
Article https://doi.org/10.1038/s41467-025-59839-3

Deep MALDI-MS spatial omics guided by
quantum cascade lasermid-infrared imaging
microscopy

Lars Gruber 1,2,9, Stefan Schmidt 1,9, Thomas Enzlein 1, Huong Giang Vo 3,
Tobias Bausbacher 1,4, James Lucas Cairns 1,2, Yasemin Ucal1, Florian Keller1,
Martina Kerndl5,6, Denis Abu Sammour 1, Omar Sharif 5,7,
Gernot Schabbauer 5,6, Rüdiger Rudolf 1,4, Matthias Eckhardt 8,
Stefania Alexandra Iakab 1, Laura Bindila 3 & Carsten Hopf 1,2,4

In spatial’omics, highly confident molecular identifications are indispensable
for the investigation of complex biology and for spatial biomarker discovery.
However, current mass spectrometry imaging (MSI)-based spatial ‘omics must
compromise between data acquisition speed and biochemical profiling depth.
Here, we introduce fast, label-free quantum cascade laser mid-infrared ima-
ging microscopy (QCL-MIR imaging) to guide MSI to high-interest tissue
regions as small as kidney glomeruli, cultured multicellular spheroid cores or
single motor neurons. Focusing on smaller tissue areas enables extensive
spatial lipid identifications by on-tissue tandem-MS employing imaging par-
allel reaction monitoring-Parallel Accumulation-Serial Fragmentation (iprm-
PASEF). QCL-MIR imaging-guided MSI allowed for unequivocal on-tissue elu-
cidation of 157 sulfatides selectively accumulating in kidneys of arylsulfatase
A-deficient mice used as ground truth concept and provided chemical ratio-
nales for improvements to ion mobility prediction algorithms. Using this
workflow, we characterized sclerotic spinal cord lesions in mice with experi-
mental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis,
and identified upregulation of inflammation-related ceramide-1-phosphate
and ceramide phosphatidylethanolamine as markers of white matter lipid
remodeling. Taken together, widely applicable and fast QCL-MIR imaging-
based guidance of MSI ensures that more time is available for exploration and
validation of new biology by default on-tissue tandem-MS analysis.

Matrix-assisted laser desorption/ionization (MALDI) mass spectro-
metry imaging (MSI) is a fundamental label-free technology in spatial
biology. It enables spatially resolved visualization, investigation and
probabilistic mapping of lipids, metabolites, peptides, drugs or
N-glycans in tissue sections in biomedical science as well as in clinical
and pharmaceutical research1–4. Integration of whole tissue datasets
sequentially acquired from the same or adjacent tissue sections byMSI

and orthogonal technologies such as (mid-)infrared (MIR) imaging,
Raman imaging or spatial transcriptomics, often referred to as corre-
lative spatial multi-omics5–7, have opened up new avenues for scientific
inquiry. Recent high-endMSI platforms, such as Fourier TransformMS
(FTMS) or trapped ion mobility spectrometry (TIMS) MSI, offer
superior speed, sensitivity, spatial resolution, or molecular
specificity8,9. However, the four criteria in this 4S-paradigm of MSI
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performance are currentlymutually exclusive, and veryhighmolecular
specificity and sensitivity can only be obtained by in-depth spatial
chemical analysis at lower speed and at reduced image resolution, i.e.,
large pixel sizes10. Therefore, in practice, mostMALDI-MSI studies with
high-performance instruments today appear to use slow FTMS ima-
ging or timsTOF-MSI in TIMS-off/qTOFmode without using collisional
cross section (CCS) information. Because of time constraints and
despite the lack of HPLC separation in MSI, analytical capabilities for
spatially resolved accuratemass determination (in FTMS imaging), on-
tissue fragmentation analysis, and ion mobility separation of isobaric
compounds (both in TIMS-MSI) are often not used. Without this multi-
dimensional information, lipids/metabolites cannot be considered
confidently identified.

To overcome instrument limitations, “smart” data processing and
“smart” sampling methods (reviewed in ref. 11) such as histology- or
MIR imaging-guided MSI have been suggested12,13. In the latter case, a
non-destructive, label-free and fast “guiding” imaging modality
determines the composition of tissue specimens by mid-infrared
vibrational spectroscopy. It captures collective molecular information
as a rough molecular sketch, i.e., relative lipid-, nucleic acid-, carbo-
hydrate- and protein content, and allows for computational segmen-
tation of the imaging data. This enables effective MIR-based definition
of regions of interest (ROIs), e.g., the cerebellargranular layer inmouse
brain12. ROI information is then transferred to the slower imagingmass
spectrometer for focused MSI analysis of well-defined, often small
tissue areas. This saves time and data volume, which could, in princi-
ple, be spent for advanced chemical bioanalysis with LC-MS-like ana-
lytical depth, i.e., with ultra-high resolving power provided by FTMS
and/or by default use of TIMS inMALDI-MSI studies. Here, advances of
recently described prototypical on-tissue parallel reactionmonitoring-
parallel accumulationand serial fragmentation (prm-PASEF) in LDI-MSI
of tattoo pigments14 and spatial ion mobility-scheduled exhaustive
fragmentation (SIMSEF), a data-dependent acquisition technology that
provides TIMS-MS imaging datasets with MS2 spectra15 may pave the
way for ROI-focused in-depth spatial lipidomics with routine on-
tissue MS2.

However, MIR imaging-guided MSI has remained a mere concept
so far, as available Fourier transform (FT-IR) imaging instruments are
not fast enough for spatially focused tissue analysis at cellular reso-
lution. In contrast, quantum cascade laser (QCL)-based MIR imaging
microscopes feature a tunable coherent light source with high power-
density for high sensitivity and higher sample throughput in biological
systems16–20, thus enablingmultiple new technologies and applications
in MIR imaging utilizing vibrational probes19,21, large scale plasmonic
metasurfaces22 or MIR-based whole slide scanning18. QCL-based MIR
microscopes permit the selective acquisition of MIR data for user-
defined single wavenumbers or full hyperspectral data. However,
validated methods and dedicated computational tools for
information-rich and high-throughput QCL-MIR imaging-guided MSI
are lacking7,17,23–25.

In addition to these challenges, method development and valida-
tion in MSI have generally been hampered by the lack of reliable ana-
lytical ground truths for segmentation and molecular identities26,27, as
the spatial and molecular composition of investigated tissues is typi-
cally unknown. To this end, synthetic datasets2, expert crowdsourcing26,
single-cell fluorescence28, or histopathology annotations29 have been
proposed as ground truths. To address this key challenge in MSI
method development and validation, we propose that genetic mouse
models with defined alterations in metabolism can be used as a quali-
tative ground truth. Leveraging QCL-MIR imaging-guided MSI work-
flows, we demonstrate this concept using arylsulfatase A-deficient
(ARSA−/−) mice, a model of human metachromatic leukodystrophy
(MLD). In thesemice, sulfatides, a family of sulfated glycosphingolipids,
selectively accumulate in kidneys and other organs30–32. Because of this
well-understood biology of ARSA−/− mice, we could use renal

sulfatides, whose masses, chemical sum formulae and structures (but
not their quantities) are known, as qualitative ground truth for statis-
tical evaluation of QCL-MIR imaging-guided MSI methods, for method
validation and for benchmarking against 4D LC-TIMS-MS sulfatide
lipidomics, against previous sulfatideMSI studies and against CCS value
prediction models30,32–45.

In this work, we develop QCL-MIR imaging-guided MSI workflows
and computational tools for spatially resolved deep lipidomics profil-
ing andmake them and extensive spatial lipidomics data available as a
community resource. This concept enables QCL-MIR imaging-guided
spatially resolved on-tissue MS2 of lipids by iprm-PASEF using ion
mobilograms that we optimize for best resolution for precursor ion
selection. To demonstrate how the QCL-MIR imaging-guided MSI with
iprm-PASEFworkflow can support the investigation of newbiology, we
systematically characterize lipids that are upregulated in white matter
lesions in spinal cords of mice suffering from experimental auto-
immune encephalomyelitis (EAE), a clinically relevant model of human
multiple sclerosis46–48.

Results
Quantum cascade laser-basedmid-infrared imagingmicroscopy
to guide spatially focused data acquisition in MALDI imaging
Disentangling the molecular complexity of biological specimens by
high performance liquid chromatography (HPLC) separation and
thorough structural elucidation by MS2 fragmentation analysis have
been the hallmarks of LC-MS-based lipid/metabolite analysis for dec-
ades. However, such LC-MS-like analytical depth, sensitivity and con-
fidence of identification is currently lacking in spatial MSI lipidomics.

As a solution to this conundrum,weproposed spendingmoreMSI
analysis time and depth on user-defined morphological structures of
interest, i.e., on fewer pixels than those of entire tissue sections. Pre-
viously, we suggested FT-IR-based MIR vibrational tissue imaging for
ROI definition, followed by MSI restricted to these ROIs12. However, in
the past, such an FT-IR-based MIR imaging-guided MSI workflow
lacked data acquisition speed and provided insufficient molecular
specificity. It was therefore not very sensible to implement it in
laboratories49. Meanwhile, QCL-based MIR instruments with a focal
plane array detector offer scanning capabilities with microscopy
quality and improved sensitivity due to high power density and much
higher speed for acquisition of full spectra in the “fingerprint” region
(950–1800 cm−1; Fig. 1a(i)). The QCL-based MIR imaging microscope
used within this study records 5million 5 × 5 µm2-sized pixels in 10min
(~8750 pixels per sec versus 50 pixels per sec with FT-IR imaging12)
compared to 7 h for 175,000 10 × 10 µm2-sized pixels in TIMS-MSI.
Available coherence reduction ensures effective suppression of
sample-dependent phase shifts for structured tissues where the
objects of interest, e.g., cells, have the same dimension as the wave-
length of the light source (~5 µm)50.

