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Reconfigurable neuromorphic functions in
antiferroelectric transistors through coupled
polarization switching and charge trapping
dynamics

Jing Gao , Yu-Chieh Chien, Jiali Huo, Lingqi Li, Haofei Zheng, Heng Xiang &
Kah-Wee Ang

The growing demand for energy- and area-efficient emulation of biological
nervous systems has fueled significant interest in neuromorphic computing. A
promising strategy to achieve compact and efficient neuromorphic function-
alities lies in the integration of volatile and non-volatile memory functions.
However, implementing these functions is challenging due to the fundamen-
tally distinct physical mechanisms. Traditional ferroelectric materials, with
their stable polarization, are ideal for emulating biological synaptic functions
but their non-volatile nature conflicts with the short-term memory necessary
for neuron-like behavior. Here, we report the design for antiferroelectric gat-
ing in two-dimensional channel transistors, incorporating antiferroelectricity
with charge trapping dynamics. By tuning the area ratio of the Metal-(Anti-)
Ferroelectric-Metal-Insulator-Semiconductor (MFMIS) gate stacks, we enable
selective reconfiguration of intrinsic volatile antiferroelectric switching and
non-volatile switching-assisted charge trapping/de-trapping, thereby achiev-
ing both short- and long-term plasticity. This allows the integration of com-
plementary functionalities of artificial neurons and synapses within a single
device platform. Additionally, we further demonstrate synaptic and neuronal
functions for implementing unsupervised learning rules and spiking behavior
in spiking neural networks. This approach holds great potential for advancing
both foundational materials design and technology for neuromorphic hard-
ware applications.

Inspired by biological neural computing, neuromorphic computing
based on non-von Neumann architecture is emerging as a promising
solution for the next generation of artificial intelligence. By
mimicking the functions and operational principles of the human
brain through networks of artificial neurons and synapses, neuro-
morphic computing holds great potential to overcome the memory
wall bottleneck inherent in traditional von Neumann systems1.

Variousmemory-based devices have beenproposed for the hardware
implementation of neuromorphic computing, including resistive
random access memory (RRAM)2,3, spin-torque-based memories,4

ferroelectric tunnel junctions5, and ferroelectric field-effect transis-
tors (FeFETs)6,7. Among these, FeFETs with their intrinsic non-volatile
ferroelectric polarization and nondestructive readout operations,
have gained considerable attention for their potential to emulate
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biological functions, offering promising application prospects in
neuromorphic computing.

Artificial neural networks (ANNs) and spiking neural networks
(SNNs) are two primary categories in neuromorphic computing, with
artificial neurons and synapses serving as the fundamental building
blocks8–11. For artificial synapses, achieving multiple analog states with
long-term retention is essential, typically realized through non-volatile
memory devices. Unlike the continuous signal processing in ANN
neurons, SNNs utilize spike trains for communication between neu-
rons, offering a low-power, event-driven, and biologically realistic
paradigm12. The leaky-integrate-and-fire (LIF)model is among themost
widely used frameworks for artificial neurons13. In this model, a neu-
ron’s membrane potential accumulates over time, emitting a spike
once a threshold is reached, followedby a reset to its initial state. Thus,
the implementation of neuron functions depends heavily on the short-
term dynamic properties. Given these distinct operating principles,
artificial neurons and synapses require memory retention across
multiple timescales, making it challenging to integrate both functions
into a single device. Developing multifunctional devices with reconfi-
gurable plasticity is undoubtedly advantageous, as it would increase
device density, reduce chip costs, and simplify the fabrication process.

Various ferroelectric (FE) devices have been implemented as
artificial synapses due to their ability to provide distinct, multiple
memory states with long retention times. In contrast, antiferroelectric
(AFE) materials, which undergo a characteristic AFE-to-FE phase tran-
sition (AFE switching) under an electric field, are emerging as pro-
mising candidates for volatile neuron-like devices. This is largely due to
their intrinsic back-switching (depolarization) upon removal of the
electric field, closely mimicking neuronal functions such as the spon-
taneous return to the initial state after a stimulus is removed. For
instance, antiferroelectric transistors based on fluorite hafnium zir-
conium oxide (HfxZr1-xO2, HZO) have demonstrated potential for
analog implementation of electronic neurons14. Notably, the HZO
system, with its energetic and structural similarity between the
orthorhombic polar and the tetragonal nonpolar phases, exhibits
phase stability influenced by both intrinsic and extrinsic factors15. In
addition to the composition, which affects the relative free energy
(phase stability) of FE and AFE phases16, factors like surface energy and
local charge screening also contribute to the polymorphism of HZO17.
However, the impact of these factors on the volatile and non-volatile
behavior of devices remains insufficiently explored in previous
research. For example, a Zr-rich composition is commonly used for
AFE HZO in volatile neuronal applications; however, the influence of
compositional-dependent phase stability on device performance has
not been thoroughly investigated.

