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Krylov diagonalization of large many-body
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Nobuyuki Yoshioka 1,2,10 , Mirko Amico 3,10 , William Kirby 3,10 ,
Petar Jurcevic 3, Arkopal Dutt4, Bryce Fuller 3, Shelly Garion5, Holger Haas3,
Ikko Hamamura 6,7, Alexander Ivrii 5, Ritajit Majumdar8, Zlatko Minev 3,
Mario Motta3, Bibek Pokharel 9, Pedro Rivero3, Kunal Sharma 3,
Christopher J. Wood 3, Ali Javadi-Abhari3 & Antonio Mezzacapo3

The estimation of low energies of many-body systems is a cornerstone of the
computational quantumsciences. Variational quantumalgorithms canbeused
to prepare ground states on pre-fault-tolerant quantum processors, but their
lack of convergence guarantees and impractical number of cost function
estimations prevent systematic scaling of experiments to large systems.
Alternatives to variational approaches are needed for large-scale experiments
on pre-fault-tolerant devices. Here, we use a superconducting quantum pro-
cessor to compute eigenenergies of quantum many-body systems on two-
dimensional lattices of up to 56 sites, using the Krylov quantum diagonaliza-
tion algorithm, an analog of the well-known classical diagonalization techni-
que. We construct subspaces of the many-body Hilbert space using
Trotterized unitary evolutions executed on the quantum processor, and
classically diagonalize many-body interacting Hamiltonians within those sub-
spaces. These experiments demonstrate exponential convergence towards an
estimate of the ground state energy, and show that quantum diagonalization
algorithms are poised to complement their classical counterparts at the
foundation of computational methods for quantum systems.

Solving the Schrödinger equation for quantum many-body sys-
tems is at the core of many computational algorithms in fields
such as condensed matter physics, quantum chemistry, and high-
energy physics. A quantum advantage for this task would have
far-reaching consequences for natural sciences. Among approa-
ches to using quantum computers for eigenstate calculations, two
have been the primary objects of discussion to date: quantum
phase estimation (QPE)1,2, including its recent advancements (e.g.,
refs. 3–5), and the variational quantum eigensolver (VQE)6.

Experimental implementations on pre-fault-tolerant devices have
focused on VQE, which has been demonstrated on various
experimental platforms for a wide range of problems (e.g.,
refs. 6–9). However, the bottleneck of parametric optimization
has so far prevented its scaling beyond small instances. QPE, on
the other hand, possesses theoretical precision guarantees, but
quantum error correction will be necessary to reach the circuit
depths required for problems of value, although small examples
have been implemented10–12.
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These results leave a gap in methods for eigenstate estimation
between the small demonstrations that have been executed so far and
large-scale, high-accuracy simulations using QPE or related methods
on fault-tolerant quantum computers. In this work, we demonstrate
that Krylov quantum diagonalization (KQD)13–28, a type of quantum
subspace diagonalization13–42, can fill the gap for more general
problems.

The main idea in KQD is to use the quantum computer to
approximate the projection of the Hamiltonian into a Krylov space
spanned by various time evolutions of an initial reference state. The
resulting low-dimensional matrix is then classically diagonalized to
obtain approximate low-lying energy eigenstates13. Thismethod shares
the property of variationality with VQE (up to effects of noise), but
does not require an iterative parameter optimization, instead relying
on a single round of circuit executions followed by classical post-
processing. Furthermore, as long as the noise can be quantified, the
accuracy of the method can be bounded theoretically27,28, as in QPE,
meaning that KQD can continue to be valuable through the transition
into the fault-tolerant era. In the near term, time evolutions for simu-
lations with less stringent accuracy requirements are not prohibitive
for existing quantum computers. While it may be challenging to
quantify the impacts of all sources of error in this context, KQD still
functions as a heuristic with an underlying exponential convergence
towards a noisy estimate of the ground state energy.

In this work, we use KQD to estimate the ground-state energy of
the Heisenberg model on a heavy-hexagonal lattice. We show that
although noise poses a significant obstacle to high accuracy, evenwith
advanced error mitigation43,44, we can obtain convergence to the
ground-state energy on up to 56 qubits.