To maximize analytical depth per pixel, we set out to develop
experimental workflows and IT tools for spatially focused MSI data
acquisition on fewer pixels that are preselected by QCL-MIR imaging
(Fig. 1a; Supplementary Fig. 1): As demonstrated for murine brain tis-
sue sections, mid-infrared absorbance spectra were first recorded
using indium tin oxide (ITO) glass slides (Supplementary Fig. 2). After
data pre-processing, distinct spectral features were selected from the
fingerprint region and corresponding ion images were used for image
segmentation and definition of morphological regions-of-interest
by, e.g., k-means clustering25 (Fig. 1a(ii) and Fig. 1a(iii)). A separate
single wavenumber (1656 cm−1) whole-slide MIR reference image is
co-registered with the hyperspectral dataset to generate the MSI data
acquisition file, thus effectively enabling ROI-targeted MSI data
acquisition with high analytical depth (Fig. 1a(iv) to Fig. 1a(vi)).

To validate this workflow,we first examinedwhether the photonic
interaction of the QCL light with the tissue’smoleculesmay cause lipid
alterations7. However, no marked lipid changes (m/z 600–1700) were
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observed in murine brain tissue sections (n = 4 biological replicates)
irradiated with the high-power laser for 15min in either single wave-
number or sweep scan mode (Supplementary Figs. 3 and 4).

To ensure wide applicability of the QCL-MIR imaging-guided MSI
approach in biomedical research, we further investigated five different
biomedical examples ranging from macromorphological structures
like kidney medulla or glomeruli down to the single cell level. First, we
examined a two-cell types, i.e. two ROIs, in-vitro 3D-cell culture model
of cancer-like aerobic glycolysis and reverse Warburg effect51. This
model features biculture spheroids (300–500 µmdiameter) consisting
of two human cell lines, vimentin-positive CCD-1137Sk fibroblasts
forming the core and pan-cytokeratin (pan-CK)-positive HT-29 colon
cancer cells that engulf them, as confirmed by multiplex-MALDI-
immunohistochemistry (IHC)52 (Fig. 1b(i)). Analysis of hyperspectral
MIR fingerprint data revealed the lipid-associated bands at

wavenumbers 1466 cm−1 (CH2 bending vibration) and 1742 cm−1 (C=O
vibration) asmolecular features capable of distinguishing between the
two cell types, as indicated by the precise match of the fibroblast core
outlines determined by MALDI-IHC and MIR imaging (Fig. 1b(ii); Sup-
plementary Fig. 5a). Consistent with recent observations in (brain)
tumorpatient sampleswhere transcripts of glycerophospholipid (GPL)
remodeling enzymes were overexpressed compared to surrounding
non-tumor tissue2, GPLs such as phosphatidylinositol PI 34:1 were
more prominent in cancer cells, whereas lyso-GPLs, e.g. LPI 18:0, were
more abundant in fibroblasts (Fig. 1b(iii)).

As a feasibility study, we comparedmonoculture fibroblast (MCF)
spheroids with the QCL-MIR imaging-guided fibroblast core of bicul-
tures (BCF), to investigate lipidomic reprogramming of BCF (com-
pared to MCF) induced in the latter by being surrounded and
separated from culture medium by cancer cells53.
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Principal component analysis on 105 MCF- and 72 BCF spheroids
(technical replicates from n = 7 wells for BCF and n = 11 wells for MCF,
individually labelled in Supplementary Fig. 6e) of MSI data indicated
unique lipidomic profiles for both 3D-cellular systems (Fig. 1d). Che-
mometrics- and machine learning-based feature extraction (LASSO
regression) revealed lipid candidates, e.g., phosphatidylethanolamine
PE(P-36:4), with different abundance in BCF than MCF, which were
identified using iprm-PASEF analysis. (Fig. 1d; Supplementary Figs. 6, 7;
Supplementary Tables 1-9).

Next, we explored small tissue morphologies like glomeruli in
murine kidneys to validate the MIR-based hyperspectral tissue segmen-
tation further. Gangliosides asmarkers of these functional filtration units
are well-characterized, and autofluorescence-directed MSI has recently
been used for their detailed molecular analysis42. Using ganglioside GM3
34:1;O2 (both negative mode ion images and molecular probabilistic
maps (MPMs)2) as a marker, we compared MALDI-qTOF-MSI and MIR
imaging for entire dried kidney cryosections (n=4 biological replicates)
by correlative MSI-MIR imaging (Supplementary Fig. 8ab). Utilizing the
spectral region at around 1720cm−1 (1st derivative of transmittance)
between the amide I and carbonyl vibrations allowed for discrimination
between glomerular structures and surrounding kidney cortex. Addi-
tionally, ROIs were chosen such that the number of objects identified by
bothMIR imaging andMSI compared to the latter alone wasmaximized,
thus rather accepting false-negatives, but avoiding false-positive detec-
tions in MIR imaging (Fig. 1e; Supplementary Fig. 8c). On average, more
than 85% of MIR-defined ROIs contained glomeruli, as defined by GM3
34:1;O2 presence (Supplementary Fig. 9a–d). To compensate for possible
errors in image co-registration, MIR-defined ROIs were computationally
expanded. To evaluate the magnitude of these effects, the Euclidean
distance between the centers of the expandedMIR-defined ROIs and the
GM3 34:1;O2-defined MSI areas determined the off-set. Averaged across
all glomeruli in four independent data sets, the spatial shifts were
21 ± 4 µm compared to MIR (i.e., the taught reference image) and MSI
pixel sizes of 2.3 µm and 10 µm, respectively (Supplementary Fig. 9ef).
Focusing MSI data acquisition on these glomeruli-containing ROIs
instead of full tissue MSI reduced data acquisition time by >95% (8483
pixels insteadof 216,411). This allowed for subsequent redirection of time
and effort into very-high-confidence identification of ten gangliosides in
these ROIs by ion mobility-based on-tissue fragmentation using iprm-
PASEF in TIMS-MSI, validated by the additional analysis of a ganglioside
standard (Supplementary Fig. 9g–k; Supplementary Table 10).

As thefinal testof theworkflow’s versatility, we examinedwhether
ROIs as small as single cells could be defined. To this end, individual
neuron-containing ROIs that could, for instance, be further examined
in single cell studies in motor neuron disease were identified by QCL-
MIR imaging microscopy in the gray matter of frozen murine spinal

cord sections (n = 2 biological replicates) and then computationally
expanded (Fig. 1f(ii); Supplementary Figs. 10a and 11). Distinct motor
neuron locations were characterized by the spatial distribution of the
phosphatidyl inositol PI 38:4 and validated by a hematoxylin and eosin
(H&E) image of the same section (Fig. 1f(ii)).

Genetically engineered mice with defined metabolic alterations
as a qualitative ground truth in MSI method development and
validation
Using our QCL-MIR imaging-guided MSI toolbox, we endeavored to
chemically characterize an entire lipid class, sulfatides, as compre-
hensively and completely as possible, since it is neither sufficiently
covered in public databases (SwissLipids knowledgebase, https://
swisslipids.org/; LIPID MAPS Structure Database, https://www.
lipidmaps.org/) nor in instrument vendor software. Furthermore, we
aimed to provide methods for iprm-PASEF with tailored ion mobility
separation, i.e. using long ramptimes, to analyzeMIR-definedROIs and
to generate an extensive comparative MSI- and LC-TIMS-MS data
resource for the MSI and lipidomics communities.

To this end, we introduce the concept of using knock-out mice to
approach analytical ground truths in complex tissue analytics. There-
fore, we used kidneys of arylsulfatase A-deficient mice (ARSA−/−) that
we first analyzed in 2011 using low-resolution MALDI-TOF MSI incap-
able of accurately identifying lipids32 (Supplementary Table 11). In kid-
neys of ARSA−/− mice, sulfatides of the SM4, SM3, SM2a, SM1a/b, and
SB1a subclasses accumulate primarily in the medulla and papilla30–32,54

(Fig. 1g–i; Supplementary Fig. 12 for sulfatide metabolism), where they
are known to be critical for urinary pH and ammonium excretion and
have been characterized at single intercalated cell level39,43. In the brain,
they promote neurodegeneration in MLD. Sulfatide accumulation was
observed consistently across MSI and MIR imaging (Supplementary
Fig. 13). The inner stripe of the outer medulla (ISOM) and the inner
medulla/papilla (IMP) were readily obtained by image segmentation
utilizing a well-defined subset of spectral features in the “fingerprint”
region, i.e., the lipid-associated CH2 bending vibration at 1466 cm−1 and
the Cβ-O vibration of the 3-sulfogalactosyl head group at 988 cm−1

(Supplementary Figs. 5b and 14). Comparison of segmentations based
on each imaging modality and with reference histology suggested that
MIR imaging did not alter coverage of the ISOM and IMP ROIs (Sup-
plementary Fig. 15).

