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Improved maximum growth rate prediction
from microbial genomes by integrating
phylogenetic information

Liang Xu 1 , Emily Zakem1 & JL Weissman 2,3

Microbial maximum growth rates vary widely across species and are key
parameters for ecosystemmodeling. Measuring these rates is challenging, but
genomic features like codon usage statistics provide useful signals for pre-
dicting growth rates for as-yet uncultivated organisms. Here we present Phy-
don, a framework for genome-based maximum growth rate prediction that
combines codon statistics and phylogenetic information to enhance the pre-
cision ofmaximumgrowth rate estimates, especially when a close relative with
a known growth rate is available. We use Phydon to construct a large and
taxonomically broad database of temperature-corrected growth rate esti-
mates for 111,349 microbial species. The results reveal a bimodal distribution
of maximum growth rates, resolving distinct groups of fast and slow growers.
Ourwork provides insight into the predictive power of taxonomic information
versus mechanistic, gene-based inference.

Microbes are crucial players in global nutrient cycles, and their max-
imum growth rates are key parameters in ecosystem models1–3. Tra-
ditionally, maximum growth rates are inferred from measurements
using laboratory isolates or field-based methods, such as nutrient
uptake experiments4,5 and peak-to-trough measurements6,7. However,
accurately measuring rates for many species poses significant chal-
lenges in both laboratory and field settings8. Only a small fraction (less
than 1%) of bacterial and archaeal species from any given environment
has been successfully cultured9,10. Even among these cultured species,
maximum growth rates vary widely, with population doubling times
ranging from minutes to days across species and culture
conditions9,11–13, adding further complexity to measurement and culti-
vation efforts.

As a powerful alternative to cultivation for hard-to-grow species,
genomic information can be leveraged to estimate the maximum
growth rate of an organism. Maximum growth rate—how fast a popu-
lation can grow under optimal conditions—is a broad indicator of an
organism’s overall evolutionary strategy and a key parameter for
describing population dynamics. Several genomic features have
been linked to maximum growth rates, including rRNA operon

copy number14–17, tRNA multiplicity18,19, replication-associated gene
dosage20,21 and codon usage biases (CUB)18,22,23. Among these, CUB has
shown the strongest correlation with growth rates11,12. In fast-growing
species, highly expressed genes tend to preferentially use certain
synonymous codons, a bias that arises from the need for efficient
translation. This optimization ensures the rapid production of
proteins22. The robustness of CUB has been demonstrated even when
extrapolating predictions across different phyla11.

Although codon usage bias (CUB) is a widely used genomic pre-
dictor of maximum growth rates, the resulting estimates can still
exhibit considerable variance and bias11. This inaccuracy may stem in
part from the fact that traits such as growth are influenced bymultiple
genetic factors while CUB captures only one aspect of this complexity.
Therefore, while CUB reflects evolutionary optimization for rapid
translation and, by extension, rapid growth, its precision in estimating
growth rates is theoretically limited. To improve accuracy, additional
signals can be incorporated. One such signal is phylogenetic
relatedness: closely related species tend to exhibit similar trait values
due to their shared evolutionary history24 and vertical gene
inheritance25. This phenomenon, known as phylogenetic signal26,27,
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offers a complementary approach to CUB and can help improve
accuracy in CUB-based growth rate predictions.

The simplest model for trait inference from phylogenetic trees
estimates a species’ trait based on the trait of its nearest neighbor in
the phylogenetic tree, leveraging the tendency for phylogenetically
related organisms to exhibit similar phenotypes28. More advanced
approaches involve specifying models of trait evolution, commonly
using a Brownian motion framework, where trait values can be esti-
mated for a query species based on its position in the tree and distance
to neighboring species24,28–35. More sophisticated trait evolution
models, beyond the Brownian motion model, exist32–34,36, but they
often require additional information, suchas convergent trait values or
eco-evolutionary timescales. Of course, the accuracy of all phyloge-
netic predictionmethods generally decreases asphylogenetic distance
increases, depending on how strongly conserved the trait is across
evolutionary time.

