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% Check for updates Soil quality is fundamental to nutrient-rich food production and the sustain-

ability of terrestrial ecosystems. However, inappropriate agricultural practices
often lead to persistent soil exposure to air and sunlight, which increases soil
organic matter losses and erosion risks, particularly under climate extremes.
Here, we provide a satellite-based mapping of daily soil exposure occurrence
across global croplands from 2001 to 2022 and evaluate the associated
degradation risks caused by extreme climate events. We find that while 57% of
global croplands experienced a reduction in soil exposure duration in the past
two decades, 86% are increasingly subjected to climate extremes. The areas
exposed to increasing climate extremes tend to have higher soil organic car-
bon levels, indicating an intensified degradation risk of global nutrient-rich
cropland soils. Our study offers spatio-temporally explicit insights into global
cropland soil exposure and its vulnerability to climate extremes, providing
evidence to support improvements in sustainable agriculture practices.

Soil is the foundation for food production and carbon sequestration',
Upon decades of accelerated human exploitation, soil quality has been
decreasing rapidly worldwide*, currently ranging from levels of only
fair to poor or even very poor’. Nearly half of global croplands suffer
from varying degrees of degradation, mainly due to improper agri-
cultural practices, among which conventional tillage often leave soil
directly exposed to sunlight and air during cropping phases of initial
growth, post-harvest, and fallowing®’. The absence of protective
cover, such as vegetation canopy, crop residue, and snow cover,
increases the risk of soil erosion and losses of soil organic carbon and
microorganisms, particularly under climate extremes®’.

To restore degraded soils and ensure agricultural sustainability, a
wide range of conservation practices, including reduced tillage, cover

cropping, and mulching, have been implemented through soil con-
servation projects such as the European Union’s Soil Strategy for 2030
and the Environmental Quality Incentives Program. Additionally, per-
ennial crops, by simulating the vegetation of natural ecosystems, are
expected to provide year-round protection for the soil and promote
the formation of soil organic matter®°. The effectiveness of these
agricultural practices has been evaluated through site-based
studies ™. At a broader scale, cropland soil exposure level has been
recognized as an indicator of soil health status'*'. However, the
accuracy of existing studies in capturing variations in soil exposure has
been constrained, particularly when cropping phases shift rapidly.
Furthermore, we still lack a quantitative, spatiotemporally continuous
evaluation of soil exposure across global cropland areas.
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Fig. 1| Average annual duration of cropland soil exposure during 2001-2022.
a Global map of cropland soil exposure duration at 500 m resolution. Pixels
identified as cropland for any given year are retained. The insert shows the dis-
tribution of cropland area proportions by exposure duration. b Schematic
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representation of cropland soil exposure. ¢ The cropland soil exposure duration
aggregated to the country level. We refer to Supplementary Data 1 for the complete
list. d The cropland soil exposure duration as a function of global aridity®.

Changes in frequency and intensity of climate extremes are
exerting substantial impacts on soil dynamics”. Heatwaves, char-
acterized by high air temperatures and land surface solar radiation
loads, can either accelerate soil microbial respiration or impair
microbial survival, resulting in faster carbon losses'®'’. Heavy rainfall
and strong winds contribute to soil erosion, depleting topsoil and
nutrients®. These effects are especially pronounced under bare soil
conditions. The impact of climate extremes on soil conditions is
globally heterogeneous”. Therefore, a spatiotemporally continuous
assessment of soil degradation risks under climate extremes is needed
for efficient protection and management of global cropland soils.

Here, we quantify the daily bare soil fraction across global crop-
lands at a spatial resolution of 500 m using satellite observations from
Moderate Resolution Imaging Spectroradiometer (MODIS) and
Sentinel-2 (Methods, Supplementary Figs. 1-4). We further calculate
the annual duration of cropland soil exposure from 2001 to 2022,
based on which we evaluate temporal trends of soil degradation risks
due to direct exposure to climate extremes.

