it is challenging to identify meaningful submanifolds of
elemental embeddings to interpolate elements or project gradients, as
seen in the context ofmolecule designwith pre-trainedMLIPs28. On the
other hand, simple linear interpolation of embeddings for modeling
compositions may lead to unphysical outputs.

Alchemical changes are of particular importance in free energy
simulations29,30. Free energy simulations are widely used to char-
acterize the finite-temperature stabilities of solid phases31,32, and
automatic protocols have been developed accordingly33. However,
while alchemical free energy calculations are widely used to study
protein–small molecule interactions34, their applications in materials
systems are limited. This would be largely due to the challenge of
parametrizing interatomic potentials for systems with three or more
elements. Notably, Jinnouchi et al.35 introduced a thermodynamic
integration (TI)method to compute the chemical potentials of liquid Si
and LiF in H2O by smoothly turning on or off interactions between
atoms in kernel-based MLIPs through alchemical switching.

With the advent of universal MLIPs, the challenge of fitting
potentials for systems containing multiple types of elements has been
alleviated, and they provide reasonable accuracy for dynamics around
equilibriumgeometries. Thus, it is timely to consider the application of
universal MLIPs to facilitate free energy simulations along alchemical
pathways. In this work, building upon the prototypical construction of
graph-based MLIPs, we access the hitherto hidden alchemical degrees
of freedom inherent in MLIPs. Rather than altering the continuous
embeddings of individual atoms, we augment the input graph

structure by introducing alchemical atoms, each associated with its
respective compositional weight. Through subsequent modifications
to the message passing scheme and energy readout, our scheme
provides smooth interpolation between different compositional states
of materials. Moreover, given the end-to-end differentiability with
respect to the alchemical weights λ, it facilitates the calculation of the
alchemical gradient of the energy ∂H/∂λ and subsequently the calcu-
lation of the free energy of the alchemical transformation. In addition,
we explore the application of alchemical intermediate states with
mixed compositions in creating a computationally efficient descrip-
tion of solid solutions.

Results
Alchemical graph and message passing
Prototypical MLIP construction. Our objective here is to introduce
modifications to the non-learnable parts of the MLIPs so that we can
model the alchemical compositions of materials without further fine-
tuning the models. First, we start by introducing the prototypical
construction of graph-based MLIPs. An atomic system is represented
as a graph G= ðV, EÞ with an atom as a node i 2 V and an atom pair
within a defined cutoff distance as an edge ði, jÞ 2 E36,37. Each element Zi
is embedded into a continuous vector zi, which is then used to initialize
node features hð0Þ

i . Edge features eij are derived from the relative dis-
placements rij. The input is then passed through the layers of the graph
neural network with a message-passing mechanism38–40. In layer t, a
message mðtÞ

i is constructed by pooling the message contributions
over the neighboring nodes N ðiÞ as

mðtÞ
i =

X
j2N ðiÞ

Mt hðtÞ
i ,hðtÞ

j , eij
� �

, ð1Þ

where each contribution is computed from the hidden node features
and the edge feature by amessage functionMt. Themessages are then
used to update the node features:

hðt + 1Þ
i =Ut hðtÞ

i ,mðtÞ
i

� �
, ð2Þ

whereUt is an update function. Finally, a readout functionR transforms
the final node features hðTÞ

i into the node energies, which are summed
over the entire node list to give an estimate of the potential energy as

E =
X
i2V

R hðTÞ
i

� �
: ð3Þ

Fig. 1 | Alchemical modification scheme for machine learning interatomic
potentials. aAlchemical graph augmentation: The relevant original atoms are split
into alchemical atomswith different elemental identities, which are associatedwith
alchemical weights λi. b Alchemical message passing: At the message aggregation
step (Eq. (6)), each message contribution from neighboring atoms is weighted
according to the asymmetric weighting scheme in Eq. (5). Only the weights from

alchemical to non-alchemical atoms are weighted according to the alchemical
weights of the source atoms to ensure consistency with the message-passing
scheme in the original graph. c Alchemical energy readout: The energy contribu-
tions from the alchemical atoms are weighted according to their respective
alchemical weights to yield the total energy prediction for the structure (denoted
as E).
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This is a minimal prototype of MLIPs, and the state-of-the-art models
use various additional mechanisms to enhance the expressivity to
improve the fit to the training data. Although the alchemical
modifications introduced in this work are based on this prototype, it
can easily be integrated with such additional mechanisms, as further
detailed in Section “Methods”.

Alchemical modification. We now introduce the modifications to the
input graph and the architecture of the MLIP model to allow the
modeling of compositionally mixed structures with partial occu-
pancies of atoms. The main idea is to augment the original graph with
alchemical parts, creating an extra group of atoms or nodes for each
compositional state tobemodeled, and tomodify themessagepassing
scheme to keep it consistent with the baseline MLIP. First, we define
the alchemical weights λ= fλαgkα = 1 to assign the weights to each com-
positional state. For example, if we are modeling the mixed structure
of LiCl, NaCl, andKClwith 20%, 30%, and 50%weights, respectively, the
weights would be λ = [0.2, 0.3, 0.5].

Now,wedefine an alchemical graph ~G= ð~V, ~EÞ as anextensionof an
original graph G= ðV, EÞ. For the previous example, we assume that we
have an original graph representing the NaCl crystal structure. The
construction is independent of the original elemental identities of the
alchemical atoms, and only the atomic positions will be inherited. Each
node in an alchemical graph is identified by a pair of indices, the ori-
ginal atom index i and the alchemical index α, and denoted by
ði,αÞ 2 ~V. All non-alchemical atoms (e.g., Cl), for which the element
remains the same for all compositional states, are assigned with α = 0,
and the corresponding weight λ0 = 1. Alchemical atoms are split into
multiple nodes according to their compositional states (Fig. 1a). For
example, the Na atom i in the original graph is split into three nodes
(i, 1), (i, 2), and (i, 3), with elements (Z(i, 1), Z(i, 2), Z(i, 3)) = (Li, Na, K). As
such, the node features for alchemical atoms will be initialized with
respective elemental embeddings. Then, we assign an alchemical
weight λα to node (i, α). All other features, such as the positions of the
atoms, are inherited from the original graph, e.g., r(i, α) = ri.

