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Estimating transmissibility of Zika virus in
Colombia in the presence of surveillance bias

Tim K. Tsang 1,2 , Diana P. Rojas3, Fei Xu4, Yanfang Xu1, Xiaolin Zhu4,
M. Elizabeth Halloran 5,6, Ira M. Longini2 & Yang Yang2,7

The 2015–2016 Zika virus outbreak in the Americas presented significant
challenges in understanding the transmission dynamics due to substantial
reporting biases, as women of reproductive age (15–39 years) were dis-
proportionately represented in the surveillance datawhen public awareness of
relationship between Zika and microcephaly increased. Using national sur-
veillance data from Colombia during July 27, 2015–November 21, 2016, we
developed aBayesian hierarchicalmodeling framework to reconstruct the true
numbers of symptomatic cases and estimate transmission parameters while
accounting for differential reporting across age-sex groups. Our model
revealed that the detection rate of symptomatic cases among women of
reproductive agewas 99% (95%CI: 98.7-100), compared to 85.4% (95%CI: 84.7-
86.1) in other demographic groups. After correcting for these biases, our
results showed that females aged 15–39 years remained 82.8% (95% CI:
80.2–85.2%)more susceptible to Zika symptomatic infection thanmales of the
same age, independent of differential reporting areas. Departments with
medium-high altitude, medium-high population density, low coverage of for-
est, or high dengue incidence from 2011–2015 exhibited greater Zika risk. This
study underscores the importance of accounting for surveillance biases in
epidemiological studies to better understand factors influencing Zika trans-
mission and to inform disease control and prevention.

The Zika virus is an emerging infectious disease first identified in 1947
in the Zika Forest of Uganda1. During 2015–2016, the Zika virus spread
across the Americas, including the Caribbean countries2, likely due to
their geographic location within the range of Aedes aegypti mosqui-
toes, the major vector of the Zika virus3. Environmental and climatic
conditions in the Americas such as high population density, warm
temperature and abundant precipitation provide suitable ecological
niches for mosquitos[6–10] and consequently the outbreak in the
Americas was extensive, affecting 48 countries and territories as of

December 20174. In Colombia, preliminary monitoring of Zika began
following the recognition of the outbreak in Brazil in May 2015. The
Colombian Instituto Nacional de Salud (INS) initiated official surveil-
lance for Zika in August 2015. By early October 2015, a Zika outbreak
was declared after a cluster of laboratory-confirmed cases was identi-
fied among nine patients in northern Colombia.

Althoughmost Zika infections result in a self-limiting, dengue-like
illness characterized by exanthema, conjunctivitis, arthralgia, and low-
grade fever5, severe outcomes suchasmicrocephaly andGuillain-Barré
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syndrome were recognized in Brazil in 2015 and the World Health
Organization (WHO) declared a Public Health Emergency of Interna-
tional Concern in February 20166. This recognition led to intensified
surveillance and control efforts in many countries2. Although large
outbreaks of Zika have not been reported since 2016, it continued to
emerge and reemerge, e.g., locally infected cases were first reported in
southern France in 2019, and India reported hundreds of cases in 2021
during the COVID-19 pandemic7,8. Given the association of Zika infec-
tion with Congenital Zika Syndrome and other neurological compli-
cations, it is crucial to understand Zika epidemiology and transmission
characteristics for effective disease control.

These associations had also driven surveillance bias where case
screening and detection efforts targeted pregnant women andwomen
of reproductive age more than other demographic groups9–11, poten-
tially introducing bias into epidemiological analyses of the transmis-
sion dynamics. Thus far, previous studies addressing surveillance bias
in the Zika epidemic have predominantly employed hierarchical
Bayesian models integrating multiple data streams, such as ser-
oprevalence surveys among blooddonors, to estimate infection attack
rates and other epidemiological parameters12–15. While these analyses
tackled challenges like under-ascertainment and misdiagnosis, most
models assumed a uniform reporting probability across demographic
groups12–15, despite many had noted that certain demographic groups,
particularly women of reproductive age, might be overrepresented in
surveillance data12.