Microbial traits vary widely in their degree of phylogenetic con-
servation. Martiny et al.27 developed a phylogenetic metric to quantify
this conservatism and estimate the clade depth at which organisms
share a given trait. They found that over 90%of functional traits in their
data were significantly non-randomly distributed. However, the clades
sharing these traits were generally shallow, suggesting a moderate
degree of phylogenetic conservatism. As a result, the accuracy of uti-
lizing phylogenetic structure to estimate trait values remains uncertain
andmay vary by trait and context37. Typically, complex traits involving
multiple genes (e.g., photosynthesis or methanogenesis) tend to
exhibit stronger phylogenetic conservatism than simpler traits, suchas
the consumption of a specific carbon source27,37. This raises the ques-
tion of whether phylogenetic relationship can reliably predict max-
imum growth rates, which are determined not by any one gene or set
of genes, but rather as a complex outcome of a variety of genomic
factors. Walkup et al.26 assessed phylogenetic-based predictions of
bacterial growth rates across environments and found that phyloge-
netic relationships accounted for only 38% variation in maximum
growth rates across ecosystems. Moreover, such tools will only work
well when ahigh-quality referencedatabase of specieswith known trait
annotations already exists for a given environment. Thus, the effec-
tiveness of phylogenetic prediction methods depends heavily on the
quality of trait data and phylogeny, as well as the strength of the
phylogenetic signal.

In this study, we aim to enhance the accuracy of estimating
maximum growth rates by integrating codon usage bias (CUB) with

phylogenetic relatedness to create a hybrid approach for trait pre-
diction. We evaluated the performance of a genomic CUB-based
method (gRodon11;) against two phylogenetic prediction models: the
nearest-neighbor model (NNM) and the phylogenetic independent
contrast-based Brownianmotionmodel (Phylopred). To ensure robust
evaluation, we tested model performance across a range of phyloge-
netic distances via cross validation. To make use of information from
both CUB and phylogenetic relationship among species, we developed
a novel R package, Phydon, which synergistically combines both
approaches. Our results demonstrate that Phydon improves the
accuracy ofmaximumgrowth rate estimations formicrobial genomes,
particularly for faster-growing organisms and when a close relative
with a measured maximum growth rate is available.

Results and discussion
A phylogenetically informed model for maximum growth rate
prediction
We compiled a dataset of 633 species with recorded doubling times
from the Madin et al. trait database9. However, 85 species were
excluded due to unidentifiable species names in the Genome Tax-
onomy Database (GTDB). As a result, our final dataset comprised
548 species (Fig. S2). The maximum growth rates of the species in our
dataset exhibit a moderate phylogenetic signal, as indicated by a
Blomberg’s K statistic28 of 0.137 and a Pagel’s λ statistic38 of 0.106 with
p-value < 0.0072 for bacteria species, and a Blomberg’s K statistic of
0.0817 and a Pagel’s λ statistic of 0.17with p-value < 0.0055 for archaea
species. For reference, a value approaching or exceeding 1 indicate
strong phylogenetic conservatism, while a value of 0 indicates no
phylogenetic signal. These values suggest that while there is some
degree of phylogenetic conservatism (Fig. 1), it is not overly strong.
This makes the dataset well-suited for developing a method that bal-
ances genomic and phylogenetic factors. We further explored how
different prediction methods perform under varying conditions to
identify the most effective approach for improving growth rate
predictions.

The phylogenetic distance between the training and test datasets
is a critical factor in evaluating the performance of the two methods.
To assess this, we successively divided the phylogenetic tree into two
groups (training and test) based on varying phylogenetic distances,
which is a variant of the phylogenetic blocked cross-validation
analysis39 (Fig. 2). A cutting time point Dc, at which the tree is divi-
ded into several clades, is identified based on the desired number of
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Fig. 1 | Phylogenetic conservation of maximum growth rate. Phylogenetically
conserved patterns in the maximum growth rates of bacteria (a) and archaea (b).
Among bacteria, certain groups within Proteobacteria and Firmicutes_A exhibit

higher growth rates, while in archaea, the genera Thermococcus and Methano-
caldococcus are notable for their rapid growth.
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Fig. 2 |Model training and cross validation. aThe phylogenetic distance between
the training and test datasets is defined as the minimum average phylogenetic
distance (Dp) between species in the test set and those in the training set. This
distance decreases as the number of clades increases when the tree is cut at time
points Dc closer to the present. b Dc represents the cutting time point at which the