Edges are connected between the alchemical graph nodes as in
the original graph when either any the two endpoint nodes is non-
alchemical (with weight index 0), or both nodes are in the same
alchemical state (have the same weight index), i.e.,

~E = ðði,αÞ, ð j,βÞÞ� j ði,αÞ, ðj,βÞ 2 ~V ^ ði, jÞ 2 E
^ðα =0 _ β=0 _ α =βÞ�: ð4Þ

This is in line with the dual topology paradigm widely utilized in the
alchemical free energy literature41–43, in which the atoms in the differ-
ent alchemical states geometrically coexist but do not interact directly
with each other. Tomodel the scaled interaction between atoms in the
alchemical graph, we introduce edge weights to scale the message
contributions. Aldeghi and Coley44 have proposed a similar idea in
which they model the different topological assemblies of polymers by
weighted (stochastic) edges between linkage atoms in monomers.
Here, we use an asymmetrical weighting scheme given as

ωαβ =
λβ if α =0 ^ β≠0

1 otherwise ,

�
ð5Þ

i.e., only the message contributions from alchemical atoms to non-
alchemical atoms are weighted by the alchemical weight of the source
atom. This choice is based on the observation depicted in Fig. 1b. Since
we are extending the original MLIP for alchemical compositions
without modifying the learnable functions, we should ensure that the
message passing is consistent with original graphs where all edge
weights are implicitly 1. According to the expansion of alchemical
atoms and the edge connection scheme, only the message passing
fromanalchemical atom to a non-alchemical atom is split intomultiple
pathways with respective alchemical node weights. Therefore, we
utilize the alchemical node weights as the edge weights in this case,
and the message aggregation scheme is modified from Eq. (1) as the
weighted sum of the message contributions:

mðtÞ
ði,αÞ =

X
ðj, βÞ2 ~N ðði,αÞÞ

ωαβMt hðtÞ
ði,αÞ,h

ðtÞ
ðj,βÞ, eij

� �
: ð6Þ

Finally, the readout for energy prediction (Eq. (3)) is modified as a
weighted pooling of alchemical node contributions (Fig. 1c):

E =
X

ði,αÞ2~V
λαR hðTÞ

ði,αÞ
� �

: ð7Þ

Note that the sameMt andR functions as in Eqs. (1) and (3) are used, i.e.,
no trainable weights are modified. This modification scheme ensures
two essential consistencies with the original MLIP scheme. First, when
all of the alchemical elements are the same (Z(i, α) = Zi) for each original

atom and the alchemical weights sum up to 1 (
Pk

α = 1λα = 1), the pre-
dicted potential energy is the same with the original graph. Second,

Fig. 2 | Lattice parameters for solid solutions. aThe starting structures, CeO2 and
BiSBr, for solid solutions. b Lattice parameter a for Ce1−xMxO2 (M = Zr, Sn) as a
function of the compositional weight x. c Lattice parameters a, b, and c for
BiSX1−xYx (X, Y = Cl, Br, I) as a function of x. The upper panels are the result of the

alchemically modified MACE-MP-0 medium model15, and the lower panels are the
experimental results from48 and49 for (b) and (c), respectively. Arrows in the
rightmost panels indicate the composition with the minimum value of c. Source
data are provided as a Source Data file.
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when only one of the alchemical weights is 1 (λα = 1), and the others are
zero, the predicted potential energy is also the same as in the original
graph with an elemental composition corresponding to Zα. These two
consistencies in the limiting cases ensure the correct interpolation
between compositional states, and although the argument here is
based on the prototypical MLIP, the consistencies still hold when
adapted to other architectures, as detailed in Section “Architecture-
specific modifications” and Supplementary Information. We addition-
ally explore alternative interpolation methods, including embedding
interpolation, and compare their ability to interpolate theMLIP energy
output in Supplementary Information.

Representation of solid solution
Lattice parameters. First, we investigate whether our representation
of a mixture of compositional states can be used to model solid
solutions and to optimize their properties with respect to composi-
tion. Although many crystal properties can be tuned by the design
choice of solid solutions45, herewewill use lattice parameters to probe
the modeling ability. Empirically, the lattice parameters of solid solu-
tions can be approximated by linear interpolation of those of con-
stituent pure crystals with the corresponding compositional weights,
as stated by Vegard’s law46,47. Nevertheless, there are systems that
exhibit significant positive or negative deviation from this idealized
linear behavior, andwe assesswhether the proposedmethod is able to
predict such trend.

First, the cell parameter for cubic Ce1−xMxO2 solid solution exhi-
bits linear behavior to x when M = Zr, but shows a positive deviation
with a kink for M = Sn48. We modeled this solid solution starting from
the CeO2 structure (Fig. 2a), splitting the Ce atoms into two alchemical
states, Ce with weight 1 − x and Zr or Sn with weight x, and optimizing
the zero-temperature cell parameters by relaxing the unit cell. The
alchemical schemeadapted for theuniversalMACE-MP-0model15 gives
the correct linear behavior for M = Zr, and successfully identifies the
positive deviation for M = Sn (Fig. 2b) although it fails to predict the
kink. Further, we also model orthorhombic BiSX1−xYx (X, Y = Cl, Br, I)
solid solutions, for which the lattice parameters a (positive) and c
(negative with a localminimum) exhibit deviations from linearity49. We
start from BiSBr structure (Fig. 2a) and split the Br atoms into two
alchemical atoms of X and Y. The cell parameters are optimized with
respective alchemical weights. For example, the BiSCl1−xIx structure
will have alchemical atoms Cl and I with alchemical weights of
λ = (1 − x, x). The alchemical scheme with the MACE model correctly
identifies the positive and negative deviations for a and c, respectively,
for X = Cl and Y = I (Fig. 2c). In particular, while the parameter c ismuch
larger than the experimental values (due to the inherent error in the
original MLIP, itself likely arising from the underbinding nature of the
PBE functional used to create the training data), the composition for
the local minimum (x ≈ 0.2) is accurately predicted. Although there is
no direct correspondence between the alchemical weights and the
stoichiometry of the solid solution, these results indicate that the
representation developed here offers greater predictive accuracy
compared to the naive estimate from Vegard’s law. It is important to
note that the current method assumes infinite disorder and thus
neglects the effect of ionic ordering. In addition, because all the
alchemical atoms are co-located in the position of the parent atom, the
potential discrepancies among the fractional coordinates of sub-
stituent alchemical atoms are not taken into account.