Results

Global pattern of cropland soil exposure duration

From 2001 to 2022, soils in global croplands were on average exposed
(i.e., left without any crops, crop residue, snow, or water cover,
Methods) for approximately 147 days per year (Figs. 1a, b, and Sup-
plementary Data 1). About 5% of all cropland experiences soil exposure
exceeding eight months, predominantly located in the Sahel region of

Africa and the Great Indian Desert, with the longest durations of soil
exposure in Niger and Sudan, lasting 251 and 224 days, respectively.
(Fig. 1a, and Supplementary Data 1). In contrast, around 12% of global
croplands are exposed for less than three months per year, mainly
found in America, Europe, Southeast Asia, and Northeastern South
Asia (Fig. 1a). The Philippines and Indonesia in Southeast Asia show the
shortest cropland soil exposure periods, with average durations of 68
and 76 days, respectively (Supplementary Data 1). Among the top 10
countries by cropland area in 2022, Nigeria has the longest average soil
exposure duration at 189 days, while Canada has the shortest at
97 days (Fig. 1c).

The distribution pattern intricately covaries with local climate
conditions (Fig. 1d). In particular, croplands in arid and semi-arid cli-
mate zones tend to have longer periods of soil exposure, whereas
those in humid climates often experience shorter exposure duration.
The limited exposure duration in high-latitude regions, such as
Canada, the border area between Russia and Kazakhstan, and north-
eastern China, is largely due to prolonged snow cover, which can last
over three months (Supplementary Fig. 5a). We found a discernible
negative correlation between cropland soil exposure duration and the
length of the growing period reported by Food and Agriculture
Organization (Methods and Supplementary Fig. 6). This correlation is
less evident in conservation agriculture, where crop residues often
remain on the soil surface during the off-growing season, and in high-
latitude regions, where prolonged snow cover disrupts the relation-
ship (Methods, Supplementary Fig. 5a).
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Fig. 2 | Trends in duration of cropland soil exposure during 2001-2022.

a Global map of trends in cropland soil exposure duration at 500 m resolution.
Only pixels identified as cropland for all years are retained for the trend analysis.
The insert shows the distribution of cropland area proportions with different
exposure trends. b The cropland soil exposure duration across six continents
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during 2001-2022. ¢ Share of global cropland for the trends in cropland soil
exposure duration among the top 10 countries by cropland areain 2022. d Share of
global cropland for the trends in cropland soil exposure duration among four
aridity conditions®".

Global trends in cropland soil exposure during 2001-2022
About 57% of croplands experienced a reduction in annual soil expo-
sure duration from 2001 to 2022, with 23% of these reductions being
significant (p < 0.05) (Fig. 2a). The areas with the largest reductions in
exposure duration are mainly located in India, North America, and
China, which together account for more than half of the global
decrease in cropland exposure (Supplementary Data 1). India is parti-
cularly noteworthy, with 92% of its stable cropland areas undergoing
reduced soil exposure duration (65% significant at p < 0.05), accounting
for over 20% of the world’s croplands with a shortened soil exposure
duration. Relative changes were calculated to assess the rate of change
in soil exposure duration in 2022 relative to 2001 (Methods, Eq. 11). Asia
has experienced a relatively stable decline in cropland soil exposure
duration, declining by approximately 13 days (relative change = -8.31%)
from 2001 to 2022 (Fig. 2b). Again, India recorded the most substantial
decrease, with a reduction of 25 days (relative change = 14.44%) over
the last two decades (Fig. 2c), which may be driven by agriculture
intensification during recent decades™*.

On the other hand, about 43% of croplands saw an increase in
annual soil exposure duration, with 11% being statistically significant
(p <0.05). Notably, Eastern Europe exhibited a significant increasing
trend in cropland exposure, accounting for approximately 20% of the
world’s cropland with prolonged soil exposure durations. In Africa,
cropland soil exposure is also apparent with a cumulative increase of
8 days, representing a relative change of 4.62%. This trend is

particularly pronounced in Uganda, Senegal, Chad, and Nigeria,
where more than 80% of cropland areas show increased soil exposure
duration. Specifically, Uganda experienced an average increase in soil
exposure duration of 28 days (relative change =26.20%) from 2001
to 2022.