Here, we develop a Bayesian model to account for reporting dif-
ferences among age-sex groups when estimating transmission
dynamics. We chose a Bayesian approach because it naturally accom-
modatesmulti-level data structures with a substantial amount of latent
data, while integrating prior information from the literature and
experts, and providing robust uncertainty quantification. These fea-
tures make it particularly suitable for our complex, heterogeneous
surveillancedata, e.g., unobserved true numbers of symptomatic cases
across space-time and differential reporting rates across demographic
groups. We apply this model to the Zika outbreak in Colombia during
2015–2016. Our approach jointly estimates reporting differences
across age-sex groups and identifies factors influencing transmission
dynamics, including biological effects of age and sex, meteorological
variables such as temperature and precipitation, and geographical
factors like population density and altitude.

Results
Zika outbreak in Colombia, 2015–2016
The study period for this analysis spanned from July 27, 2015, to
November 21, 2016. During this time, a total of 103,875 symptomatic
cases were reported in Colombia, and 1283 (1.2%) of them were
excluded due to missing onset date or date of birth. Hence,
102,592 symptomatic caseswere included in further analyses, of whom
8048 (7.8%) were laboratory-confirmed (Fig. 1A). The number of cases
among women of reproductive age (defined as ages 15–39) began to
increase significantly around December 2015, coinciding with rising
public awareness of the association between Zika and microcephaly
(Fig. 1B). Overall, the reported attack rates among women of repro-
ductive age were higher than other age-sex group in all departments
(Fig. 2). Before December 1, 2015, women of reproductive age
accounted for 25.4% of all reported cases across age and sex groups.
This proportion increased to 34.5% over the course of the entire out-
break. Based on surveillance data, the observed attack rate for women
of reproductive age was 4.34 per 1000 individuals, higher than other
age-sex groups, which ranged from 1.26 to 2.15 per 1000 individuals
(Fig. 2, and Supplementary Figs. S1–2). We also plotted the epidemics
curve by age-sex group for the 5 regions (Caribbean, Andean, Amazon,
Pacific andOrinoquia; Supplementary Fig. S2) in Colombia (Fig. 3). The
trend of the number of female cases of reproductive age far exceeding
that of male cases in the same age group, this potential surveillance

bias started as early as November 2015 in the Caribbean Region and
persisted throughout the outbreaks in each department. These
observations suggest that the probability of symptomatic cases being
captured by the surveillance system (hereafter referred to as reporting
probability) likely varied by age and sex, particularly among women of
reproductive age, due to heightened awareness of Zika-related
microcephaly.

Cumulative attack rate and reporting probability
To address potential differences in reporting probabilities among age-
sex groups when estimating the transmission dynamics of Zika in
Colombia, we developed a Bayesian hierarchical model. The model
treated the true weekly numbers of symptomatic cases for each age-
sex group as latent variables and linked these latent symptomatic case
numbers to the observed weekly numbers of symptomatic cases via a
sub-model of under-reporting. We assumed that the surveillance
capacity increased linearly across all age-sex groups, starting from an
initial reporting probability on July 14, which is one tenth of the final
reporting probability, and reaching a final reporting probability by
November 30, 2015, and staying at the same capacity afterwards. To
avoid non-identifiability, we assume all age-sex groups shared the
same reporting probabilities except those women of reproductive age
had a separate final reporting probability. The final reporting prob-
ability was estimated to be 0.990 (95% CI: 0.987–1.00) for women of
reproductive age, compared to 0.854 (95% CI: 0.847–0.861) for all
other age-sex groups.

Using the posterior samples of the latent true symptomatic case
numbers, we estimated the true attack rates for each age-sex group,
defined as thenumber of symptomatic cases dividedby thepopulation
size for each group (Fig. 4A). The true attack rate for women of
reproductive age was estimated at 4.92 (95% CI: 4.91–4.94) per 1000
individuals, about 13.4% higher than the observed attack rate. For all
other age-sex groups, the true attack rates ranged from 1.57 to 2.77 per
1000 individuals, about 24.4% to 36.2% higher than the observed
attack rates.