Compositional optimization. Most MLIPs are designed to be end-to-
end differentiable in order to obtain atomic forces and stress as gra-
dients of the potential energy with respect to the positions ri and the
strain tensor ϵ, i.e., Fi = − ∂E/∂ri and σ = V−1∂E/∂ϵwhere V is the volume
of the system. Gradient calculations are performed efficiently through
the backward pass generated by automatic differentiation50. With our
additional continuous representation of compositional states, the

alchemical weights λ, we can also compute the gradients of the energy
with respect to the composition ∂E/∂λ. Since the potential energy is
definedup to constant, physicallymeaningful optimization targets are,
in general, given by the energy difference or the gradient of the energy
with respect to some system variables.

First, we consider a simple model: a solid solution of three alkali
metal chlorides, LiCl, NaCl, and KCl. We fix the fractional coordinates
of each atom and consider the cubic lattice constant as a function of
alchemical (or compositional) weights of Li, Na, and K. To find a
composition that matches a target lattice constant, we can enumerate
a grid of compositions and relax the cell dimensions at each fixed
composition to probe lattice constants over the compositional space
(Fig. 3a, left). However, instead of this direct method, we can consider
that the stress is minimized for the optimized structure and compo-
sition. Since our scheme is end-to-end differentiable, we can calculate
the gradient of absolute hydrostatic stress jtrσj=3 with respect to the
composition where the lattice constant is fixed to the target value
(Fig. 3a, right). Then, the optimal composition could be found by
performing a gradient descent on the compositional space, offering a
different approach to the design problem. This is more efficient
because only a single gradient-based compositional optimization is
required. In this case, since the size of Na is between Li and K, multiple
optimal compositions exist on the compositional space.

Now, we apply this to a more realistic example, where we want to
find the lattice-matching composition for solid solutions Al1−xScxN and
Al1−xYxNwith GaN. The lattice-matched composition would facilitate the
epitaxial growth of such solid solutions on the GaN substrate51. The

Fig. 3 | Compositional optimization. a Lattice parameter optimization for solid
solutions of LiCl, NaCl, and KCl. The left panel shows optimized lattice parameters
as a color gradient, obtained by relaxing the cell geometry for each compositional
weight. The right panel displays hydrostatic stress, with color intensity representing
stress magnitude and arrows indicating gradient direction, calculated by fixing the
cell dimensions to those of NaCl. Since the energy output is end-to-end differenti-
able with respect to the alchemical weights, the composition can be optimized to
match target cell dimensions (minimizing stress) by following these gradients. The
compositions with cell parameters matching NaCl (left) and those obtained by
minimizing stress (right), indicated by the dotted lines, align in both figures. b The
optimization for the lattice-matching condition for solid solutions Al1−xScxN and
Al1−xYxNwith GaN. Themost stable polymorph structures are shown on the left. The
plot on the right shows the cell dimension a obtained by optimizing for each
compositional weight (Scan), calculated from the corresponding supercell (Super-
cell), and the compositional weights optimized by gradient descent to match the a
value for GaN (Optimized). All results are obtained using the alchemically modified
MACE-MP-0 medium model15. Source data are provided as a Source Data file.
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objective is to determine a composition x for each solid solution such
that the cell parameter a of the lattice matches the value for the GaN
structure. Although GaN and AlN possess a hexagonal lattice (space
group P63mc), pure YN and ScN have a cubic lattice (space group
Fm3m), which means that one cannot simply interpolate between the
cell parameters of the constituent compounds to infer those of solid
solutions. Here, we fix the cell parameter a for the hexagonal lattice, and
we optimize the relevant stress components with respect to the cell
parameter c as well as the Al/Sc or Al/Y composition (see Section
“Representation of solid solution”) because the doped AlN would result
in different c/a ratio. Results in Fig. 3b show that the optimized com-
positions are x ≈0.1 (Y) and x ≈0.2 (Sc), and are in good agreement with
the forward scan result, where the relaxed cell parameters aremeasured
while scanning for various x values. Furthermore, we created a 4×4×4
supercell of AlN and randomly switched some Al atoms to Sc or Y atoms
tomatch the target composition andmeasured the unit cell parameters.
These results match well with the scan results over alchemical unit cell

compositions, which indicates that the methodology in the current
work can also be regarded as a computationally efficient compact
representation of the supercell with compositional disorder.

Disorderenergetics. Thehigh computational efficiency and accuracyof
alchemically modifiedMLIPs formodeling disordered solid solutions are
further validated by examining a dataset of A2B

0B00O6 multicomponent
perovskites in our recent high-throughput studies52,53. Notably, the
thermodynamic preference of an A2B

0B00O6 perovskite to adopt either
cation-ordered or cation-disordered structures depends on the differ-
ence between formation energetics of various cation-ordered config-
urations and those of cation-disordered solid solutions52. For ordered
structures, the formation energetics across all possible symmetrically
inequivalent cation arrangements can serve as physics-informed
descriptors to predict the thermodynamic tendency towards experi-
mental cation disorder53. While DFT is computationally prohibitive for
evaluating formation energetics of various enumerated cation-ordered

Fig. 4 | Disordered energetics in multicomponent perovskite oxides. a Crystal
structure schematics for fully cation-disordered A2B

0B00O6 perovskite oxide solid
solutions, illustratingdifferent alchemical supercell sizes andnumberof atoms, and
representative 320-atom 4× 4 × 4 special quasirandom structures (SQSs). bMACE-
relaxed energy differences between cation-disordered 2 × 2 × 2 alchemical cells and
smaller or larger supercells, evaluated across 100 A2B

0B00O6 compositions from52.
c Difference between the unrelaxed and MACE-relaxed structures for various
alchemical cell sizes, including 4 × 4 × 4 SQSs, quantified by cosine distance
between local structurefingerprints. Vertical bars represent the first quartile,mean,
and third quartile, respectively. d Comparison of MACE-relaxed energies for
2 × 2 × 2 alchemical cells versus 4 × 4 × 4 SQSs, with a mean absolute error (MAE) of