We combined crop cover and crop residue cover, and determined
the annual duration of crop/crop residue cover by subtracting the
snow cover duration and soil exposure duration from the total number
of days in each year. Then, we compared the influence of this com-
bined cover with that of snow cover in determining soil exposure
across the Northern Hemisphere (Methods, Figs. 2a, and Supplemen-
tary Fig. 5b, ¢). The increases in both snow and crop/crop residue
coverage have contributed to a reduction in cropland soil exposure in
northeastern China. In Canada, an increase in snow cover alongside a
decrease in crop/crop residue cover is observed. The impact of the
snow cover changes is particularly evident, leading to a marked
decrease in exposed cropland throughout the region (Supplementary
Figs. 5b, d). Conversely, in Nebraska and Kansas in the central U.S,,
there has been a decrease in snow cover coupled with an increase in
crop/crop residue cover. In these regions, the influence of crop/crop
residue is more pronounced, resulting in reduced exposure time in
most areas. Moreover, in humid regions, the area experiencing a
reduction in cropland soil exposure far exceeds that with an increase,
whereas in other aridity conditions, no notable differences are
observed (Fig. 2d).
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high solar radiation, heavy rainfall, and strong wind, respectively. The inserts show
the areal proportion of cropland areas with increased and decreased exposure to
climate extremes.

Increasing global cropland soil exposure to climate extremes
We calculated the number of extreme climate events (high tempera-
ture, high solar radiation, heavy rainfall, and strong wind) during
periods of exposed soil conditions to quantify the risk of soil degra-
dation (Methods). From 2001 to 2022, the extent of cropland soils
exposed to climate extremes have changed substantially (Fig. 3).
Around 86% of global cropland areas have seen an increase in soil
exposure due to the various climate extremes examined during the
exposure periods (Fig. 3a). Notably, 17% have experienced an increased
risk of exposure to all four types of climate extremes, with the most
affected regions located in the U.S. and Europe. Only 14% of global
cropland areas have seen a decrease in exposure to all four climate
extremes, primary located in northern India, northeastern China, and
Canada.

In particular, 73% of exposed soils of global croplands experi-
enced an increased frequency of high-temperature events from 2001
to 2022 (Fig. 3b). The remaining 27% areas experiencing a decreased
frequency of high-temperature events are mainly located in India,

northeastern China, and Canada. On average, there has been an
increase of about four days experiencing extreme atmospheric heat to
exposed soils across global croplands (Supplementary Table 1). Areas
with decreased solar radiation exposure outweigh those with increases
by 6%, with notable increases in Europe, South America, and along the
border between the U.S. and Canada (Fig. 3c). A similar trend is
observed with extreme rainfall, where areas with decreased exposure
outweigh those with increases by 10% (Fig. 3d). The exposure to strong
wind is relatively balanced between increases and decreases, with
significant increases along the Russia-Ukraine border and in Sudan,
Africa (Fig. 3e).

Higher soil exposure to climate extremes in SOC-rich croplands
Cropland soil quality varies substantially worldwide, with higher-
quality soils offering enhanced productivity, greater soil microbiome
diversity, and superior carbon sequestration capabilities®’. We used soil
organic carbon (SOC) as a proxy for soil quality due to its close asso-
ciation with soil fertility, water-holding capacity, and structure” . We
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Fig. 4 | Statistics on soil organic carbon (SOC) for areas grouped by different
cropland soil exposure conditions. a SOC grouped by the average annual dura-
tion of soil exposure. b SOC grouped by positive and negative trends in soil
exposure during 2001-2022. ¢ SOC grouped by positive and negative trends in soil
exposure to climate extremes from 2001-2022. In boxplots, the horizontal lines,

from bottom to top, represent the minimum, first quartile, median, third quartile,
and maximum values, respectively. The width of the boxes in each box plot
represents the number of pixels. ** indicates that the differences in SOC between
groups were tested using Welch’s t-test, with p < 0.05. A represents that the mag-
nitude of difference between groups were tested using Glass’s Delta.

then analyzed soil exposure-induced degradation risks in global
croplands. Global cropland SOC content typically ranges from 2 to 9 kg
m2, with an average value of 4.8 kg m™ (Supplementary Fig. 7)*.

As expected, our results show higher SOC content in croplands
with shorter exposure duration (Fig. 4a). Notably, SOC content was
significantly higher in croplands where soil exposure increased from
2001 to 2022, compared to those with a decreased soil exposure
(Fig. 4b). The average difference in SOC between areas with significant
increases and decreases in soil exposure is relative low (0.46 kg m,
Glass's Delta = 0.28). However, even small changes in SOC (0.1 kg m™
y™) were found to be correlated with increased food grain production
(32 billion kg y™)?¥. Moreover, cropland soils exposed to increased
climate extreme conditions all have significantly higher SOC levels
(Welch’s t-test, p<0.05) than those exposed to decreased climate
extreme conditions, except for heavy rainfall (Fig. 4c). This indicates
that more croplands experienced a decrease than an increase in soil
exposure duration, but it did not necessarily correspond to a reduced
risk of SOC loss. When considering regions with significant trends in
exposure-induced risks, the differences in SOC between areas with
increased and decreased soil exposure to high solar radiation and
heavy wind are even larger. Therefore, global cropland soils possibly
experienced an increased SOC loss due to heightened exposure to
climate extremes over the past two decades.