Our study addresses this gapby examining the significance of AFE
material stability in enabling diverse functionalities and exploring how
these functionalities can be manipulated based on the intrinsic prop-
erties of AFE materials. Furthermore, the differing memory retention
requirements for synaptic and neural functions present a significant
challenge. Specifically, the programmable short-term memory (STM)
and long-term memory (LTM) requirements are difficult to simulate
using a singlematerial property. The incompatibility betweenmaterial
performance and memory timescales increases the hardware costs,
limits the versatility ofnovelmaterials anddevicedesigns, and restricts
their potential for neuromorphic computing applications.

In this work, we demonstrate reconfigurable antiferroelectric
transistors (AFeFETs) that offer complementary volatile and non-
volatile memory functionalities through the synergic effect of stable
polarization switching and charge trapping/de-trapping dynamics.
This integration is achieved via a metal-ferroelectric-metal-insulator-
semiconductor (MFMIS) architecture with a floating gate, allowing for
an adaptive gate stack design. The charge trapping dynamics are
strongly coupled with AFE switching, which is tuned by adjusting the
area ratio of theMFMIS gate stack. The intrinsic back-switching ofAFEs

exhibits volatile behavior, while charge de-trapping extends the
memory retention time. By optimizing AFE properties and charge
trapping dynamics, the device can be selectively programmed for
reconfigurable operation as either a volatile neuron or a non-volatile
synapse. As a non-volatile synapse, it demonstrates long-term poten-
tiation and depressionwith a stable retention for over 104 s, and robust
endurance exceeds 108 cycles. As a spiking neuron, it exhibits spatio-
temporal integration of input signals and eliminates the need for a
reset circuit due to inherent AFE back-switching, offering significant
hardware acceleration compared to its FE counterpart. An SNN utiliz-
ing these synapses and spiking neurons was implemented for MNIST
dataset recognition, achieving an accuracy exceeding 97.8%. Notably,
the reconfigurable design enables the seamless integration of both
volatile and non-volatile devices on a single platform using the same
CMOS-compatible fabrication process, which can be adapted for other
device systems. This work not only advances the fundamental under-
standing of AFE materials but also highlights their potential function-
alities to simplify design complexity and device-level integration.

Results and discussion
Antiferroelectric HZO gate stack
The HZO system is known for its compositional-dependent ferroelec-
tricity with excellent scalability and complementary metal-oxide-
semiconductor (CMOS) compatibility18,19. It is practical to study HZO-
based antiferroelectrics (AFEs) by drawing comparisons with their
ferroelectric counterparts (FEs). Therefore, alongside AFE compounds
with Zr-rich content, a reference FE sample with a representative
composition of Hf0.5Zr0.5O2 was selected for comparison in this study.
The crystal structures of the FE andAFE samples, alongwith deposition
details, can be found in Supplementary Figs. 1, 2. Figure 1a shows the
transient current corresponding to the dynamic switching of typical
FEs and AFEs in response to two consecutive pulses. For FEs, after the
initial write pulse of 3MV/cm, a current peak corresponds to polar-
ization switching is observed as the voltage is reversed. In the sub-
sequent pulse in the same direction, only a minor plateau, mainly due
to the nonlinear dielectric effect (non-FE switching), is observed.
Integration of the current difference over time gives a remnant
polarization (Pr) of approximately 20μC/cm2. However, in AFEs, the
polarization induced by the external voltage switches back as the pulse
amplitude decreases to zero, resulting in zero net polarization in the
absence of an external pulse. In the following pulse, the forward and
back-switching are repeated, corresponding to the intrinsic switching
properties of AFEs20.

The origin of the AFE switching and back-switching is the rever-
sible phase transition from an initial tetragonal phase to a polar
orthorhombic phase21,22. To capture the characteristic switching
dynamics of FEs and AFEs, the evolution of switched polarization as a
function of applied pulsewidthwasmeasured, and the pulse scheme is
shown in the inset of Fig. 1b. Based on the switching characteristics of
FEs and AFEs, the switched polarization is normalized to (−1,1) and
(0,1), respectively23,24. The switching characteristics are further mod-
eled by the nucleation-limited-switching (NLS) model, which is
detailed in Supplementary Information Note 1. In the NLS model, the
distribution of the characteristic switching time of polycrystalline
materials is described by a Lorentzian function with τ as the char-
acteristic switching time25,26. The distribution function for FE and AFE
switching is presented in Fig. 1c, where the extracted time constants
for AFE and FE under 3MV/cm are 170 and 398 ns, respectively, sug-
gesting that AFEs switch faster than their FE counterparts. The differ-
ence in time constants is consistent with previous studies24,27 and can
be attributed to the different ground states of the materials. For FEs,
switchedpolarization is determinedby dipoles being switched into the
opposite direction (with a corresponding charge density ±2Pr), while
for AFEs, dipoles are oriented from an initially random state (±Pr). The
smaller time constant for AFE switching suggests that AFEs are more
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promising for high-speed applications28. Additionally, Supplementary
Fig. 3 presents an analysis of the switchingdynamics of AFEHZOacross
various compositions and thicknesses, showing a slight reduction in
characteristic switching time with increasing thickness, which is con-
sistent with previous studies.