Results
Theory of Krylov quantum diagonalization
KQD consists of two main steps. The first is a quantum subroutine to
construct the matrices

~Hjk = hψjjHjψki, ~Sjk = hψj jψki, ð1Þ

which corresponds to the projection of the Hamiltonian into and the
overlap (Gram) matrix of a subspace K=Spanf∣ψ0

�
, . . . , ∣ψD�1

�g. The
second step is to classically solve the time-independent Schrödinger
equation projected into the subspace, which is given by

~Hc= E~Sc, ð2Þ

where c is a coordinate vector in the Krylov space. The approximate
ground-state energy, within the entire Hilbert space or a symmetry
sector, is obtained as the lowest eigenvalue of (2). Two distinct
components affect the accuracy of the approximation27,28: the intrinsic
error of projecting the full eigenvalue problem down into the
subspace, which is related to the overlap of sufficiently low-energy
states with the subspace, and any additional algorithmic, statistical,
and hardware errors.

Subspace diagonalization methods differ primarily in the choice
of subspace. In classical computing, one of the common approaches is
to construct the subspaceby generating correlation via local operators
such as the hopping terms for fermions, as in multi-reference config-
uration interaction45. Alternatively, one can use global operators. For
instance, the classical Lanczosmethod employs the power series of the
Hamiltonian to construct the subspace as KP =SpanfH j ∣ψ0

�g, which is
also referred to as the power or polynomial Krylov space. The main
advantage of such a construction is that the accuracy of the solution
improves exponentially with the subspace size D46–48. The limiting
factor in classical Lanczos and related methods is that they inevitably
suffer from memory consumption that grows exponentially with the
system size, owing to the need to represent entangled quantum states.

While various adaptations of this scheme to quantum computers
have been proposed13–18,21–32,35–42, the most appropriate for near-term
quantum computers is to use real-time evolutions as the global
operators to generate the Krylov space:

KU = SpanfU j ∣ψ0

�g, j =0, 1, . . . ,D� 1, ð3Þ

where U = e−iH dt is the time evolution operator for some timestep
dt13–18,21–28. The advantage of this is two-fold: first, time evolutions can
be approximated by circuits of short enoughdepth to be implemented
on existing quantum devices. Second, one can show that even in the
presence of noise, the error due to projection into this unitary Krylov
space converges exponentially quickly with the Krylov dimension, just
as in classical Krylov algorithms. The noise simply contributes an
additional error term as long as it is not so large that it completely
overwhelms the signal27,28. This means that it is possible to reach
convergence of the approximate ground-state energy with a Krylov
space of limited dimension.

While evaluation of the Krylovmatrices on the quantum computer
resolves the issue of memory, which is the main obstacle to scaling on
the classical side, the main obstacle on the quantum side is noise. Two
major contributions are statistical noise due to finite shot sampling and
hardware noise in the device. Algorithmic error from the approxima-
tion of time evolutions also enters, but belowwe shownumerically that
its effects are below the level of the hardware errors. On the other
hand, suppressing and mitigating those hardware errors proves to be
crucial in order to scale the size of the simulation: we apply experi-
mental techniques for this purpose (see Supplementary Note 4 for
details) as well as keeping the quantum circuit as shallow as possible
while maintaining global coupling structure of the Krylov space.

To simplify our circuits, we exploit the U(1) symmetry possessed
by many condensed matter models, including the Heisenberg model
we focus on. As a qubit operator, U(1) symmetry can be expressed as
conservation of Hamming weight; in terms of spin-1/2 operators, it
corresponds to conservation of the z component of total spin.
Equivalently, we can think of the symmetry subspaces as k-particle
subspaces, treating ↑(↓) spins as absence (presence) of a particle.

Figure 1 shows a sequence of circuits that could, in principle, be
used to calculate the matrix elements (1). Panel (a) shows the standard
Hadamard test, which would be the default tool for such a calculation.
Panel (b) illustrates how we use spin conservation to avoid imple-
menting the controlled time evolutions present in the conventional
Hadamard test: instead, we implement controlled initializations of the
reference state ∣ψ0

�
, and then rely on the fact that the time evolutions

preserve the “vacuum state” ∣00 . . .0i up to a classically calcul-
able phase.

