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A mathematical model of H5N1 influenza
transmission in US dairy cattle

Thomas Rawson 1 , Christian Morgenstern 1, Edward S. Knock 1,
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Michael W. Sanderson 4, Giovanni Forchini1,2, Richard FitzJohn1,
Katharina Hauck 1 & Neil Ferguson1

2024 saw a novel outbreak of H5N1 avian influenza in US dairy cattle. Limited
surveillancedata hasmadedetermining the true scale of the epidemicdifficult.
We present a stochastic metapopulation transmission model that simulates
H5N1 influenza transmission through individual dairy cows in 35,974 herds in
the continental US. Transmission is enabled through the movement of cattle
between herds, as indicated from Interstate Certificates of Veterinary Inspec-
tion data. We estimate the rates of under-reporting by state and present the
anticipated rates of positivity for cattle tested at the point of exportation over
time. We investigate the impact of intervention methods on the underlying
epidemiological dynamics, demonstrating that current interventions have had
insufficient impact, preventing only a mean 175.2 reported outbreaks. Our
model predicts that the majority of the disease burden is, as of January 2025,
concentratedwithinWestCoast states.Wequantify theuncertainty in the scale
of the epidemic, highlighting the most pressing data streams to capture, and
which states are expected to see outbreaks emerge next, with Arizona and
Wisconsin at greatest risk. Our model suggests that dairy outbreaks will con-
tinue to occur in 2025, and that more urgent, farm-focused, biosecurity
interventions and targeted surveillance schemes are needed.

In February 2024, dairy farms in Texas, NewMexico, and Kansas began
to report an unidentified disease spreading through lactating herds1,2.
The diseasewas characterized by decreased rumen activity, diarrhoea,
reduced milk production, and thicker milk consistency and dis-
coloration. In March, milk samples from these farms were confirmed
via real-time PCR as being infected with highly-pathogenic avian
influenza H5N13. This marked the first time that transmission of Influ-
enza A had been identified in US cattle populations4.

Subsequent phylogenetic studies identified this strain circulat-
ing in dairy cattle as a clade 2.3.4.4b genotype first isolated fromwild
bird populations in late 20235. This, and additional most-recent

common ancestor studies, suggests that the initial spillover into
cattle likely occurred in December of 2023 in Texas6. Histological
studies demonstrated the virus’ capability to bind to epithelial cells
in themammary tissue of dairy cows7, in accordance with findings of
far greater viral shedding within milk compared to nasal swabs or
respiratory tissues3. These factors indicate that the repeated use of
milking apparatus between individual cows during milking is a pri-
mary route of transmission8,9. This additionally explains why out-
breaks have yet to be detected in beef cattle or dry heifers. In April,
the first human spillover case fromdairy cattle was reported10, with a
dairy worker demonstrating conjunctivitis but no respiratory
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symptoms, likely due to contact with infected milk during the
milking process.

The dairy industry is a substantial contributor to US national
economic activity, with over 9 million milk cows11 contributing to
approximately 3% of US GDP12. Cattle are frequently moved between
premises and across states. As a result of this, export of cattle has been
implicated in the proliferation ofH5N1 to herds nationwide3, leading to
interventions on exports being introduced. When cattle are shipped
interstate, they must be accompanied with an Interstate Certificate of
Veterinary Inspection (ICVI) to certify that such animals are fit to
travel13,14. As of April 29th 2024, cattle exported interstate have up to
30 cows in the cohort tested for H5N1 influenza15. Should the herd test
positive, the export cannot proceed, and the origin herd must be
quarantined for 30 days before being tested again. No such require-
ments were introduced for transfers of cattle within state borders.

As of December 9th 2024, there have been 720 cattle herd out-
breaks reportedby theUSDA16, across 15 states, and35humanspillover
cases with cattle as the exposure source17. Prolonged outbreaks of
H5N1 in a novel animal reservoir presents a continuing threat for fur-
ther spillover and the potential for viral reassortment. Recent struc-
tural analysis by Lin et al.18 suggests that a single glutamine to leucine
mutation within this 2.3.4.4b variant would be sufficient to allow for
human receptor binding. For this reason, ascertaining the true size of
the current epidemic, and identifying the areas of greatest circulation,
is crucial to inform public health responses for curbing transmission.
In previous bovine disease outbreaks, such as bovine spongiform
encephalopathy and foot-and-mouth disease in the UK, public health
responses have been significantly aided by modeling studies to esti-
mate rates of under-reporting19, estimating key epidemiological
mechanisms20, and quantifying the impact of control policies21. Such
efforts have not yet been applied to the current bovine H5N1 epidemic
in the US.

