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Delivering equity in low-carbon multisector
infrastructure planning

Adil Ashraf 1, Mohammed Basheer 1,2,3, Jose M. Gonzalez 1,
Eduardo A. Martínez Ceseña4,5, Mikiyas Etichia 1, Emmanuel Obuobie 6,
Andrea Bottacin-Busolin 1,7, Jan Adamowski8, Mathaios Panteli 4,9 &
Julien J. Harou 1,10

Many countries worldwide are transitioning from fossil fuel-dependent
economies to carbon neutrality, driven by the 2030 agenda for sustainable
development and the Paris Agreement. However, without considering the
regional distribution of essential services like water and energy, this transition
could inadvertently maintain or increase inequities, threatening sustainable
development. Here, we argue that spatial equity of benefits should be con-
sidered in planning low-carbon energy transitions, especially in developing
countries with multisector interdependencies and high service disparities
between regions. We propose an analytical framework that can help analysts
and policymakers plan for regionally equitable climate-compatible futures.
The multisector design framework combines integrated river basin-power
system simulation with artificial intelligence design tools. The utility of the
framework is demonstrated for Ghana by identifying the most efficient infra-
structure intervention portfolios and their implied trade-offs between spatial
equity in water and energy service provision, carbon emissions, food pro-
duction, and river ecosystem performance. Case-study results show that an
equitable low-carbon energy transition will require increased investments in
renewable energy and transmission alongside more informed infrastructure
system planning. With low renewable investments, equity can be improved,
but at the cost of higher emissions and electricity supply curtailments.

Reducing socio-economic inequalities is integral to achieving the
Sustainable Development Goals (SDGs)1,2. For instance, SDG 10
aims to reduce inequalities within and among countries1, and other
goals stress equitable development globally1,2. However, more
than 70% of the global population is experiencing growing socio-
economic inequalities3, hindering progress towards sustainable

development. Nearly 650 million people in the world still live in
extreme poverty4, and around 30% of the global population is food
insecure5. Climate change, the COVID-19 pandemic, armed con-
flicts, and the rising cost of living disproportionately affect the
world’s most vulnerable people, who often have limited or no
access to essential services3,4,6.
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Several countries are transitioning from fossil fuel-driven econo-
mies to carbon neutrality to deliver on the SDGs1 and the Paris
Agreement7, intending to limit global mean temperature rise to 2
degrees Celsius above pre-industrial levels. However, meeting the
SDGs and mitigating climate change without considering broader
socio-economic implications of interventions could exacerbate
inequalities8. For instance, climate mitigation actions are expected to
yield long-term benefits across multiple SDGs9,10 but might have short-
term trade-offs with other goals, like poverty reduction and
inequality10,11. Inadequate planning for energy transitions could
increase inequalities12–17, for example in access to water and electricity.
Realising the SDGs is challenged by the complexity of involving mul-
tiple disciplines, sectors, and actors in decision-making18,19. Policy
decisions aimed at achieving individual SDGs could create trade-offs
with other SDGs9, and thus, policymakers should aim for an energy
transition that creates synergies and balances trade-offs between
societal goals20,21.

Increased access to affordable, reliable, and sustainable energy is
required to achieve the SDGs1,20,22. Electrification improves the quality
of life and enables human development through better-equipped
facilities for healthcare, education, and business17,22,23. However, over
700million people globally do not have access to electricity, of whom
more than 75% live in sub-Saharan Africa4,24. A renewables-based
energy transition can help increase access to affordable and clean
energy to meet the fast-growing energy demand and mitigate climate
change4,24–26. Most countries included renewable energy targets in
their Nationally Determined Contributions (NDCs)27–29. The renewable
share of electricity generation rose by almost 8% between 2011 and
2021, and reached an installed capacity of 3146 gigawatts (GW), which
accounts for 28% of the world’s energy generation27. However, recent
reports by the International Renewable Energy Agency (IRENA) and
REN21 suggest that the share of renewables in electricity generation
must increase tomore than60% to achieve energy and climate goalsby
203026,27.

Energy transitions can produce regional disparities in renewable
energy access and job creation in developed countries12–15,30. Strategic
regional planning can help avoid these inequalities while simulta-
neously reducing greenhouse gas emissions. Many developing coun-
tries (those eligible for Official Development Assistance under the
Development Assistance Committee (DAC) list of the Organisation for
Economic Co-operation and Development (OECD)31) currently have
high levels of disparities in (water and electricity) service provision.
Planning low-carbon energy transitions in developing countries offers
an opportunity to reduce these inequalities. The aspiration to consider
equity in energy transitions is reflected in the recovery packages for
recent global crises such as the COVID-19 pandemic, rising energy
costs, and inflation28,32. The African Union Green Recovery Action Plan
aims to build more equitable, greener, and sustainable economies33.
The USA Inflation Reduction Act34 includes a US$ (US dollars) 370
billion fund for renewable energy, climate crisis, and equity, and the
Build Back Better plan35,36 aims to invest US$ 2 trillion in green and
inclusive growth, including US$ 400 billion for clean energy and 40%
of investment benefits for communities that are marginalised and
underserved by infrastructure services37.