Transmission dynamics
After adjusting for differential reporting probabilities, our model
revealed significant geographical variation in attack rates (Fig. 4B).
Estimated attack rates in the Caribbean, Andean, and Amazon regions
ranged from 2.14 to 2.59 per 1000 individuals, while the Pacific and
Orinoquia regions exhibited higher rates at 3.71 (95%CI: 3.69–3.73) and
6.64 (95% CI: 6.59–6.71) per 1000 individuals, respectively. The esti-
mated attack rates for each department were shown in Supplemen-
tary Fig. S3.

We estimated that children aged 0–14 and adults aged 40 or older
were 52.7% (95% CI: 51.9–53.6%) and 38.4% (95% CI: 37.4–39.3%) less
susceptible than adults aged 15–39 (Fig. 5). Females were 82.8% (95%
CI: 80.2–85.2%) more susceptible than males. Environmental factors
also influenced susceptibility. A 1 °C increase in temperature was
associated with a 13.0% increase in susceptibility to symptomatic
infection (odds ratios (OR): 1.130; 95% CI: 1.125–1.135), while a 1 cm/hr
increase in precipitation corresponded to a 9.4% reduction in sus-
ceptibility to symptomatic infection (OR: 0.906; 95%CI: 0.896–0.916).

Departmentswith lowdengue incidence (0.09–0.57 cases per 100
person-years) or medium dengue incidence (0.58–1.81 cases per 100
person-years) exhibited significantly lower odds of Zika transmission
compared to high-incidence departments (1.82–4.33 cases per 100
person-years), with odds ratios of symptomatic infections of 0.280
(95% CI: 0.270–0.290) and 0.228 (95% CI: 0.219–0.237), respectively.
Compared to departments with a high forest coverage (16%–45%),
departments with a low forest coverage (0%–5%) exhibited sub-
stantially increased odds of transmission (OR= 9.55, 95% CI:
9.06–10.08), while those with a medium forest coverage (0.06–0.15)
showed only a slight increase (OR: 1.05; 95% CI: 1.02–1.07).
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Population density also influenced Zika transmission. Compared
to densely populated departments (67–1470 people per km²), those
with a low population density (0.6–24 people per km²) had sig-
nificantly reduced odds of transmission (OR =0.411, 95% CI:
0.337–0.489), while those with a medium population density (25–66
people per km²) were associated with slightly higher odds (OR = 1.171,
95% CI: 1.135–1.207). Altitude further contributed to variations in
transmission risk. In reference to departments with high altitudes
(1438–2411 meters), departments at low altitudes (53–215 meters) had
17% lower odds of transmission (OR =0.83, 95% CI: 0.78–0.88),
whereas departments at medium altitudes (216–1437 meters) exhib-
ited 24% higher odds (OR = 1.24, 95% CI: 1.21–1.27).

Model adequacy and validation
We assessed the model adequacy by comparing model-predicted
numbers of reported cases with observed surveillance data (Supple-
mentary Information, Section 3.1). The results showed close alignment
(Supplementary Fig. S4), suggesting a satisfactory goodness of fit. A
simulation study was also conducted to validate the algorithm’s ability
to recover unknown parameters (Supplementary Information, Section
3.3). The results indicated minimal bias in model estimates of the
parameters, and 84–100% of the 95% credible intervals contained the
true parameter values across 50 simulated epidemics (Supplementary
Information, Table S1).

Comparison analysis
To assess how reporting bias might affect the quantification of pre-
dictors’ effects, we reran the analyses using a model ignoring the
reporting bias (Supplementary Fig. S5). We observed that the direc-
tions (positive vs. negative) of the effects of predictors remain con-
sistent between this naïve model and our main model, but there are
two notable differences in magnitude. The most substantial differ-
ences were observed in the effects of low (vs. high) population density
and low (vs. high) proportion of forest coverage, with changes of 50%

and 16% respectively. Other covariates showed smaller relative differ-
ences in odds ratios, generally < 10%. This comparison further confirms
the importance of adjustment for reporting bias.