phylogenetic tree is divided into n clades. For cross-validation, we iteratively use
each clade as the test dataset while treating the remaining clades as the training
dataset. c, d Phylogenetic trees cut at two different time points, resulting in 10 and
50 clades, respectively, are illustrated to demonstrate blocked cross-validation.
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clades, n (Fig. 2). Cutting the tree closer to the present results in a
greater number of clades with smaller phylogenetic distances between
them, while cutting further in the past at larger time points produces
fewer clades with greater phylogenetic distances (Fig. 2a). This cutting
time point thus serves as a proxy for the phylogenetic distance
between training and test clades. This is a form of phylogenetically
blocked cross-validation, wherein observations are grouped into folds
following their evolutionary relationships rather than at random39. We
trained models on each training dataset, and their performances were
evaluated using each test dataset respectively. For instance, cutting
the tree at the time point of 2.01my results in 10 clades. We iteratively
designated one clade as the test data while using the remaining clades
as the training data, thereby training a total of 10 models. The per-
formance of eachmodel was evaluated on its corresponding test data,
and the mean squared error (MSE) scores were averaged to determine
the overall MSE for this cut (Fig. 2). In doing so, the ability of each
model to extrapolate to new taxonomic groups not in the training data
was tested directly and thoroughly. For further details on the analysis
design, we refer readers to the Methods section.

The gRodon model generally distinguishes fast and slow-growing
species. Its performance is consistent across the tree of life, as
demonstrated by a stable mean squared error across varying phylo-
genetic distances (Fig. 3a). Thisfinding supports the notion that codon
usage bias serves as an effective genomic proxy for bacterial growth
rates11,12, capturing selective pressures on genomes over evolutionary
time18,19,22,40. Additionally, our cross-validation analysis (see Methods,
Fig. 2) indicates that the relationship between CUB and the maximum
growth rates generalizes well across different clades. However, we also

observed significant variance in the growth rate estimates, which
persists even with decreasing phylogenetic distance between training
and test sets (Fig. S1). This suggests that while CUB is a valuable pre-
dictor, additional factors beyond codon bias influence bacterial
growth rates.

Phylogenetic predictionmethods show increased accuracy as the
minimum phylogenetic distance between the training and test sets
decreases. As shown in Fig. 3a, the mean squared error (MSE) for both
the NNM and Phylopred models decreases significantly as the mini-
mum phylogenetic distance between the training and testing data
narrows from the cutting time point 2.01my to 0.07my. We identified
cutting time thresholds below which the MSE of these phylogenetic
models falls below that of the gRodon model. We also observed that
Phylopred and NNM have distinct thresholds, with Phylopred showing
more stable and superior performance. Based on this, we chose the
Phylopred model to develop a combined approach with the gRo-
don model.

Interestingly, we observed divergent performance patterns
between the gRodon and Phylopred models for fast-growing and slow-
growing species (Fig. 3b, c). For slow-growing species, the gRodon
model consistently outperforms the Phylopred model across all phylo-
genetic distances (Fig. 3c). In contrast, the Phylopred model shows
superior performance over the gRodon model for fast-growing species
as the phylogenetic distance decreases (Fig. 3b). At the smallest cutting
time (Dc =0:07my), Phydon reduced the median squared error for
species with doubling times under 30min by 22.4% compared to gRo-
don (Fig. 3a, inset). These findings suggest that the cutting time
threshold or the phylogenetic distance between test and training data
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sets may differ for fast- and slow-growing species. Consequently, both
growth rates and phylogenetic relationships should be considered,
rather than relying on a single threshold. Additionally, the results sug-
gest that, for fast-growing species, phylogenetic relationships capture
selective signals more effectively than codon usage bias, which is
inherently limited as a genomic statistic for explainingmaximumgrowth
rates41. However, both methods face challenges in predicting traits for
slow-growing species. One challenge is the difficulty of culturing these
species and accurately measuring their maximum growth rates, leading
to insufficient and potentially low-quality data for model training.

The lower mean squared error (MSE) achieved by the gRodon
model compared to the Phylopred model may be due to the dis-
tribution of slow-growing species across the phylogenetic tree. These
species exhibit weak phylogenetic signal, which challenges Phylo-
pred’s reliance on evolutionary relationships. In contrast, the CUB
patterns from slow-growing species in the training dataset remain
informative for predicting traits in the test dataset, enhancing gRo-
don’s performance.