In theHfxZr1-xO2 system, antiferroelectricity becomes increasingly
pronounced with higher Zr content19. Although an AFE-like double
hysteresis loop can be observed across a broad compositional range,
the stability of the AFE phase, specifically its resilience to external
electricfields, has seldombeen thoroughly investigated, and its impact
on device performance remains elusive. For example, in the compo-
sition Hf0.25Zr0.75O2, the P-E loop in Fig. 1d compares the pristine state
with that after 5000 cycles of stress at 3MV/cm. It is obvious that the
P-E loop is not completely pinched in the pristine state and further
opens up with field cycling. The non-zero Pr in the pristine state sug-
gests a polar component due to the presence of a pre-existing FE
phase, likely due to the small energy difference between the FE and
AFE phase22. Further characterization of AFE/FE phase stability was
conducted using the first-order reversal curve (FORC) method. FORC
assesses the distribution of the switching field within the framework of
the Preisach model, which is an effective method to describe the

switching characteristics of FEs and AFEs29. In other words, the FORC
method describes the distribution of the switching field rather than a
single coercive field Ec value, which is typically obtained from P-E
measurements. Supplementary Fig. 4a shows the pulse train used to
obtain the switching density ρ�ðEr , EÞ during the measurement, in
which the field sweeps between a positive saturated field and a reversal
field in descending order. The switching density ρ� Er , E

� �
is a function

of the applied field E and of the reversal field Er, defined as the mixed
second derivative of polarization in response to the ascending bran-
ches of the field sweeps.
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The FORC plot of the reference FE sample is provided in Supple-
mentary Fig. 4b, where a distinct maximum indicates that defects-
induced built-in bias has minimal impact. In contrast, Fig. 1e presents
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Fig. 1 | Antiferroelectric switching and phase stability. a Switching current
response of FEs and AFEs to two consecutive pulses. b Normalized switched
polarization of FE Hf0.5Zr0.5O2 and AFE Hf0.17Zr0.83O2 as a function of pulse width,
fitted using the NLS model. Insets show the pulse scheme used for measurement
and representative hysteresis loops of FEs and AFEs. c Lorentzian fitting of the
distribution function showing the characteristic switching time. d P-E hysteresis
loop of AFE Hf0.25Zr0.75O2, exhibiting a mixed FE/AFE behavior with non-zero
remnant polarization. e Switching density of pristine Hf0.25Zr0.75O2 extracted from

FORCmeasurement showing three peaks corresponding to AFE switching and the
pre-existing FE component. f Enhanced switching density of the FE component
after 5000 cycles. g Evolution of Pr and Ps in Hf0.25Zr0.75O2 under electric field
cycling of 2.5MV/cm, where the increased Pr indicates the degradation of AFE
property.hP-E hysteresis loopofAFEHf0.17Zr0.83O2demonstrating stableAFEback-
switching characteristics after 5000 cycles. i, j Switching density of Hf0.17Zr0.83O2

before and after cycling, showing stable AFE features. k The evolution of Pr and Ps
in Hf0.17Zr0.83O2 during endurance measurements indicates stable AFE properties.
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the contour plot of the FORC distribution for the pristine AFE
Hf0.25Zr0.75O2 film, revealing the presence of three distinct peaks. Two
peaksmarked by yellow circles correspond to AFE switching behavior,
while the additional peak corresponds to the pre-existing FE phase.
Additionally, a notable enhancement in ferroelectricity is observed
after field cycling, consistent with the opening-up of the hysteresis
loop, suggesting an irreversible AFE-FE phase transition. The coex-
istence of FE and AFE phases is a common phenomenon in both
fluorite and perovskite AFEs30,31. From a lattice structure perspective,
the FE and AFE phases are distorted from the same nonpolar parent
phase with high symmetry32. Therefore, the AFE phase is close in
energy to the competing FE phase, which serves as the basis for the
AFE-FE phase transition33. This structural and energetic similarity
allows for the coexistence of FE and AFE phases at ambient conditions,
leading to the noticeable FE characteristics in Hf0.25Zr0.75O2. Further-
more, the bias field for AFE switching and back-switching shows a
tendency to converge (Fig. 1f), indicating an evolution towards the FE
phase. The presence of this unexpected FE component and the
instability of the coercive electric field imply that the back-switching
feature of AFE phase degrades with field cycling, leading to reliability
issues that are unfavorable for maintaining volatility.