Discussion
Soil is the foundation for life on Earth. In 1994, the United Nations
Convention to Combat Desertification (UNCCD) was founded to pro-
tect and restore Earth’s land, following two high-level UN conferences
in 1977 and 1992 on land degradation and desertification. The first task
is to assess where and how severely Earth’s land has degraded. Satellite
remote sensing provides suitable, global, and spatiotemporally con-
sistent data for the assessment. Current remote sensing-based studies
use changes in vegetation greenness as a proxy for land degradation
assessment, and in the past decades, satellite observations show
that the Earth is greening due to climate change and land
management?>?>?°, However, land degradation is about soil quality
rather than vegetation greenness, and ground surveys show that soil
quality has declined due to extensive agriculture practices’*. Instead
of assessing vegetation greenness, our study mapped bare soil fraction
in global croplands as a proxy for land degradation risk. Also, daily
estimation of soil exposure is essential for accurately determining bare
land duration and exposure risks to climate extremes, as both land
management and weather conditions can change rapidly over time.
We produced a global, daily, and wall-to-wall map of cropland soil
exposure over the past two decades and reported an increased crop-
land soil degradation risk due to direct exposure to more frequent
climate extremes during 2001-2022, which has not been documented
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before. India, in particular, showed a marked decrease in soil exposure
regarding spatial extent and temporal duration, consistent with find-
ings of a strong greening trend'**. The reduction in soil exposure is
largely attributed to agricultural intensification, characterized by
heightened cropping frequency and density®*2. This trend is likely to
be substantiated by the rise in global population and food demand/
production®?*, U.S. has experienced a substantial decrease in cropland
soil exposure, potentially attributable to the widespread adoption of
cover crops since 2005, For example, Southern Pennsylvania has
experienced an increase of the proportion of winter cover crops from
2010 to 2013, driven by ongoing efforts to promote their adoption®.
Concurrently, the duration of cropland soil exposure has decreased
(Supplementary Fig. 8), reflecting the positive impact of these initia-
tives. In addition to the U.S., many high-income countries have already
begun to integrate cover crops into their farming practices to address
soil erosion, nutrient leakage, control pests and diseases, and boost
carbon storage®*. Beyond cover cropping, perennial grain agriculture
also holds potential as an effective means to reduce soil disturbance
and degradation®. Additionally, changes in snow cover also affect the
exposure of soils in croplands at higher latitudes (Figs. 2a, and Sup-
plementary Fig. 5b). While a general decrease in snow cover in the
Northern Hemisphere has resulted in an increase in bare land**°, there
are notable exceptions, such as the crop-growing areas in Canada and
Northeast China, where an increase in snow cover has correspondingly
decreased soil exposure.

Soil exposure in croplands appears to be influenced by a country’s
level of economic development and degree of political stability. We
observed a substantial difference in the duration of soil exposure
across an area within approximately 10 km of the Turkey-Syria border
(Supplementary Figs. 9a, b). The difference observed is likely asso-
ciated with the different levels of economic development between the
regions. Specifically, the prolonged conflict in Syria has severely
damaged agricultural infrastructure, including irrigation systems®.
The variance of annual cropland soil exposure in Syria (std=17.93) is
higher than that of Turkey (std=15.42) (Supplementary Fig. 9¢). This
difference may be attributed to the less developed agricultural prac-
tices in Syria to mitigate climate conditions.

In the context of ongoing climate change, more cropland soils
have experienced escalated risks of degradation (Fig. 3a). Extreme heat
has emerged as the primary threat to bare soils in croplands over the
past two decades (Fig. 3b). Only 14% of all global cropland areas remain
unaffected by increases in any of four climate extremes examined
during soil exposure. These regions are primarily located in northern
India, northeastern China, which have witnessed substantial reduc-
tions in soil exposure (Fig. 2a). Yet, climate extremes, including heat-
waves and extreme precipitation, are projected to increase with
ongoing global warning*>*>, With extreme rainfall projected to inten-
sify further in India*, the risk of soil exposure to heavy rainfall is likely
to increase accordingly.