Energy systems are typically embedded within complex water-
energy-food-ecosystem (WEFE) systems, in which actions in one part
of the system impact the others. Jointly managing these resources
allows consideration of their cross-sectoral interdependencies,
trade-offs, and synergies, and subsequently, the development of
more sustainable infrastructure development pathways. So far,
research has assessed distributional equity in the context of indivi-
dual sectors. For instance, in the power sector, power systemmodels
have been used to assess the trade-offs between least-cost and
regionally equitable allocation of solar and wind power plants in
Germany15 and that of decentralised renewable energy sources in

Switzerland14. Others considered electrification inequality in plan-
ning national power systems in sub-Saharan Africa16,17. A few studies
evaluated inequality in access to water resources38–40. However,
despite frequently high levels of co-dependence between resource
systems, to our knowledge, equity has not been considered in
designing multisector infrastructure systems to reduce regional
benefit distribution inequities and carbon emissions while improving
overall system performance and alleviating inter-sectoral conflicts
across multiple resource systems.

In this paper, we argue for considering spatial equity of water and
energy services in planning low-carbonenergy transitions, especially in
developing countries with multisector linkages and service disparities
between regions. We propose an analytical framework that can help
analysts and policymakers plan national-scale equitable climate-
compatible futures. The framework combines interlinked water
resource and power systems simulators with artificial intelligence
design tools. We demonstrate the framework using a case study of
planning Ghana’s future water-energy system for 2030-2040, identi-
fying infrastructure intervention portfolios with efficient trade-offs
between spatial equity in water and energy service provision, carbon
emissions, food production, and river ecosystem performance.

Results
Equity as a policy goal in low-carbon multisector infrastructure
planning
Classically, energy infrastructure planning considers goals such as
minimising electricity supply curtailment, capital investment, and
carbon emissions41,42. Other approaches extend the goals to include
water resources and ecosystems, such as maximising hydropower
generation and minimising damage to river ecosystems43,44. While
such methods can design infrastructure plans that improve system
performance at an aggregate level, equity in the regional distribution
of water and energy services has not been considered to our
knowledge. In this paper, we build on a water resource and power
system simulation and design framework introduced by ref. 43 and
extend it to include spatial equity of water and energy services as
infrastructure planning goals. The resulting framework (Fig. 1) has
three components: (1) identifying low-carbon energy transition goals
for infrastructure planning with equity and carbon emissions as key
drivers, and selecting infrastructure assets and resource allocation
policies; (2) integrated water-energy system simulation coupled with
artificial intelligence-assisted multi-objective planning to design
equitable energy transition intervention portfolios; and (3) inclusive
screening and deliberation of the best set of plans assisted by
machine learning.

In the first component of the design framework, equity in regional
benefit distribution is added as a policy objective of infrastructure
planning, alongside other goals. We use the Gini index to quantify and
minimise water and electricity access inequities. The Gini index is
typically used to measure inequalities – ranging from zero (perfect
equality) to one (total inequality). Our application of the index is
designed to account for equity. For water supply, we apply the Gini
index to water supplied relative to demand. For electricity supply,
since some areas have lower electricity demand due to regional dis-
parities in economic development, if the ratio of supply to demand
were used, it would easily be satisfied. Instead, we apply the Gini index
to electricity supplied per capita. While this does not account for
inevitable variations in regional economic activities and lifestyles, it
makes themost of availablemodel outputs and allows incorporating a
spatial measure of energy service equity into the framework. Inter-
vention options that can be used to achieve the identified equity,
environmental, and system performance goals are also selected in the
first component of the framework. These interventions include infra-
structure assets and resource allocation policies. The selected inter-
ventions are used in the second component of the framework to
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generate a set of efficient multisector infrastructure and operation
portfolios using a simulation-based artificial intelligence search design
process.

In the second component of the framework, an integrated river
basin-power system simulator is used to represent spatial WEFE nexus
dynamics43. The river system is modelled using a water resource sys-
tem model45,46. The river system model represents water resources
infrastructure (e.g., dams) using a network structure driven by water
supplies (hydrological inflows) and demands (e.g., municipal and irri-
gation water requirements and hydropower) and system operating
rules. The power system is modelled using a direct current optimal
power flow model47. The power system model simulates network
connectivity, different power generation types including renewable
energy generators, and high time resolution electricity demand pro-
files. The integration of the simulators uses a multi-actor object-
oriented simulation framework48. This framework integrates the
simulators at themodel run timestep and coordinates their inputs and
outputs to form a single simulation. The integrated WEFE infra-
structure system simulator simulates managed rivers (with river
inflows, existing and planned water storage reservoirs, hydropower,
municipal water supply abstractions, irrigation, and flood recession
agriculture) and energy systems (solar power, combined solar and
storage, wind power, bioenergy, thermal power generators, electricity
transmission lines, and electricity demands). The multisector simu-
lator is connected to an artificial intelligence-assisted multi-objective
evolutionary algorithm (MOEA) to identify efficient intervention
portfolios43.

In the third component of the framework, machine learning
models, trained based on the search outputs (i.e., values of decision
variables and objectives), are combined with the Shapley additive
explanations (SHAP)49 to determine the influence of intervention
decisions on equity, environmental, and system performance indica-
tors. The SHAP analysis of intervention options helps stakeholders
explore how changing infrastructure and resource allocation policy
options influences intervention portfolios. Further details on the ana-
lytical framework are given in the Methods.