Sensitivity analysis
In a sensitivity analysis, when the initial reporting probability was
assumed 5% of the final reporting probability, the final reporting
probability was estimated at 0.990 (95% CI: 0.989–1.00) for women of
reproductive age and 0.836 (95% CI: 0.828–0.846) for other groups,
close to the primary estimates based on 10%. The assumption of 20%
for the initial reporting capacity produced similar estimates of 0.990
(95% CI: 0.989–1.00) for women and 0.848 (95% CI: 0.842–0.856) for
others. All other model parameters also remained similar (see Sup-
plementary Figs. S6–S7 for the 0.05 scenario and Supplementary
Figs. S8–S9 for the0.20 scenario), indicating that our results are robust
to the assumption of the initial reporting capacity.

In the primary analysis we assumed the full reporting capacity was
reached from 10% to 100% in 20 weeks before Dec. 1, 2015, and at that
day there was another instant jump in the reporting probability for
women of reproductive age, to differentiate this group formothers. In
a sensitivity analysis, we allowed that jump to fully scale up in 2 weeks
instead of instantly. The estimated reporting probability was 0.990
(95% CI: 0.989–1.00) for women of reproductive age and 0.854 (95%
CI: 0.846–0.861) for other groups. Similarly, allowing a 4-week scaling-
up produced estimates of 0.990 (95% CI: 0.989–1.00) and 0.855 (95%
CI: 0.846–0.863), respectively, all similar to the primary results.
Notably, the similarity holds for all model parameters (Supplementary
Figs. S10–S13), demonstrating the robustness of our findings to the
assumption about the temporal dynamics of reporting changes.

Discussion
In response to emerging public health threats, it is not uncommon for
surveillance systems to be biased towards vulnerable subpopulations,
which is exemplified by the multinational Zika outbreaks during 2015-
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Fig. 1 | Epidemic curve for the zika outbreak inColombia fromJuly 27, 2015 toNovember 21, 2016.AWeekly numbers of cases across six age-sex groups.BCumulative
numbers of cases across age-sex groups. C Proportions of monthly cases across age-sex groups.
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201616–20. In this study, we proposed a Bayesian hierarchical modeling
framework to account for differential reporting of Zika cases among
women of reproductive age in comparison to other age-sex groups,
which provided more accurate understanding of the transmission
burden and associated risk modifiers of Zika. Our analysis suggested
that the detection proportion of symptomatic cases in Colombia
increased from 8.5% to 86% in four months since the outbreak began,
and detection rates for women of reproductive age reached nearly
100%. This high detection rate among women of reproductive age
aligns with the implementation of targeted screening and testing
aimed at preventing microcephaly and Congenital Zika Syndrome in
Colombia and other affected regions9–11.

After adjusting for surveillance bias towards women of repro-
ductive age using information contained in the data, our findings
indicate that females remained more susceptible to Zika sympto-
matic infection than males. This is consistent with previous studies,
which reported higher attack rates among females3,10,21–27, attributed
not only to higher reporting rates but also to real biological
effects10, as evidenced by seroprevalence data24. Higher attack rates
among women outside reproductive age groups further support
this hypothesis25. The potential for sexual transmission of Zika is
likely another factor contributing to the high disease burden in
women. One study identified an increased infection risk if Zika
infection for sexually active women aged 15–65 years, but not for
other age groups10. Another study suggested the possibility that
women are more likely to exhibit symptomatic infections
than men26.

We found that ambient temperature was positively associated
with Zika infection risk, consistent with most previous studies28–33,
though one study reported no such association34. Temperature influ-
ences the ecological suitability of the vector, Aedes aegypti, and con-
sequently, Zika transmission30. Conversely, higher precipitation was
associated with lower transmission risks, in line with two prior
studies29,33. However, conflicting evidence also exists: one study sug-
gested rainfallmight increaseZika risk28, while another reported a non-
linear relationship34.