In this study, we estimate the true size of the current epidemic via
a stochastic metapopulation transmission model capturing 9,308,707
milk cows distributed across 35,974 herds across the 48 continentalUS
states, as counted in the 2022 agricultural census11. Epidemiological
parameters are estimated by fitting to outbreak data via a Bayesian
evidence synthesis approach22. Themovement of cattle between herds
and states is captured using probabilistic outputs of the US Animal
Movement Model (USAMM)23 and verified using actual 2016 ICVI
data14. Mechanistic modeling assumptions are made relating the
probability of detecting and reporting an infected herd proportional
to the number of infected cattle and total population size of the herd,
irrespective of the US state they reside in. The model successfully
simulates outbreaks for US states that have frequently reported out-
breaks, such as California.We estimate the rates of under-reporting by
state, by comparing the number of confirmed outbreaks with model
simulated trajectories, and present the anticipated rates of positivity
for cattle tested upon leaving each state over time. We further use this
model to interrogate the impact of intervention methods to date on
the underlying epidemiological dynamics, and quantify the extent of
uncertainty in the scale of the current epidemic, highlighting themost
pressing data streams to capture.

Results
The model structure and key output metrics are illustrated in Fig. 1.
Data on the number of dairy herds in the United States and their
respective populations are taken from the 2022 US Agricultural
Census11. Each herd is modeled via Susceptible-Exposed-Infected-
Recovered (SEIR) infection dynamics. Panel 1A illustrates the number
of infected cattle per herdover time. Panel 1B depicts the date atwhich
an infected herd probabilistically reports an outbreak. Panel 1C illus-
trates the aggregated number of herds with any infected cattle per
state, and the number of new reported outbreaks. The number of new
reported outbreaks is skewed by contact tracing efforts and other

time-varying factors—thus are not independent data samples. There-
fore, we do not fit to outbreak incidence data, but rather to the date of
first detection of an outbreak in each state (panel 1D).

Figure 2 plots the simulatedmean and 95% credible intervals (CrI)
of the date of first outbreak detection and the number of reported
outbreaks for each US state. After fitting the epidemiological para-
meters of the model via pMCMC22,24, we generated 20,000 stochastic
realizations of the model with parameter estimates drawn from the
posterior distributions of the fit parameters. All model results shown
are from these stochastic realizations so as to present the full sto-
chastic range of uncertainty rather than the optimized realizations
from the pMCMC fits.

The date of first detection in panel 2A is represented as a step
function, where the black line in these plots shows the proportion of
simulations that have had their first outbreak reported by that date in
the respective state. The shaded areas shows the 95% CrI of the mod-
eled date of first outbreak in each state. Note that for the majority of
states in panel 2A, such asWashington, the upper 95%CrI bound is the
final date of the simulations. This should not be interpreted as dates
beyond this point therefore lying outside of the 95% CrI.

Panel 2B shows the proportion of dairy herds in each state
reporting new outbreaks each week from December 18th 2023 to
December 2nd 2024. Both panels illustrate that the majority of out-
breaks are currently concentrated along theWest Coast of the country.
The model forecasts that states in the mid-West and Florida are the
most probable next states to declare their first outbreak. This trend is
due to the epidemic beginning in Texas, which exports primarily to
nearby West Coast states.

The model is seen to overestimate the number of reported out-
breaks in some states. For example, Texas, New Mexico, and Ohio all
feature simulations whose credible interval does not contain the
observed data. While our model assumes differences in outbreak
detection due to differences in herd sizes by state, we do not assume
further intrinsic state-varying differences in outbreak detection. In
reality, differences in public health resourcing and messaging will
impact outbreak detection rates. 72% of outbreaks reported as of
December 9th 2024 have been in California. Due to making up the
majority of the epidemiological data, model fits are mostly tuned to
the detection rates observed in California. Therefore, overestimation
of the model can be interpreted as under-reporting within a state
compared broadly to baseline reporting efforts in California, as seen
most strongly in the case of Arizona (Fig. 2A). The simulated number of
infected herds, the number of herds with any infected cows on the
premises, is shown in Supplementary Material Section 3.1.

Twenty-six of the 48 US states (54%) observed an outbreak of
H5N1 before December 2nd 2024 in the majority of model simulations
(> 50%of simulations, Table 1). Basedon theseprobabilities, onewould
expect to have observed outbreaks in a mean of 27 (22–32 95% CrI)
states by December 2nd 2024, assuming all states reported outbreaks
equally. In actuality, only 16 states identified and reported outbreaks in
this time period, indicating a high degree of under-reporting com-
pared to the high baseline set by California.

We note that simulated incidence levels have a bimodal distribu-
tion. Many simulations never see H5N1 emerge in a particular state,
which iswhy the95%CrIs in Fig. 2 often span0. Thus, thismean value is
not the most probable outcome, but should be interpreted alongside
the proportion of simulations which see no infections in particular
states, as provided in Table 1. Particularly narrow 95% CrIs are seen in
Fig. 2A for Texas, Ohio, NewMexico, and Kansas, due to the seeding of
cases in these states as detailed in the Methods.