Equitable low-carbon energy transition in an African case
We use Ghana as a case study to demonstrate the importance of
considering the spatial equity of water and energy services in design-
ing equitable low-carbon futures. We use the framework above to
design efficient power system intervention portfolios, including bioe-
nergy, intermittent renewables (solar and wind), solar storage, and
transmission lines, using projected electricity demands for 2030-
2040. Figure 2 shows the regions of Ghana defined based on equally
sized population groups. These regions are used to quantify spatial
equity in water and energy access and to locate the energy infra-
structure expansion options currently listed in Ghana’s Power System
Master Plan50. The electricity mix of Ghana comes from hydro (47%),
gas (30%), and oil (23%)51. The installed capacity for existing hydro-
power is 1,580 megawatts (MW). The Pwalugu multi-purpose dam is
under construction and will add an electricity generation capacity of
59MW. The country’s total thermal power installed capacity is 4325
MW50. Ghana had an electricity access rate of around 85% in 202124.
However, some challenges still exist, including power outages52 (called
Dumsor in Ghana, which means “off and on”), low electricity access
rates in the Northeast and Northwest regions50, high electrical trans-
mission losses (approximately 20%50), and a high per capita energy-
related carbon emission rate comparedwith other sub-SaharanAfrican
countries51. The government of Ghana aims to increase renewables in
the power generationmix to 1363 MW53 and achieve a 45% decrease in
greenhouse gas emissions by 2030 compared to business-as-usual
levels54,55. Supplementary Fig. 1 shows Ghana’s national power system
transmission network and existing and planned water-energy infra-
structure. Supplementary Table 1 provides the type and number of
nodes in the Ghana multisector infrastructure system model.

The design formulation for Ghana includes minimising the elec-
tricity access Gini index, carbon emissions from generation, electricity
supply curtailment, irrigation water supply Gini index, power system
capital and operating costs, and maximising agriculture yields and
flood recession agriculture benefits (eight objectives). The multi-
objective search optimises 170 interventions (decisions variables),
including infrastructure expansion (solar, wind, combined solar and

Fig. 1 | Analytical framework for equitable low-carbon energy transitions in
multisector water-energy systems. The framework includes three components:
(1) identifying low-carbon energy transition goals for infrastructure planning with
equity and carbon emissions as key drivers, and selecting infrastructure assets and

resource allocation policies; (2) integrated water-energy system simulation cou-
pled with artificial intelligence-assisted multi-objective search for equitable energy
transition intervention portfolios; and (3) inclusive screening and deliberation of
the best set of plans assisted by machine learning.
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storage, bioenergy, and transmission lines), operating rules for Ako-
sombo, Bui, and Pwalugu reservoirs, and electricity and irrigation
water allocation policies.

Efficient and equitable low-carbon intervention portfolios
Figure 3a shows a parallel coordinates plot of the efficient infra-
structure and operation portfolios produced for Ghana using the
framework. Selected portfolios are indicated as thick coloured lines.
The “baseline” portfolio (black line) reflects the performance of the
infrastructure expansion proposed in the Ghana Power System
Master Plan50. The “baseline” has high values of Gini coefficients for
energy and irrigation water, carbon emissions, and load curtailment
compared to the selected portfolios except for the “low energy Gini
and high emissions” portfolio (magenta line). The selected portfolios
(intervention bundles) show varying trade-offs between perfor-
mance indicators. For instance, achieving low-carbon emissions (teal
line) requires large investments in renewables and transmission lines,
whereas less investment increases emissions (blue line). There is also
a trade-off between power load curtailment and capital investment
(teal and magenta lines). The “low energy Gini” portfolios (magenta
and brown lines) improve equity by 7% compared to the “baseline”
but alter emissions and curtailment depending on the level of
investment. A reduction of US$ 180 million in investment compared
to the “baseline” portfolio increases emissions by 7% (magenta line),
whereas an increase of US$ 3,000 million results in a 5% reduction in
emissions (brown line). Some Ghanaian regions have low use of
electricity (e.g., Northwest and Northeast), resulting in a low elec-
tricity Gini index limit of 0.473. The “low emissions” portfolio (teal

line) shows a 6% reduction in inequities in electricity access, a 25%
reduction in carbon emissions, and a 1% increase in agricultural yield
compared to the “baseline” while decreasing the load curtailment
and irrigation water supply Gini index to zero, with an increase of US
$ 7240 million investment in renewables and transmission lines.
Except for a 9% increase in carbon emissions, the “low curtailment”
portfolio (blue line) is comparable to the “low emissions” portfolio
(teal line), with an increase of US$ 5280 million in investment com-
pared to the “baseline”.

Figure 3b shows the distribution of infrastructure expansion (i.e.,
how much new intermittent renewables and solar storage, bioenergy,
and transmission lines) in the selected portfolios of Fig. 3a, c, d show
carbon emissions of thermal and bioenergy power plants of the Fig. 3a
portfolios. The “low emissions” and “low curtailment” portfolios
include major investments in renewables (Fig. 3b). These portfolios
improve system performance and decrease operating costs (by nearly
20%) compared to the “baseline”. The “low emissions” portfolio results
in a high capacity of new transmission lines, whereas transmission line
expansion is lower in the “baseline” and “low energy Gini” portfolios.
The renewables are lower in the “low energy Gini” portfolios.
Figure 3c, d show that thermal power plants are themajor contributors
to carbon emissions; the power system continues to partially rely on
them to meet the growing electricity demand.