The relative stability of the FE and AFE phases can be altered
through compositional manipulation, which allows further stabiliza-
tion of the AFE phase. As shown in Fig. 1h, for Hf0.17Zr0.83O2, a double
hysteresis loop is observed in the pristine state, with no significant
opening-up after 5000 cycles, indicating a stabilized AFE phase. This
stability is further confirmed by the FORC measurements in Fig. 1i, j,
where the peak indicative of AFE switching remains unchanged after
cycling. The stabilization of the AFE phase, with its characteristic back-
switching, is crucial for achieving reliable volatile behavior in devices.

To further examine the importance of AFE phase stability,
endurance measurements were performed on AFE capacitors with
different compositions (Hf0.25Zr0.75O2 and Hf0.17Zr0.83O2). The evolu-
tion of Pr and saturation polarization Ps is presented in Fig. 1g, k, with
corresponding P-E hysteresis loops shown in Supplementary Fig. 5.
While the Hf0.25Zr0.75O2 film maintained structural integrity without
breakdown up to 107 cycles, Pr gradually increased during cycling,
leading to an opening of the double loops. In contrast, Pr remained
stable in Hf0.17Zr0.83O2 throughout cycling, confirming the stability of
the AFE phase. Extended endurance measurements for the 15 nm
Hf0.17Zr0.83O2 film, as shown in Supplementary Fig. 6, demonstrate
sustained performance over 2 × 1012 cycles without breakdown,
exceeding the endurance of most reported FE HZO systems. These
results emphasize the critical role of AFE phase stability in ensuring
reliable volatile functionality, as reliability issuesmay arise even before
device breakdown. The importanceofmaintainingAFEproperties over
cycling has been largely overlooked in previous studies. Additional
endurance data for Hf0.17Zr0.83O2 film with varying thicknesses is also
provided in Supplementary Fig. 6.

Device characteristics and mechanisms of the
reconfigurable AFeFET
The AFE composition Hf0.17Zr0.83O2 with stabilized AFE phase is
adopted in the fabrication of transistors, with MoS2 serving as the
channel material. The device configuration featuring the MFMIS gate
stack is schematically shown in Fig. 2a. An additional floating gate is
incorporated into the MFMIS structure, acting as a voltage divider to
enable the effective voltage distribution between the Al2O3 insulator
and the AFE layer. The MFMIS configuration decouples the bottom
MFM capacitors from the topMIS layers, allowing independent design
by tuning the area ratio AMIS/AAFE. In the devices used in this work, the
effective area of the semiconductor channel is modulated while
keeping theMFM stack area constant to achieve capacitancematching
between theAFE layer and the gate insulator. By scaling down theMFM
capacitor area relative to the MIS area, charge compensation between

the MFM and MIS can be optimized, thereby providing sufficient
electric field for AFE switching while lowering the overall operation
voltage34. An additional benefit of the MFMIS structure is that the
optimized voltage distribution reduces the voltage applied across the
insulator layer. This reduction suppresses electron injection from the
channel and mitigates interface degradation caused by polarization
switching, a common issue inMFIS FeFETs. Detailed discussions of the
operating principles of the MFMIS gate stack are provided in the fol-
lowing discussions.

Figure 2b shows the cross-sectional TEM image of the device,
highlighting a sharp interface that confirms its high quality. The EDS
elemental mapping, presented in Supplementary Fig. 7, demonstrates
the homogenous distribution of elements within the device. Figure 2c
displays a high-resolution transmission electronmicroscopy (HRTEM)
image of the HZO lattice. The corresponding fast Fourier transforma-
tion (FFT) patterns, shown in Fig. 2d, are clearly indexed to the tetra-
gonal phase. Figure 2e presents an atomically stacked image, rebuilt by
the inverse FFT of the (101) spot depicted in Fig. 2d. The measured
d-spacing of 2.95 Å is consistent with the tetragonal lattice plane. The
stable tetragonal antiferroelectric phase is significant for achieving the
volatile behavior of the device.

Gatebiaswith varying sweep rates isused to investigate thedevice
dynamics across a wide timescale. As shown in the pulse Id-Vg char-
acteristics in Fig. 2f, anticlockwise loops are observed for all sweep
rates, indicating AFE switching. Notably, as the sweep pulse width
increases or the stress time lengthens, an enlarged memory window
(MW) is observed. Statistical analysis of ten devices, shown in Fig. 2g,
reveals that when the pulse width is within 1ms, the MW remains
around 0.5 V. With the increasing pulse width, a pronounced enlar-
gement of theMW is evident. The stable MWunder short pulse widths
is attributed to the intrinsic AFE switching with a characteristic time
constant around 170 ns (Fig. 1c). In contrast, the dependence ofMWon
stress time for pulsewidth larger than 1ms suggests a charge trapping-
dominated mechanism, which typically exhibits nonlinear dynamics
relative to pulse width and amplitude35–38. Pulse I-Vmeasurements are
employed to distinguish the characteristic timescales associated with
polarization switching and charge trapping/de-trapping mechanisms.
A detailed discussion on the discrepancies between pulse I-V and DC I-
V characteristics is provided in Supplementary Information Note 2.
The coexistence of AFE switching and charge trapping enriches the
dynamics of devices, enabling adaptive modulation of short-term and
long-term memory (STM/LTM). Additionally, DC Id-Vg curves of the
device, provided in Supplementary Fig. 9, show a stable ON/OFF ratio
over 107 and subthreshold voltage over more than 100 consecutive
cycles.