As a second simplification, we note that for the exact time evo-
lutions, hψ0jUy

j HUk jψ0i= hψ0jHUk�jjψ0i, which gives us two formally
equivalent ways tomeasure the samematrix element, with the second
yielding a simpler circuit since it only involves one time evolution.
However, once the time evolutions are approximated by Trotteriza-
tion, these two expressions are no longer equal. In Fig. 1c, we show the
circuit corresponding to the latter version.

It is not a priori clearwhether one shouldprefer the circuits shown
in panels b or c in Fig. 1, purely from a Trotter error perspective. One
advantage of Fig. 1b is that it still corresponds to variational optimi-
zation in a subspace, since each matrix element still has the form (1).
However, even this ceases to be true in the presence of finite sample
and device noise28. Figure 1c, the version in which Toeplitz structure is
explicitly enforced, is preferable from the perspective of circuit depth
for two reasons: it only requires one time evolution, and as a result, the
second controlled initialization can be applied as a Clifford transfor-
mation to the Pauli observables in the Hamiltonian rather than expli-
citly implemented in the circuit. In practice, we do not see dramatic
violations of variationality with this method, thanks to the
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regularization technique used to avoid ill-conditioning of the eigen-
value problem (2) (see Supplementary Note 5 for details). As an
example, we compare exact classical simulation results for circuits in
Fig. 1b, c, which are to be compiled in experiments as shown in Fig. 2

(see the next section for details). Energy curves for a 20-qubit system
shown in Fig. 3 indicate that the variationality restores quicklywith the
number of Trotter steps. These findingsmotivated using the version of
the circuits shown in Fig. 1c.

Fig. 1 | Schematic of Krylov quantum diagonalization. a Hadamard circuit for
computingmatrix elements of the form 〈ψi∣P∣ψj〉, which relies on controlled unitary
implementation of Krylov basis states. b Simplification of the circuit by exploiting a
symmetry such as particle-number conservation. c The construction employed in
this work. Only one time evolution circuit is required, and the second controlled

preparation circuit is absorbed into the basis of the measurement. d Classical
postprocessing to constructmatrices ~H and ~S, which yield a generalized eigenvalue
problem. The matrices are Hermitian for the circuits shown in a, b, and Toeplitz
Hermitian for c. Note that the diagonal elements, enclosed by black lines, can be
computed classically.

Fig. 2 | Quantum circuits for Krylov quantum diagonalization. a Each circuit
performs the controlled preparation of an initial state within the target particle
sector, followed by a Trotterized time evolution. b The controlled preparation
prepares a computational basis state in which the Hamming weight corresponds to
the number of particles for the given experiment, controlled on the auxiliary qubit.
Since the heavy-hex lattice canbe edgewise three-colored (colors given in thefigure
by red, green, and blue), both the controlled preparation and the Trotterized time

evolution can be implemented using sequences of three unique two-qubit gate
layers interleaved with single-qubit rotations. See the main text for details. c Each
layer of two-qubit gates is Pauli twirled in order to tailor the noise to a sparse Pauli-
Lindblad noise model Λ43,44, preceded by its amplification ΛG for PEA. Note that
adjacent layers of single-qubit gates, originating from either the source circuit, the
twirling, or the noise amplification layer, are always combined in a single layer; they
are left unmerged in the figure for clarity. d (12 + 1)-qubit example of the CZ layers.
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Large-scale experimental demonstrations
For our experiments, we studied the spin-1/2 antiferromagnetic Hei-
senberg model, which is defined for a set of edges E as

H =
X

ði, jÞ2E
JijðXiX j + Y iY j +ZiZ jÞ ð4Þ

with uniform couplings Jij = 1, where Xi, Yi, Zi denote the Pauli matrices
on the ith site. The set of interactions E is a subset of the heavy-hex
lattice (see Fig. 4). Note that, while the heavy-hex lattice is bipartite and
hence the ground state in the entire Hilbert space can be simulated
efficiently using the path-integral Monte Carlo method49, the sign
problem is present for excited states in general. Among the excited
states, we focus on the lowest-energy eigenstates within several k-
particle subspaces. The dimension of the k-particle subspace scales as
O(Nk). Note that the circuit construction relies on the U(1) symmetry

but not on SU(2) symmetry, and hence our method is directly
applicable to XXZ model as well.