Results show how changes in electricity access equity are impac-
ted by the spatial distribution of investments (i.e., prioritising under-
served regions and moving resources from more developed to least
developed regions to ensure equitable regional coverage of services -
Fig. 4) and indicate the need for large investments in renewables to
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Fig. 2 | Ghana’s power system investment options considered in the proposed
equity-informed design process. a–c Ghana’s power system infrastructure
expansion is considered in the design process. d The regions of Ghana are defined
based on equally sized populations (to quantify the electricity access Gini index).
The irrigation and municipal water supply Gini indices are calculated between the
northern (Northeast, Northwest, and Ashanti) and southern regions (Lower

Southeast, Upper Southeast, and Southwest) due to the limited spatial data of
nodes of irrigation and municipal water demands. The bar and segment colours in
(a) and (b) correspond to the regions with the same colours in (d). GW stands for
gigawatts. The map in (d) is based on data from Ghana Statistical Services (GSS).
Source data are provided as a Source Data file via Zenodo at https://doi.org/10.
5281/zenodo.14851474 (ref. 81).
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shift to a low-carbon future (the “low emissions” and “low curtailment”
portfolios - Figs. 3 and 4). Figure 4 presents the infrastructure expan-
sion by region of the selected portfolios from Fig. 3a. This figure shows
how more informed infrastructure planning reduces inequities in

electricity access (i.e., adding new generation and transmission capa-
city and changing electricity allocation priorities in regions with high
existing disparities - the Northeast and Northwest regions) while
maintaining the same level of emissions and investment cost (e.g., the

Fig. 3 | Trade-offs between equity, river basin and power system performance
indicators. a Parallel coordinates plot of the baseline and best-performing (Pareto-
efficient) infrastructure and operation portfolios, b Aggregate portfolios of infra-
structure expansion, and c,dCarbon emissions from thermal and bioenergy power
plants. Each line in (a) depicts the performance achieved by one of the Pareto-
efficient portfolios (except the “baseline”); thick coloured lines highlight selected
distinctive portfolios. The upward direction on each axis in (a) is desirable and a

straight line across the topwould present an ideal plan; diagonal lines betweenaxes
indicate trade-offs, whereas horizontal lines represent synergies. The circle and bar
colours in (b) and (c, d) correspond to the lines with the same colours in (a). Mt
stands for million tonnes, kt stands for kilotonnes, US$mln stands for US dollar
millions, vRES stands for variable renewable energy sources, GW stands for giga-
watts. Source data are provided as a Source Data file via Zenodo at https://doi.org/
10.5281/zenodo.14851474 (ref. 81).
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“low energy Gini and low emissions” and “low irrigation water Gini and
high yield” portfolios - see Figs. 3a and 4). Results also show more
infrastructure expansion in the Northwest and Northeast regions
across the selected portfolios, with higher intra-regional transmission

line expansion than cross-regional transmission line expansion (Fig. 4
and Supplementary Fig. 2). Increased investments in renewables and
transmission lines, hydropower reservoir re-operation, and better
spatial planning could increase equity in the regional distribution of

b Low energy use Gini
and low emissions

c Low energy use Gini
and high emissions

e Low curtailment f Low irrigation water
use Gini and high yield

h Low energy use Gini
and low emissions

i Low energy use Gini
and high emissions

k Low curtailment l Low irrigation water
use Gini and high yield

a Baseline

d Low emissions

g Baseline

j Low emissions

Fig. 4 | Infrastructure expansion distribution by region. The top set of figures
(a–f) show the regional distribution of renewables, and the bottom set of figures
(g–l) show the regional distribution of transmission line expansion of portfolios
selected in the Pareto-efficient portfolios (highlighted coloured lines of Fig. 3a).
Solar, wind, solar storage, and bioenergy expansion are higher andmore diverse in
the “low emissions”, “low energy Gini and low emissions”, and “low curtailment”
portfolios, and lower in the “lowenergyGini and highemissions” and “low irrigation
water Gini and high yield” portfolios. The figure also shows that there is more

infrastructure expansion in the Northwest and Northeast regions across the
selected portfolios and that the intra-regional transmission line expansion (sum of
first six coloured bars in (g–l)) is higher than cross-regional transmission line
expansion (sum of last six coloured bars in (g–l)), see Supplementary Fig. 2 and
Fig. 3b for the aggregated portfolios of infrastructure expansion. GW stands for
gigawatts. Source data are provided as a Source Data file via Zenodo at https://doi.
org/10.5281/zenodo.14851474 (ref. 81).
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(water and energy) services and reduce carbon emissions while
improving agricultural performance and meeting future energy ser-
vice targets (the “low emissions” and “low curtailment” portfolios -
Figs. 3 and 4). With low renewable investments, equity can also be
improved, but at the cost of higher emissions and load curtailments
(the “low energy Gini” portfolios - Figs. 3 and 4).

Influence of intervention decisions on equity and water-energy
system performance
The investment and resource allocation priority options show varying
degrees of influence on performance indicators (Fig. 5). Some inter-
vention options are effective at bolstering specific performance indi-
cators, whereasothers impactmultiple indicators (Fig. 5a–g). Themost
effective option for equity in electricity access and load curtailment is
investing in bioenergy plants in the Northeast and Northwest regions
of Ghana (Fig. 5a, c). In contrast, equity in irrigation water supply and
agricultural yield are influenced themost by irrigation water allocation
priorities (Fig. 5d, e). Results show the most effective choices for
improving multiple performance indicators are changing the capa-
cities of bioenergy generation plants in the Northwest and Northeast

regions and investing in the Southwest’s solar power and bioenergy
and Southeast’s wind power (Fig. 5h).

Discussion
Considering regional benefit distribution equity in multisector infra-
structure planning can help guide a country toward a more equitable
transition from fossil fuels to lower-emission energy sources while
reducing inter-sectoral conflicts across multi-resource systems. A
more equitable energy transition will accelerate transformational SDG
co-benefits20 and help reach the Paris Agreement7. This paper presents
a WEFE artificial intelligence-assisted analytical framework that iden-
tifies trade-offs and synergies of multi-dimensionally efficient
and more equitable low-carbon water-energy infrastructure and
operation portfolios. The framework can help stakeholders identify
infrastructure investments and resource allocation policies and eval-
uate the importance ranking and positive and negative influence of
different interventions in achieving energy transition policy goals.
Through iterative stakeholder deliberation processes, newormodified
intervention options can be set and used to revise intervention port-
folios to ensure they appropriately reflect stakeholder aspirations.