0.032 eV/atom. e MACE-relaxed energy differences among 2 × 2 × 2 alchemical
cells, 4 × 4 × 4 SQSs, and all cation-ordered configurations with four B′ and four B″
cations on eight B sites in the 2 × 2 × 2 supercell. Compositions are sorted by energy
differences between 4 × 4 × 4 SQS and lowest-energy ordered arrangements.
Experimentally characterized ordered and disordered compositions53 are marked
in the upper and lower regions, respectively. f Receiver operating characteristic
(ROC) curves for experimental order/disorder classification based on relative
energy values of 4 × 4 × 4 SQS or 2 × 2 × 2 alchemical cells in (e) with respect to the
lowest-energy cation-ordered arrangements, with area under the curve (AUC)
values shown. All results are derived using the alchemically modified MACE-MP-0
medium model15. Source data are provided as a Source Data file.
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atomic arrangements, we have shown that symmetry-aware equivariant
graph neural networks, including equivariant MLIPs, provide efficient
and accurate surrogates for assessing ordering-dependent thermo-
dynamic stability in multicomponent perovskite oxides52.

Here, we extend our previous analysis to directly examine the
formation energetics of fully cation-disordered A2B

0B00O6 solid solu-
tions with partial B site occupancies of 0.5 B′ and 0.5 B″. Traditionally,
special quasirandom structures (SQS)54,55, which optimize elemental
placements within a supercell to mimic the cluster vectors of random
alloys, have been widely used to study disordered solid solutions.
While the SQS approach provides a systematic approach to model
disordered structures, it requires large supercells to avoid correlations
across periodic boundaries and relies on optimization routines such as
Monte Carlo simulations56, limiting its feasibility for high-throughput
studies. Given the efficiency of alchemically modified MLIPs in repre-
senting disorder through partial elemental occupancies, we compare
alchemical unit cell modeling of perovskite solid solutions to SQS cells
using baseline MLIPs for disorder modeling.

Starting from the base ordered perovskite ABO3 structure, we split
the B atom into two alchemical species, B′ and B″, each assigned an
alchemical weight of 0.5. We then generate N×N×N (N = 1, 2, 4, 6)
alchemical supercells and 4×4×4 SQS supercells (Fig. 4a), optimizing
each cell using alchemically modified MACE-MP-0 and baseline MACE-
MP-0 models. For alchemical supercells, the relaxed cell energy per
atom pleateaus at the 2× 2 × 2 supercell, while the unit cell (1 × 1 × 1)
exhibits notably higher energy compared to larger supercells (Fig. 4b).
The structural differences between unrelaxed and relaxed disordered
cells, shown in Fig. 4c, quantified using cosine distances of local struc-
tural fingerprints53,57, reveal that the alchemical unit cell relaxes only
slightly, whereas larger alchemical supercells and SQS cells show more
significant differences between their corresponding unrelaxed and
MLIP-relaxed structures. As noted in previousworks52,53, crystallographic
sites undergo substantial distortion during relaxation, such as octahe-
dral tilting and Jahn–Teller distortions58, which are typically beyond the
periodicity of a perovskite unit cell and thus can hardly be captured by
modeling a single unit cell. Given that the 2 × 2 × 2 supercell yields
results similar to those of larger alchemical supercells, we proceed with
further analysis using the 40-atom 2×2×2 alchemical supercell.

As shown in Fig. 4d, the optimized single-point energies from the
alchemical 2 × 2 × 2 supercell align well with those from the 4 × 4 × 4
SQS supercell, with a mean absolute error (MAE) of 0.032 eV/atom.
Since the preference for cation-ordered and cation-disordered con-
figurations depends on the relative formation energetics of each, we
further compare energy values with all symmetrically inequivalent
cation-ordered configurations in the 2 × 2 × 2 supercell, obtained by
enumerating four B′ and four B″ cations occupying eight B sites53. The
results in Fig. 4e show the relative energies of all considered structures,
aligned with the ground-state (lowest-energy) cation-ordered struc-
ture energy as the reference. As previously discussed in refs. 52,53, we
observe that experimentally observed ordered compositions exhibit
significant difference between the ground-state ordered configuration
energy and other configurations, whereas experimentally cation-
disordered compositions show similar energies among different con-
figurations. The relative energy of the disordered SQS supercell pro-
vides a useful metric for characterizing experimental order/disorder,
as seen by the separation of ordered and disordered compositions
when sorting the oxide compositions by the SQS energy. Although the
2 × 2 × 2 alchemical supercell energies show more stochasticity, they
follow the same trend as the relative energies of the SQS. This is further
supported by the receiver operating characteristic (ROC) curves for
experimental order/disorder classification based on relative energy
values (Fig. 4f), where 4 × 4 × 4 SQS cell energies provide excellent
classification with an area under the curve (AUC) of 0.95, while the
alchemical 2 × 2 × 2 cell energies achieve reasonably good experi-
mental order/disorder classification with an AUC of 0.80. The likely

source of this difference is that for ions of very different sizes, local
structural distortions are related to local chemical ordering, but the
use of an average structure imposed by the alchemical method fails to
produce local distortions that SQS captures well.

Hence, based on these results, we conclude that the alchemical
modification of MLIPs offers a scalable approach for disorder model-
ing, as demonstrated with this multicomponent perovskite oxide
dataset. The alchemical 2 × 2 × 2 supercells provide reasonable accu-
racy for experimentaldisorder classification,while usingonly 1/8of the
atoms in the 4 × 4 × 4 SQS supercells. Unlike SQS, these alchemical
supercells can be obtained without the need for additional annealing
steps for configuration generation. The results were achieved by
modifying off-the-shelf pre-trained MLIPs and could be further fine-
tuned to improve energy prediction and order-disorder classification.
They may also be adapted for other material systems, including com-
positionally complex alloys and ceramics.

We also note that our approach shares similarities with the Virtual
Crystal Approximation (VCA)59–61, a traditional approach in modeling
solid solutions with partial elemental site occupancy. VCA relies on two
assumptions: (1) geometry: the solid solution is represented by an
averaged structure where crystallographic sites are randomly occupied
by different elements, disregarding local ordering; and (2) interaction:
the random occupancy is approximated by compositionally weighted
average of atomic pseudopotentials. Our method adopts the first
assumption, making it subject to the same geometric limitations, such
as the elements should be of similar size, occupy comparable positions,
and local disorder effects should be minimal. However, the practical
limitations of VCA mainly arise from what could be described as pseu-
dopotential alchemy, where accuracy depends heavily on carefully
tuning pseudopotential parameters like radial cutoffs and electronic
configurations (core/valence). In contrast, our method sidesteps these
challenges: MLIPs replace electronic structure calculations with iterative
message-passing between node and edge features. Built-in regulariza-
tion from training scheme and model architecture help ensure that
results remain within a physically reasonable range, reducing the need
for extensive manual parameter adjustments.