Cropland soil quality exhibits widespread global variations®*.
Consequently, the potential damage caused by soil exposure has
varying impacts on the global food supply and environmental health.
Specifically, damage to higher-quality soils is likely to cause greater
crop yield and soil carbon losses compared to lower-quality soils. Our
analysis indicates that regions with increasing trends in cropland soil
exposure tend to feature higher SOC levels. Additionally, areas with
pronounced risks from climate extremes also show higher SOC values
(Fig. 4b, c). Therefore, despite more croplands worldwide have
experienced reduced soil exposure compared to increased soil expo-
sure (Fig. 2a), the overall risk of cropland degradation has not neces-
sarily decreased, and crucial functions of croplands such as carbon
sequestration and nutrient-rich food production may be adversely
affected.

Although maintaining cover over cropland soils can mitigate the
detrimental effects of direct exposure to air and sunlight, the methods

of coverage are crucial, as they potentially introduce additional risks.
For example, the observed reduction in cropland soil exposure in the
U.S. is likely attributable to the implementation of cover crop strate-
gies, which are expected to retain soil structure, reduce soil erosion,
and enhance soil health. Conversely, in India, the current reduction has
primarily been achieved through intensive farming, which, para-
doxically, may exacerbate soil health deterioration*. However, the
current method only captures the changes in cropland soil exposure,
without identifying the underlying causes. Future research should
investigate the specific drivers of cropland soil exposure reduction,
allowing for a comprehensive assessment of the risks faced by
cropland soils.

Methods

Overview

We introduced a methodology for daily soil exposure mapping across
global croplands using satellite imagery (Supplementary Fig. 1). Initi-
ally, we selected 34 regions globally, each measuring 0.2°x0.2°,
characterized by extensive cropland coverage. We then applied Linear
Spectral Mixture Analysis (LSMA)* to generate multi-temporal bare
soil fraction data utilizing Sentinel-2-based Normalized Difference
Vegetation Index (NDVI) and Normalized Difference Tillage Index
(NDTI) time series. The bare soil fraction data, serving as ground truth,
was then resampled to align with the spatial resolution of MODIS
imagery. Subsequently, a linear regression model correlating resam-
pled bare soil fraction data with MODIS-derived NDVI and NDTI was
developed. Employing this model, we mapped daily bare soil fraction
from 2001 to 2022. We excluded dates with snow or water cover by
thresholding Normalized Difference Snow Index (NDSI) and Auto-
mated Water Extraction Index (AWEI)*, thereby obtaining precise soil
exposure conditions in croplands. We further calculated the annual
duration of soil exposure for the same period to assess the temporal
trends of potential risks associated with exposure to climate extremes.
Additionally, we used SOC as a proxy for soil quality and explored the
variations in exposure risks across croplands with differing soil
qualities.

The extent of cropland area

The cropland extent was generated from a 30 m time-series global
cropland mapping product, comprising five layers at four-year
intervals from 2000 to 2019*". We then aggregated the 30 m reso-
lution product to 0.0045° by classifying pixels as cropland if more
than 50% of the original pixels represent cropland. Our study spans
from 2001 to 2022, and for each specific year, we utilized the layer
with the nearest year as a mask to derive the cropland extent. For
trend analysis, only pixels identified as cropland during all years were
retained. For other analyses, pixels identified as cropland for any
given year were retained.

Preparation of satellite imagery
We used Sentinel-2 and MODIS satellite imagery to map soil exposure
across global croplands. Specifically, MODO9GA data*® spanning from
2001 to 2022 were included in the study, and the state_lkm quality
band was employed to minimize the influence from cloud contamina-
tion. The data were originally in a sinusoidal projection at a 500 m
spatial resolution, and were converted into a WGS84 geographical
projection at a 0.0045° spatial resolution (-500 m x 500 m at Equator).
Additionally, Sentinel-2 Level-2A data*’, which is provided in the Uni-
versal Transverse Mercator projection, was used in this study for the
period from 2019 to 2021. To ensure high quality data, the Scene
Classification Layer was utilized to eliminate cloud, snow, and water,
with further cloud removal achieved by setting the probability
threshold at 50% using the Sentinel-2 Cloud Probability product.
Using the imagery, we calculated four indices, namely NDVI, NDTI,
NDSI, and AWEI, known for effectively characterizing the conditions of
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crops, crop residue, snow, and water, respectively, using Eqs. (1)-(4).