QCL-MIR imaging-guided trapped TIMS-MSI enables extensive
fragmentation analysis on tissue and sulfatide identifications on
par with LC-based 4D-TIMS-PASEF
TIMS-TOF-MSI, in principle, offers substantial capabilities for deep
lipidomics profiling55,56. However, as the use of TIMS separation

Fig. 1 | QCL-MIR imaging to guide spatially focused data acquisition in MSI.
a Overview of QCL-based MIR imaging microscope (i), and the QCL-MIR imaging-
guidedMSIworkflow. Aν: absorbance, ν: wavenumber,CR: coherence reduction. (ii)
Selected spectral features (2nd derivative of absorbance (2nd)) discriminating cere-
bellar fiber tracts (FT) and granular layer (GL): 1466 cm−1 (CH2 bending vibration)
and 1742 cm−1 (C =O vibration). (iii) Feature-selective image segmentation and ROI
definition. (iv) Co-registration of singlewavenumber (1656 cm−1) reference image (v)
with hyperspectral dataset (i). (vi) Cerebellar ROI-focused MSI using iprm-PASEF.
Scale bar, 2mm. BioRender. https://BioRender.com/ymashbv. b Multimodal com-
parison of CCD−1137Sk fibroblast/HT-29 cancer biculture (BCF) versus mono-
culture fibroblast (MCF) spheroids. (i) Ion images of multiplex-MALDI-IHC52 using
anti-vimentin (m/z 1230.84; fibroblast) and anti-pan-CK (m/z 1288.71; cancer) anti-
bodies. Mass window ±10 ppm. (ii) MIR data (1742 cm−1; 2nd) of spheroid section,
fibroblast core outline (cyan, dashed) derived by clustering (k = 2) of MALDI-IHC
data. (iii) Ion images form/z 835.54 (PI 34:1[M-H]-; fibroblasts) andm/z 599.32 (lyso-
PI 18:0[M-H]-; cancer). Scale bar, 200 µm. c QCL-MIR imaging-guided ion image of
m/z 722.51 (PE(P-36:4[M-H]-). Scale bar, 200 µm. d Principal component analysis
(PCA) of MSI data distinguishes MCF (dark blue) and BCF (cyan). e (i) MIR image of

ARSA−/− mouse kidney (1720 cm−1; 1st) with putative glomerular ROI (green out-
line). (ii) QCL-MIR imaging-guided ion image of m/z 1151.71 (GM3 34:1;O2[M-H]-;
mass window ±10 ppm) with highlighted glomerular ROI. Scale bar, 300 µm. f (i)
MIR image of EAEmouse spinal cord (1722 cm−1; 1st) with putativemotorneuronROI
(blue outline). (ii)QCL-MIR imaging-guided ion imageofm/z885.549 (PI 38:4[M-H]-;
mass window ±10 ppm)with highlighted neuron ROI. Scale bar, 200 µm.g Sulfatide
accumulation in ARSA−/− mice by (i) MSI (sum intensity distribution of
87 sulfatides32), and (ii) MIR imaging at 988 cm−1 (2nd, Cβ-O vibration). Super-
imposed kidney inner stripe of outermedulla (ISOM) ROI determined by clustering
of MSI data (red and green dashed lines). Scale bar, 2mm. h Box-plots of Z-score
values reveal lipid accumulation in the ISOM region by both MSI and MIR imaging
(1466 cm−1; 2nd) for n = 4 biological replicates. Boxplots indicate median (middle
line), 25th and 75th percentile (box) and whiskers (1.5 times the interquartile range).
i Volcano scatter plot of qTOF-MSI data for ARSA−/− vs. ARSA+ /+ reveals accu-
mulation of sulfatides32 for ARSA−/− (red dots), e.g., I) SM4 34:1;O2[M-H]-, II) SM4
38:1;O3[M-H]-, and III) SM3 42:1;O2[M-H]-. Statistical significancewas tested by two-
sided standard t-test. P-values are Benjamini–Hochberg-corrected. Source data is
provided as Source Data file.
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increases MSI data acquisition time up to 10-fold, in practice, most
imaging studies refrain from using the TIMS capabilities and are con-
ducted in qTOF/TIMS-off mode instead.

Hence, we investigated the benefit in deep spatial sulfatide pro-
filing achieved by in-depth analysis of smaller ARSA−/− kidney ROIs
(ISOM and IMP) defined by QCL-MIR imaging (compare Fig. 2a). We
comprehensively compared conventional qTOF-mode MSI of whole
kidney slices (including on-tissue MS2 based on m/z values for pre-
cursor selection alone) with QCL-MIR imaging-guided analysis focused
to the ISOM and IMP ROIs but using TIMS-MSI with iprm-PASEF
(Fig. 2b, Supplementary Fig. 16). For example, in non-guided whole
kidney qTOF-modeMSI, 54,100pixels weremeasured in 1:22 h; inQCL-
MIR imaging-guided TIMS-MSI 9,600 pixels were assessed in 1:19 h
(both 20 µm lateral step size). For iprm-PASEF at 40 µm lateral step size
883 pixels were investigated in IMP (8min) and 1554 pixels in ISOM
(13min). To achieve and validate highest levels of confidence in frag-
ment annotation and subsequent sulfatide identification, we first
confirmed that on-tissue iprm-PASEF MS2 data were in strong agree-
ment with results obtained with brain sulfatides standard mixture

(Supplementary Fig. 17). Furthermore, MS2 spectra obtained for kid-
neys from n = 4 different mice demonstrated highest degrees of simi-
larity ( > 0.99), as judged by cosine similarity of three example
sulfatides (Supplementary Fig. 18). Generally speaking, TIMS-MSI with
iprm-PASEF requires baseline separation of sulfatides in the extracted
ion mobilogram (EIM). Effective separation of almost isobaric even-
chain and odd-chain sulfatides, m/z 848.557 (SM4 38:2;O3[M-H]-) and
m/z 848.591 (SM4 39:1;O2[M-H]-), required an extended ramp time of
480ms (Fig. 2c). Feasibility of subsequent iprm-PASEF analysis was
evaluated by comparison of area-under-curve (AUC) ratios for the
respective EIMs within the targeted isolation window (Fig. 2d). A ramp
time of 480ms led to a two-fold increase in the AUC ratio for SM4
38:2;O3[M-H]-, and a three-fold increase for SM4 39:1;O2[M-H]-. The
iprm-PASEF-derivedMS2 spectrum ofm/z 848.591 (SM4 39:1;O2[M-H]-)
enabled the unequivocal identification of this odd-chain sulfatide
(OCS). In contrast, without ion-mobility-based precursor isolation (i.e.,
by conventional on-tissueMS2), thisMS2 spectrum is obscuredbymore
intense fragments ofm/z 848.557 (SM4 38:2;O3[M-H]-), highlighted by
characteristic fragments resulting from α-hydroxy fatty acid loss, and

Fig. 2 | Deep sulfatide profiling via QCL-MIR imaging-guided TIMS-MSI in ARSA
−/− mouse kidney. a ISOM (red, 1) and inner medulla/papilla (IMP; green,2) iden-
tified as ROIs via QCL-MIR imaging (top) and sulfatide distribution in MSI (sum
intensities; bottom). Scale bar, 500 µm. Partly created in BioRender. https://
BioRender.com/spcji05. b Overlaid QCL-MIR imaging-guided ion image of I) m/z
778.515 (SM4 34:1;O2[M-H]-; orange), II)m/z 850.572 (SM4 38:1;O3[M-H]-; red), and
III) m/z 1052.692 (SM3 42:1;O2[M-H] -; green) within kidney (grey). Mass window
±3 ppm. Subsequently, precursor ions for iprm-PASEF are region-selectivelyfiltered
for on-tissue fragmentation analysis to reveal molecular identities. In total, we
acquired iprm-PASEF-derived MS2 spectra for 153 sulfatide species of which 33 are
considered chimeric. Scale bar, 500 µm. c Separation of even-and odd-chain sul-
fatides on-tissue: Extracted ionmobilograms and iprm-PASEF isolationwindows for
SM4 38:2;O3 (black rhombus) and SM4 39:1;O2 (orange dot) acquired with (i)

120ms (red) and (ii) 480msTIMS ramp time (blue). Gaussians describe the data for
eachmolecule (dashed and dotted lines).d Peak intensity ratioswithin the isolation
window (filled areas under curve in (c)) for both sulfatides and ramp time settings.
Peak intensity maxima are marked in dotted lines. e Butterfly plot of iprm-PASEF-
derived MS2 spectra (top, blue) and conventional on-tissue MS2 without ion
mobility separation (bottom, black) form/z 848.591 (SM4 39:1;O2[M-H]-). Frag-
ments at m/z 568.28, m/z 540.29, and m/z 522.28 refer to the loss of the α-OH-FA.
fMS2 fragments observed (green dots) in iprm-PASEF analysis of selected sulfatides
(columns). g Venn diagram of sulfatide subclasses identified by 4D-LC-TIMS-MS
(blue) and MALDI-TIMS-MSI (purple). h Evaluation of the ground truth concept:
Total number of identified sulfatides per subclass out of 156 theoretical sulfatide
configurations. Created in BioRender. https://BioRender.com/64y1bin. Source data
is provided as a Source Data file.
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concomitant inability to identify SM4 39:1;O2[M-H]- (Fig. 2e; Supple-
mentary Fig. 19c, d). Extensive iprm-PASEF analysis led to a detailed
atlas of characteristic fragments for the sulfatide subclasses (Fig. 2f;
Supplementary Figs. 20–23). MALDI-MSI was at least on par with 4D-
LC-TIMS-MS lipidomics in this comparison. Relying on similar ion
mobility settings, the numbers of SM4 and SM3 sulfatides identified
with the two methods were on par (Fig. 2g). Aiming for maximal cov-
erage, in addition we identified complex SM2 and SM1 sulfatides by
TIMS-MSI using iprm-PASEF with adjusted TIMS settings (Supple-
mentary Fig. 24). In two 60-week-oldmouse kidneys we elucidated 101
and 112 sulfatides by TIMS-MSI in qTOFmode and 155 and 156 by QCL-
MIR imaging-guided TIMS-MSI (Table 1). Six sulfatide subclasses were
detected in method-specific manner (Fig. 2h). SB1a isoforms were
detected as [M+Na-2H]- adducts in TIMS-MSI57. Sulfatides such as
SM1a/b predominantly form doubly charged ions in 4D-LC-TIMS-MS,
and their detection within the set ion mobility and m/z range is fea-
sible, given also that no in-source decay was evidenced for any sulfa-
tides. However, SM1a/b were not detected in 4D-LC-TIMS-MS. The
origin of these species in TIMS-MSI-whether due to in-source-decay of
SB1a, degradation during sample preparation for MALDI, or endo-
genous occurrence remains unclear. Nevertheless, their value for
structure-CCS-relationship analysis is obvious. Structure elucidation
based on iprm-PASEF spectra allowed for precise localization of the
sulfate group and unequivocal classification of the SM1a/b isoforms,
thus highlighting amajor advantage of TIMS-MSI with iprm-PASEF. For
SB1a, we identified the sodiated sulfate group to be predominantly
located at the terminal galactose. In total, we benchmarked 157 sulfa-
tides in the ARSA−/− mouse model out of 936 theoretical structural
configurations as the ground truth (Fig. 2g, h; Table 1; Supplementary
Tables 12 and 13; Supplementary Data 1–3). Our findings validate the

use ofmutantmicewith knownpatterns ofmetabolite accumulation in
distinct tissue regions as ground truth in spatial lipidomics/
metabolomics.