We ran experiments in three different k-particle sectors: k = 1, 3, 5.
The initial states in all three cases were computational basis states with
numbers of ∣1i s given by k: for example, in the single-particle case,
∣ψ0

�
= ∣00 . . . 1 . . .0i. The circuit implementations for the different

values of k therefore differ in the controlled preparation (see
Figs. 1 and 2). The k = 1 case corresponds to generating only one par-
ticle in the initial state, which can easily be implementedwith a CX gate
between the control qubit (the ancilla in the Hadamard test) and an
adjacent qubit. For k > 1, we chose locations for the particles that were
distributed approximately uniformly over the qubit graph.

The heavy-hex lattice permits a three-coloring of its edges, in
which each color corresponds to a layer of two-qubit gates that can be
implemented simultaneously (see Fig. 2). Since each distinct two-qubit
layer requires its own noise learning for probabilistic error amplifica-
tion (PEA—see below), it is advantageous to minimize the number of
distinct layers in the circuits. The controlled preparation circuits can
be implemented using a set of two-qubit layers corresponding to the
three-coloring of edges in the heavy-hex, with only a constant over-
head compared to arbitrary layers (see Supplementary Note 2 for
details). For our Trotterized time evolutions, we partitioned the
Hamiltonian terms into the same set of layers. Therefore, we only had
to learn the noise models of three unique layers in total for each
experiment.

The depth of the controlled-initialization part of the circuit is
proportional to the distance between the two furthest apart initial
particles in thequbit graph.Weused two second-order Trotter steps to
approximate the time evolutions in all of our experiments. r second-
order Trotter steps with three commuting groups of Hamiltonian
terms require 4r +1 two-qubit layers (see panel b in Fig. 2), yielding 9
layers in our case for the time evolution part of the circuit.

To measure the observables corresponding to real or imaginary
parts of thematrix elements in ~H and ~S, we partitioned the observables
into as few locally-commuting sets (measurement bases) as possible,
since such sets are co-measurable7. The shortened circuits, as in the
third row of Fig. 1, require conjugating the Hamiltonian terms (4) by
the second controlled-initialization circuit, since it is not physically
implemented. This yields the same number of Pauli observables since
the controlled-initialization is a Clifford circuit, and one can prove that
these observables can be partitioned into 2(k + 2) measurement bases;
see Supplementary Note 2.

We performed experiments on the Heron R1 processor IBM_-
montecarlo. This is a 133-qubit device with fixed-frequency transmon
qubits connected to eachother via tunable couplers.Heronprocessors
have faster two-qubit gates (similar in duration to the single-qubit
gates) and lower cross-talk compared to the fixed-coupling devices of
earlier generations. To further improve themeasured observables (see
Fig. 1), we used probabilistic error amplification (PEA)44 and twirled
readout error extinction (TREX)50, which mitigates SPAM errors, to
approximate noise-free expectation values. We additionally employed
error suppression, in particular Pauli twirling and dynamical decou-
pling. Details of the error mitigation and suppression are given in
Supplementary Note 4.

In our experiments, for eachmeasurementbasis, a certainnumber
of twirled instances were generated, and each instance was then
repeatedly measured for different values of the noise amplification
factor. For the single-particle (k = 1) experiment, we used 300 twirled
instances with 500 shots each, at noise amplification factors of 1, 1.5, 3.
For k = 3, 5,weused 100 twirled instanceswith 500 shots each, at noise
factors 1, 1.3, 1.6. The reduction in twirled instances for the larger
experimentswas introduced in order to reduce the total runtime, since
the number of measurement bases as well as the circuit sizes increase
with k. The adjustmentof thenoise amplification factorswasdue to the