NIR — RED

= 1

NDVI NIRRED @
SWIR1 — SWIR2

= 2

NDTI SWIRI + SWIR2 @
GREEN — SWIR1

= 3

NDSI GREEN + SWIR1 ©)

AWEI =4 x (GREEN — SWIR1) — (0.25 xNIR+2.75xSWIR2)  (4)

Selection of representative regions for model building

To enhance the robustness of the bare soil fraction estimation model
across space and crop types, we selected 34 regions globally (Sup-
plementary Data 2), each spanning 0.2° x 0.2°. These regions were
chosen for their high cropland density and considerable variation in
dominant crop types, with the assistance of multiple crop type data.
These data include the Cropland Data Layer (CDL) for 2020 released by
the United States Department of Agriculture (USDA)*, the Agriculture
and Agri-Food Canada (AAFC) crop type digital maps for 2020, the
ESA WorldCereal product for 2021%, the ESA WorldCover data for
2020, and crop type maps in Northeast China for 2019**.

Estimation of bare soil fraction with MODIS-based NDVI

and NDTI

Using data from the 34 representative regions, we developed a bare
soil fraction estimation model using MODIS-based NDVI and NDTI.
Two main steps were involved: calculation of alternatives to ground
truth bare soil fraction using Sentinel-2 data, and construction of
MODIS-based bare soil fraction estimation model.

Due to the difficulty of obtaining ground measurements for bare
soil fraction values, we generated 10-meter resolution bare soil frac-
tion data from Sentinel-2 imagery using LSMA as alternatives to
ground truth. LSMA assumes that the observed spectrum of a pixel is a
linear combination of the spectra of different pure components,
referred to as endmembers, present within that pixel. In cropland
ecosystems, endmembers mainly refer to crops, crop residue, and bare
soils. In each region, we randomly selected 1500 Sentinel-2 pixels and
excluded non-dominant crop areas based on the aforementioned crop
type data (Supplementary Data 2). Then, we extracted the NDVI and
NDTI values for the remaining points using the 5-day median compo-
sites of Sentinel-2 imagery corresponding to the years of the crop type
data. The valid data from all the remaining points across all timestamps
were aggregated to derive the NDVI-NDTI matches for each region.
Based on the triangular space method (Supplementary Fig. 2), we
constructed a two-dimensional scatter plot, commonly referred to as
the triangular space, using NDVI-NDTI matches for each region. Within
each plot, we visually determined the vertices of the triangular space
(Supplementary Fig. 3), which symbolize pure pixels of crops, crop
residue, and bare soils. The values of NDVI and NDTI corresponding to
the vertices were taken as the spectral features of endmembers in each
region (Supplementary Data 2). Finally, the Sentinel-2-based bare soil
fraction could be determined by LSMA using Eq. (5):

NDVI,, = CF x NDVI, + CRF x NDVI,, + BSF x NDVI,
NDTI,, = CF x NDTI, + CRF x NDTI,, + BSF x NDTl,

CF + CRF +BSF =100%, 0 < CF <100%, 0 < CRF <100%, 0 < BSF <100%

(5)

where NDVI,, and NDTI,, represent the NDVI and NDTI values of a
mixed pixel. NDVI., NDVI,,, and NDVIs are the NDVI values of crop,

crop residue, and bare soil endmembers, respectively. NDTI., NDTI,,,
and NDTlys are the NDTI values of crop, crop residue, and bare soil
endmembers, respectively. CF, CRF, and BSF denote the proportions
of crops, crop residue, and bare soils in a mixed pixel.