Departments with higher dengue incidence from 2011 to 2015
were associated with higher Zika infection risk. Several factors could
have contributed to this association. First, dengue and Zika share the
same mosquito vectors, implying that similar ecological and environ-
mental conditions support their co-circulation; consequently, depart-
ments with greater vector abundance tend to have higher risks of both
dengue and Zika. Another possible reason is the misdiagnosis of
dengue case as Zika cases and vice versa as a result of their similarity in
symptoms (e.g., fever, rash and myalgia) and antibody responses. The
challenges in clinical and laboratory diagnosis may create an epide-
miological picture where high dengue areas appear to also have high
Zika incidence simply because of misdiagnosis14. While misdiagnosis
could be associated with under-reporting or over-reporting, its impact
on the parameter estimation of our transmission model is likely lim-
ited, as long as the misdiagnosis level did not vary much across space-
time or age-sex groups. Misdiagnosis could be relatively high during
the early phase of the epidemic due to either technological barrier or
lack of awareness; however, we assumed a linear growth in the

Fig. 2 | Zika Attack Rate Heat Map Across Demographic Groups in Colombia.
The maps display the Zika virus attack rates stratified by age group and gender
across municipalities in Colombia. A–C represent attack rates for females, while
(D–F) represent males. Each panel is further subdivided into three age categories:

0–14 years (Panels A andD), 15–39 years (B, E), and 40+ years (C, F). The intensity of
the purple shading corresponds to the attack rate, with darker shades indicating
higher attack rates.
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reporting rates before November 30, 2015, which partially alleviates
the possibility of under-reporting due tomisclassification of Zika cases
as dengue cases. Finally, similarity in antigenicity between the two
viruses could introduce complex interference into population-level
transmission dynamics of Zika. Prior results on the dengue-Zika rela-
tionship aremixed: one study reported no impact of dengue incidence
on Zika9, while another suggested that dengue antibodies enhanced
Zika infections35. In addition, three studies found that prior dengue
infection provided short-term protection against Zika36–38, yet another
study suggested minimal impact of pre-existing dengue immunity39. A
modeling study highlighted the complexity of the dengue-Zika rela-
tionship which might be influenced by their reproductive numbers40.

In our study, only 4% of cases were laboratory-confirmed, and the
majoritywere clinically diagnosed. Thepotential ofmisclassification of
non-Zika cases as Zika cases or vice versa will have similar impacts as
the potential misdiagnosis between dengue and Zika cases on our
result. If the misclassification was uniform across space-time and
across sex-age groups, it should have very limited effects on our esti-
mates. If the misclassification was differential, e.g., if certain demo-
graphic groups are more likely to have non-Zika cases misclassified as
Zika cases, it could bias the estimated predictor effects as well as
reporting probabilities in unpredictable ways.

Geographic factors also played an important role in Zika trans-
mission. Departments with lower forest coverages were associated with

higher infection risk, consistent with findings that cities exhibit greater
risk than rural areas31. Altitude showed a non-linear relationship with
Zika risk: transmission risk was the lowest in low-altitude regions but
highest in medium-altitude regions, which was probably related to the
role of altitude in ecological niches of the vector. This alignswith studies
showing minimal Zika risk at high altitudes41, though some reported a
negative association between altitude and infection risk42. Population
density similarly exhibited a non-linear relationship. Low population
density was associated with reduced infection risk, while medium den-
sity correlated with slightly increased risk. Our findings are largely
consistent with previous studies reporting a positive relationship
between Zika risk and population density42,43, suggesting that densely
populated urban areas experienced greater risks of Zika.

The model-corrected attack rates are ~10–20% higher (relative
scale) than the reported values across various regions and departments.
These findings are broadly consistent with those reported by Moore
et al. 13, who found that the attack rates were generally less than 1%.
However, discrepancies in a few departments likely reflect differences in
data sources and case definitions; while Moore et al. employed ser-
ological data that capture both symptomatic and asymptomatic infec-
tions, our analysis is based on suspected symptomatic cases, with only a
fraction confirmed by laboratory tests.