To aid statistical quality assessment, we defined “non-clean” sul-
fatide peaks for m/z spectra in qTOF-mode MSI as the ones that fea-
tured at least one other peak within a mass window of ±1.1 Da that
exceeded the intensity of the first sulfatide isotope peak (Supple-
mentary Fig. 19a); the reason being that this interfering peak would
prevent unequivocal precursor ion selection and on-tissue MS2 sulfa-
tide identification in “conventional” qTOF mode. In TIMS-MSI opera-
tion, peaks were classified as “non-clean” if the spectra contained a
peak within a mass window of ±1.1 Da and a mobility window of
±0.005 Vs/cm2. All peaks were manually classified as “clean” or “non-
clean” (Table 1; Supplementary Fig. 19a; Supplementary Data 1–3). Of
the 101 and 112 sulfatides seen in qTOF-mode MSI and the 155 and 156
detected in TIMS-MSI, about half (47 and 55) and about 75% (115 and
119) were considered as “clean”, respectively (Table 1).

QCL-MIR imaging-guided TIMS-MSIwith iprm-PASEF enabled new
insights in deep spatial lipidomics, e.g., the spatial profiling of odd-
chain sulfatides (OCS), a subgroup that is still underexplored. Odd-
chain fatty acids (FAs) can be formed by elongation of gut-/micro-
biome-derived propionyl-CoA but also via α-oxidation by 2-hydroxy
acyl-CoA lyase in mammalian cells58,59. The example of m/z 848.557
(SM4 38:2;O3[M-H]-) and m/z 848.591 (SM4 39:1;O2[M-H]-) demon-
strated that non-resolved (“non-clean”) odd-/even-chain sulfatides
could be separated by ion mobility spectrometry and subsequently
identified by iprm-PASEF analysis (Fig. 2c–e; Supplementary
Figs. 19 and 20). The ability to unequivocally identify odd-chain
membrane lipids also applied to PI isomers like PI 33:1 in the spheroid
example (Supplementary Fig. 25).

Table 1 | Cumulative numbers of sulfatide subclass isoforms identified inARSA−/−mouse kidneyby LC-MSorMALDI-MSI using
various analytical workflows

SM4 SM3 SM2a SM1b SM1a SB1a total

LC-TIMS-MS timsTOF-MS 60w_1 41 25 0 0 0 26 92

60w_2 42 26 0 0 0 27 95

12w_1 25 14 0 0 0 4 43

12w_2 33 20 0 0 0 11 64

timsTOF-MS2 60w_1 38 25 0 0 0 26 89

60w_2 39 26 0 0 0 27 92

12w_1 22 14 0 0 0 4 40

12w_2 30 20 0 0 0 11 61

MALDI timsTOFMSI qTOF mode all 60w_1 44 30 4 13 10 101

60w_2 44 33 5 17 13 112

12w_1 34 21 2 11 9 77

12w_2 30 25 1 9 9 74

“clean” 60w_1 15 16 2 10 4 47

60w_2 14 22 2 12 5 55

12w_1 11 13 1 8 4 37

12w_2 10 16 1 6 3 36

MIR-guided all 60w_1 60 31 6 20 17 21 155

60w_2 62 31 6 20 17 20 156

12w_1 52 26 6 13 11 12 120

12w_2 51 26 6 14 12 17 126

“clean” 60w_1 40 19 6 17 17 16 115

60w_2 44 23 6 15 17 14 119

12w_1 34 15 6 13 11 11 90

12w_2 36 12 6 13 12 12 91

Whole kidney sections of 12- or 60-week-oldARSA−/−mice (n = 2each)wereanalyzedbyLC-TIMS-MSor –MS2 andMALDI-MSI (TIMS/qTOF). “Clean”peaks fulfilledhigher quality standards,definedas
peaks that donot feature at least one other peakwithin amasswindowof ±1.1 Da (qTOFmodeMSI) andamobilitywindowof ±0.005Vs/cm2 (TIMS-MSI), andweremanually curated.QCL-MIR imaging-
guided MSI focused on the kidney’s ISOM and IMP ROIs only.
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Generally, QCL-MIR imaging-guidance to ISOM and IMP ROIs
allowed for extensive iprm-PASEF analysis and structure elucidation of
odd- and even chain-sulfatides directly on-tissue (Fig. 2d; Supple-
mentary Fig. 20–23). Surprisingly and in contrast to even-chain sulfa-
tides like SM4 38:2;O3[M-H]-, ion intensities for OCS like SM4
39:1;O2[M-H]- were unaltered in ARSA−/− kidneys, as indicated by ion
images and a volcano plot (Supplementary Fig. 20a). As iprm-PASEF
analysis unequivocally identified OCS, this finding may suggest that
odd-chain galactosylceramides and lactosylceramides can be sulfated
by cerebroside sulfotransferases (Supplementary Fig. 12), but that an
arylsulfatase other than ARSA may catalyze their de-sulfation. This
observation may be pursued in a separate study, as arylsulfatases
constitute a growing enzyme family whose functions are not fully
characterized yet60. In similar fashion, large numbers of sulfatides
could be structurally elucidated by TIMS-MSI with iprm-PASEF (Fig. 2g;
Supplementary Fig. 22 and 23, Supplementary Table 13).

Structure-CCS-relationships based on experimental deep pro-
filing spatial lipidomics data
This vast resource of spatial MALDI-MSI and corresponding LC-MS
data, both acquired on TIMS-MS platforms, permitted deep inquiries

into the (spatial) sulfoglyco- lipidome. First, experimental CCS values
(LC-MS and MSI) differed profoundly from those predicted by recent
models LipidCCS, DeepCCS and AllCCS234,36,38,61 (Fig. 3a). In contrast,
experimental CCS values were very consistent and independent of ion
source and instrument usage at different sites (Mannheim and Mainz;
R2 = 0.9988; mean relative deviation �ε of 0.5%; Fig. 3b; Table 2; Sup-
plementary Tables 12 and 13; Supplementary Data 4). LipidCCS was
accurate (�ε of 1%) for SM4, but inaccurate for all other sulfatide sub-
classes, whereasDeepCCSpredicted all subclasseswith amean relative
deviation of 8%. AllCCS2 yielded the most accurate prediction (�ε of
1.4% for all subclasses, but, e.g., 2.48% for SM2a; Fig. 3ac; Supplemen-
tary Fig. 26).

Relative deviations were neither a function of subclass nor of FA
chain lengths (Fig. 3d), as highlighted by the inconsistent behavior
of the relative error of the subclass X(1:O2) predicted by AllCCS2.
These discrepancies between prediction and experiment, revealed
by QCL-MIR imaging-guided TIMS-MSI together with an ambiguous
trend in the relative position of the homologous series of subclasses
across various prediction tools (Fig. 3e; Supplementary Fig. 27),
prompted us to analyze structure-CCS-relationships (SCR) in more
detail.

Fig. 3 | Structure-CCS-relationships for sulfatides. a Comparison of experimental
(gray dots: LC-TIMS-MS; black dots: MALDI-TIMS-MSI) and predicted CCS values,
modeled by LipidCCS61 (red triangle), AllCCS234 (blue triangle) andDeepCCS36 (green
triangle). LC-MS-derived CCS values of SB1a[M-2H]2- /SB1a[M-HSO3]

- are marked with
a star. b Strong correlation (R² = 0.9988; linear fit (red); 95% confidence interval (CI))
of LC-MS-derived and MALDI-MSI-derived ion mobility data. Mean relative deviation
�ε =0.5%. c Correlation of experimental (MALDI-MSI) and predicted (AllCCS2) CCS
values. Mean relative deviation �ε is 1.4%. d Relative deviation ε reveals inconsistent
deviations per subclass of the predictedCCS values usingAllCCS2 against CCS values
obtained by MALDI-MSI. Uncertainties were derived from for n=4 biological repli-
cates and expressed as standard deviation (Supplementary Table 13). eCCS values of

sulfatide subclasses as a function of fatty acid (FA) chain length for three different
prediction tools, AllCCS2, LipidCCS and DeepCCS yielding ambiguous relative
structural relationships. f Experimental CCS values and 2nd order polynomial fit to
evaluate the contribution of the degree of glycosylation in the sulfated head group
and theα-hydroxylation of theN-acyl FA. The relative positions are highlighted in the
insets. g Visualization of structural relationships for the data presented in f (i),
relative to ganglioside series (ii) and the contribution of saturated FA and mono-
unsaturated FA. Surprisingly, the difference between SM3(O3) and SM4(O3) is
reduced compared to the non-α-hydroxylated counterpart suggesting that interac-
tion between the α-OH group and the head group may influence the three-
dimensional structure. Source data is provided as a Source Data file.
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To compare series of sulfatides in structural subclasses such as
the α-hydroxylated (X 18+n:1;O3) and non-α-hydroxylated (X
18+n:1;O2) sulfatides, experimental CCS of a homologous series were
better modeled by 2nd order polynomial fits than by linear fits or
y=bCCSx

2=3 +aCCS fits that have been used to describe the progression
of CCS values of polymers62 (Supplementary Fig. 28). First, we assessed
the contribution of glycosyl head groups and chain lengths of N-acyl-
linked FA to experimental CCS values for both the α-hydroxylated (X
18+n:1;O3) and non-α-hydroxylated (X 18+n:1;O2) sulfatides compared
to predicted CCS (Fig. 3f; Table 2).