These results demonstrate how the composition of the dairy
sector in each state has a significant impact on the overall epidemic
dynamics. For example, while Florida is increasingly likely to report an
outbreak (Fig. 2A), the expected proportion of herds reporting out-
breaks in Florida remains low (Fig. 2B). First, states with larger herd
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Fig. 1 | Schematic overviewofmodel format and outputs. Infection spreads from
the initial infected state through export of cattle.ACattle exports are stochastically
generated using trade data from the United States Animal Movement Model
(USAMM)23.BAt each time step, a herd has a probability of testing, and notifying of
an outbreak. CWe aggregate the number of herds with any infected cattle by state,

and the number of newly reported outbreaks, at each date. D We fit global epide-
miological parameters and an ascertainment scaling parameter via particle Markov
ChainMonte Carlo simulation (pMCMC). Using the posterior distributions of these
parameters, we are able to produce further model simulations herein. Full meth-
odological details are presented in Supplementary Material Section 2.
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Fig. 2 | Model simulations. After fitting model parameters we simulate
20,000 stochastic realizations drawing from the parameter posterior distributions.
Displayed is the epidemic trajectory from these simulations for each US state.
A shows the date atwhich thefirst outbreak is detected in a state, a binary outcome.
0 indicates the state has not yet reported its first outbreak. 1 indicates that it has.
Model simulation thus plots the proportion of the 20,000 realizations which have

simulateda reported outbreak by thisdate.B shows theproportionofherds in each
state which report new outbreaks per week, assuming no differences in ascertain-
ment (parameterAasc) between states. Redpoints depict data. Theblack line depicts
the model mean, lightly shaded grey region depicts the 95% credible interval (95%
CrI), and the darker shaded grey region depicts the 50% CrI.
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sizes present greater opportunities for infection to spread quickly
within the respective holdings. This then poses a greater risk of con-
taminating neighboring herds through shared workers, equipment,
grazing space, or environmental runoff. Secondly, larger population
holdings are observed to import larger numbers of cattle, hence
increasing the probability of infection, as only up to 30 cows are cur-
rently tested during inter-state transfer15. Thirdly, our model assump-
tions of ascertainment trend towards larger holdings beingmore likely
to report outbreaks, as has been observed in real-world reporting to
date3 (Fig. 3). The respective sizes of each state’s dairy industry is
provided in Supplementary Material Section 1.

Our model assumes each herd that has not yet reported an out-
break, has a probability of declaring an outbreak at each date. This
probability is dependent on the absolute number of infected cattle in
the herd, and the proportion of the herd that is currently infected. This
functional form (Fig. 3A) was designed after discussion with veter-
inarians based on their experience with on-farm callouts. This baseline
probability is then further scaled by an ascertainment rate model
parameter, which is estimated in model fitting (Table 2). Alternate
ascertainment rate assumptions arepresented as sensitivity analyses in
section 3.2.3 of the Supplementary Material.

We calculate the mean probability that a randomly selected herd
in each state will report an outbreak, given that 10% of its animals are
infected. These values ranged from 0.412 in California, a state with a
greater number of large herds, to 0.092 in West Virginia (Fig. 3B, C).
We see that states with a greater number of large herds aremore likely
to report outbreaks than other states. Correspondingly, California has
reported the vast majority of outbreaks to date (Table 1).

Current federal orders require that, when exporting cattle inter-
state, up to 30 randomly-chosen cows from the exported cohort will
be tested for H5N1, and only if all tested cattle register negative tests
will the export takeplace15. Thus, exports of less than30cattlewill have
all cows tested, and exports of more than 30 cattle will have only 30
randomly selected cows tested. The results of these tests, be it positive
or negative, are not currently reported tohealth authorities.Weoutput
fromourmodel simulations the expected rates of export test positivity
per state. This takes into account the expected number of cattle being
exported.

Figure 4 shows the mean probability by state of such an export
testing positive. We use the 20,000 simulation runs produced in Fig. 2
to sample 20,000 national epidemic trajectories for each herd. For
each herd, and for each time point, we assume that it exports cattle,
and sample howmany cattle it will be exporting. We then calculate the
probability of these cattle testing positive via the density of a hyper-
geometric distribution. Figure 4 displays the mean probability over all
herds and all 20,000 stochastic realizations. The 95%CrIs are provided
in Supplementary Material Section 3.1.

Lastly, we use the model to assess the impact that interstate
testing has had on the epidemic trajectory. We consider two coun-
terfactual scenarios. Scenario 1) weaker measures—we assume no
restrictions are introduced, no testing is required when exporting
cattle, and thus all interstate exports proceed unabated. Scenario 2)
stronger measures—we assume that the federal order was imple-
mented 28 days earlier, on April 1st 2024, and that up to 100 cattle are
tested instead of 30.