Fig. 5 | Rankings of investment and resource allocation priority options based
on their relative influence on low-carbon energy transition goals. a–g The five
most influential intervention decisions for equity and other water-energy system
performance indicators. The x-axes show Shapley values; the y-axes show decision
variables. Colour coding indicates the low (blue) to high (red) variable values. The
thickness along each decision variable row represents data point density. Shapley
values are based on the Shapley additive explanations (SHAP) of machine learning

models. The positive and negative Shapley values refer to positive and negative
correlations between intervention decisions and energy transition goals. h The
total relative influence of the top ten intervention options on river basin-power
system performance. The total relative influence value in (h) is the mean of the
Shapley values for the performance indicators in (a–g). Source data are provided as
a Source Data file via Zenodo at https://doi.org/10.5281/zenodo.14851474 (ref. 81).
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Our approach aims to lower national emissions in Ghana through
a balanced energy infrastructure system expansion programme
(bioenergy, solar, wind, solar storage, and transmission lines), and
reservoir re-operation (of Akosombo,Bui, and Pwalugu dams). Ghana’s
resulting efficient and equitable low-carbon intervention strategies
show how considering equity in energy transitions allows reducing
both regional service disparities and energy-related greenhouse gas
emissions. We show how the spatial distribution of investments drives
electricity access equity and that increased investments in renewables
and transmission lines, hydropower re-operation, and better spatial
planning enhance equity and reduce carbon emissions while improv-
ing foodproduction andmeeting future energy service goals.With low
renewable investments, equity can also be improved, but at the cost of
higher emissions and load curtailments. Ghana’s power system con-
tinues to partially rely on thermal power plants to meet the growing
electricity demand despite the expansion of renewable technologies,
resulting in relatively high thermal-based carbon emissions. However,
adding bioenergy generation (and transmission lines) helps displace
thermal power and decreases emissions while increasing equity in
service provision in the Ghanaian case. Bioenergy, which uses agri-
cultural crop and forestry residues andmunicipalwaste as an input50, is
recognised as Ghana’s leading spatially distributed and dispatchable
renewable generation technology. Crop residues alone in Ghana have
an estimatedbioenergypotential of 75 terajoules (TJ)50,56. Other studies
have also highlighted the potential of crop residues for bioenergy in
Ghana57–59. However, increasing bioenergy could compete with food
production for land resources if only relying on energy crops for
bioenergy60,61. Bioenergy production, therefore, could be regulated to
prevent a negative impact on food security.

The proposedWEFE infrastructure design approach help analysts
and policymakers plan for equitable low-carbon futures. The proposed
approach considers the spatial equity of water and energy services
alongside emission reduction and other aggregated national infra-
structure planning goals to identify efficient, equitable, climate-
compatible intervention portfolios for multisector WEFE systems.
Pareto-optimal portfolios (Figs. 3 and 4 for Ghana) help identify
infrastructure interventions that reduce service inequities and emis-
sions and improve sectoral complementarities. Stakeholders can
deliberate the pros and cons of a large set of efficient intervention
options to help find a compromise portfolio that manages trade-offs
and leverages synergies across multiple competing interests. The
machine learning technique helps stakeholders understand how dif-
ferent interventions drive equity, emission, and other system perfor-
mance targets, as shown for Ghana (Fig. 5). This allows choosing
portfolios or revising intervention choices and repeating the process if
no consensus can be attained. The proposed approach could be
adapted for other countries planning an equitable transition to lower-
emission energy sources, especially those with service inequities and
interdependent WEFE challenges.

This study didnot consider the potential effects of climate change
and uncertainties with future projections in the equity-informed
planning of WEFE systems. Climate change could impact energy gen-
eration, the demand for water and energy, and water resources man-
agement. These changes and future uncertainties could have
repercussions on the equity of providing water and energy services
and inter-sectoral conflicts among multiple resource systems.
Addressing these limitations in future research would help identify
robust infrastructure strategies for adapting to climate change.

In this paper, we argue for considering equity in shaping future
multisector resource systems to reduce service inequities and emis-
sions and better balance regional sectoral benefits. The approach can
support countries in phasing out fossil-fuel electricity sources and the
transition to carbon neutrality fairly and transparently. As such, it is a
relevant approach for developing countries seeking to transition
towards lower carbon emissions while at the same time improving

services. Realising anequitable low-carbon future requires considering
multiple sectors, their interactions, and the equity implications of
adopting different investment and policy intervention packages.
Adding equity considerations alongside goals like climate mitigation
could help achieve the 2030 agenda for sustainable development and
the Paris Agreement.

Methods
River system simulator
The river system is modelled using Python Water Resources (Pywr)45.
Pywr is an open-source Python repository that simulates resource
system networks. It allows representing water resources infrastructure
using a network structure driven by water supplies and demands and
system operating rules. Pywr uses a linear programme to solve water
allocations at every simulation time step (weekly in this study) by
minimising allocation penalties subject to constraints imposed by
operating rules. The Ghana river system model includes existing and
planned infrastructure in Ghana. More details on the model can be
obtained in the previous publications on the model43,46.