Only AllCCS2 correctly predicted the strictly monotonous
increasewith FA chain length, but it did not predict a subtle difference
between the O2- and O3-subseries: In both MSI and LC-MS data (Sup-
plementary Fig. 29), CCSO2 >CCSO3 was observed for complex SM2a
and SM3 sulfatides, but not for SM4, whereas inconsistent trends were
observed for different prediction tools. Especially the most accurate
predictor investigated here, AllCCS2, showed CCSO3 >CCSO2 for all
classes. Employing a parallel linemodel (seeMethods), we determined
constant differences ΔCCS between SM2a and SM3 isoforms of iden-
tical FA chain length of 29.3 ± 0.1 Å2 and 29.8 ± 0.4Å2 for the O2- and
O3-subseries, respectively (Fig. 3f and 3g; Supplementary Fig. 30).
However, ΔCCS between SM3 and SM4 isoforms was 28.2 ± 0.1 Å2 and
25.4 ± 0.2 Å2 for the O2- and O3-subseries, respectively (Fig. 3g(i);
Supplementary Fig. 30).

This significant difference suggests that an interaction between
the α-OH-group and the glycosyl head group may influence the three-
dimensional structure. The finding is also supported by our LC-TIMS-
MS data (Supplementary Fig. 29; Supplementary Table 12). This effect
seems to be reversed for lipid classes with unrelated glycosyl head
groups like sulfatides and GM3 gangliosides (Fig. 3g(ii), Table 2, Sup-
plementary Fig. 31). In contrast, single sites of FA unsaturation that,
because of the cis-configuration of double bonds in FA, introduce a
kink in their three-dimensional structure leading to a reduction of the
CCS values by 1.3 ± 0.2 Å2 (Fig. 3g(iii), Supplementary Fig. 32). The
position of the double bond was experimentally not determined. Our
data indicated that phytosphingoid base-containing sulfatides exhibit
the same trend as the SM3 and SM4 isoforms for the O2- and O3-
subseries, i.e., that the relative difference inCCS is reduced forX(0;O4)
compared to X(0;O3) (Supplementary Fig. 33). Overall, we provide a
comprehensive overview of the CCS behavior across six different sul-
fatide classes (Table 2; Supplementary Fig. 30).

Lipid remodeling in experimental autoimmune
encephalomyelitis mice
To demonstrate how QCL-MIR imaging-guided TIMS-MSI with iprm-
PASEF can drive biomedical discoveries, we investigated the dynamic
lipid remodeling in white matter of mouse spinal cord at peak disease
instigated by experimental autoimmune encephalomyelitis (EAE), a
model of humanmultiple sclerosis46–48. MIR images highlighted lesions
in the white matter of EAE but not healthy spinal cords, suggesting
extensive remodeling with substantial changes in lipid composition in
the former (Fig. 4 (i)). These lesions were readily identified and defined
as ROIs (Fig. 4b (ii); Supplementary Fig. 10). To define white matter of
control spinal cords as reference ROI, we computationally shrunk the
white matter segment defined by QCL-MIR imaging to match the size
of the combined EAE lesion ROIs (Fig. 4a (ii); Supplementary
Figs. 10 and 34). By focusing exclusively on the QCL-MIR-imaging-
derived lesion ROIs, we reduced the measurement time by up to 20-
fold (depending on the lesion size), compared to the measurement
time for an entire spinal cord tissue section at 5 µm pixel size.

Volcano scatter plot analysis across n = 3 biological replicates
revealed upregulated m/z features, notably Im/z 616.472 (ceramide-1-
phosphate CerP 34:1;O2[M-H]-), a signaling lipid, IIm/z 687.545 (CerPE
36:1;O2[M-H]-), as well as the cell membrane lipid m/z 885.549 (PI
38:4[M-H]-), in EAE lesions (Fig. 4c), validated by subsequent iprm-
PASEFMS2 analysis (Supplementary Fig. 35). It is tempting to speculate
that moderate upregulation of PI 38:4 may be proinflammatory, as
phospholipase A2 cleavage of this could trigger release of the eicosa-
noid precursor arachidonic acid. Compounds I and II are strikingly
more than 25-fold enriched in sclerotic lesions, andmultiple additional
compounds displayed enrichments of 4- to 20-fold in lesions (Fig. 4c).
Ceramide-1-phosphate (compound I) has already been associated with
myelin sheath degenerative pathogenesis. Interestingly, deletion of
ceramide kinase and concomitant reduction in CerP levels ameliorates
disease progression in the cuprizone mouse model of myelin degen-
eration and structural rebuilding63. LC-MS lipidomics of human post
mortem multiple sclerosis white matter tissue suggested that CerP
could be a candidate biomarker of the progressive phase64, but its
localized enrichment in active lesions of EAE has not been demon-
strated yet. In contrast, very little is known about the function of cer-
amide phosphoethanolamines (CerPE) that are synthesized by
sphingomyelin synthase-related (SMSr) enzymes65. In Drosophila,
CerPEmaintains synaptic glutamate homeostasis, the dysregulation of
which (i.e., glutamate excitotoxicity) is a feature of multiple sclerosis
and EAE66. Hence, 25-fold enrichment of CerPE and its localization in
EAE lesions suggests that this class of lipids should be studied in more
detail (Fig. 4d). Combining H&E staining with MIR and MSI images
provides amulti-faceted viewof the histological and lipidomic changes
in Ctrl and EAE spinal cords at peak disease. The ion images for I, and II
and PI 38:4 highlight their significantly increased ion intensity and thus
presumably accumulation within EAE lesions (Fig. 4d and Supple-
mentary Fig. 34). Detailed t-statistical analysis for I and II and PI 38:4
across n = 3 biological replicates highlight the importance of these
features (Fig. 4e; Supplementary Figs. 36 and 37). Structural con-
firmation was achieved by on-tissue iprm-PASEF analysis (Fig. 4f;
Supplementary Fig. 35). Taken together, visualization of CerP 34:1;O2
and CerPE 36:1;O2 in EAE lesions and strong increases in their ion
intensity compared to control white matter together with on-tissue
MS2 structure elucidation demonstrate how the QCL-MIR imaging-
guidedMSI workflow can support the discovery of new biology. These
findings not only enhance our understanding of localized molecular
alterations, here: sphingolipids64, in demyelinating diseases, but also
point to potential biomarkers and therapeutic targets for multiple
sclerosis and related conditions64. The example of fingolimod
(FTY720), an S1PR antagonist that blocks the inflammatory actions of
the related signaling lipid sphingosine-1-phosphate (S1P) suggests that
analogous CerP signaling blockers may be attainable67.

Table 2 | Relative values for structure-CCS-relationships of
sulfatide subclasses

a: X(1;O2) b: X(1;O3)

I: ΔCCS(SM4, SM3) 28.2 ± 0.1 25.4 ± 0.2

II: ΔCCS(SM3, SM2a) 29.3± 0.1 29.8 ± 0.4

III: ΔCCS(SM2a, SM1b) 12.8 ± 0.4 15.3 ± 0.9

IV: ΔCCS(SM1b, SM1a) 7.5 ± 0.5 4.2 ± 1.5

V: ΔCCS(SM1a,SB1a) −1.2 ± 0.5 2.0 ± 1.3

VI: ΔCCS(SM3, GM3) 33.2 ± 0.2 36.3± 0.2

c: X(0;O3)1 d: X(0;O4)

VII: ΔCCS(SM4, SM3) 22.2 ± 0.2 20.9 ± 0.4

e: X(1;O2)–X(2;O2) f: X(1;O3)–X(2;O3)

VIII: ΔCCS(SM4) 1.3 ± 0.2 1.3 ± 0.2

IX: ΔCCS(SM3) 1.3 ± 0.3 1.3 ± 0.2

g: X(1;O2)–X(0;O3) h: X(0;O3)–X(0;O4)

X: ΔCCS(SM4) 3.9 ± 0.2 2.0 ± 0.1

XI: ΔCCS(SM3) 2.9 ± 0.2 1.7 ± 0.3

Relative differences in CCS (mean for n = 4 biological replicates) values were obtained by a
parallel linemodel using a 2nd order polynomial fit. 1: The relative differencewas obtained based
on TIMS-MSI and LC-TIMS-MS data. Therefore, the latter was shifted by the mean relative
deviation. All CCS values are presented in Å².
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In conclusion, with this study we make workflows and computa-
tional tools for QCL-MIR imaging-guided high-performance MSI
available for the scientific community. This versatile platform is
applicable for many biomedical research topics ranging from single-
cell metabolomics to 3D cell cultures and to well-defined functional
tissue areas in disease research, and it offers enhanced bioanalytical
depth while simultaneously reducing measurement time by focusing
MSI on relevant ROIs. Consequently, it enables deep spatial profiling of
odd-chain lipids, evaluation and improvement of prediction tools or
investigation of structure-CCS-relationships. Genetically modified
mice can serve as analytical ground truths in MSI, besides their
established role as diseasemodels. Altogether, the presented concepts
pave the way for deeper spatial investigations of complex biological
processes in general and of sulfatide biochemistry in particular with a
high level of confidence in molecular identifications.

Methods
Ethics statement
Arylsulfatase A-deficiency (ARSA−/−) mouse model: Animal experi-
ments (breeding andmaintaining of ARSA−/−mice) were approved by
the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-
Westfalen (reference: 84-02.04. 2014.A117).

Experimental autoimmune encephalomyelitis (EAE) mouse
model: All animal experiments were performed in strict accordance
with Austrian law and FELASA guidelines and approved by the Austrian
Ministry of Sciences (project number 2022-0.474.463). The study was
conducted in accordance with the local legislation and institutional
requirements.