Considerable stochastic variation is seen across all scenarios,
though we do see a reduction in all infection measures for the mean
values of scenario 2—stronger measures, and an increase for the mean
values of scenario 1—weaker measures, compared with the baseline
scenario (Fig. 5). For the week beginning December 2nd 2024, under
baseline model assumptions, the model simulates a national total of
mean 120.9 new reported outbreaks (15–518 95% CrI), compared to an
increased mean of 150.7 outbreaks (95% range 17–632 under the no
interventions scenario 1, and a reduced mean of 93.4 outbreaks (95%
range of 11–407) under the stronger measures of scenario 2.

Table 1 | Reported outbreaks

US State Up to and including the week beginning December
2nd 2024

Outbreaks
reported

Simulation out-
breaks reported

Probability of no
outbreaks

(Observed) Mean (95% CrI) (Proportion of
Simulations)

California 520 339 (3–809) 0.010

Colorado 64 57 (0–139) 0.077

Idaho 35 64 (0–256) 0.150

Michigan 29 136 (0–710) 0.096

Texas 26 322 (197–376) 0.000

Iowa 13 89 (0–512) 0.191

Utah 13 25 (0–133) 0.306

Minnesota 9 249 (0–1305) 0.039

New Mexico 9 86 (74–97) 0.000

South Dakota 7 19 (0–119) 0.471

Kansas 4 194 (74–279) 0.000

Oklahoma 2 70 (0–158) 0.041

Nevada 1 2 (0–17) 0.686

North Carolina 1 11 (0–113) 0.667

Ohio 1 1004 (279–1487) 0.000

Wyoming 1 5 (0–48) 0.733

Alabama 0 2 (0–25) 0.825

Arizona 0 34 (1–51) 0.023

Arkansas 0 8 (0–34) 0.476

Connecticut 0 2 (0–36) 0.870

Delaware 0 0 (0–1) 0.974

Florida 0 35 (0–78) 0.094

Georgia 0 33 (0–155) 0.282

Illinois 0 48 (0–316) 0.309

Indiana 0 119 (0–598) 0.083

Kentucky 0 69 (0–362) 0.171

Louisiana 0 8 (0–56) 0.652

Maine 0 3 (0–45) 0.879

Maryland 0 9 (0–115) 0.698

Massachusetts 0 3 (0–40) 0.843

Mississippi 0 5 (0–37) 0.716

Missouri 0 125 (0–562) 0.112

Montana 0 4 (0–48) 0.780

Nebraska 0 7 (0–80) 0.759

New Hampshire 0 1 (0–5) 0.938

New Jersey 0 1 (0–13) 0.914

New York 0 108 (0–882) 0.268

North Dakota 0 3 (0–37) 0.790

Oregon 0 9 (0–104) 0.631

Pennsylvania 0 103 (0–888) 0.205

Rhode Island 0 0 (0–0) 0.990

South Carolina 0 3 (0–33) 0.808

Tennessee 0 34 (0–199) 0.343

Vermont 0 24 (0–230) 0.516

Virginia 0 16 (0–185) 0.664

Washington 0 33 (0–193) 0.326

West Virginia 0 2 (0–22) 0.881

Wisconsin 0 454 (1–2729) 0.019

For each US state we present the observed number of reported outbreaks, and the number of
reported outbreaks predicted by our model. Mean and 95% CrIs are provided from 20,000
stochastic realizations. We also display the proportion of these simulations for which no out-
breaks were reported in each state.
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Figure 5 shows that under each scenario, the epidemic continues
to grow—meaning border testing measures alone are insufficient to
effectively curb the epidemic. Stronger, farm-focused intervention
measures would be required to reduce transmission sufficiently to
achieve control.

Sensitivity analyses
All results are also produced under four alternate modeling assump-
tions. Supplementary Material section 3.2.1 considers alternate like-
lihood assumptions. Supplementary Material section 3.2.2 infers cattle
exports from exact 2016 ICVI export data. Supplementary Material
section 3.2.3 considers simplified ascertainment rate assumptions—
where ascertainment is proportional only to the proportion of the herd
infected. Due to the relatively short time frame considered, and unclear
evidence as to the extentofmortality or culling,wedidnot includebirth-
death processeswithin ourmodel. SupplementaryMaterial section 3.2.4
considers the dynamic impact of including such birth-death mechan-
isms. Our conclusions are unchanged in all of these sensitivity analyses.

Discussion
Our study presents the first herd-level dynamic model of highly
pathogenic avian H5N1 influenza transmission in US dairy cattle across

the continental United States. By synthesizing existing data on dairy
herd population sizes and cattle trade patterns, we recreate the spread
of the virus from an initial seeding in Texas on December 18th 2023,
through to the week beginning December 2nd 2024.