In the second step, we aim to formulate the bare soil fraction
estimation model using MODIS-based NDVI and NDTI. To achieve this,
we first computed the cloud proportion in 5-day median composites of
MODIS and Sentinel-2 imagery for each selected region spanning from
2019 to 2021, identifying timestamps when the cloud cover was below
50%. Then, we generated the MODIS-based NDVI and NDTI for the
chosen timestamps of these regions. And the Sentinel-2-based bare soil
fraction data was resampled to 0.0045° by averaging aggregation.
Within each region, 1000 points were randomly generated, and
MODIS-based NDVI and NDTI values were extracted at each timestamp
as independent variables, with corresponding resampled bare soil
fraction values extracted as dependent variables. Multiple linear
regression was used to model the relationship between bare soil
fraction and MODIS-based NDVI and NDTI. To enhance the reliability of
our results, we employed the leave-one-out cross-validation strategy.
In this approach, the data from each of the 34 selected regions is
individually used as the test set in a single iteration, with the data from
the other regions serving as the training set. The resulting regression
coefficients and accuracy for each iteration are detailed in Supple-
mentary Data 3 and Supplementary Fig. 10. By averaging the 34 sets of
regression coefficients, we derived the regression equation for mod-
eling the global bare soil fraction (Eq. 6). Using the equation, the final
accuracy was calculated by incorporating all data from the 34 selected
regions, resulting in coefficient of determination (R?), root mean
squared error (RMSE), and mean absolute error (MAE) of 0.73,13.61%,
and 10.69%, respectively.

BSF =36 x NDVI — 268 x NDTI + 90 (6)

Spatiotemporal mapping of cropland bare soil

To acquire the spatiotemporal distribution of bare soils in croplands,
non-cropland pixels were excluded using the previously mentioned
resampled cropland extent. Then, we extracted the daily values of
NDVI, NDTI, NDSI, and AWEI*® during 2001-2022 from MODIS ima-
gery. Due to the impact of cloud cover and atmospheric perturbations,
satellite observations frequently exhibit discontinuities. We therefore
employed Harmonic Analysis of Time Series (HANTS)*>"*, a time series
reconstruction algorithm, to fit the four indices of each pixel based on
the annually available observations, ensuring the generation of tem-
porally continuous data. Employing principles reminiscent of Fourier
analysis, HANTS is able to decompose complex time series datasets
into distinct harmonic components, each representing a unique fre-
quency or periodicity. HANTS can be expressed by the Eq. (7).

Vy=ay+ XN: [ai sin (znf,.tj> +b, cos (an,.tj)] @
' i=1

where y, represents the reconstructed value of pixel j at time ¢. aq is
the coefficient at zero frequency. a; and b; are coefficients of the tri-
gonometric components associated with the frequencies f.. N is the
number of harmonic components and is set to 4 in this study. After
employing HANTS to generate annually reconstructed time series of
NDVI, NDTI, NDSI, and AWEI, the daily bare soil fraction for each pixel
from 2001 to 2022 was computed based on Eq. (6). It is worth noting
that, due to winter snow cover in high latitudes, we used NDSI to
identify snow for areas north of 35°N from November to March. Pixels
with NDSI values above 0.4 were considered as snow, leading to a
corresponding bare soil fraction value of 0. For areas north of 35°N
from April to October and in other regions where the soil in rice cul-
tivation regions is periodically covered by water, we used AWEI for
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water identification. Pixels with AWEI values exceeding O were desig-
nated as water-covered, resulting in the corresponding bare soil frac-
tion being set to 0. Utilizing the method described above, we
calculated the daily bare soil fraction for global cropland pixels span-
ning from 2001 to 2022 (Supplementary Fig. 4). We determined the
annual duration of cropland soil exposure by aggregating the bare soil
fraction values for all days of the year. We further calculated the
average annual duration of cropland soil exposure and analyzed trends
in exposure duration using the slopes of linear regression equations.

Quantifying the risk of exposure to climate extremes
An extreme climate event is defined as a day with a meteorological
variable value surpassing the 90th percentile®® between 2001 and
2022. In this study, we considered four meteorological variables,
namely mean daily surface temperature, mean daily surface solar
radiation downwards, daily total rainfall, and mean daily wind speed.
These meteorological variables were extracted from ERA5-Land, a
global land reanalysis dataset provided by the European Centre for
Medium-Range Weather Forecasts*. The dataset provides hourly land
surface variables on a regular grid with a spatial resolution of
0.1°x0.1°, and it was further resampled to a spatial resolution of
0.0045° using the nearest neighbor method.

We quantified the risk of exposure to climate extremes by evalu-
ating the length of time each year that cropland soil was exposed to
climate extremes, as shown in Eq. (8).