Power system simulator
The power system model uses a direct current optimal power flow
linear programme47 tominimisepower systemcosts at each simulation
timestep (i.e., hourly) subject to equality constraints (power balanceat
each node) and inequality constraints (power generation and line
limits). The power system model is an interconnected network of dif-
ferent energy sources, transmission lines, substations, distribution
networks, and electricity demand locations. Energy generators can be
represented as nodes in the network, each with their defined con-
straints, such as maximum power capacity and associated costs. The
Ghana power systemmodel simulates the existing and planned hydro,
solar, combined solar and storage, wind, bioenergy, and thermal
generators50. Electricity demand projections, generating resources,
capital and operating costs of power plants and transmission lines, and
hourly profiles of renewables were taken from Ghana’s Power System
Master Plan50. Hourly electricity demand profiles and transmission
data were collected from the Ghanaian national grid operator, the
Ghana Grid Company. The long-term annual peak load projections for
2030-2040 from the Ghana Power System Master Plan50 were used to
scale the hourly load profile of 2018 to consider the projected growth
in the electricity demand in the country (a twofold increase in the peak
demand by 2030 compared to 2018). Capital costs consist of engi-
neering, procurement, construction, start-up, and owner costs (for
items like land, cooling infrastructure, administration and associated
building, site works, project management, and licenses)50. The oper-
ating costs of variable renewables (solar andwind) and combined solar
and storage are lower than the costs of hydropower, bioenergy, and
thermal power plants50. The operating costs of thermal generators also
differ depending on the technology and fuel types. Hourly power
system simulations help capture the variability of intermittent
renewables (solar and wind) and energy demand, as well as improve
the use of hydropower based on the changing availability of renew-
ables and other energy sources. The power system model dispatches
the system’s generators based on cost-merit prioritisation where solar,
wind, combined solar and storage generators are dispatched first, then
hydropower, bioenergy, and lastly, thermal generators. This balances
energy production to align with variable energy demand and shares of
different energy technologies.

Integrated river basin-power system simulator
The river and power systems simulators are linked to represent mul-
tisector nexus dynamics43. The integration of the simulators uses a
multi-actor object-oriented Python Network Simulation framework
(Pynsim)48. The simulators run sequentially with feedback across the
simulators (at hydropower generation nodes). The river system
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simulator runs its first simulation time step and generates the weekly
average hydropower, which is then passed to the power system
simulator by Pynsim as a constraint on the maximum power genera-
tion capacity for that week. The power system simulator runs for the
same week at an hourly simulation time step, constrained by the
information provided by the river system simulator. This process is
repeated time step by time step until the simulation is completed. The
integrated simulation model runs for a period of 10 years, from 2030
to 2040.

Simulation linked with artificial intelligence design tools
The multisector simulator is connected to an artificial intelligence-
assisted multi-objective search algorithm (MOEA) to search for effi-
cient infrastructure intervention portfolios43. MOEAs seek the
approximately Pareto-optimal solutions to multi-objective optimisa-
tion problems by mimicking the natural biological evolution
process62,63. Supplementary Fig. 3 shows the interaction between the
integrated river and power system simulators and the MOEA. The
MOEA generates an infrastructure intervention portfolio (i.e., a set of
decision variables) and passes it to the integrated water-energy simu-
lator. The integrated simulation model then performs a multi-year
simulation to evaluate performance indicators (e.g., regarding energy
transition goals) that are used as objectives to be minimised or max-
imised in the search process. The portfolio and values of the objectives
are then stored before the next iteration, when the algorithm gen-
erates a new set of variables (a newportfolio) for the simulationmodel.
The search algorithm learns at each iteration from the multi-objective
performance of the previous iteration. The iteration between the
search algorithm and the integrated simulation model continues until
a stopping criterion is met. We allow up to 1.5 million iterations in this
design process. Once the stopping criterion is met, a non-dominated
sorting process is performed to find a set of best-performing (i.e.,
Pareto-optimal) intervention portfolios. Pareto-optimal solutions are
efficient because they provide the best-achievable compromise among
multiple performance objectives that coexist in multi-objective pro-
blems. These solutions are non-dominated, indicating no other solu-
tions can outperform or equal them in all objectives at the same time.
Stakeholders can consider these optimised solutions to find a com-
promise that efficiently balances trade-offs amongmultiple competing
interests and leverages synergies. After the search, we used a machine
learningmethod (details providedbelow) to assess the effectiveness of
interventions in achieving performance objectives. Machine learning
and interactive data visualisation tools help stakeholders understand,
evaluate, and choose a preferred portfolio or iteratively revise the
intervention options and repeat the process to obtain alternative,
potentially better, intervention portfolios.

We used the Borg MOEA62,63 to perform the WEFE multi-objective
optimisation. Borg can tackle complex nonlinear and nonconcave
optimisation problems63,64. It integrates various elements from differ-
ent MOEAs and introduces several new features. It uses ϵ-dominance
archives and ϵ-progress to maintain a diverse set of Pareto-optimal
solutions and monitor convergence speed62,63. It employs randomised
restarts when convergence slows to revive search through self-
adaptive population sizing (of solutions) and dynamically adapts the
use of different recombination operators62,63 to generate new candi-
date solutions. The evolution process in Borg involves evolving a
population of candidate solutions over generations of iterative selec-
tion, crossover, and mutation operations. The selection step uses the
“survival of the fittest” principle and chooses the best population of
solutions based on their performance across the optimisation objec-
tives. The crossover step then combines the characteristics of the
selected solutions (“parents”) to produce new solutions (“children”) by
imitating the natural reproduction process. Random mutations are
then added to the children to improve variability and adaptability in
the newpopulation of solutions. Thesenewly candidate individuals are

then evaluated, and the process continues iteratively, as explained
above and in Supplementary Fig. 3.