Figure 2h illustrates the current evolution, namely, excitatory
postsynaptic currents (EPSC) triggered by different pulse schemes.
With a pulse width of 2ms, the drain current returns to the initial level
in the absence of gate voltage. In contrast, with a larger pulse width of
50ms, the current drops and stabilizes at certain level without sig-
nificant decay, indicating selectively programmable memory states.

Figure 3a presents the EPSCs triggered by gate voltage with pulse
widths ranging from 100μs to 60ms, illustrating the transition from
STM to LTM. A similar transition can be induced by varying the pulse
amplitudes, as depicted in Fig. 3b. The dynamic transition fromSTM to
LTM is driven by the synergistic interplay between AFE switching and
electron trapping/de-trapping, which underpin the STM and LTM
states, respectively. Charge trapping is commonly observed in ferro-
electric transistors where polarization switching is involved in
operation39,40, and its dynamics are strongly coupled with FE/AFE
switching41,42. This correlation is clearly shown in Fig. 3c, where the
critical voltage for the STM-to-LTM transition evolves as a function of
the device area ratio. The critical voltage is defined by the change in
current in response to the applied electric pulse, as shown in the inset
of Fig. 3c. A notable correlation is observed: as the area ratio increases,
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the critical voltage decreases, indicating that the device with a larger
area ratio requires lower pulse amplitudes to induce LTM. Moreover,
as the area ratio continues to increase, the extrapolated critical voltage
gradually converges with the coercive voltage for AFE switching, as
illustrated in the bottom-left inset of Fig. 3c. According to the principle
of capacitors in series, a larger area ratio results in a greater voltage
distribution across the AFE layer. Therefore, the trend observed in
Fig. 3c further confirms the interplay between AFE switching with
charge trapping dynamics.

HZO-based materials are characterized by high intrinsic defect
densities, typically in the range of 1012−1014 cm−2, due to inherent
oxygen vacancies in the bulk35,43. Large polarization involved in FE/AFE
switching necessitates a substantial number of trapped charges for
charge compensation. These trapped charges mitigate the large
polarization, acting as negative feedback during polarization switch-
ing, which is a phenomenon commonly referred to as trap-assisted or
leakage-assisted polarization switching44. In the MFMIS configuration,
an increased area ratio AMIS/AAFE alleviates the capacitance mismatch
between the FE/AFE layer and the insulator layer, resulting in a higher
voltage falling on the FE/AFE layer. Supplementary Information Note 3
and Supplementary Fig. 10 provide a detailed analysis of the voltage
distribution, and a simple numerical simulation confirms a similar
trend for the VAFE/VG as a function of the area ratio. This quantitative
analysis highlights a strong interplay between AFE switching and
charge de-trapping behavior, which serves as the foundation for the
reconfigurable STM/LTM functionality.

The working mechanism of the reconfigurable device during
electrical operation is further illustrated in Fig. 3d–f. Figure 3e details

the fundamental switching and back-switching mechanism of AFEs
under external voltages below and above the coercive voltage, which
serve as the basis for short-term memory and long-term memory,
respectively. At a low gate voltage (V <Vc), partial AFE switching
occurs, where only a fraction of the antiparallel dipoles are flipped,
resulting in a small amount of polarization charges. Therefore, a
volatile memory behavior will be observed due to the back-switching
(Fig. 3d), corresponding to the STM. When the voltage exceeds the
coercive voltage (V >Vc), complete AFE switching happens, with all
antiparallel dipoles oriented towards the electric field. This results in a
large polarization that facilitates charge trapping and de-trapping
dynamics. As a result, additional electron de-trapping is triggered to
compensate for polarization charges, and long stress time contributes
to energy accumulation for progressive trapping/de-trapping.39

Charge de-trapping contributes to further band bending, exhibiting
non-volatile behavior even after the gate voltage is removed, thereby
achieving the LTM, as shown in Fig. 3f. Through such a selective
modulation of the AFE switching, we can achieve reconfigurable STM
and LTM in one single AFeFET.