D’
RVt = Z ng. ‘Ef;“ 8)
d=1

where R"'! represents the risk of exposure characterized by extreme
weather ¢ of pixel i in year y. D’ is the number of days in year y, and d is
the day of year (DOY). F,; denotes the bare soil fraction on DOY d. E,4
denotes whether extreme climate events occurred on DOY d, with
values of either O or 1. The trends in risk of exposure were considered
to be linear and were represented by the slopes.

Quantifying the relationship between SOC and exposure

We used the SOC content obtained from SoilGrids version 2.0% to
represent the quality of cropland soils. The original data, with a spatial
resolution of 250 m, was converted to a geographic resolution of
0.0045° by averaging aggregation to match the spatial resolution of
MODIS-based bare soil fraction data. We investigated the relationship
between SOC content and the average annual duration of cropland soil
exposure. Additionally, we compared SOC content across regions with
increased versus decreased soil exposure durations and between
regions with heightened versus reduced exposure-induced risks.

Statistics by country

We conducted a statistical analysis of six continents and the top 50
countries of the largest cropland areas in 2022 (Supplementary Data 1).
This analysis encompasses a range of critical indicators, including the
average annual exposure duration (Eq. 9), the average change in
exposure duration (Eq. 10), the average relative change in exposure
duration (Eq. 11), the area with decreased exposure (Eq. 12), the area
with increased exposure duration (Eq. 13), the proportion of areas with
decreased exposure (Eq. 14), the proportion of areas with increased
exposure (Eq. 15).

0 =
Average annual exposure duration = M 9)
>i=1A;
ns
Average change in exposure duration = Z T:AN 10)

i=1

Average relative change in exposure duration=

St 1AiDaoz — S 1ADao0on an
Y i-1AiD2001
-
Area with decreased exposure= ") " 4, 12)
i=1
ot
Area with increased exposure = ZAi 13)
i=1
- - YA
Proportion of areas with decreased exposure = == (14)
YiniA;
. _ SA,
Proportion of areas with increased exposure= ==120 (15)

i=17%

where A; is the area of pixel i, D; is the average annual exposure
duration of pixel i. D,oo; and D,y, represent the predicted exposure
durations for 2001 and 2022 using the linear regression. T is the trend,
expressed as the slope of the linear regression. N represents the years
from 2001 to 2022, which is set to 21. n, ng, n°, and n" represent the
number of cropland pixels, the number of stable cropland pixels, the
number of pixels with decreased exposure, and the number of pixels
with increased exposure, respectively.

Analysis of the impact of snow cover on cropland soil exposure
We explored the impact of snow cover on cropland exposure duration
at higher latitudes (north of 35°N) in the Northern Hemisphere using
the aforementioned MODIS-based NDSI time series data processed
with the HANTS algorithm. Pixels with NDSI values above 0.4 were
considered to be snow-covered. We calculated the annual duration of
snow cover from 2001 to 2022. The annual duration of crop/crop
residue cover was then determined by subtracting the snow cover
duration and soil exposure duration from the total number of days in
each year. We calculated the correlation between the durations of
these two types of cover and the soil exposure duration, identifying
the dominant factor as the one with the larger absolute correlation
value (Supplementary Fig. 5d).

Correlating bare soil fraction data with growing period data
We used the length of the growing period data, published by Food and
Agriculture Organization®, to correlate with our assessment of the
duration of soil exposure. Length of the growing period is character-
ized as the number of days when the average daily temperature
remains above 5 °C and the soil moisture is sufficient to support crop
germination and growth. Data from 2001 to 2010 was used because the
values prior to 2010 were derived from historical meteorological data,
whereas values after 2010 were based on predicted meteorological
data. The estimated average annual duration of cropland soil exposure
during 2001-2010 was resampled to match the spatial resolution of
the length of the growing period data at 5 arc-minute using averaging
aggregation. A correlation analysis of the two datasets was performed
along the gradient of latitude (Supplementary Fig. 6).

Data availability

The data on annual cropland soil duration and trends are available in
Google’s Earth Engine App at https://Iwfeng.users.earthengine.app/
view/cropland-soil-exposure-explorer. The daily bare soil fraction in
croplands for 2022 is available at https://doi.org/10.5281/zenodo.
14553703.
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Code availability
The code for time series data generation and bare soil fraction calcu-
lation is available at https://doi.org/10.5281/zenodo0.14553644.
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