Our approach categorized the population into six age-sex groups,
enabling the estimation of three parameters related to age-specific
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Fig. 3 | TemporaldistributionofZika cases across colombian regions bygender
and age group. This figure illustrates the monthly temporal trends in Zika virus
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susceptibility to symptomatic infection (corresponding to the three
age groups: 0–14, 15–39, and 40+ years) and two parameters related to
sex-specific susceptibility to symptomatic infection (male and female).
To account for surveillance bias across age-sex groups, we included
two additional parameters: one representing the reporting probability
for females of reproductive age (15–39 years), and another for all other
age-sex groups combined. A finer grouping of reporting probability
will result in identifiability issues. Such identifiability issue could be
alleviated with additional data, e.g., serosurvey studies in Colombia
with age-sex grouping. Via a literature search, we found very limited
number of such studies and most of these studies were targeting a
special group of people or a special region44–46, insufficient to inform a
finer grouping or improve inference for our model.

Our study has limitations. First, we conducted the analysis at the
department level, without accounting for finer spatial scales, which
could improve result accuracy; yet the computational burden will
increase exponentially as we model pairwise transmission among
spatial units. Second, we lacked direct abundance data for the Zika
vector, relying instead on proxy predictors, such as environmental
factors. Finally, as an observational study, the possibility of unmea-
sured confounders remains.

In conclusion, our study introduced a statistical approach to
correct surveillance biases caused by the clinical association of Zika
infection with Congenital Zika Syndrome.We estimated that almost all
cases among women of reproductive age were detected, compared to
86% for other age-sex groups. Ourmethod can be generalized to other
infectious diseases with similar surveillance bias, e.g., the hand, foot
andmouth disease that causes neurological complications more often
in young children than in older children or adults47. These findings
underscore the need for statistical and epidemiological methods
adjusting for reporting biases to better understand and manage
emerging infectious diseases and call for timely collection of relevant
data, such as serosurvey data, that can further help correcting
surveillance bias.

Methods
Data collection
The details of Colombia’s surveillance system have been described
previously23. In brief, the Instituto Nacional de Salud (INS) operates
a national public health surveillance system for notifiable condi-
tions, including Zika. Case information is collected by healthcare
centers and transmitted to the national health surveillance system,
with an approximate reporting delay of 1.5 weeks. We downloaded
an anonymised line-list of all suspected and laboratory-confirmed
Zika, released by INS as an open-access dataset (https://
portalsivigila.ins.gov.co/). Cases are primarily identified based
on clinical symptoms and are subsequently confirmed by RT-PCR,
following established protocols23. However, only a small fraction
(~4%) of reported cases are laboratory-confirmed, highlighting
potential gaps in coverage. This low confirmation rate largely
reflects two key factors. First is the narrow window during which
Zika virus RNA is detectable in serum. If samples are collected too
late after symptom onset, the virus may no longer be detectable.
Second, resource and logistical constraints limit confirmatory
testing to only a subset of suspected cases, with most diagnoses
relying on clinical criteria.

For this study, the analysis period was from July 27, 2015, to
November 21, 2016. All Zika cases reported to the surveillance system,
whether laboratory-confirmed or not, were included in the analysis.
Initially, Zika cases were defined as fever accompanied by at least one of
the following symptoms: non-purulent conjunctivitis, headache, rash,
pruritus, or arthralgia, with no known alternative cause. On December
24, 2015, the case definition was revised to include fever and rash, along
with at least one of the following symptoms: non-purulent con-
junctivitis, headache, pruritus, arthralgia, myalgia, or malaise. Pacheco

et al. 23 noted this change but did not perform a formal validation ana-
lysis to quantify its direct effect on reported case counts.

Several socio-environmental factors that are known to be corre-
lated with Zika transmissions were collected and included in our ana-
lysis. Population density captures variations in human-vector contact
rates, as denser populations tend to facilitatemore interactions between
people and mosquitoes42,43. Department-level demographic statistics
and population densities were collected from national statistics
department of Colombia. Temperature is critical because it affects
mosquito development, survival, and viral replication within the vector,
thereby influencing transmission potential30. Precipitation is similarly
important since it creates and sustains breeding sites for Aedes mos-
quitoes, driving fluctuations in their abundance29,33. Daily data on tem-
perature and precipitation were extracted from the Environmental
Information database in National Oceanic and Atmospheric Adminis-
tration. Together, these factors provide essential context for under-
standing spatial and temporal variations in Zika transmission.