In addition to the charge trapping commonly observed in MFIS
transistors, dynamic charge injection can be observed in the switching
of HZO ferroelectrics even without an intentional interfacial layer39.
Figure 3h schematically illustrates electron de-trapping in conjunction
withdipole alignment inAFEs. Grain boundaries of polycrystallineHZO
are known to be the preferred positions for defect accumulations such
as oxygen vacancies43. Therefore, electron de-trapping is believed to
occur through the electron transfer via the defects. From a thermo-
dynamic viewpoint, both AFE and FE phases are distorted from the
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same nonpolar phase,32 suggesting that the interplay between AFE
switching and charge trapping/de-trapping should exhibit behavior
similar to that in FEs. However, a notable difference is that for partial
AFE switching, the charge density at the polar/nonpolar phase
boundary is lower compared to the head-to-head or tail-to-tail domain
walls in FEs45, as depicted in Fig. 3g. This leads to more effective
compensation of charge trapping during partial AFE switching com-
pared to sub-coercive FEs. Consequently, a stable, volatile behavior is
observed with partial AFE switching. The detailed discussion of the
charge compensationmechanisms in AFE and FE switching is provided
in Supplementary Note 4 and Supplementary Fig. 11.

The reconfigurable STM/LTM functionalities demonstrated in
AFeFETs expand the design possibilities for neuromorphic devices
beyond a single device or 2D material system. While reconfigur-
ability has been demonstrated in two-terminal devices, their inte-
gration typically requires additional circuitry and often involves
high electroforming voltages and unreliable set/reset operations,
which impose constraints on neuromorphic functionality. In con-
trast, AFeFETs achieve reconfigurability through the interplay
between AFE switching and charge trapping dynamics, which can be
quantitatively modeled, indicating the potential for adaption to
other device platforms. In addition, using the identical material
compositions for both volatile and non-volatile devices eliminates
the need for multiple deposition processes, facilitating seamless
large-scale integration.

Demonstration of synaptic and neuronal functions
Changes in synaptic weight, or synaptic plasticity, exhibit both
potentiation and depression behaviors. In particular, long-term
potentiation/depression (LTP/LTD) form the basis of lasting mem-
ory. In the AFeFETs, the applied pulse sequence continuously excites
charge de-trapping, leading to fine modulation of the LTP and LTD.
Figure 4a presents the modulation of conductance states in response
to 256 identical pulses of 5 V/1ms. The device demonstrates a low
cycle-to-cycle variation of 2.1% (defined as σ/μ, where σ and μ repre-
sent the standard deviation and mean, respectively) over 100 cycles.
Further modulation using non-identical pulses (pulse width of 10μs
with pulse amplitudes ranging from 2.0 to 6.8 V for LTP and from −1.0
to −6.5 V for LTD) results in more linear weight update characteristics
with amaximumdevice-to-device variationof 6.1%, as shown in Fig. 4b.
Supplementary Fig. 12 confirms that LTP and LTD behaviors can be
stably extended to 200 cycles (totaling 5 × 104 pulses), demonstrating
the endurance property of the device.

For effective implementation of LTP and LTD in synaptic devices,
the modulation of synaptic weights should be non-volatile. Figure 4c
illustrates the retention characteristics of the AFeFET, showing that
reliable electron de-trapping allows the separate programmed states
to be maintained with negligible decay over 104 s. The cycling endur-
ance is depicted in Fig. 4d, where the device exhibits reproducible
switching without significant degradation over 105 cycles under pulse
trains. Extended endurance measurements (Supplementary Fig. 13)
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further confirm that the non-volatile characteristics are sustained
beyond 108 cycles. Paired pulse facilitation (PPF) is another key aspect
of synaptic plasticity essential for decoding temporal information in
biological systems. It involves the enhancement of the synaptic
response to a second stimulus following an initial stimulus. The PPF
index, defined as the ratioof the current under two consecutive pulses,
is depicted in Fig. 4e. This index can be fitted by a double-exponential
function:

PPF index=A2=A1 × 100%= 1 +C1 expð�Δt=τ1Þ+C2ð�Δt=τ2Þ ð2Þ

whereΔt is the time interval, τ1 and τ2 denote the two-stage decay time
constants, and C1 and C2 denote the facilitationmagnitudes of the two
phases. The fitted time constants are 1.58 and 10μs, respectively.

Spike-time-dependent-plasticity (STDP) is a fundamental rule for
learning and memory in the biological brain, providing dynamic con-
trol over synaptic plasticity46. For STDP, the update of synaptic weights
between a presynaptic and a postsynaptic neuron depends on the
delay time between their respective spikes, facilitating the realization
of unsupervised learning via synaptic weight modulation47. Taking the
interval between the presynaptic pulse and the postsynaptic pulse as
Δt, the change in synapticweight (Δw) is determinedby the variation in
conductance, which can be described using the exponential decay
function48,49. The variation of the synaptic weight with respect to the
time interval Δt is shown in Fig. 4f, where the fitted time constants are
2.21 and 2.04ms, respectively. Leveraging the STDP characteristics, we
demonstrate the pattern recognition capabilities of the AFeFET using a
simplified Hopfield neural network50. The network is trained using the
STDP learning rule to recognize noisy versions of the binary repre-
sentations of letters “N”, “U”, and “S”. The training algorithm and
pattern recognition results are shown in Supplementary Fig. 14, which
confirms the effectiveness of the STDP properties of the device in
pattern recognition tasks.