The convergence of the multi-objective search to the approxi-
mately Pareto-optimal solutions was determined by tracking the evo-
lution of the hypervolume65 for each of four random seeds. Each
random seed uses a different starting point for the MOEA search
process. The hypervolumemeasures the volumeof the objective space
above the non-dominated approximation set. Supplementary Fig. 4
shows that the hypervolume stabilises before the stopping criterion of
1.5million iterations for all four seeds, thereby indicating convergence.

The design formulation for Ghana includes eight objectives:
minimising the electricity access Gini index (Eq. (1)), minimising the
carbon emissions from generation (Eq. (2)), minimising the power
system load curtailment (Eq. (3)), minimising the irrigation water
supply Gini index (Eq. (4)), maximising the agriculture yields (Eqs.
(5–8)), minimising the power system capital costs (Eq. (9)), minimising
the power system operating costs (Eq. (10)), and maximising the flood
recession agriculture benefits (Eqs. (11–13)). Themulti-objective search
optimises 170 interventions (decisions variables), including the vector
of the power system infrastructure expansion, including solar, wind,
combined solar and storage, and bioenergy (biomass and biogas)
generators, and transmission lines, the vector of operating rules
parameters (Eq. (14)) for Akosombo, Bui, and Pwalugu reservoirs, and
the vector of the electricity and irrigation water allocation priority
parameters.

Ginielectricity =
1
T

X
t

P
iϵRP

P
jϵRP LS=capi, t � LS=capj, t

���
���

2 ×n2 × LS=cap
ð1Þ

where, Ginielectricity is the mean electricity access Gini index of a
country, RP is a set of regions of equal population in a country, LS/capi
is the load supply per capita of region i, LS/capj is the load supply per
capita of region j, LS=cap is themean load supply per capita of regions
of equal population in a country, n is the number of regions of equal
population in a country, t is the simulation time step, and T is the
number of simulation years. We calculate the average index value by
dividing the sumof the values aggregated in every simulation year and
the number of simulation years.

Emissions =
1
T

X
t

Pt, i ×
X
i

ecco2
i ð2Þ

where, Pt, i is the generation from the power system model of the
generator plant i, ecco2

i is the CO2 emission coefficient of the generator
plant i, t is the simulation time step, and T is the number of simulation
years.

LC =
1
T

X
t

X
n

LCt,n ð3Þ

where, LC is the average power system load curtailment, LCt,n is the
load curtailment calculated at every simulation time step t after per-
forming the balance at each bus n, and T is the number of simulation
years.

Giniiws =
1
T

X
t

P
iϵRP

P
jϵRP CRi, t � CRj, t

���
���

2 ×n2 ×CR
ð4Þ

where, Giniiws is the mean irrigation water supply Gini index of a
country, RP is a set of regions of equal population in a country, CRi is
the irrigation water supply curtailment ratio of region i, CRj is the
irrigation water supply curtailment ratio of region j, CR is the mean
irrigationwater supply curtailment ratio of regions of equalpopulation

Article https://doi.org/10.1038/s41467-025-59738-7

Nature Communications |         (2025) 16:5320 9

www.nature.com/naturecommunications


in a country, n is the number of regions of equal population in a
country, t is the simulation time step, and T is the number of simula-
tion years. We calculate the average index value by dividing the sumof
the values aggregated in every simulation year and the number of
simulation years.

Y =
1
T

X
t

X
n

CRt,n × An × yn
� �

ð5Þ

CRt,n = rt,n=iwrt,n ð6Þ

iwrt,n =
X
ct2n

cwrt, ðct2nÞ=ðαct ×βctÞ ð7Þ

cwrt, ðct2nÞ = max 0, Kct, ct2nð Þ × ETot, ct2nð Þ � Rt,n

� �
×A ct2nð Þ

� �
ð8Þ

where, Y is the total irrigation yield in tonnes per year estimated using
the Food and Agriculture Organization (FAO) Crop Water Require-
ments method66, CRt,n is the irrigation water supply curtailment ratio,
An is the area in hectare (ha) per irrigation scheme n, yn is the annual
yield in tonnes per ha per irrigation scheme n, t is the simulation time
step, T is the number of simulation years, rt,n is the crop water allo-
cated by the model, iwrt,n is the irrigation water requirement for irri-
gation scheme n, cwrt,n is the crop water requirement per irrigation
scheme n, αct is the application efficiency (assumed 80%), βct is con-
veyance efficiency (assumed 70%), and Kct, ct2nð Þ, ETot, ct2nð Þ, and Rt,n

are crop water coefficients, reference evapotranspiration inmillimetre
(mm) per day, and effective rainfall in mm per day obtained
from ref. 67.

R, Kc, and ETo are used in the FAOmethod66 to calculate thewater
requirement for each crop. ETo is the evapotranspiration of a stan-
dardised reference crop, while Kc is the factor to change ETo for
specific crop water requirements. R is compared with the amount of
water a crop needs (Kc × ETo) to determine whether irrigation is
required for that crop. Crops that are considered vary for each irri-
gation scheme and include rice, maize, sugar cane, beans, tomatoes,
and fresh vegetables. The total irrigation water requirement for each
irrigation scheme is calculated by assuming the overall irrigation effi-
ciency for surface irrigation. The level of irrigation water supply
compared to the water required is then used to estimate the total
irrigation yield.