Free energy calculations
Free energy calculations. Here, we utilize the nonequilibrium
switching method, where the Hamiltonian depends on a progression
parameter λ ∈ [0, 1] so that it interpolates between the initial Hamil-
tonian Hi = H(λ = 0) and the final Hamiltonian Hf = H(λ = 1). Assuming
the NVT ensemble, the reversible work is given via the TI equation62:

ΔF =W rev
i!f =

Z 1

0
dλ

∂H
∂λ

� �
λ

: ð8Þ

We now consider a finite-time process in which λ is switched from 0 at
time ti to 1 at time tf. The irreversible work done by switching the
Hamiltonian is

W irrev
i!f =

Z tf

ti

dt
dλ
dt

∂H
∂λ

=W rev
i!f + E

diss
i!f , ð9Þ

where Ediss
i!f is the dissipated energy. In a linear-response regime, it can

be shown63,64 that the dissipated energy for the forward and backward
path is the samewhen averaged over the transition path ensemble, i.e.,

Ediss = Ediss
i!f = E

diss
f!i =

1
2

W irrev
i!f +W

irrev
f!i

� �
: ð10Þ

Then, the free energy difference can be computed as

ΔF =
1
2

W irrev
i!f �W irrev

f!i

� �
: ð11Þ
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Often, the Hamiltonian is parametrized by the linear interpolation
of the two endpoints, i.e., H(λ) = (1 − λ)Hi + λHf, to simplify the calcu-
lation of the gradient term ∂H/∂λ in Eqs. (8) and (9): ∂H/∂λ = Hf − Hi.
However, we note that in our case, the system Hamiltonian can be
parametrized by the alchemical weights, and ∂H/∂λ can be calculated
straightforwardly using automatic differentiation50 on the MLIP. This
method proves to be more efficient than linear interpolation as it
obviates the need to repeat calculations for non-changing atoms. We
compare computational efficiencies and the resultant free energy
calculations in Supplementary Information.

Free energy of vacancy formation. Accurate evaluation of the free
energy of a point defect is important for characterizing its thermo-
dynamic stability65. Here, we calculate theGibbs free energy of vacancy
defined as

Gv =Gdefect �
N � 1
N

Gperfect, ð12Þ

whereGdefect andGperfect are the Gibbs free energies of crystal with and
without a point defect, and N is the number of atoms in the perfect
crystal. Because the vacancy diffuses at high temperatures, it is

Fig. 5 | Free energy of vacancy formation in BCC iron. a Transformations used to
determine the Gibbs free energy of the perfect crystal and the crystal with a defect.
The alchemical pathway used here transforms the perfect crystal into the crystal
with a defect and a single atom attached to a spring to avoid diffusion. ΔGFL and
ΔGAL represent the Gibbs free energy changes calculated via the Frenkel–Ladd and
alchemical pathways, respectively. b The intermediate state parameterized by λ for
the alchemical pathway in (a). The atom to be removed is assigned an alchemical
weight of 1 − λ, and the energy of the harmonic oscillator is scaled by λ. c The free

energy of vacancy (Eq. (12)) computed by the Frenkel–Ladd path and alchemical
path. d Statistical efficiency for the Frenkel–Ladd paths and alchemical path at 100
K against the switching time. Upper panel shows the deviation of Gibbs free energy
from the reference value at the longest switching time (60 ps), and the lower panel
shows average dissipated energies (Eq. (10)). For panels c and d, each data point
represents the average of four statistically independent simulations, with standard
deviations shown as error bars. Source data are provided as a Source Data file.
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common to first evaluate the Gibbs free energies at low temperatures
in which the vacancy is fixed at one site66 and extend the calculation by
considering the temperature dependence of Gibbs free energy67.
Hence, we will focus on determining the Gibbs free energy of vacancy
in BCC iron at low temperatures and compare the result with Gibbs
free energies determined using the Frenkel–Ladd path68, which is
commonly used in nonequilibrium calculations33,64. In the
Frenkel–Ladd path, the crystal structure is switched from and to a
systemof independent harmonic oscillatorswith the sameequilibrium
positions (the Einstein crystal), for which we can calculate the exact
free energy. See Section “Free energy calculations” for more details on
the reference calculation.

We introduce a new alchemical path for determining the free
energy of vacancy, as depicted in Fig. 5a. While the previous examples
of our method were restricted to cases where

P
αλα = 1, we can lift this

restriction to create or annihilate atoms in a system alchemically. In
this case, we assign alchemical weight λ1 = 1 − λ to the atom in the
vacancy site and switch the weight from 1 to 0 (λ from 0 to 1) over
the simulation to make it continuously disappear from the system. At
the same time, we add the harmonic oscillator term to the atom
positionwithweight λ, so that through the alchemical conversion from
λ = 0 to 1 transforms the perfect crystal into a crystal with defect and a
harmonic oscillator (Fig. 5b). Through nonequilibrium switching
simulations, we can obtain the alchemical free energy difference ΔGAL

(Eq. (23)). We now compare the free energy of vacancy (Eq. (12))
obtained fromboth Frenkel–Ladd calculations (GFL

defect andGFL
perfect) and

with alchemical free energy calculations (ΔGAL and GFL
perfect).