Fig. 3 | Numerical investigations of algorithmic errors. a (20+ 1)-qubit layout of
the Heisenberg model used for numerical simulations, with the green and red
circles indicating the control and excited qubits. b Energy versus Krylov space
dimension. The dotted and solid lines indicate the results from the circuits in
Fig. 1b, c, respectively. c Heat map of the ground-state energy error ΔE for k = 5-
particle sector with various dt andD, using 4 second-order Trotter steps. The white
arrow indicates the value of π/||H||.
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increased noise rates in the deeper circuits. The controlled-
initialization part of the circuit involves creating a maximally entan-
gled state of the control qubit and the initial particle locations.With an
increase in thenumber of particles, this translates to a largermaximally
entangled state prepared at the beginning of the circuit, which in turn
makes the results more susceptible to noise.

The size of the Krylov space was fixed to D = 10 across all experi-
ments in order to achieve a total runtime of the algorithm within the
timescale of device recalibration processes (24 h). For a fixed value of k
the experimentwas run on a specific qubit subset, chosen according to
the current status of the device by using a heuristic routine for optimal
qubit mapping51. The k = 1 experiment was executed on a 57-qubit
subset, the k = 3 experiment on a 45-qubit subset, and the k = 5
experiment on a 43-qubit subset (the layouts are shown in Fig. 4). The
latter twowere partially chosen by hand in order to have five complete
heavy hexes in each case.

Although the time step dt theoretically has an optimal value ofπ/||
H||27,28, the restriction to low-particle-number subspaces alters this.
Consequently, we chose the time steps heuristically, with values 0.5,
0.022, and 0.1 for k = 1, 3, and 5, respectively.

Results are shown in Fig. 4. Panel a summarizes the results on a
normalized energy scale, while e, f, and g show the convergence curves
for each separate experiment. The corresponding qubit graphs are
shown inpanels b, c, andd, respectively. These convergence curves are
a useful diagnostic tool for assessing the results of noisy KQD experi-
ments.We know from the theoretical analysis that if error rates are low
enough to resolve the signal, i.e., to distinguish the lowest energy state
in the Krylov space frompure noise, thenwe should see anexponential
decay of the energy towards a value offset from the true ground-state
energy by a constant depending on the error rate27,28. Our results show
this behavior up to some fluctuations, which is expected since the
theoretical results only provide for an exponentially-decaying upper
bound. If the noise had completely dominated the signal, however, the
rate of convergence with subspace dimension would have been
exponentially slowwith respect to system size, and we would not have

seen the initial fast convergence in Fig. 4. See Supplementary
Notes 4 and 5 for further details.

In our experimental results, noise and algorithmic error (due to
the Trotter approximation as well as the limited Krylov dimension) are
still significant limiting factors, as evidenced by the differences
between the most accurate estimated energies (at D = 10) and the true
values. We estimated standard deviations for our experimental ener-
gies using bootstrapping, since the post-processing of solving the
regularized, generalized eigenvalue problem (2) makes direct error
propagation difficult. This yielded the error bars in Fig. 4; for further
details, see Supplementary Note 5. Figure 4 also shows the energy
convergence curves for ideal classical simulations of our circuits,
which are tractable by representing vectors and operators only in the
restricted particle-number subspaces. While the error bars are large
due to the noisy experimental results, our estimated energies for the
two larger values of k are consistentwith the ideal simulation curves up
to these standard deviations at nearly all points.

In the k = 1 experiment, the results deviate below the true lowest
energy, indicating that noise has created an effective leakage out of the
k = 1 subspace. This illustrates a risk of relying on symmetry con-
servation to remain in a particular subspace, although studying the
global ground state would not be subject to this concern.

Exact diagonalization can also be carried out in the sectors of the
Hilbert space studied in the present experiments, thoughnot in the full
Hilbert space. However, the experiments did not depend on those
particular particle number sectors in any way except for the reduced
circuit depth of the controlled initialization, so there are not qualita-
tive or structural obstacles to scaling, only effects of noise. In the
specific case we focused on—the ground states of the Heisenberg
model on a 2D heavy-hexagonal lattice—it is also still possible to
compute precise approximations using classical techniques such as
tensor networks.