Themodel projects that themajority of the initial national disease
burden is focused within West Coast states, due to their existing trade
patterns with Texas, and the size of their respective dairy industries.
However, East Coast states are not without risk of currently housing
infected herds, as our model suggests that a considerable degree of
under-reporting is misrepresenting the true size of the epidemic. A
clear result from Fig. 2 and Table 1 is that some states are particularly
likely to be home to infected herds, but have yet to identify and report
infections. Most notable are Arizona, Wisconsin, Indiana, and Florida.
Arizona has the largest mean herd size in the country (Supplementary
Material Section 1), and extensive trade connections with Texas and
California (Supplementary Material Section 2.4)—states particularly
burdened with infection. Wisconsin, while farther from the epidemic
epicenter, has the largest number of dairy herds in the country—6216.
While Florida has a modestly sized dairy sector, and is located on the
east coast, it has one of the highest mean herd sizes in the country, as
their industry is predominantlymade up of a few very large holdings. It
also imports more cattle from Texas than its neighbors. Indiana

Table 2 | The Prior distributions and posterior intervals for all fit model parameters

Parameter Description Prior distribution Posterior–Median (95% CrI)
β
γ

transmission rate
recovery rate

Uniform (0.05, 3) 1.864 (0.929–2.932)

α Intra-state transmission coefficient Uniform (0, 0.1) 0.063 (0.009–0.098)

σ Incubation rate Uniform (0.05, 2) 1.050 (0.199–1.956)

γ Recovery rate Uniform (0.05, 2) 1.084 (0.384–1.942)

Aasc Ascertainment rate scaling Beta (1, 1) 0.648 (0.091–0.986)

0.25

0.50

0.75

1.00

50 100 150 200
Infected Cattle (I)

Pr
op

or
tio

n 
of

 h
er

d 
in

fe
ct

ed
 (I

 / 
N

)

Prob. report

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Baseline probability that a herd reports an outbreakA

0.0

0.2

0.4

CA AZ ID SD CO NY VT IA UT FL OR LA NE CT OH NH NC IN DE AR NJ TN MT AL
TX NM WA NV MI WI MN MS KS IL PA MD GA ND VA ME OK MA RI SC KY MO WY WV

US State

Pr
ob

ab
ilit

y 
of

 D
ec

la
rin

g 
O

ut
br

ea
k

Probability of Reporting an Outbreak, Assuming 10% of Cattle are InfectedB

Probability

0.0

0.1

0.2

0.3

0.4

0.5

State Average Probability of Reporting an Outbreak, Assuming 10% of All Cattle Are Infected.C

Fig. 3 | Ascertainment rate assumptions. A shows how the modeled baseline
probability of reporting an outbreak depends on the number and proportion of
infected cattle in a herd. Our model assumes that the probability that an infected
herd reports an outbreak depends on the size of the holding, and the number of
infected cattle on that date. B shows the mean and 95% CrI per-herd probability a

herd reports an outbreak by US state, assuming every herd has 10% of its cattle
infected. The credible interval captures the variation in herd sizes and the posterior
distribution of the ascertainment rate parameter. C maps the mean values shown
in (B).

Article https://doi.org/10.1038/s41467-025-59554-z

Nature Communications |         (2025) 16:4308 6

www.nature.com/naturecommunications


presents itself as having a high likelihood of probable infection due
both to having a very high number of dairy herds, but also due to its
frequent trading linkswithWisconsin. Table 1 shows that, while it is not
implausible that no infections have established within these states, the
probability of this is low,withWisconsin in particular only reporting no
outbreaks in 1.9%ofmodel simulations. In only 22 of the 48continental
US states did our model predict zero reported outbreaks in > 50% of
model simulations (Table 1). Figure S20 of the SupplementaryMaterial
visualizes the herdpopulation sizes of each state against the frequency
of imports from Texas, demonstrating the relationship between herd
sizes and outbreak likelihood.

The model also demonstrates how the distribution of cattle
populations in each state mechanistically impacts the rate of report-
ing. Figure 3 shows that, due to many West Coast states housing large
populations of dairy cattle in single herds, they have a higher-than-
average likelihood of reporting outbreaks. This is reflected in the
outbreak data. California has reported over 8 times asmany outbreaks
as the state with the next highest number of reported outbreaks. Our
model suggests that this can be explained by the fact that the average
herd size in California is significantly higher, and not necessarily due to
more robust epidemiological investigation attempts in the state.

The only national intervention mandated to date is the testing of
cattle exported interstate. Up to 30 cows in an exported cohort are
tested for H5N1, and must test negative for the export to proceed. Fig-
ure 4A shows that, early in the epidemic, Texaswasoneof theonly states
with a non-negligible probability of cattle testing positive at export,
though we note that such interventions were only brought in from April
29th 2024. By August (panel 4B), Texas had a greater than 40% mean
probability of an export testing positive. By December of 2024, our
model predicts that infections inTexasmayhavebegun todecrease, and
a more uniform probability of positivity is observed across the country.
According to theUSAMM, amean 29,590 (IQR922) interstate exports of
dairy cattle occur every year23. Given that such testing is mandated to
occur, it would be prudent to report such testing to verify against our
expected positivity rates and better refine model estimates.