Although charge trapping dynamics generally exhibit a larger
time constant compared to AFE switching, the energy consumption
associated with the non-volatile characteristics of AFeFETs can be
significantly reduced by optimizing the applied pulse scheme and
device area ratio. As shown in Supplementary Fig. 15, non-volatile
behavior can be induced with pulse widths as short as 1 μs in devices
with a large area ratio. The resulting energy consumption of ~0.15 pJ
per spike demonstrates competitive energy efficiency for a charge
trapping-based mechanism (Supplementary Table 3). Notably, the
energy consumption for LTM in AFeFETs is substantially lower than
that of other reported reconfigurable devices, which typically require
prolonged pulse stress to induce non-volatile characteristics.

Neurons in a biological nervous system integrate the action
potential from presynaptic neurons, weighted by synapses, and gen-
erate a spike when the membrane potential reaches a critical thresh-
old. Unlike synapse-like devices, the development of neuron-like
devices has been relatively limited, partly due to the scarcity of
materials capable of replicating the characteristic behavior of biolo-
gical neurons. The dynamic response of AFeFETs is well-suited for
emulating spiking neuron behavior in the leaky-integrate-and-fire (LIF)
model, as shown in Fig. 5a. The LIF model provides a practical and
intuitive framework for simulating biological neurons, where the
membrane potential gradually increases in response to presynaptic
inputs. Once the integrated input reaches a threshold, the neuron
generates a spike followed by a reset of the membrane potential.
AFeFETswith their intrinsic back-switching dynamics, showpromise in
mimicking neuronal functions. As shown in the upper panel of Fig. 5b,
the conductance of the AFeFET accumulates in response to con-
secutive input voltage pulses and exhibits a self-resetting behavior
when the applied pulse is removed, closely resembling the reset-to-
zero LIF spiking neuronmodel51–53. The ability of the device to return to
its initial state without requiring an additional reset operation allows
for compact and low-power device designs. Themodulation can be re-
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initiated after the first self-reset, suggesting reliable LIF functionality.
Comparing the dynamics of FeFETs with AFeFETs for neuronal appli-
cations reveals intriguing differences. In FeFETs, non-volatility is pre-
sent even with sub-coercive voltage pulses due to accumulative
switching characteristics. The lack of relaxation dynamics in FE
polarization requires additional resetting voltage54, complicating per-
ipheral circuits and making it less ideal for densely packed chips. In
contrast, the self-reset feature of AFeFETs is able to achieve integrated
functions in a single unit with less area and energy consumption.
Additionally, no firing activity occurs at low input strengths, demon-
strating the neuron’s ability to filter weaker signals, as shown in the
lower panel of Fig. 5b.Owing to the excellent enduranceand stable AFE
properties, the firing behavior of AFeFETs remains robust up to 108

cycles with minimal variation, as shown in Fig. 5c, confirming their
reliability as neuronal devices.

In biological systems, neurons integrate input signals from pre-
neurons both temporally and spatially and transmit these signals by
emitting spikes.The spatial integrationof inputs canbe representedby
stimuli with varying strengths. To emulate the strength-modulated
characteristics, AFeFETs are subjected to input pulses with varying

amplitudes, pulse widths, and pulse intervals, as shown in Fig. 5d, e,
and f, respectively. The corresponding statistical analysis based on
measurements from 10 devices shows the number of spikes required
for firing in the lower panels. In general, increasing input strength
enhances the integration, thereby reducing the number of spikes
needed for firing, confirming the device’s ability to distinguish varia-
tions based on spike rate.55 The spatiotemporal integration of input
signals in AFeFETs demonstrates their potential for mimicking biolo-
gical functionality56.

Energy consumption is a critical parameter in assessing the per-
formance of artificial neuronal devices. The energy efficiency of these
devices can be improved by adjusting the input pulse scheme. As
shown in Supplementary Fig. 16, spiking neuronal functions can be
triggered with an input pulse width of 400ns, corresponding to an
energy consumption of 0.1 pJ per spike, highlighting the potential of
AFeFETs for energy-efficient neuromorphic applications. In practical
scenarios, a trade-off between energy consumption and response
speedmust be considered for specific application requirements57. The
operating principle of AFeFETs, governed by the interplay between
AFE switching and charge trapping/de-trapping dynamics, enables a
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broad timescale window that supports both volatile and non-volatile
characteristics. These intrinsic properties can be further integrated
with additional hardware enhancements to accommodate varying fir-
ing frequencies for specific applications.