The results in Fig. 5c show that Gv calculated by the proposed
alchemical free energy method is comparable to that from the refer-
ence Frenkel–Ladd calculations, while offeringmore consistent results

Fig. 6 | Alchemical free energy simulations. a The thermodynamic cycle con-
sidered in this work, consisting of perovskite (P) and non-perovskite (N) phases of
CsPbI3 and CsSnI3. ΔG values are labeled by phase (P or N) and composition; for
instance, ΔGN,Pb→Sn indicates the gibbs free energy change for the non-perovskite
phase from CsPbI3 to CsSnI3. b Upper panel: the alchemical free energy of Pb→Sn
conversion in both phases, plotted against the simulation temperature. Lower
panel: the ΔΔG values in Eq. (13) computed from the results in the upper panel. The
deviations between the two methods at lower temperatures result from the phase

transformation between the perovskite phases. c Statistical efficiency for the
Frenkel–Ladd paths and alchemical path of CsPbI3 to CsSnI3 transformation for
P phase, plotted against the switching time. Upper panel shows the deviation of
Gibbs free energy from the reference value at the longest switching time (60 ps),
and the lower panel shows average dissipated energies (Eq. (10)). For panels b and
c, each data point represents the average of four statistically independent simu-
lations, with standard deviations shown as error bars. Source data are provided as a
Source Data file.
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withmuch smaller standard deviations when using the same switching
time steps. We further investigate the statistical efficiency of the
switching paths at 100 K by evaluating the convergence of ΔG, taking
the longest switching time result as its reference, as well as the dis-
sipated energy Ediss (Eq. (10)) in Fig. 5d. The alchemical pathway offers
much faster convergence, with minimal average energy deviations
( < 0.02 meV/atom) from the reference value, even at a very short
switching time of 2 ps (1000 MD steps).

Alchemical free energy calculations. Now, we examine the effec-
tiveness of the proposed alchemical scheme in the calculation of
alchemical free energy difference associated with the change in the
elemental identities of the atoms. We use halide perovskites CsPbI3
and CsSnI3 as our model system, which have been studied using
MLIPs (e.g.,69) and classical force fields (e.g.,70,71). Both CsPbI3 and
CsSnI3 exhibit three photoactive perovskite phases, α (cubic, Pm3m),
β (tetragonal, P4/mbm), and γ (orthorhombic, Pnma), in decreasing
order of temperature window of stability. However, they also possess
a photoinactive non-perovskite polymorph, δ (orthorhombic, Pnma),
which is the most stable phase at room temperature72. Here, we
analyze the difference in the relative stabilities of perovskite (P) and
non-perovskite (N) phases as shown in the thermodynamic cycle in
Fig. 6a. The direct computation of the free energy of phase trans-
formation, ΔGPb,P→N and ΔGSn,P→N, may require enhanced sampling
simulations with tailored collective variables or nonequilibrium
simulations (the Frenkel–Ladd paths) with longer simulation time
until convergence. The alchemical path enables the calculation of
ΔGP,Pb→Sn and ΔGN,Pb→Sn. Since the two types of free energy differ-
ences are linked by

ΔΔG=ΔGN, Pb!Sn � ΔGP, Pb!Sn

=ΔGSn, P!N � ΔGPb, P!N,
ð13Þ

we can compute the difference in the relative stability of phases upon
compositional changes, or we can calculate either of the free energies
of phase transformation if another is already known.

For the alchemical free energy simulation, starting from the
CsPbI3 structure, the Cs and I atoms remain as non-alchemical atoms,
and the Pb atoms are divided into alchemical atoms, Pb and Sn, with
alchemical weights λ1 = 1 − λ and λ2 = λ. Then, switching λ from 0 to 1
continuously transforms theCsPbI3 structure into theCsSnI3 structure.
Refer to Section “Free energy calculations” for more details on the
alchemical free energy calculation settings and result analysis required
to obtain the Gibbs free energies.

First, we compare the Gibbs free energy of compositional change
from two methods: ΔGAL

P=N, Pb!Sn from the alchemical path and
ΔGFL

P=N, Pb!Sn =G
FL
P=N, Sn � GFL

P=N, Pb from the Frenkel–Ladd path for each
composition. The results in Fig. 6b indicate that the two calculation
results coincide well except for the slight deviation in the perovskite
phase for temperatures lower than 400 K. The deviation may occur
from the phase transformation between perovskite phases of CsPbI3
(i.e., α → β). The Frenkel–Ladd path is simulated in the fixed cell (NVT)
of the respective α phase, whereas the alchemical path is simulated in
the NPT ensemble, in which phase transformations can occur. Given
that the β phase is more stable than the α phase for CsPbI3 at low
temperatures, ΔGAL

Pb!Sn is expected to be larger than ΔGFL
Pb!Sn, as in

Fig. 6b. See Supplementary Information for further discussion. The
calculation of ΔΔG (Eq. (13)) also shows that the two results are well
matched at higher temperatures, while the alchemical path provides
smaller standard deviations from multiple runs.

Similarly to the previous example, we analyzed the convergence
of the Gibbs free energy and the energy dissipation for the alchemical
path for the perovskite phase at 400 K by changing the switching time
for nonequilibrium simulations. Fig. 6c shows that, similar to the pre-
vious result, the alchemical path provides much faster convergence

than the Frenkel–Ladd path. This result confirms that the phase space
overlap between the two same phase structures with different com-
positions is much more significant than that between the atomic
structures and the Einstein crystals,which enablesmuchmoreefficient
free energy simulations.

Discussion
The alchemical modification of MLIP introduced in this work allows a
smooth interpolation between structures with two or more different
compositions. Building upon a prototypical construction of MLIP, we
modified the input graph,message passing scheme, and readout layers
to alchemically weight the different compositional states. Although
this modification can be generalized to various classes of MLIPs, it is
particularly efficient when integrated with MACE because of its con-
struction ofmany-body features from two-bodymessages (see Section
“Architecture-specific modifications”).

We first applied the scheme to the modeling of solid solutions.
Although there is no theoretical relationship between the stoi-
chiometry and the alchemical weights, the results showed that it
could model the nonlinear deviations of cell parameters in some
solid solutions. The end-to-end differentiability of the model with
respect to the alchemical weights enabled the optimization of
composition to match the desired cell parameters. The alchemical
modification also provides a scalable, efficient method for char-
acterizing order and disorder, as demonstrated in multicomponent
perovskite oxides, achieving accuracy comparable to SQS with
fewer number of atoms and no optimization needed for structure
generation. Furthermore, the alchemical weights allow smooth
creation or annihilation of atoms, or the change in atom types,
enabling the calculation of free energy differences between two
compositional states. We demonstrated that the free energy of
vacancy in BCC iron and the relative phase stabilities of the per-
ovskite and non-perovskite phases of CsPbI3 and CsSnI3 could be
calculated much more efficiently than the widely utilized
Frenkel–Ladd path. It is worth noting that, unlike the modeling of
solid solutions, alchemical free energy calculations conducted here
are theoretically exact when reaching convergence.