Based on the analysis of CUB- and phylogenetic distance-based
models, we sought to build a predictive model that combined the
strengths of these two approaches, taking into account which model
would most likely work best for a given organism. To achieve this, we
developed a weighted predictor where the weight of each model was
determined by both the distance of the query genome to the model
training set and by the gRodon estimate of growth rate (as a rough
estimate of whether an organism was likely to be a fast or slow grower,
see Methods). Thus, our weighting scheme takes into account how the
relative expected accuracies of gRodon prediction and phylogenetic
prediction change with both the phylogenetic distance of the query
genome to the training set and the expected growth rate of the query
genome (Fig. S6). This ensemble model, implemented in the R package
Phydon, demonstrates superior predictive accuracy compared to the
individual models on average (Fig.3). Specifically, the Phydon model
achieves lower Mean Squared Error (MSE) scores under most of the
phylogenetic distances, while similar MSE scores compared with that of
the gRodon model were observed when phylogenetic distances are
large. Specifically, Phydonachieves a lowerMSE -- a 31% reduction inMSE
-- as compared to mean square error of gRodon. We also note that the
difference in performance (MSE) between Phydon and gRodon at short
distances is 8.54 times the difference in performance at long distances,
indicating a significant improvement at short distances with little com-
pensation at long distances. Additionally, the variance of the Phydon’s
predictions is lower than that of alternative phylogenetically-aware
prediction approaches, although the variance of the gRodon model is
nearly indistinguishable from that of the Phydon model (Fig. S1).

Wedefined theweight parameter P as a continuous value between
0 and 1 (see Method), ensuring that Phydon estimates always incor-
porate information fromboth phylogenetic relationships and genomic
statistics. The parameter P can also be treated as a binary variable,
selecting the method that achieves higher accuracy at a given phylo-
genetic distance. However, similar to known statistical challenges with
piecewise regression this approach introduces instability in overall
performance due to uncertainty when estimating the appropriate
threshold value for switching between models (Fig. S5). Continuous
weighting schemes (as used above) average over suchuncertainty. Our
results demonstrate that arithmetic models with a continuous P out-
perform those with a binary P (Fig. S5). Alternatively, the binary P
approach leads the model to discard information from one source
entirely, favoring either phylogenetic relationships or genomic statis-
tics, but never both. Thus, we disfavored such an approach.

A comprehensive growth rate database for amplicon analysis
Whilemulti-omicmethods for surveyingmicrobial communities in the
environment have rapidly matured, amplicon sequencing, typically of
the 16S rRNA gene, remains a cost-effective and widely used approach

for assessingmicrobial diversity42. Various tools exist to link functional
annotations to amplicon sequencing data, though the quality of these
annotations varies widely depending on the taxonomic group and trait
of interest43–45. Annotation quality depends on (1) the degree of trait
conservation between closely related organisms, and (2) the compre-
hensiveness of the associated trait database used for functional
annotations. Given its moderate phylogenetic conservation (see
above), maximum growth rate is a suitable candidate for database-
assisted functional annotation11. Yet, database quality remains a limit-
ing factor.

Previously, the EGGO database of gRodon annotations addressed
some of the challenges associated with functional annotation11. Yet,
EGGO was primarily comprised of genome annotations from lab-
cultivated organisms and lacked optimal growth temperature correc-
tions, which are crucial for accurate gRodon predictions. To address
these limitations, we developed an improved maximum growth rate
database by 1) annotating species representative genomes from GTDB
v220, which includes a majority of metagenome-assembled genomes
(MAGs) and single-cell amplified genomes (SAGs)46, 2) incorporating
temperature corrections using genomic optimal growth temperature
estimation software47, and 3) applying our Phydon predictor for
improved estimation. The rigorously curated GTDB provides the
additional benefit of high-quality taxonomic annotations, which
enhances the reliability of downstream analyses.

We ran Phydon on all 113,104 GTDB v220 species representative
genomes, with 111,349 passing quality filters needed for internal gRo-
don prediction (e.g., having at least 10 annotated ribosomal proteins11).
Of these, we were able to annotate 111,034 genomes with optimal
growth temperature predictions from GenomeSPOT47 and subse-
quently pass them through Phydon. This database includes 111,034
temperature-corrected maximum growth rate predictions. Of the
111,034 species in this database, a total of 60,869 had genomes with
16S rRNA genes present (16S rRNA recovery often fails for MAGs48–50),
representing 17,451 genera and 191 phyla (Fig. 4). To facilitate access
for researchers to this database, we provide an online tutorial along-
side the Phydon package (https://github.com/xl0418/Phydon).