Our model has also demonstrated that the border-testing inter-
vention alone, while a valuable (if unrealised) opportunity for surveil-
lance, is insufficient to control the spread of H5N1 influenza. We
explored the counterfactual scenario of stronger border testing mea-
sures, of up to 100 cows, and introduced 28 days earlier, on April 1st
2024. Despite a slight reduction in themeannumber of outbreaks under
this scenario, the fundamental epidemic dynamics remained unchan-
ged, with infections and outbreaks continuing to increase as the year
continued. This suggests that targeted biosecurity interventions at farm
level, such as postmilking teat dipping and the use of disposable wipes
for premilking teat disinfection25, and interventions between herds such
as boot dips at facility entrances, clothing disinfection post-site visit, or
greater emphasis on adequate personal protective equipment26 will be
required (Supplementary Fig. S19). Additionally, better outreach with
industrial partners should be pursued. On May 10th 2024, the U.S.
Department of Agriculture (USDA) provided a total of $98 million to
support biosecurity measures27,28, whereby individual farms could apply
for up to $28,000 to implement protocols such as secure milk plans,
disposal of infected milk, veterinarian costs, and testing costs. As of
January 9th 2025, only 510 premises have applied for this additional
funding29. On May 30th 2024, the USDA announced a further $824
million was being allocated to a nationwide voluntary Dairy Herd Status
Pilot Program, whereby premises could apply for free routine milk sur-
veillance. The 2022USAgricultural Census lists 36,024dairy farms. As of
January 9th 2025, only 75 herds have enrolled for the voluntary testing
program30. Evidently, voluntary measures are currently failing to see
sufficient uptake.

Data availability has been poor throughout the epidemic, the only
epidemiological data stream being the number of reported outbreaks.
Due to a lack of uniform surveillance or testing, uncertainty

surrounding state-level infection levels is large, as demonstrated in
Fig. 2. Uncertainty is further compounded by the probabilistic nature
of our modeled export assumptions, necessitated by a lack of precise
movement data in this period. Many other countries, including the
European Union, enforce mandatory identification of all premises,
individual cattle, and movement of animals, often by electronic tag-
ging methods31. The US has no such requirement. Additionally, since
veterinary and public health responses are governed at the state level,
individual states vary greatly in the measures, resources, and inter-
ventions they have applied to limit spread. Reported outbreak inci-
dence data are not sufficient to reasonably quantify these state-level
differences. The most valuable enhancement to current surveillance
would be through stratified and systematic sentinel testing for infec-
tion, reporting of both positive and negative test results. This would
allow overall assessment of infection prevalence within farms, and
estimation of the proportion of herds with any level of infections,
which in turn would allow better estimation of the risks of onward
infection through cattle trade. A further additional valuable source of
datawould be the publication of the results of pre-export cattle testing
currently being undertaken. Figure 4 shows our estimates of the rates
of positive tests at export currently, which such data might be com-
pared against, if released.

While our analysis suggests that some of the earliest infected
statesmayhave passed thepeakof their epidemics, Fig. 2 suggests that
many more states will still be in the early stages of their epidemics.
Importantly, our model also does not capture the role of either re-
infection, or the emergence of new, more adapted, clades of the virus
(though studies have shown that initial infection infers strong pro-
tection against reinfection32). Our analysis suggests that dairy herd
outbreaks will continue to be a significant public health challenge in
2025, and that more urgent interventions are sorely needed. Early
economicmodels of the impact of the epidemic on the US dairy sector
project economic losses ranging from $14 billion to $164 billion12.
Additionally, 35 human spillover cases from cattle17 have been repor-
ted to date. The longer the epidemic persists in a novel mammalian
reservoir, the greater the risk of further human spillovers and viral
adaptations to human hosts. Recent research suggests only minimal
genetic distance separates the currently circulating clade from adap-
tation to human receptor binding18, and such adaptation has already
occurred to improve virus replication in bovine and primary human
airway cells33.

Our work is not without limitations. Most importantly is that, due
to insufficient epidemiological data, we had to make strong assump-
tions about the probability of ascertainment—whether or not an
infected herd is identified and reported. Figure 3 outlines the impli-
cations of these assumptions, but the wide credible interval for our
estimate of the ascertainment parameter Aasc reflects these data lim-
itations. Additionally, because the US does not employ a mandatory
electronic tagging system, there is no way to accurately capture the
precise cattle movements for 2024. While we were provided with the
2016 ICVI data utilised in Cabezas et al.14, it was considered, upon
comparison with USAMM model simulations, that precise inter-state
exports might vary greatly year-to-year. Therefore, assuming identical
movements to 2016 could induce significant bias into the results. Thus,
we instead take the probabilistic approach, whereby the exports of
cattle are probabilistically determined through model simulations
according to the USAMM model23. While this introduces further
uncertainty into the model, it accurately demonstrates how poor data
availability regarding precise 2024 cattle movement hampers epi-
demic forecasting efforts. We nonetheless present model results fit
using this 2016 ICVI data as a sensitivity analysis in Supplementary
Material Section 3.2.2.