Overall, the proposed method enables efficient modeling of
composition-related properties with sufficient consistency within the
underlying MLIP. Beyond the aforementioned lack of theoretical
ground on the connection between alchemical weights and stoichio-
metric coefficients and convergence questions that are universal to
thermodynamic integration methods, inaccuracies emerge primarily
from the MLIP. In particular, there are two sources of error: (1) the
discrepancies between the MLIP and the DFT calculations and (2) the
inaccuracy of the underlying DFT calculations. Since most universal
MLIPs are trained on the energies and derivatives from the relaxation
trajectory, the relative error around the energyminimawould be small.
This implies that the former error would also be small when per-
forming free energy calculations for systems with a sufficient number
of similar structures in the materials database. Fine-tuning the MLIP
using the DFT data from relevant compositional space would alleviate
the former error. One can also utilize free energy perturbation
methods73 to calculate the free energy from a more accurate Hamil-
tonian to reduce both types of errors. We also note that differentiable
simulations74,75 could be used to fine-tune theMLIP tomatch either the
cell parameters resulting from the relaxation trajectory or the free
energy differences from theMD simulations to their desired values, to
mitigate both sources of errors.

While we devised the alchemical scheme with fixed elemental
identities and λ representing the occupancies of different alchemical
atoms to align with our goal of leveraging pre-trained MLIPs, we note
that interpolating the elemental identities of atoms, i.e., coupling λ to
atomic numbers, is also a promising direction that connects with the
quantumalchemy literature. Althoughpre-trainedembeddingsmaynot
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be ideal for this, they could be fine-tuned by alchemical force
matching with ∂E/∂λ derived from quantum alchemy22,76,77, possibly
using analytical gradients78–80, given that the baseline MLIP is end-to-
end differentiable with respect to embeddings. Learning an MLIP-
based representation consistent with quantum alchemymight offer a
well-regularized approximation of the physical state for the TI cal-
culation. While this alternative scheme could improve the physical
relevance of alchemical degrees of freedom, it is incompatible with
the current approach and remains a prospect for future work.
Beyond the applications demonstrated in this work, we expect that
the gradient of the physical observables with respect to the com-
position or elemental identities would hold particular importance to
the generative modeling of molecules and materials systems. We
envisage that further works, integrated with the discrete sampling
literature81,82, will utilize the alchemical degrees of freedom in MLIPs
for such modeling applications.

Methods
Architecture-specific modifications
In MACE, the atomic basis AðtÞ

i is constructed by pooling the two-body
features over the neighbors as in Eq. (14) (Eq. (8) in the original
paper10). The modification to message passing in Eq. (6) is imple-
mented bymultiplying the edgeweightsωαβ (Eq. (5)) to the summands
of the message aggregation as in Eq. (15):

AðtÞ
i, kl3m3

=
X

l1m1 , l2m2

Cl3m3
l1m1 , l2m2

X
j2N ðiÞ

RðtÞ
kl1l2l3

ðrjiÞYm1
l1
ðr̂ jiÞ

X
~k

W ðtÞ
k~kl2

hðtÞ
j, ~kl2m2

,

ð14Þ

AðtÞ
ði,αÞ, kl3m3

=
X

l1m1 , l2m2

Cl3m3
l1m1 , l2m2

X
ðj,βÞ2 ~N ðði,αÞÞ

ωαβR
ðtÞ
kl1l2l3

ðrjiÞYm1
l1
ðr̂ jiÞ

X
~k

W ðtÞ
k~kl2

hðtÞ
ðj,βÞ, ~kl2m2

:

ð15Þ

The original readoutmechanism is the sumof site energies over all the
outputs of readout layersRtð�Þ (Eq. (16)).We implement the alchemical
readout in Eq. (7) as the weighted sum of alchemical site energies as in
Eq. (17):

E =
X
i2V

Ei =
X
i2V

XT
t =0

Rt hðtÞ
i

� �
, ð16Þ

E =
X

ði,αÞ2~V
λαEði,αÞ =

X
ði,αÞ2~V

λα
XT
t =0

Rt hðtÞ
ði,αÞ

� �
: ð17Þ

Representation of solid solution
We used the MACE-MP-0 medium model15 for the experiments in
Section “Representation of solid solution”. Fast Inertial Relaxation
Engine (FIRE) algorithm83, as implemented in the Atomic Simulation
Environment (ASE) 3.22.1 package84, was used to conduct geometry
relaxations under fixed composition.

Compositional optimization. For the optimization for lattice-
matching composition for solid solutions Al1−xScxN and Al1−xYxN with
GaN, we used ∣σxx + σyy∣ as the optimization target to find thematching
condition for cell parameter a. We used gradient descent with learning
rates 0.01 and 0.005 for c and alchemical weights λ, respectively. We
initialized cwith the value from theoptimizedGaNstructure and λwith
[1, 0]. The gradient of λ was projected onto the line λ1 + λ2 = 1 by
subtracting the mean value at each optimization step.

In general, when alchemical weights λ represent the composi-
tional states, the weights should add up to 1 and the individual weights
should be non-negative, i.e., the weights are element of the

compositional simplex Δk�1 = fλ 2 Rk jPk
α = 1λα = 1, λα ≥0g. We can

perform gradient-based constrained optimization for the minimiza-
tion targetLðλÞ on the simplex by utilizing the exponentiated gradient
descent method85,86 with the update rule given as

λðt + 1Þα =
λðtÞα expð�η � ∂L=∂λαÞP
βλ

ðtÞ
β expð�η � ∂L=∂λβÞ

, ð18Þ

where η is the learning rate.

Disordered energetics. We obtained 2 × 2 × 2 cation-ordered
arrangements and experimental order/disorder label from the data-
set reported in52,53 on ordering of multicomponent perovskite oxides
A2B

0B00O6. We used the icet 3.0 package87 to optimize and generate
4 × 4 × 4 cation-disordered SQSs. Structural differences are identified
by pooling localized fingerprints, generated using OPSiteFinger-
print from matminer 0.9.388, across all atoms to create crystal-level
feature vectors53,57. The difference between two crystal features, x and
y, is quantified as the cosine distance: d(x, y) = 1 − x⊤y/(∥x∥∥y∥)∈ [0, 2].