Over the past two decades, neural networks have become pro-
minent in artificial intelligence research, with SNNs offering the
potential to enhance the energy efficiency of computing platforms by
emulating brain-like features such as spike-based data processing. A
schematic representation of the simulated hardware implementation
of a network based on AFeFET synapses and neurons is shown in
Fig. 5g. The input signal is applied to the drains of FeFETs through bit
lines (BLs), while source lines (SLs) collect the resulting current. Pulse
width modulators (PWMs) convert the current from the SLs into pulse
signals, which are then applied to the gates of neurons for integration
and spike generation. Based on the operating principles of AFeFETs,
network implementation can be further optimized by utilizing devices
with larger area ratios for synaptic functions and smaller area ratios for
neuronal functions. This integration allows the network to effectively
replicate biological synapses and neurons, enhancing the realism and
efficiency of neuromorphic computing.

A three-layer SNN was implemented for the recognition of hand-
written digits from the Modified National Institute of Standards and
Technology (MNIST) dataset. The linear LTP/LTD characteristics are
utilized to modulate synaptic weight updates. LIF spiking neurons
populate the layers of the SNN, processing spike trains based on rate
coding. As shown in Fig. 5h, the recognition accuracy improves with
training iterations, eventually reaching a high accuracy exceeding
97.8%. The corresponding confusion matrix for the final classification
results is presented in Fig. 5i. This result indicates that synaptic and
neuronal functions can be effectively implemented using our AFeFET,
delivering satisfactory performance. Compared to previous studies,
our AFeFET offers several advantages, including high endurance,
adaptive modulation, diverse functionality, and improved energy
efficiency, as summarized in Supplementary Table 4. Furthermore, the
multifunctional capabilities of the AFE-based device highlight their
significant potential for advancing future neuromorphic computing
systems.

In summary, we have demonstrated an antiferroelectric floating-
gate transistor capable of reconfigurable short-term and long-term
memory functions. This programmability is achieved through the
MFMIS configuration with a tunable area ratio, which effectively
manipulates the interplay between the intrinsic polarization switching
and charge trapping dynamics. The device’s non-volatile behavior
enables artificial synaptic functions, including long-term potentiation
and depression, proving effective for learning and classifying simple
binary images. Additionally, the inherent antiferroelectric switching
facilitates LIF and self-reset functions under electric field control,
offering reduced circuit complexity compared to traditional ferro-
electric devices. The neuronal functionality of the AFeFET was
demonstrated in spiking neural networks (SNNs) designed to recog-
nize the MNIST dataset, achieving an accuracy exceeding 97.8%. This
study underscores the potential of reconfigurable device architectures
for multifunctional applications and hardware acceleration in neuro-
morphic computing.

Methods
Antiferroelectric gate stack preparation
A 30 nm tungsten (W) layer was sputtered and defined on a Si/SiO2

substrate to form the bottom electrode. Subsequently, a 15 nm haf-
nium zirconium oxide (HZO) film was deposited using thermal atomic
layer deposition (ALD) at 250 °C, employing Hf[N-(C2H5)CH3]4, Zr[N-
(C2H5)CH3]4, and ozone as precursors. The deposition ratios for
Hf0.5Zr0.5O2, Hf0.25Zr0.75O2, and Hf0.17Zr0.83O2 were 1:1, 1:3, and 1:5,
respectively. A sacrificial W layer was then sputtered, patterned by
lithography, and wet-etched after rapid thermal annealing at 500 °C

for 60 s. For the MFMIS gate stack, a 6.5 nm Al2O3 layer was deposited
by ALD at 150 °C as the insulator. Few-layer MoS2, used as the channel
material, was mechanically exfoliated and transferred onto the sub-
strate. Next, source and drain contacts were defined by electron-beam
lithography, followedby the depositionof a 25 nmnickel (Ni) layer and
a lift-off process.

Materials characterization
The crystalline phase of the antiferroelectric thin films was character-
ized by grazing incidence X-ray diffraction (D8 Advance, Bruker).
Cross-sectional transmission electron microscopy (TEM) and energy-
dispersive X-ray spectroscopy (EDS) mapping were conducted using a
Talos F200X TEM.

Device characterization
DC and pulse measurements of capacitors and transistors were con-
ducted using a Keysight B1500A semiconductor analyzer. The mea-
surements of transistors were performed at room temperature in a
dark ambient environment.

SNN simulations
The MNIST dataset, consisting of 60,000 training images and 10,000
testing images, was used. Each MNIST sample is a 28 × 28 image con-
taining one of the digits 0–9. A fully connected SNNwas implemented
with 784 input neurons, 300 hidden layer neurons, and ten output
neurons for classification. The LIF model was used to emulate the
membrane potential of a time series:51–53 U[t + 1] =WX[t] + βU[t]-S[t]Uth,
where β is the decay rate of membrane potential, W is the weight
matrix, X[t] is the input voltage, spike or current, and S[t] is the gen-
erated spike train when U[t] >Uth. The SNN simulations were con-
ducted using the SpikingJelly framework58.

Data availability
The data supporting the findings of this study are provided in the
paper and/or the Supplementary Information. Source data are pro-
vided with this paper.

Code availability
The SNN simulations in this work were based on the SpikingJelly
framework58. All codes are available from the corresponding authors
upon request.
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