Additionally, our work does not consider the dynamic impact of
other zoonotic reservoirs. The ongoingH5N1 epidemic in theUS is also
heavily impacting the poultry industry, with 662 counties reporting
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Fig. 4 | Probability of positive border testing. We calculate the probability of an
export of cattle out of each state testing positive from 20,000 stochastic model
simulations. Whenmoving cattle inter-state, up to 30 cattle will be tested for H5N1

per export. Panels show the state average per-herd probability that, should a herd
export cattle, it would test positive at: A week beginning April 15th 2024, B week
beginning August 19th 2024, and C week beginning December 2nd 2024.
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Fig. 5 | Border testing intervention counterfactuals. A The number of new
reported outbreaks weekly. B The number of herds nationally with any infected
cattle. C The total number of infected cows nationally over time. Solid lines show
simulation mean. Shaded regions show 95% CrI. Blue (True measures) depicts

baseline model assumptions, whereby up to 30 cows in each inter-state export are
tested starting from April 29th 2024. Red depicts the scenario with no border
testing. Green depicts border testing of up to 100 cows from each export, imple-
mented 28 days earlier, on April 1st 2024.
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outbreaks as of March 3rd 202534. Modeling the disease in poultry is
significantly more challenging due to the role played by wild bird
migration35, and our current model does not consider spillover from
other animal populations. Further work identifying farm sites which
house multiple host species would be an important next step in
identifying points of spillover risk between reservoir animals, pre-
senting a risk of further genetic reassortment.

In conclusion, our model demonstrates that we cannot defini-
tively conclude that the current number of reportedoutbreaks is a true
representation of the scale of the current H5N1 influenza epidemic in
dairy cattle. Significant under-reporting is likely, and the differences in
dairy herd population distributions across states have aided in
spreading disease across the west coast. Current mandatory inter-
ventions are insufficient for controlling the spread of disease, and
voluntary testing and interventions are severely under-utilised. Sig-
nificant increases in testing are urgently required to reduce the
uncertainty of model projections and provide decision-makers with a
more accurate picture of the true scale of the national epidemic.

Methods
Infection seeding
We seeded the epidemic with five infected cows in a mid-size herd in
Texas, on the week beginning December 18th 2023, based on phyloge-
netic analyses6. For the stochastic realizations, we also seeded 9 addi-
tional herds in accordance with the nine early outbreaks detailed in
Caserta et al.3. The herd size, number of infected cattle, and date of
seeding is consistent with the data presented in that manuscript.

Epidemiological dynamics
We construct a stochastic metapopulation SEIR model36 with 35,974
individual herds of varying population size, informed by the 2022 US
Agricultural Census11. Each herd’s infectiondynamics are the stochastic
equivalent of the following set of ordinary differential equations
(ODEs):

dSsi
dt

= � βSi
Ii
Ni

+α
I�i

N�i

� �
,

dEi

dt
=βSi

Ii
Ni

+α
I�i

N�i

� �
� σEi,

dIi
dt

= σEi � γIi,

dRi

dt
= γIi:

ð1Þ

Here, Si, Ei, Ii, and Ri are the number of susceptible, exposed, infected
and recovered cows in herd i. Ni is the total population of herd i. β, σ,
and γ are the transmission, incubation, and recovery rates respectively.
α is a model parameter between 0 and 1 controlling the rate of trans-
mission between herds in the same state. I−i and N−i are the total
number of infected cattle, and the total number of all cattle, in the US
state herd i resides in, not including the cattle in herd i itself. Early
epidemiological surveys of farms reporting outbreaks found that
transmission routes existed between herds in the same state through
the shared use of equipment, staff, or the movements of wild birds37,
which we capture here in the model. We assume no such forms of
transmission can occur between herds in different US states.