Materials
All chemicals and solvents were ofHPLC-MS grade. Conductive indium
tin oxide (ITO)-coated glass slides were purchased from Diamond
Coatings (West Midlands, UK) or Bruker Daltonics ([ITO slides and

MALDI IntelliSlides], Bremen, Germany). SuperFrost Plus Adhesion
slides and BioGold Microarray Slides were obtained from Thermo
Fisher Scientific (Schwerte, Germany). MALDI matrix 2,5-dihydrox-
yacetophenone (DHAP) was purchased from Thermo Fisher Scientific
(Waltham, Massachusetts, USA). 1,5-diaminonaphtalene (DAN),
α-cyano-4-hydroxycinnamic acid (α-CHCA), 1,2-Di-myristoyl-sn-gly-
cero-3-phosphoethanolamine (PE 28:0), and Sulfatides Brain Mix
(Avanti Polar Lipids) were purchased from Merck KGaA (Darmstadt,
Germany). Acetonitrile (ACN), ethanol (EtOH), LC-MS water,
2-propanol (IPA), ammonium sulfate (AmS) and glass cover slips were
obtained from VWR Chemicals (Darmstadt, Germany). Hydroxypropyl
methylcellulose: polyvinyl pyrrolidone (HPMC:PVP, 1:1, w/w) was pre-
pared in-house asdescribed elsewhere68. Forexternal calibrationof the
trap unit of the timsTOF fleX and timsTOF Pro mass spectrometer
(Bruker Daltonics), ESI-L Low Concentration Tuning Mix (Agilent
Technologies, Waldbronn, Germany) was used. Sulfatide standard C17

mono-sulfo galactosyl(β) ceramide d18:1/17:0 (SM4 35:1;O2), and
ganglioside standard C18:0 GM3-d5 were purchased from Avanti Polar
Lipids (Birmingham, USA). Trifluoroacetic acid (TFA), Mayer’s hema-
lum solution, hydrochloric acid, sodium bicarbonate, magnesium
sulfate, eosin Y-solution 0.5%, xylene, and eukitt were purchased from
Merck KGaA. Anti-pan-cytokeratin (panCK) and anti-vimentin anti-
bodies labeled with photo-cleavable mass-tags (PC-MT) were pur-
chased from AmberGen (Billerica, USA).

Mouse studies
Arylsulfatase A-deficiency (ARSA−/−) mouse model. The arylsulfa-
tase A (ARSA) mutant mouse line that was generated using an ARSA
gene targeted embryonic stem cell clone69 has been described
previously32. Here, mice that had been backcrossed with C57BL/6 J
mice for 12 generations were used. ARSA-deficient (ARSA−/−), het-
erozygous (ARSA + /-) and wild-type (ARSA + /+) mice were obtained
from heterozygous breeding pairs. Female mice aged 12 or 60 weeks

Fig. 4 | QCL-MIR imaging-guided TIMS-MSI suggests role of proinflammatory
lipids in dynamic lipid remodeling in spinal cordwhitematter of experimental
autoimmune encephalomyelitis (EAE). a, b (i) MIR images of healthy control
(Ctrl, a) and EAE (b) mouse spinal cord at 1466 cm−1 (2nd derivative), with insets (α –

no lesion), and (β1),(β2–with lesions) in spinal cordwhitematter. Scalebar, 300 µm.
a,b (ii), QCL-MIR imaging-guidedMSI ion images for PI 38:4[M-H]-. For comparison,
the white matter ROI in control spinal cord (a) was computationally shrunk to the
size of the total EAE lesions ROI (b). c Volcano scatter plot reveals significantly
enriched m/z features (red dots; including I CerP 34:1;O2, II CerPE 36:1;O2, and PI
38:4 as black dots) in EAE lesions. Horizontal dashed line represents a p-value of

0.05, vertical dashed lines represent a fold-change of 3. Statistical significance was
tested by two-sided standard t-test. P-values are Benjamini-Hochberg corrected.
dQCL-MIR imaging-guided ion images of Im/z 616.472 (CerP 34:1;O2[M-H]-) IIm/z
687.545 (CerPE 36:1;O2[M-H]-), and m/z 885.549 (PI 38:4[M-H]-) for insets (α), (β1),
(β2) in (a,b).MIRandH&E images for reference. Scale bar, 75 µm.eMedian intensity
for I CerP 34:1;O2, II CerPE 36:1;O2, and PI 38:4 in Ctrl (blue) and EAE (red) spinal
cord for n = 3 biological replicates and n = 3 technical replicates each. Individual
boxplots are depicted in Suppl. Fig. 36. Benjamini-Hochberg corrected p-values
were below 0.002 for all three m/z features based on a two-sided unpaired t-test.
f iprm-PASEF MS2 analysis of m/z 687.545 reveals CerPE 36:1;O2.
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were sacrificed by cervical dislocation, organs were removed and
immediately frozenondry ice. Frozenorganswere stored at -80 °C and
shipped on dry ice.

Experimental autoimmune encephalomyelitis (EAE) mouse model.
C57BL/6 Jmice (Janvier (#SC-C57J-M))werebred and kept in a 12 h light
cycle, at 21–23 °C and 45-65 % humidity in pathogen-free mouse facil-
ities of the Medical University of Vienna. Experimental autoimmune
encephalomyelitis (EAE) was induced in 14 week old male animals by
subcutaneous immunization (150 µL per mouse) with 75μg myelin
oligodendrocyte glycoprotein (MOG)35-55 (Charité Berlin, Germany)
emulsified 1:1 in complete Freud’s adjuvant consisting of incomplete
Freud’s adjuvant (Merck, #F5506-10X10ML) enriched with 10mg/mL
Mycobacterium tuberculosis (Difco/BD Pharmingen, #H37Ra). 150ng
Pertussis toxin from Bordetella pertussis (Hooke Laboratories, #BT-
0105) was administered intraperitoneally at days 0 and 2 post immu-
nization. Spinal cords were harvested from healthy mice (no EAE
immunization) or frommice at peak EAE and embedded as previously
described70. Peak EAE was at days 16–17 post-immunization and
defined as animals with total paralysis of both hind limbs, which cor-
responds to a disease score of three48.

3D-cell culture models, tissue and spheroid slice preparation
Monoculture and biculture spheroids of CCD-1137Sk human fibro-
blasts and HT-29 human colon cancer cells (both LGC Standards,
Wesel, Germany) were prepared, embedded, frozen and cut as
described previously51,68. Briefly, spheroids were harvested after 3 days
and 12 hours after seeding at a density of 1 × 106 cells/T75 flask for HT-
29 cells and 1.5 × 106 cells/T75 flask for CCD-1137Sk. The spheroid
formationwas performedwith a total number of 10k cells and 20k cells
seeded per well for the mono- and bi-culture, respectively, using 96-
well cell-repellentmicroplates (Greiner; cat. No. 650970). This resulted
in the formation of a single spheroid per well.

Grown spheroids of the same type were collected in the same
Eppendorf tube. Excess culture media was removed and 1mL of PBS
was added for washing. For embedding, spheroids were transferred to
HMPC-PVP filled channels inside a gelatin cryo-mold68. Fresh-frozen
mouse brains, kidneys, spinal cords, and embedded spheroids (-80 °C)
were sectioned at 10 and 20 μm thickness, respectively, with a Leica
CM1950 cryostat (Leica Biosystems, Nussloch, Germany) at −18 °C
chamber- and specimen head temperature. Sections were thaw-
mounted onto ITO-coated glass slides from Diamond Coating or
IntelliSlides and either stored at −80 °C until further use or dried for a
minimum of 15min in a desiccator. Dried ITO slides were put in a slide
mailer and vacuum-sealed to avoid environmental influences on the
samples.

Quantum cascade laser (QCL)-based mid-infrared imaging
microscopy
QCL-MIR imaging was conducted on a Hyperion II ILIM FT-IR and QCL
microscope (Bruker Optics, Ettlingen, Germany) equipped with a
300× 300 focal plane array detector and spatial coherence reduction
technology50. For rapid data acquisition of large specimens, a 3.5x (0.15
numerical aperture (NA)) objective was used, resulting in a nominal
pixel size of 4.66 µm. In addition, high resolution images were recorded
with either a 15x (0.4 NA) or a 20x (0.6 NA) objective, yielding nominal
pixel sizes of 1.15 µm and 0.86 µm, respectively. The optical resolution
of the instrument at wavenumber 1500 cm−1 can be estimated to be
22.2 µm (0.15 NA), 8.3 µm (0.4 NA) and 5.5 µm (0.6 NA). All measure-
ments were performed in reflection mode using ITO-slides (Supple-
mentary Fig. 2). Prior to data acquisition, a background spectrum was
collected on a clean part of the slide. Focus was adjusted manually.

QCL-MIR imaging in single wavenumber mode. For image registra-
tion and teaching of the mass spectrometer, MIR data was recorded in

single wavenumber mode at 1656 cm−1 (amide I band used for best
contrast) for whole slide scans, and images were exported from the
OPUS software v8.8 (Bruker Optics) via a python interface as a.tiff file.

QCL-MIR imaging in sweep scanmode for tissue segmentation and
definition of regions-of-interest (ROI). MIR hyperspectral imaging
data of tissue specimens was recorded in sweep scan mode within a
spectral range of 950–1800 cm−1, covered by four QCLmodules, with a
spectral sampling interval of 4 cm−1. Individual image tiles consist of
250× 250 pixels. Hyperspectral data cubes were exported from the
OPUS softwarev8.8 (BrukerOptics) via a python interface as .picklefile.
Hyperspectral data was then imported into an in-house python-based
software tool. Subsequently, data pre-processing such as baseline
correction and spectral differentiation was performed based on case-
specific, user-defined settings. Typically, baseline distortions of
absorbance spectra were corrected using asymmetric least square
smoothing12,71 (smoothing factor 1,000,000, weighting factor 0.01,
and 10 iterations as default), and piecewise linear interpolation was
utilized to calculate the first and second order derivative. For higher
order polynomial interpolation and spectral differentiation, a Savitzky-
Golay filter is implemented using the sciPy package72. Other pre-
processing algorithms commonly used in mid-infrared spectroscopy
like resonant Mie scattering correction73 could be integrated in future.

For visualization, differentiated spectra were interpolated using a
cubic interpolation function. For simplicity, we consider the data
obtained from spectral differentiation, usually given in units of 1/cm−1

(1st derivative) and or 1/cm-2 (2nd derivative), as unit-less.

