Table 2 Bayesian model-averaged DCM parameters for endogenous and modulatory connections in the discovery sample

From: Habenula contributions to negative self-cognitions

Connection

Ep

Cp

PP

Endogenous connectionsa (A-matrix)

Habenula → Habenula

− 0.57

0.0016

1.00*

Habenula → PCC

− 0.18

0.0006

1.00*

Habenula → Hippocampus

<0.01

<0.0001

.00

Habenula → pOFC

<0.01

<0.0001

.00

PCC → PCC

− 0.49

0.0017

1.00*

PCC → Habenula

0.07

0.0005

.99*

Hippocampus → Hippocampus

− 0.44

0.0020

1.00*

Hippocampus → Habenula

− 0.09

0.0016

.93

pOFC → pOFC

− 0.27

0.0021

1.00*

pOFC → Habenula

0.13

0.0011

1.00*

Modulatory connectionsb (B-matrix)

Challenge (CHAL)

Habenula → PCC

0.94

0.0121

1.00*

Habenula → Hippocampus

<0.01

<0.0001

.00

Habenula → pOFC

0.33

0.0052

1.00*

PCC → Habenula

<0.01

<0.0001

.00

Hippocampus → Habenula

< − 0.01

<0.0001

.00

pOFC → Habenula

<0.01

<0.0001

.00

Repeat (REP)

Habenula → PCC

0.44

0.0099

1.00*

Habenula → Hippocampus

< − 0.01

<0.0001

.00

Habenula → pOFC

< − 0.01

<0.0001

.00

PCC → Habenula

<0.01

<0.0001

.00

Hippocampus → Habenula

<0.01

<0.0001

.00

pOFC → Habenula

<0.01

<0.0001

.00

  1. aEndogenous parameters reflect the average effective coupling between regions across experimental conditions (context-independent).
  2. bModulatory parameters reflect the changes in effective coupling between regions induced by cognitive reappraisal (content-dependent).
  3. *Posterior probability (PP) exceeding .95 provides sufficient evidence for a non-zero group effect56.
  4. Cp posterior covariance, Ep posterior expectation, PCC posterior cingulate cortex, pOFC posterior orbitofrontal cortex, PP posterior probability.