The stochastic analogue of the above ODEs, is that we calculate
the number of cattle progressing between epidemiological compart-
ments via binomial distributions, for each time step dt as:

ni
SE � Binomial Si, 1� exp �β

Ii
Ni

+α
I�i

N�i

� �
dt

� �� �
,

ni
EI � Binomial Ei, 1� exp ð�σ dtÞ� �

,

ni
IR � Binomial Ii, 1� exp ð�γ dtÞ� �

:

ð2Þ

Here ni
XY is the number of cattle moved from compartment X to Y (for

general X and Y), in herd i, in a time step of size dt.
After all cattle movements between epidemiological compart-

ments is concluded, we calculate for each herd that has yet to report
an outbreak, whether or not it will report an outbreak in that time
step. It reports an outbreak with probability Poutbreaki = 1� e�ϕi ,
where ϕi is

ϕi =
Ii

ð0:7NiÞ0:95
+

Ii
150

 !
Aasc dt, ð3Þ

and Aasc is a model parameter that we fit. The bracketed term to the
left of Aasc in Eq. (3) is shown in the heatmap of Fig. 3A. This func-
tional form was developed in consultation with veterinarians
based on their experiences of at what stage of pathogen
spread they are typically consulted. While US states undoubtedly
vary in their detection capabilities, there is insufficient outbreak
data to fit unique Aasc values for each state. Assuming one
national Aasc parameter allows us to identify which states that have
reported 0 outbreaks to date are driven mostly by under-
reporting (Fig. 2B).

Movement of cattle between herds
After calculating the movement between epidemiological compart-
ments and any reporting of outbreaks, we then calculate the move-
ment of cattle between herds. As detailed in Supplementary Material
Section 2.4, we infer from the USAMM the probability, P exportk , for
each US state, k, that a herd within that state will export cattle each
week. We assume the same probability for every herd in the state.
We also calculate the proportion of cows in the origin herd that will
be exported—P export sizek from the USAMM export simulations,
which include cohort size and size of origin herd. We also calculate
the probabilities of, should an export of cattle occur, which US state
they will be exported to. This is parameterized by a movement
matrix M, where element Mk,l denotes the probability that an export
from state k will go to state l. This matrix describes the patterns of
interstate movement, and the diagonal represents the probability of
an export remaining within the same state. The exact matrix is pro-
vided as Supplementary Data. Once the destination state is deter-
mined, we randomly allocate which herd in the destination state the
cattle will be exported to, scaled by the population size of the
respective herds, to preserve herd sizes. Once an origin herd, i, and
destination herd, j, are assigned, we draw the number of cattle to be
exported as

nSiSj
� Binomial Si, P

export size
k dt

� �
,

nEiEj
� Binomial Ei, P

export size
k dt

� �
,

nIiIj
� Binomial Ii, P

export size
k dt

� �
,

nRiRj
� Binomial Ri, P

export size
k dt

� �
,

ð4Þ

where k is the US state that origin herd i resides in. Lastly, before
moving cattle between the respective compartments of herds i and j,
we simulate the border testing mandate. If the model date is after
April 29th 2024, we draw a random variable, X from a hypergeometric
distribution:

X � Hypergeometric nIiIj
, nSiSj

+nEiEj
+nRiRj

, min ð30, nNiNj
Þ

� �
: ð5Þ

Here the three parameters of the above hypergeometric are, the
number of success items in the population, the number of failure items
in the population, and the number of samples taken without replace-
ment from the population. X is the number of infected cattle drawn. If
X = 0, then no infected cattle are detected, and the export takes
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place. Note, a positive test prevents the export, but does not imme-
diately register as a reported outbreak. All probabilities and a full
logic flowdiagram are presented in Supplementary Material Section 2.
U.S. state boundaries were obtained using the maps package in R
(via map_data("state")) and visualized with ggplot2.

cowflu package
To efficiently simulate the above probabilistic model, we produced a
custom R package, cowflu38, which allows simulating and fitting the
model via the dust2 package22 in R, while themodel itself is written in C
++. Documentation on the use of the package and worked vignettes
can be found on our github repo: https://github.com/mrc-ide/cowflu.
The package is flexible to being applied to any SEIR metapopulation
model with custom probabilities of movement between sub-popula-
tions, subject to user-defined movement matrices.

Model fitting
Five of the above model parameters—β, α, σ, γ, and Aasc, are fit via
particle Markov Chain Monte Carlo24 methods. We assign weakly-
informative prior distributions, informed by early studies associated
with the current outbreak39. We fit the model simulated values of date
of first outbreak detection (as seen in Fig. 2A) to the real world data
equivalent, via a likelihood function detailed in Supplementary Mate-
rial section 2.5. We ran the pMCMC simulations across 16 chains of
40,000 iterations each. Model convergence statistics are presented in
Supplementary Material section 2.5.

Table 2 shows the priors and posteriors for all model parameters.
Note that we fit β

γ instead of β due to observed correlation between β
and γ, so as to improve chain mixing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All model code and data is available in our associated Github repo:
https://github.com/mrc-ide/cowflu.

Code availability
All model code and data is available in our associated Github repo:
https://github.com/mrc-ide/cowflu. A DOI-linked release for this pub-
lication is provided at: 10.5281/zenodo.1522868838. Additional analysis
was performed using the following R packages: coda v0.19-4.1, dplyr
v1.1.4, lubridate v1.9.3, tidyr v1.3.1.
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