Feature-selective image segmentation for definition of regions-of-
interest (ROI). A binary image created by a Gaussian Mixture Model
(GGM; two clusters) on the amide peaks usually serves as a mask that
distinguishes tissue from background. For feature-selective image
segmentation, in step1, use case-specific sets of wavenumbers were
defined based on literature or comparison of 2nd derivative data using
multimodal approaches. In step2, k-means clustering for ROIs defini-
tion was utilized on a reduced hyperspectral data cube defined by a
selected set of spectral features, if not stated otherwise. Use case 1 –
segmentation of brain regions in ARSA−/− mice. For the image seg-
mentation process of distinct brain regions, the lipid-associated
spectral features at 1466 cm−1 and 1740 cm−1 were selected, respec-
tively. Use case 2 – 3D cell biculture models: To distinguish CCD
−1137Sk and HT-29 cell lines containing regions in biculture spheroids
by image segmentation, spectral bands at 1466 cm−1 and 1740 cm−1

were selected (Supplementary Fig. 5a). For each monoculture spher-
oid, an individual measurement area was used. In case multiple
spheroids were not spatially separated, individual objects were
recognized utilizing random walker segmentation during final assign-
ment of MSI measurement regions74. Use case 3 – glomeruli in kidney
tissue from mice: For identification of glomeruli-containing tissue
regions, blob-detection was performed on a mean MIR image created
from spectral features of the transmittance data centering around
1726 cm−1 and 1142 cm−1 (1st derivative of transmittance) (Supplemen-
tary Fig. 8c). Initially, the cortex of the kidney was selected by a donut-
shaped binary mask preserving the outline of the tissue region.
Threshold filtering followed by size exclusion and eccentricity filtering
yielded ROIs, the relevance of which was later confirmed by MSI
(Supplementary Fig. 8ab). Typically, values for image thresholds were
in the range of 30–60 (8-bit image), 40–60 and 1000 pixels for the
lower and the upper limits, respectively, of the bandpass filter for size
exclusion (3.5x objective, 4.66 µmpixel size) and 0.94 for eccentricity.
Use case 4 – neurons in mouse spinal cord tissue: Identification of
individual neurons in graymatter of spinal cord samples as in use case
3 with the following modifications: a binary mask of the gray matter
regionwas generated to restrict the blob detection to this specific area
of the spinal cord. The 15x objective was selected for image recording.
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Parameters for blob detection were adopted accordingly. Use case 5 –
kidneys’ inner stripe of outer medulla (ISOM) and inner medulla/
papilla (IMP) in ARSA−/− mice: Image segmentation was performed
using a selected set of characteristic lipid-associated spectral features75

distinct for the accumulation of sulfatide lipids. The following features
were selected: 1466 cm−1 (CH2 bending vibration), 988 cm−1 (Cβ-O
vibration of the 3-sulfogalactosyl head group), 1740 cm−1 (C=O
stretching vibration) as well as the protein-associated features at
1548 cm−1 and 1656 cm−1 (amide II and I bands) (Supplementary Fig. 5b).
Subsequently, k-means clustering was conducted on the reduced and
masked hyperspectral data cube12. The number of clusters k was
directed by calculation of the Calinski-Harabasz-Score implemented in
the yellowbrick package76. For (semi-)quantitative analysis of lipid
accumulation, the MSI signal intensities for 87 sulfatides32 were sum-
med up, and their distribution within the ISOM defined by MSI image
segmentation was deduced for each mouse individually and directly
compared with MIR imaging results using a Z-score representation of
the data (Suppl. Fig. 14). The distribution of 2nd derivative of absor-
bance values was calculated for distinct spectral features at, e.g.,
1466 cm−1. Use case 6 –whitematter and lesions in spinal cord tissue of
control and EAE mice: Second derivatives of spectra were calculated
using a Savitzky-Golay filter with a third-degree polynomial and a
window length of 7. Selected spectral features were 1374 cm−1 (CH3

symmetric bending vibration), 1466 cm−1 (CH2 bending vibration),
1548 cm−1 and 1656 cm−1 (amide II and I bands) and 1740 cm−1 (C=O
stretching vibration). Hyperspectral data was spatially binned (2 × 2)
prior to data import. Selection of white matter lesion ROIs was per-
formed manually after image segmentation (Supplementary Fig. 11).

Transfer of QCL-MIR imaging-defined ROIs to the data acquisition
file of themass spectrometer and teaching. MSI data acquisitionwas
initially set up in flexImaging v7.2/v7.4 (Bruker Daltonics), while using
the whole-slide single 1656 cm−1 wavenumber reference image (trans-
mittance data) to teach theMSdevice. Hereby, the single-wavenumber
image is modified by affine transformation and further used to gen-
erate a data acquisition file (.mis). The corresponding image at
1656 cm−1 from the hyperspectral cube is co-registered with the mod-
ified reference image by means of SimpleITK77 and simple Elastix78

yielding an affine transformation matrix, which is further used to
transfer the ROI information into the frame of the modified image.
Advanced Mattes mutual information was used as a similarity metric
using linear interpolation. QCL-MIR imaging-defined ROIs were further
processed in Python v3.8 to account for use case-specific demands,
e.g. by removal of small holes (all use cases), size reduction (spheroids,
ISOM, IMP) or expansion (glomeruli and neuron) by a layer of one or
twoMALDI pixels using respective functions from the scikit-image and
by an in-house written iterative approach for hole opening to account
for donut-shaped measurement regions (ISOM and IMP)79. For white
matter regions of spinal cord, anerosionoperationwas appliedwith an
erosion factor of 25 on a 4.66 µm pixel-sized single-wavenumber
image. In contrast, neuron-containing regions were expandedby a
factor of 4. Finally, ROIs were imported as polygonal areas into
the.mis file.

Image co-registration formultimodal imaging. Image co-registration
formultimodal data analysis was performed as previously described in
ref. 80. To estimate performance of segmentation/identification of
small objects like glomeruli-containing tissue areas, we compared the
number of identified objects in a multimodal approach, i.e. by calcu-
lation of the number of objects in the intersection of both modalities
(MIR∩MSI) relative to the number of objects unique to eachmodality
(Supplementary Fig. 9). Parameters for blob-detection were optimized
to yield a high ratio between the numbers of objects identified in both
modalities vs. MIR alone. For identification of glomerular regions in
MSI, we applied our previously described concept for spatial

probabilistic mapping of metabolites2 to generate glomerular hot-
spots. For visualization purposes and incorporation of ROIs SCiLS Lab
(Version 2024a Pro, Bruker Daltonics) and the SCiLS Lab API v6.3.115
has been used.

To tissue prevent degradation due to environmental conditions,
the slides were either processed immediately or carefully placed in a
slide mailer, vacuum-sealed and stored at −80 °C for optimal sample
preservation.

MALDI-TIMS-Mass Spectrometry Imaging
Calibration. Prior to MSI data acquisition, external mass and ion
mobility calibration was achieved (via ESI source) using ESI-Low Con-
centration Tuning Mix (Agilent Technologies, Santa Clara, USA) and a
linear calibration model. Final mass calibration via the MALDI source
was performed using red phosphorus (RedP) clusters Pn (n = 13–61 in
intervals of 4) and an enhanced-quadratic calibration model. During
data acquisition, the internal standard (IS) SM4 35:1;O2 (C41H79NO11S,
[M-H]-; m/z 792.530107) was used for internal lock-mass calibration.

MALDI trapped ionmobility spectrometryMSI.MALDI TIMS-MSIwas
carried out on a timsTOF fleX system (Bruker Daltonics) equippedwith
a smartbeam 3D 10 kHz laser and TimsControl 4.1/5.1 and flexImaging
v7.2/v7.4 software (Bruker Daltonics). Data was acquired in negative
ion mode with 240 laser shots per pixel, 2 kHz laser frequency and
lateral step size 20 µm. For the m/z range of 600−1200, the Ion
Transfer parameters were as follows: MALDI Plate Offset 50V,
Deflection 1 Delta −70 V, Funnel 1 RF 350 Vpp, isCID Energy -0.0 V,
Funnel 2 RF 350 Vpp, and Multipole RF 320 Vpp. Collision Cell para-
meters: Collision Energy 8 eV, and Collision RF 1600 Vpp. Quadrupole
parameters: Ion Energy 5 eV, and Low Mass m/z 320. Focus Pre TOF
parameters: Transfer Time 85 µs, and Pre Pulse Storage 10 µs. For
acquisition of full kidney datasets, the qTOF mode was utilized, and
laser frequency was 10 kHz. TIMS-ON-MSI data was acquired in a range
of 0.80–1.87 Vs/cm2, with ramp time 480ms, and accumulation time
120ms (resulting duty cycle 25 %). Tims-offsets: Δt1 (Deflection
Transfer -> Capillary Exit): 20 V; Δt2 (Deflection Transfer -> Deflection
Discard): 120 V; Δt3 (Funnel 1 In -> Deflection Transfer): -80 V; Δt4
(Accumulation Trap -> Funnel 1 in): -100 V; Δt5 (Accumulation Exit ->
Accumulation Transfer): 0.0 V; Δt6 (Ramp Start -> Accumulation Exit):
-100 V; Collision Cell In: -225 V.TIMS-ON-MSI data of glomeruli was
acquired at a lateral step size of 10 µm. Transfer time and pre-pulse
storage were increased to 120 µs and 15 µs, respectively. The range was
adjusted to 1.20–2.05 Vs/cm2, and offsets were as follows: Δt1
(Deflection Transfer -> Capillary Exit): 20.0 V; Δt2 (Deflection Transfer
-> Deflection Discard): 120 V; Δt3 (Funnel 1 In -> Deflection Transfer):
-85 V; Δt4 (Accumulation Trap -> Funnel 1 in): -150 V; Δt5 (Accumula-
tion Exit -> Accumulation Transfer): 0 V; Δt6 (Ramp Start -> Accumu-
lation Exit): -150 V; Collision Cell In: 225 V. TIMS In gas flow was
2.680mbar. For the m/z range of 1200–2000, Funnel RF 1 and Funnel
RF 2 were adjusted to 500 Vpp, Multipole RF to 600 Vpp, Collision
Energy to 10 eV, Collision RF to 2500 Vpp, Low Mass to m/z 620,
Transfer Time to 150 µs, Pre Pulse Storage to 15 µs, and Collision Cell In
to 300 Vpp. Themobility rangewas 1.20–2.30 Vs/cm2. TIMS In gas flow
was 2.100mbar. Acquired CCS values were recalibrated based on a
subset of SM3 acquired with 2.680mbar gas flow.