Phydon detects major divisions in growth strategy between
microbial phyla (Fig. 4a), consistent with our understanding of the
typical lifestyles and metabolisms associated with these groups. For
example, themostly-heterotrophicBacillota (Firmicutes) tend tobe fast-
growers whereas oxygenic phototrophic Cyanobacteria and sulfate-
reducing Desulfobacterota bacteria tend to be slow-growers. Our find-
ings also reveal a clear bimodal distribution in the estimates of max-
imum growth rates for species in the GTDB (Fig. 4b), consistent with
previous observations using the gRodon package11. Interestingly, Phy-
don andPhylopredboth seem todistinguish thesemajor growth classes
much more readily than gRodon (Fig. 4b). As we would expect, the
predictions of Phydon and gRodon converge as phylogenetic distances
increase (Fig. 4c), showing how Phydon increasingly relies on genomic
factors, particularly codon usage bias (CUB), for extrapolation.

Genomic and phylogeny-based methods each have distinct
advantages for trait prediction under different scenarios. Specifically,
the CUB-based gRodon model excels at predicting the maximum
growth rates of phylogenetically distant species. In contrast, phylo-
genetic prediction models outperform the gRodon model for phylo-
genetically related species. Thus, incorporating phylogenetic
information enhances maximum growth rate estimation more effec-
tively than relying solely on genomic signatures like CUB. By inte-
grating phylogenetic context, the Phydonmodel achieves lower error,
and more specifically lower variance than the other methods when
used individually.

However, our method is not without limitations. A key challenge
lies in its performance when applied to taxa that have undergone rapid
trait evolution. Periods of accelerated trait evolution, such as those
occurring in rapidly changing environments, can weaken the predictive
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power ofbothphylogeneticmodels andmodels basedongenome-scale
evolutionary patterns like CUB. Thesemodels rely on the assumption of
relatively stable evolutionary processes51, and this represents an ulti-
mate limitation of all genome-based trait prediction models.

Despite this, our predictions offer a useful indication of an
organism’s ecological niche, reflecting a long-term integration of
evolutionary trends. It is important to interpret predicted maximum
growth rates with this context in mind, as instantaneous growth rates
can vary significantly over time and space depending on the local
environmental conditions and the organism’s state.

A principled approach to model design involves recognizing the
limitations and potential failure points of each model. By under-
standing where models are likely to encounter difficulties, researchers
can strategically design complementary studies and integrate diverse
methodologies to offset theseweaknesses.Our integrated approach to
trait prediction leverages phylogenetic prediction for closely related
organisms and genomic model-based prediction to extrapolate to
groups with limited representation in the reference database. This
strategy provides a pathway for high-quality genome annotation with
trait information, offering a robust solution for trait prediction for
uncultured microbes. For example, new tools have recently been
developed to estimate growth temperature range, aerobicity, optimal

pH, optimal salinity, and other traits from diverse genomic signals,
including amino acid usage patterns47,52. Each of these genomic trait
predictors can potentially be embedded in a Phydon-like model that
averages their output with a straightforward phylogenetic prediction
to obtain a more accurate prediction.

In sum, Phydon provides accurate maximum growth rate predic-
tions for uncultured taxa, enabling scientific exploration of the eco-
logical roles of uncultured microbial majority and their principled
incorporation into ecosystem models. Phydon serves a dual role as
both a powerful approach for hypothesis generation for microbial
scientists working across systems (e.g., seawater, soils, and the human
gut) and a key source of information formodelers who are increasingly
interested in developing whole-community models of microbiome
dynamics in environmental and host-associated systems53–55. More
broadly, our work provides insight into the line at which taxonomic
information surpasses mechanistic, gene-based inference, speaking to
the balance between empirical vs. theoretical and the ability of each to
yield predictive power in microbiology. This threshold, which varies
across the tree due to local changes in evolutionary rate and envir-
onmental heterogeneity, can be used as a metric to investigate dif-
ferences in predictability among bacterial guilds and across the
prokaryotic taxonomic landscape.