One may ask why KQD was employed rather than one of the
various other algorithms that have been recently developed for
ground-state energy estimation in a near-term or early-fault-tolerant

Fig. 4 | Experimental diagonalizationofmany-bodyHamiltonians. aThe energy
per site of Heisenberg model for particle numbers k = 1, 3, and 5 in system sizes of
N = 56, 44, and 42, respectively. The error bars indicate standard deviations esti-
mated by bootstrapping. The dashed curves indicate the energies from noiseless
classical simulations, and solidblack lines show the exact lowest energy in the given

k-particle subspace.b–dQubit layout graphs. The green and red circles indicate the
control and initial locations of particles, respectively. e–g Energy curves for indi-
vidual particle numbers k = 1, 3, and 5.h–j ErrormatricesΔ~H=N : = j~Hexp � ~Hnumj=N
and Δ~S : = j~Sexp � ~Snumj, where the subscripts “exp" and “num" denote data from
experiments and numerical calculations, respectively.
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setting, e.g.,3–5,52. One primary reason, in addition to KQD’s relatively
well-understood noise tolerance21,25,27,28, those alternative methods all
extract eigenenergies from the time evolution rather than directly
from a projection of the Hamiltonian itself. This is a problem in a
setting such as ours where the Trotter circuit is held fixed as the
number of timesteps is increased (which was necessary to minimize
circuit depth), because the spectra of the Trotter circuits diverges
from the spectra of the ideal time evolutions, indeed becoming peri-
odic with a period depending on the timestep and the fixed Trotter
circuit. Hence, with this constraint algorithms depending only on the
evolution will at some point cease to converge as the number of
timesteps is increased.

Discussion
The KQD approach presented here enriches the landscape of quantum
algorithms for ground state estimation on pre-fault-tolerant quantum
processors, filling the gap between VQE and QPE. A complementary
subspace algorithm called sample-based quantum diagonalization
(SQD), based on sampling and sophisticated classical post-processing
using a quantum-centric supercomputing (QCSC) architecture53, was
recently used to demonstrate quantum simulations of chemistry
beyond brute-force solutions. This QCSC method yields classically
verifiable energies anddoes not require approximating timeevolution,
which makes it tractable in the near term for Hamiltonians containing
large numbers of terms, such as molecular Hamiltonians. For con-
densed matter applications, KQD has provable convergence guaran-
tees given an initial reference state with inverse polynomial overlap,
and its circuits are feasible on pre-fault-tolerant processors as
demonstrated in this work.

To compare the scale of this work to prior experimental quan-
tum simulations of ground state energies, one can either compare
based on qubit count or based on used Hilbert space dimension.
Both are relevant because, for example, even though the subspace
for our single-particle experiment was only 56-dimensional, it
accrued the errors of a 57-qubit quantum circuit. Our largest sub-
space dimension was for the 5-particle experiment, whose subspace
dimension was 850668, between the dimensions of the full Hilbert
spaces of 19 and 20 qubits. We show the largest (to our knowledge)
prior experimental demonstrations of end-to-end quantum algo-
rithms for ground state energy simulation in Table 1, evaluated by
both of the above metrics. Note that we only include experiments
that implemented an entire algorithm, rather than, for example,
optimizing parameters of a VQE classically and then only estimating a
single energy on a quantum computer.

As Table 1 shows, our experiment exceeds prior works by more
than a factor of two in qubits and more than two orders of magnitude
in Hilbert space dimension, with the exception of ref. 53, which has a
strictly different domain of applicability as discussed in the previous
paragraph. One may also note that the accuracies achieved by these
experiments vary widely, but our focus was on achieving convergence
at scale asdiscussed above, and the increase in scale places ourwork in
a different regime from small-scale experiments (including some not
shown in Table 1) that have achieved higher accuracy. In other words,

this work represents a significant advance in the state of the art in
quantum simulation of ground-state energies.

Data availability
Data are available via54.

Code availability
Codes for reproducing the figures are available via54.
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