Free energy calculations
We used the MACE-MP-0 small model15 for the experiments in Sec-
tion “Representation of solid solution”. MD integrations are per-
formed with corresponding implementations in ASE84, and a time
step of 2 fs was used. The characteristic time scales of τT = 25 fs and
τP = 75 fs were used for all the thermostats and barostats, respec-
tively. Each simulation was initialized with energy minimization (with
or without the cell fixed) using the FIRE algorithm83 and sampling the
momenta from the Maxwell–Boltzmann distribution at the given
temperature. The center of mass of the system was fixed for all MD
simulations. For all nonequilibrium simulations, we used the pro-
gress parameter scheduling of

λðτÞ= τ5ð70τ4 � 315τ3 + 540τ2 � 420τ + 126Þ, ð19Þ

where τ = t/tswitch ∈ [0, 1] is the normalized switching time progress.
Instead of linear λ(τ) = τ, the scheme in Eq. (19) was used because the
slopedλ/dt vanishes at both ends and reduces the energy dissipation89.
All free energy calculation results were averaged over four statistically
independent simulations, and their standard deviations are reported
as error bars in Figs. 5 and 6.

Frenkel–Ladd path. Here, we adapted the procedure arranged in
Menon et al.33. First, the system was equilibrated for 60 ps under the
NPT ensemble with the pressure of P = 1 atm by the Berendsen ther-
mostat and homogeneous Berendsen barostat90. The average cell
volume Vh i was calculated during the last 40 ps of the simulation. The
spring constants for the Einstein crystal were estimated from the
mean-squared displacement (MSD) of the atoms under the fixed sys-

tem volume as ki = 3kBT=hðΔr iÞ2i64. The fixed volume system was
simulated for 100 ps under the NVT ensemble by the Langevin ther-
mostat with γ = 1/τT

91, and theMSD values were computed over the last
60ps of the simulation. TheMSD values were averaged and reassigned
to the symmetrically equivalent atoms to reduce the variance before
determining the spring constants. Finally, a nonequilibrium simulation
of the Frenkel–Ladd path with the determined spring constants was
conducted under the NVT ensemble using the Langevin thermostat.
The systemwas equilibrated at λ = 0 for 40 ps, switched from λ = 0 to 1
with the schedule in Eq. (19) for 60 ps, equilibrated again at λ = 1 for 40
ps, and switched back from λ = 1 to 0 for 60 ps.
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The Helmholtz free energy for independent harmonic oscillators
(Einstein crystal) with angular frequencies ωi = ðki=miÞ1=2 is given as

FEðN,V ,TÞ=3kBT
XN
i = 1

ln
_ωi

kBT

	 

: ð20Þ

Since the center ofmass of the system isfixed, the following finite-
size correction associated with the Frenkel–Ladd path was applied:

ΔFCM = kBT ln
NWS

V
+
3
2
ln 2πkBT

XN
i = 1

μ2
i

ki

 !" #
, ð21Þ

where μi =mi=
PN

i = 1mi and NWS is the number of Wigner–Seitz cells in
the system92,93. Finally, the Gibbs free energy was determined as

GFLðN,P,TÞ= FEðN, Vh i,TÞ+ΔF +ΔFCM +P Vh i, ð22Þ

where ΔF was calculated by Eq. (11) from the nonequilibrium
switching33.

Free energy of vacancy. We used 5 × 5 × 5 supercell of BCC iron (250
atoms). The iron atom at the center of the supercell was removed to
simulate the vacancy. We determined the spring constant from the
NVT simulation of the perfect crystal and used the same spring con-
stant for both Frenkel–Ladd paths of the perfect crystal and the
crystal with vacancy and for the alchemical pathway of switching the
atom into a spring. All NPT simulations were conducted under a
pressure of 1 atm. Before the alchemical switching process, the initial
system was equilibrated for 20 ps using the Berendsen thermostat
and barostat (inhomogeneous) to reduce initialfluctuations in the cell
volume. Then, the Nose–Hoover and Parrinello–Rahman dynamics94

were used to simulate the switching process. The same λ scheduling
for the Frenkel–Ladd path was used, with equilibration and switching
times of 40 ps and 60 ps, respectively. The alchemical free energy
change ΔGAL was determined using Eq. (11), and satisfy the following
relationship:

ΔGAL = ðGdefect + FspringÞ � Gperfect, ð23Þ

where the free energy of spring Fspring could be computed from Eq.
(20) with N = 1.

Alchemical free energy calculations. We started from
6× 6 × 6 supercell of α-CsPbI3 for perovskite phase and
6 × 3 × 3 supercell of δ-CsPbI3 for non-perovskite phase. Both systems
contain 1080 atoms. For the alchemical pathway, we used the same
simulation procedure as the alchemical pathway for the vacancy,
under a pressure of 1 atm. Additionally, we set the masses of atoms as
the weighted sum of masses of alchemical atoms, i.e.,
miðλÞ= ð1� λÞmðiÞ

i + λmðfÞ
i , through the switching process. The alchem-

ical free energy change was computed as

ΔGAL =ΔG+
3
2
kBT

XN
i = 1

ln
mðiÞ

i

mðfÞ
i

" #
, ð24Þ

where ΔG is computed using Eq. (11). The second term on the right-
hand side accounts for the change in masses over the transformation
and originates from kinetic energy contributions33.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The initial structures used in this work are available in the Materials
Project16, with the material IDs of mp-20194 (CeO2), mp-23324 (BiSBr),
mp-22851 (NaCl), mp-804 (hexagonal GaN), mp-661 (hexagonal AlN),
mp-13 (BCCFe),mp-1069538 (α-CsPbI3), andmp-540839 (δ-CsPbI3). The
processed dataset for perovskite oxide ordering, originally sourced
from refs. 52,53, is available in the accompanying GitHub repository95

referenced in the Code Availability section. The result files for the free
energy calculations havebeendeposited inZenodounder the accession
code 11081396: https://doi.org/10.5281/zenodo.1108139696. Source data
are provided with this paper.

Code availability
The code to reproduce this work is publicly accessible on GitHub:
https://github.com/learningmatter-mit/alchemical-mlip95.
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