On-tissue lipid/metabolite fragmentation using iprm-PASEF. Paral-
lel reaction monitoring with parallel accumulation and serial frag-
mentation (prm-PASEF) of lipids/metabolites has so far mainly been
outlined for TIMS-MSwithout spatial resolution55, for LDI-MSI of tattoo
pigments14 and for on-tissue MALDI-MSI fragmentation of bespoke
biomolecules15. Here, we used a prototype version of Bruker software
for spatially resolved imaging prm-PASEF (iprm-PASEF) data acquisi-
tion in them/z range 50–2000with a quadrupole lowmass ofm/z 50, a
collision cell energy of 4 eV and collision RF of 500 Vpp. The laser

Article https://doi.org/10.1038/s41467-025-59839-3

Nature Communications |         (2025) 16:4759 11

www.nature.com/naturecommunications


frequency was 5 kHz, the transfer and the pre-pulse storage times were
65 µs and 8 µs, respectively for kidney ISOM and IMP, and 70 µs and
10 µs, respectively, for glomeruli. Fragmentation energies were modu-
lated for kidney ISOM and IMP (2.680mbar: for 1/k0 = 1.25 Vs/cm2,
collision energy 65 eV; 1.30 and 72; 1.35 and 80; 1.40 and 85; 1.45 and 95;
1.60 and 100. 2.100mbar: 1.50–1.90 and 100; 2.00 and 85, 2.10 and 80,
2.30 and 70), for glomeruli (1.20 and 55; 1.70 and 75; 1.80 and 80), and
for motor neurons and lesions in mouse spinal cord (1.25 and 40; 1.30
and 40; 1.35 and 40; 1.40 and 50; 1.45 and 55; 1.60 and 60). For kidney
samples, all iprm-PASEF data was acquired at lateral step size 40 µm
leading to a total number of <1500pixels ( < 10min acquisition time) for
each IMP and ISOM ROI respectively. For each iprm-PASEF acquisition,
up to a maximum of 15 precursors were analyzed in parallel and over-
laps in their particular mobility traces were ruled out.

Multiplex-MALDI-MS-Immunohistochemistry (IHC) using two PC-
MT antibody probes (pan-cytokeratin (pan-CK) and vimentin) was
carried out as described in ref. 52, with the followingmodifications for
fresh- frozen spheroid sections: 2 × 3min ice-cold acetone, 30min 1%
paraformaldehyde fixation; 10min PBS; 2×3min acetone; 3min Car-
noy’s solution; 2 × 2min 100% ethanol, 3min 95% ethanol, 3min 70%
ethanol, 3min 50% ethanol and 10min TBS. Antigen retrieval (100x
Tris-EDTABuffer, pH9)wasperformed for30minusing awater bath at
95 °C in a coplin jar (VWR Chemicals). Spheroid sections were blocked
withTissueBlockingBuffer (2% (v/v) normalmouse serumand5% (w/v)
BSA in TBS-octyl-beta-glucoside (OBG; 0.05% (w/v)). For the PC-MT
antibody treatment, the slide was incubated with 3 µg/mL of pan-CK
and 2 µg/mL of vimentin each antibody diluted in Tissue Blocking
Buffer at 4 °C overnight in a humidified, light-protected environment.
Next, the slide was washed with 3 × 5min TBS; 3 × 2min 50mM
ammonium bicarbonate, and dried in a vacuum desiccator for 2h.
Probes were photo-cleaved at 365 nm for 10min in a UV illumination
box (AmberGen) and α-CHCA MALDI matrix was applied. Data was
acquired using a timsTOF fleX mass spectrometer. PC-MTs were ana-
lyzed in qTOFmodewith the following ion transfer parameters:MALDI
Plate Offset 30 V, Deflection 1 Delta 80 V, Funnel 1 RF 500 Vpp, isCID
Energy ZA0.0 V, Funnel 2 RF 500 Vpp, andMultipole RF 1200 Vpp. The
CollisionCell parameterswere: Collision Energy 25 eV, andCollisionRF
4000 Vpp. The quadrupole parameters were: Ion Energy 15 eV, and
LowMassm/z900. The Focus PreTOFparameters were: Transfer Time
140 µs, and Pre Pulse Storage 10 µs.

Analysis of MALDI-MS Imaging data
Selection of hypothetical sulfatide configurations. Based on pre-
vious empirical data32, we considered the fatty acid compositions from
32:x to 46:x, with x =0,1,2,3 for O2,O3 and x = 0,1 for O4, and six lyso-
sulfatide compositions as potentially detectable with our MSI settings,
resulting in a total number of 156 theoretical compositions for each
sulfatide subclass.

Classification of sulfatide peaks in qTOF mode. Each sulfatide peak
that showed at least one additional peak within a mass window of
±1.1 Da that exceeded the intensity of the first sulfatide isotope peak
was classified as “non-clean”, since this “interfering” peak would pre-
vent an unequivocal assignment of an on-tissue MS2 spectrum (Sup-
plementary Fig. 18c). Sulfatide peaks without interfering peaks were
classified as “clean” (Supplementary Fig. 18a). Classification of sulfatide
peaks in TIMS-ON mode: Each sulfatide peak that shows a colocalizing
peakwithin amasswindow of ±1.1Da and amobility windowof ±0.005
Vs/cm² that exceeds the intensity of thefirst sulfatide isotopepeakwas
classified as non-clean, since this interfering peak would prevent a
clear assignment of an iprm-PASEF spectrum. Sulfatide peaks without
interfering peaks were classified as clean. TIMS-MSI: CCS values
obtained from QCL-MIR imaging-guided MSI of four biological repli-
cates were averaged and the standard deviation was calculated and
given as uncertainty. To obtain CCS values from prediction tools

AllCCS234, DeepCCS36 and LipidCCS61, simplified molecular input line
entry specification (SMILES) strings were provided to these tools. All
chemical structures and all SMILES strings were generated in Chem-
Draw 21.0.0.38 (PerkinElmer, Waltham, US). To benchmark the pre-
dicted values CCSpred: against experimental values CCSMSI, the mean
relative deviation �ε in % was calculated by

�ε= 100 �
CCSMSI � CCSpred:
�
�
�

�
�
�

CCSMSI :

For the evaluation of relative differences in CCS values, e.g., of the
degree of glycosylation in the sulfated head group and the
α-hydroxylation of the N-acyl-linked FA in sulfo-glycosphingolipids, a
global least square model fitting was applied. Hereby, a 2nd order
polynomial fit was performed by keeping the amplitudes of the linear
and quadratic termfixed, parallel linemodel, when describing the data
for two (or three) similar sulfatide subclasses, e.g., SM3 18+n:1;O2 and
SM4 18+n:1;O2. On the level of our experimental accuracy, we found
that this parallel line model can be applied to describe the data for
similar subgroups, enabling us to deduce relative contributions of
chemical modifications to CCS values.

LC-TIMS-TOF-MS
Sulfatides extraction fromARSA−/− kidney tissues. Two 12-week-old
and two 60-week-old ARSA−/−, two heterozygous (ARSA+ /-) and two
wild-type (ARSA+ /+) kidney samples underwent two rounds of
homogenization for 30 seconds each using 400μL of 200mMNa2CO3

(pH=9.3). Subsequently, all samples were subjected to overnight
freeze-drying at -56 °C and 1mbar.

The extraction of kidney tissues was carried out utilizing a mod-
ified Folch method. Kidney tissues, spiked with 5μL GM3-d5
(100 μg/ml in methanol) and 5 μL SM4 35:1;O2 (100 μg/mL in chloro-
form/methanol, 2:1[v/v]) as internal standards, were mixed and soni-
cated with 9mL of chloroform/methanol (2:1[v/v]) for 15min.
Subsequently, 840 μL of water was added, and the resulting mixture
was thoroughlymixed before being centrifuged at 3000 rpm for 5min
at RT. The chloroform layer at the bottom was collected and evapo-
rated using a streamof nitrogen. Finally, the sampleswere re-dissolved
in 200μL methanol/water (4:1[v/v]).

LC-TIMS-MS. 4D LC-TIMS-MS experiments were conducted using
timsTOF PRO instrument interfacedwith an Elute UHPLC system (both
Bruker Daltonics). Analysis of sulfatides was performed in negative ion
mode. The LC-TIMS-MS method was adapted from the protocol of
Lerner et al. (2023)56 with modifications. The LC column was a C18

Kinetex column (100 × 2.1mm× 2.6μm) (Phenomenex, Germany). The
PASEF scan mode was performed on a mass scan range of m/z
200–2000 Da for both MS and MS2 acquisition. The collision energy
was 90 eV.

Statistics and reproducibility
Experiment visualized in Fig. 1e–g were conducted for each biological
replicate as demonstrated in Supplementary Figs. 9, 11 and 13.
Experiments presented in Fig. 4a, b, d were conducted for n = 3 bio-
logical replicates and n = 3 technical replicates as highlighted in Sup-
plementary Fig. 34.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Extensive data (4D-LC-TIMS-MS; TIMS-MSI data including fragment
elucidation and images) is provided as Supplementary Data. MALDI
MSI data is available through the Metaspace portal (https://

Article https://doi.org/10.1038/s41467-025-59839-3

Nature Communications |         (2025) 16:4759 12

https://metaspace2020.org/project/gruber-2025
www.nature.com/naturecommunications


metaspace2020.org/project/gruber-2025).MIR imagingdata (rawdata
files) and MSI data (iprm-PASEF data files) acquired in this study have
been deposited in Zenodo under accession code https://zenodo.org/
uploads/15209646. Processed data are available upon request from
the corresponding author C.H. Source data are provided with
this paper.

Code availability
The source code and an executable file of the underlying software tool
is publicly available on GitHub. https://github.com/CeMOS-Mannheim/
QCL_MIR_guided_MSI.
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