Fig. 4 | The distribution of estimated maximum growth rates of major phyla
fromGTDB. a The distribution of the Phydon predicted maximum growth rates of
major phyla (at least 1000 species representative genomes in GTDB v220; tem-
perature corrected using genomic optimal growth temperature estimates). b The

distribution of the estimates of maximum growth rates from Phydon and gRodon
and Phylopred. c Phydon and gRodon predictions converge for distantly related
organisms. Dashed vertical line at a phylogenetic distance of 2.42 corresponding to
where gRodon and Phylopred have approximately equal performance.
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Methods
The training datasets and phylogeny
For the 548 bacteria and archaea species in our data set, we fetched
bacterial and archaeal phylogenetic trees from GTDB r22046,56,57.
Figure 1a presents the final phylogenetic tree for bacteria (411 species)
alongside the corresponding trait distribution, while the phylogenetic
tree for archaea (137 species) is presented in Fig. 1b. To assess phylo-
genetic conservation, we calculated the pairwise differences in max-
imum growth rates for all species and plotted these against their
phylogenetic distances. Figure S3 demonstrates that specieswith close
phylogenetic relationships exhibit smaller trait differences, whereas
more distantly related species show larger differences, highlighting
the phylogenetic conservation of maximum growth rates.

Temperature is a critical factor in regulating microbial growth,
and incorporating optimal growth temperature into codon usage bias
(CUB)-based models can significantly enhance the accuracy of max-
imum growth rate predictions. We gathered data on the optimal
growth temperatures of species from theMadin et al. database9. Of the
411 bacterial species in our dataset, 374 had recorded optimal growth
temperatures, while 69 out of 137 archaeal species also had this data
available. The gRodon R package (version 2.4.0) features two models:
one trained with temperature data and one without. To evaluate the
impact of incorporating temperature on growth rate predictions, we
conducted analyses using both models and compared their predictive
performance to assess the enhancement provided by including opti-
mal temperature information.

Each species in GTDB is associated with multiple genomes, with
one designated as the representative genome and the remainder
clustered within the GTDB phylogenetic tree. To balance information
content and computational efficiency, we performed random sam-
pling, selecting up to five genomes per species inour training set (or all
available genomes if fewer than five were present) while always
including the representative genome. We assume that highly similar
genomes share traits. This assumption is essential to our methods and
also to other prediction methods that use genomic statistics, where it
has been shown thatmaximumgrowth rate is strongly conserved up to
approximately the genus level11,12. This approach resulted in a dataset
comprising 1465 complete genomes for our 411 bacteria species and
323 genomes for 137 archaea species.

Assessing the effect of phylogenetic relatedness on the gRodon
model and phylogenetic models
Two phylogenetic prediction models were used as benchmarks to
determine the conditions underwhich thegRodonmodel outperforms
traditional phylogenetic prediction methods. The first phylogenetic
prediction model, known as the nearest neighbor method (NNM),
estimates the maximum growth rates of focal species in the testing
data by averaging the maximum growth rates of the most phylogen-
etically related sister species in the training data. To identify the
optimal number of related species for NNM, we tested groups of 1, 5,
10, 20 and 50 species. Our analysis revealed that averaging the traits of
the 5 closest phylogenetic species resulted in the lowestmean squared
error (MSE), although differences among group sizes were minimal
(Fig. S4). Thus, we used the average trait of the 5 closest species in the
NNM method.

The second phylogenetic prediction model, referred to as the
phylopred method, predicts maximum growth rates of species using
Bloomberg’s K statistics and Felsenstein’s independence contrast (IC)
via the phyEstimate function from the picante package (version
1.8.2)28,31. This approach calculates themeanmaximumgrowth rates of
the most phylogenetically related species, with each species trait
weighted according to its phylogenetic distance from the query gen-
ome. Essentially, phylopred is a weighted variant of the nearest
neighbormethod, where the contribution of each neighbor is adjusted
based on its phylogenetic distance to the query species.