CAPEX=
X
i

cci × capi ð9Þ

where, cci is the technology capital cost, and capi is the new infra-
structure capacity.

OPEX=
1
T

X
t

X
i

oci × Pt, i ð10Þ

where, oci is theoperating cost of the generator technology i,Pt, i is the
power output from the generator technology i, t is the simulation time
step, and T is the number of simulation years.

FRA=
X
n

βFRA × Yn ð11Þ

Yn =A
f
nq

FRA
n f FRACy ð12Þ

qFRA
n =mean½max qAugt,n , q

Sep
t,n

� �
� ð13Þ

where, FRA is the flood recession agriculture benefits in US$ depend-
ing on the flooding of the floodplain during the rainy peak period (July
to September for northern Ghana), βFRA is the average crop market
price at US$ 1222 per tonne68, Yn is the total FRA yield in tonnes per
year, Af

n is the flooded area in ha, qFRAn is the average flow in August or
September in themodel simulation time, f FRA is the suitability factor69,
Cy is the crop yield in tonnes per ha assuming a typical crop mix of
beans, maize, soya, bambara beans, millet, and groundnuts70, and qt,n
is the average flow in August and September.

We used Gaussian radial basis functions (RBFs) tomodel reservoir
operating rules. The use of RBFs in representing infrastructure oper-
ating rules, including reservoir storage and release decisions, have
shown good performance71–73. The Gaussian RBF (φ) is defined by Eq.
(14).

φ xð Þ=
Xn

i= 1

wi × exp �
Xm

j = 1

xj � ci, j
� �2

b2
i, j

2
64

3
75 ð14Þ

where, m is the number of input variables x (reservoir storage and
time), n is the number of RBFs (four), wi is the weight of the ith RBF,
and ci,j and bi,j are them-dimensional centres and radius vectors of the
ith RBF, respectively. The centres and radius take values in ci,jϵ[−1,1]
and bi,jϵ[0, 1], and wiϵ 0, 1½ � with

Pn
i= 1 wi = 1. More details can be found

in the ref. 71. The time of year and storage in the reservoir are mapped
to the release rule at each time step of the simulation period. This
allows to dynamic adaptation of releases based on changing reservoir
volumes. The multi-objective search process (MOEA) optimises the
monthly storage volumes and releases (24 decision variables) for each
reservoir to determine the most efficient (Pareto-optimal) operating
rules. The MOEA iteratively optimises the release rules alongside
infrastructure expansion, such as solar, wind, combined solar and
storage, bioenergy, and transmission lines, and energy and water
allocation priorities. Hydropower reservoirs can provide flexibility and
stability for power grids, and their improved operations can support
the transition to clean energy43,74–76. The MOEA explores a range of
different infrastructure interventions while also adjusting reservoir
release decisions to find the best-achievable compromise among
equity, emissions, and other water-energy system performance
objectives. This way MOEA solutions adapt to the changing shares of
different energy technologies and allocate resources to improve
overall system performance (see Supplementary Fig. 3 for a descrip-
tion of the interaction between the integrated system model and the
MOEA search).

We used the RandomForest Regressionmachine learningmodel77

from the Scikit-learn Python library78 and the SHAP49,79,80 to determine
the influence of intervention decisions on equity and other water-
energy system performance indicators. The MOEA typically yields a
large set (up to thousands) of optimal solutions for large problems like
the Ghana case study. While common patterns can potentially be
identified from directly exploring Pareto-optimal solutions or via
cluster analysis, the SHAP analysis of tree-based machine learning
models49,79 helps explain the relationships between intervention deci-
sions and the MOEA performance measures. It provides the impor-
tance ranking of different interventions and also the direction and
magnitude of their influence in achieving performance objectives. The
outcomes of the MOEA are used to train a Random Forest model for
each performance objective. The features of each Random Forest
model are the decision variables representing different investment
and resource allocation priority options, and the target is each of the
optimisation objectives. We divide the data into the training set (80%
of the data) and the testing set (20%of the data). The training dataset is
used to train 100 tree estimators, and the testing dataset is used to test
the performance of the Random Forest models. We also test the per-
formance of each model for different maximum tree depths ranging
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from 1 to 70 to select the best-fit tree depth for each model to avoid
overfitting or underfitting models. Supplementary Fig. 5 depicts the
performance of the machine learning models for the training and
testing sets with different maximum tree depths and the selected
maximum tree depth for each model.

Data availability
The data for the river system model can be made available upon pre-
sentation of the necessary permission from the Ghana Council for
Scientific and Industrial Research - Water Research Institute that owns
the data. The data for the power system model are free to access and
can be found through the link: https://energycom.gov.gh/planning/
ipsmp/ipsmp-2018/gh-ipm-v1-2018-assumptions-model-results.
Source data for the figures are available via Zenodo at https://doi.org/
10.5281/zenodo.14851474 (ref. 81).

Code availability
The Pywr library used to develop the river system model is open-
source and freely available at: https://github.com/pywr/pywr. The
Pyenr library used to develop the power systemmodel is open-source
and freely available at: https://github.com/pywr/pyenr. The Pynsim
library is open-source and freely available at: https://github.com/
UMWRG/pynsim. The Random Forest Regression model is open-
source and freely available at: https://github.com/scikit-learn/scikit-
learn. The SHAP python package is open-source and freely available at:
https://github.com/shap/shap. The FastTreeSHAP python package is a
fast implementation of SHAP for tree-based models. The FastTree-
SHAP python package is open-source and freely available at: https://
github.com/linkedin/FastTreeSHAP.
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