The statistical transmission model
Based on individual-level data, we created time series of weekly case
numbers stratified by six age-sex groups (ages: 0–14, 15–39, 40+ years;
sex: female, male) for 32 departments in Colombia.

Due to increased awareness of the association between Zika
infection andmicrocephaly16,48,49, cases amongwomenof reproductive
age (15–39 years) were likely oversampled than other demographic
groups in the surveillance data. To address this, we developed a three-
level hierarchical model to estimate transmission dynamics while
adjusting for differential reportingprobabilities among age-sexgroups
(see Supplementary Information). The model provided estimates of
the true case counts and adjusted attack rate for each age-sex group.

The first (or top) level of the model, the reporting sub-model,
defined the reporting probability as the likelihood of a symptomatic
case being recorded in the surveillance system. Weekly case numbers
for each age-sex group were modeled as latent variables representing
the “true” case counts after correcting for differential reporting. These
true counts were linked to observed case counts using a binomial
distribution. The model assumed that surveillance capacity improved
gradually, increasing from 10% to 100% over a 20-week period from
July 14 to November 30, 2015, with full capacity reached by the latter
date. Given the limited empirical information on the initial reporting
capacity, we conducted sensitivity analyses assuming the initial
reporting capacity was 5% and 20% of the final reporting capacity, in
addition to our primary assumption of 10%. Before December 1, 2015,
the reporting probability and its linear increase were assumed to be
the same across all age-sex groups. From that date and onwards, the
reporting probability for women aged 15–39 was allowed to be higher,
reflecting increased public awareness of the link between Zika and
microcephaly (modeled as an additional parameter). We conducted a
sensitivity analysis that allows the reporting capacity for women of
reproductive age to gradually scale up for another 2 or 4 weeks after
December 1, 2015, instead of an instant jump.

The second level was a Poisson transmission model used to esti-
mate Zika transmission dynamics. The infection probability for a given
week in a department and age group was modeled as a function of case
numbers in the same department, neighboring departments, and non-
neighboring departments. Different transmission probabilities were
assumed for within-department, neighbor-department, and non-
neighbor-department interactions. Regional variation in transmission
probabilities was also modeled across Colombia’s five geographic
regions: Pacific, Orinoquia, Caribbean, Andean, and Amazon. Themodel
accounted for several covariates, including age group (0–14, 15–39, ≥40
years), sex, temperature, precipitation, cumulative dengue incidence
(2010–2015), forest cover proportion, population density, and altitude.
The serial interval was derived by combining distributions for the latent
and infectious periods in both mosquitoes and humans (see
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Table S2 and Supplementary Information for details). We also con-
ducted a comparison analysis that reporting bias was ignored to explore
the impact on the estimates of the effects of predictors.

Model Inference
To estimate unobserved “true” case numbers corrected for detection
bias, we employed a Bayesian data augmentation framework. Model
parameters were updated using the Metropolis-Hastings algorithm, and
true weekly case numbers for each age-sex group in each department
were jointly estimated. Statistical analyses were conducted using R
version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria).

Model validation and adequacy
To evaluate goodness-of-fit of the model, a simulation study was con-
ducted by comparing observed case numbers in surveillance data with
those predicted by the model. For each simulation, a parameter vector
was randomly drawn from the posterior distribution, and a dataset was
simulated based on the transmission model and the selected parameter
vector. Additionally, a separate simulation study was performed to
validate the ability of the model to recover unknown parameters.
Simulated epidemics were generated using parameter vectors set to the
mean of the posterior distribution, and the algorithm was applied to
estimate model parameters for each simulated epidemic. The results
demonstrated the robustness of themodel in estimating keyparameters
and accurately capturing the dynamics of Zika transmission.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data used in the analysis is available at https://github.com/
timktsang/zika_surveillance_bias.

Code availability
All codes are available at https://github.com/timktsang/zika_
surveillance_bias.
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