We usedphylogenetically blocked cross-validation to evaluate the
performance of both the gRodon model and phylogenetic prediction
models39.We divided the phylogeny into n clades by cutting the tree at
a uniform depth (Fig. 2). As n increases, the average phylogenetic
distance between each pair of clades decreases (i.e., the depth atwhich
we cut in the tree becomes shallower), meaning that for each test set
the nearest clade in the training set becomes more closely related on
average (Fig. 2a). We re-trained the gRodon model using the same
approach as for Phydon, i.e., training models on genomes from
n� 1 clades and tested it on genomes from the remaining clade
(Figure 2b, c). This process was repeated across n values ranging from
10 to410 in increments of 10.Whenn = 10, there is a largephylogenetic
distance between the training and test clades, while n=410 represents
a small minimum phylogenetic distance to the nearest clade (Fig. 2).
This design created 41 test scenarios to assess model performance
under varying degrees of phylogenetic relatedness.

Phydon: Combining the gRodon model and phylogenetic
prediction models
To leverage the complementary strengths of the gRodon and phylo-
genetic prediction models for forecasting maximum growth rates, we
developed a novel combined regression model, named Phydon58. This
model integrates predictions from both approaches, calculating the
maximum growth rate as a weighted mean of the gRodon and phylo-
genetic predictions. Phydon operates in two modes:

Arithmetic Mean Mode: This mode calculates the Phydon pre-
diction as:

eyphydon =eygRodon ×P +eyphylopred × 1� Pð Þ ð1Þ

where P represents the probability that the gRodon model outper-
forms the phylogenetic models.

Geometric Mean Mode: This mode uses the geometric mean of
predictions from the two models:

eyphydon =eygRodonP ×eyphylopred1�P ð2Þ

We suspected that the geometric mean model would be more
suitable for averaging growth predictions given its usual application
for analyzing percentage changes and positively skewed data where it
provides greater accuracy. Nevertheless, our results show that both
weighted prediction modes performed similarly with the arithmetic
model slightly better in its MSE score (Fig. S5). So, we presented the
main results using the arithmetic mean model and set this as the
default mode in the Phydon R package. The probability P is deter-
mined using a regressionmodel that considers the growth rates of the
species and the average phylogenetic distance (Dp) between the focal
species and its 5 nearest relatives in the training dataset. Intuitively,
whether the gRodon or phylopred model should be preferred will be
dependent on both how distant the query genome is from the model
training data, as well as if that organism is a fast or slow grower (since
model performance varies with growth rate for both approaches). The
regression model, based on logistic regression using the glm function
in R, is given by:

logit Pð Þ � logðeygRodonÞ+Dp + logðeygRodonÞ×Dp + ε ð3Þ

Here, logit Pð Þ represents the log-odds of the gRodon model being
superior, eygRodon is the gRodon prediction, and Dp is the average
phylogenetic distance between the query genome and the 5 nearest
species in the training data set. Given that the true growth rate of the
target species is unknown, the gRodon prediction serves as a proxy for
growth rate in Eq. 3, and thus allows our weighting scheme to account
for how the expected relative performances of gRodon and Phylopred
changewith themaximumgrowth rate of the queryorganism.We then
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compared the performance of Phydon with both the gRodon model
and the phylogenetic prediction models to evaluate its efficacy.

We also assessed the performance of the models with a binary P,
given by

Mode with a binary P: This mode calculates the Phydon
prediction as:

eyphydon = eygRodon P >0:5eyphylopred P ≤0:5

(
ð4Þ

where P represents the probability that the gRodon model outper-
forms the phylogenetic models.

Phydon prediction database
We annotated all GTDB v220 species representative genomes46 using
prokka59 andGenomeSPOT47.We then passed these genomes and their
optimal temperature predictions from GenomeSPOT to Phydon. For
genomes withΨ > 0.6 (see ref. 60), indicating possible contamination,
we ran Phydon using gRodon’s metagenome mode.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The maximum growth rate data of species used in this study are
publicly available from Madin et al9. The phylogenetic data and
genomic data used in this study are available in GTDB v22046. No new
data was generated in this study, but growth rate predictions for the
EGPO genomes are available in the associated github repository
alongside all the data used inmodel training and testing58 (https://doi.
org/10.5281/zenodo.15115834).

Code availability
The Phydonpackage is available at https://github.com/xl0418/Phydon.
The analysis code is archived at https://github.com/xl0418/
PhydonAnalysis. The code is also available at58 (https://doi.org/10.
5281/zenodo.15115834).
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