
Article https://doi.org/10.1038/s41467-025-59890-0

In depth transcriptomic profiling defines
a landscape of dysfunctional immune
responses in patients with VEXAS syndrome
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Fernanda Gutierrez-Rodrigues1, Massimiliano Bissa 2, Xingmin Feng1,
Emma M. Groarke 1, Haoran Li 1, Lemlem Alemu1, Diego Quinones Raffo1,
Ivana Darden1, Sachiko Kajigaya1, Peter C. Grayson3, Genoveffa Franchini 2,
Neal S. Young1,5 & Bhavisha A. Patel1,5

VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome
is caused by inactivating somatic mutations in the UBA1 gene. Here, we char-
acterize the immunological landscape of VEXAS syndrome by performing
multi-omics single-cell RNA analysis, cytokine multiplex assays, and in vitro
functional assays on patients’ peripheral blood. Our data reveals a broad
immune system activation with upregulation of multiple inflammatory
response pathways and proinflammatory cytokines. Unexpectedly, we find
that monocytes have dysfunctional features irrespective of UBA1 mutation
status, exhibiting impaired efferocytosis and blunted cytokine production
in vitro. In contrast, UBA1-mutated NK cells show an upregulation of the
inflammation pathways and enhanced cytotoxicity. Within the lymphocyte
subsets, predominantly UBA1 wild-type, we identify clonal expansion of
effector memory CD8+ T cells and skewed B cell differentiation with loss of
transitional B cells and expansion of plasmablasts. Thus, our analysis indicates
that VEXAS syndrome is characterized by profound alterations in both adap-
tive and innate immune systems, accounting for the complex pathophysiology
of the disease, and provides a basis to understand the marked clinical het-
erogeneity and variable disease course.

VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory and
Somatic) syndrome is a newly described adult-onset autoinflammatory
disease1. VEXAS is caused by inactivating somatic mutations in UBA1,
an X-chromosome gene encoding ubiquitin-like modifier-activating
enzyme 1 (UBA1) essential for cellular ubiquitylation in the ubiquitin-
proteasome pathway. It is found in 1 of 4269men older than 50 years2.

In VEXAS, a reduction of the cytoplasmic UBA1 isoform by somatic
UBA1 mutations decreases the efficiency of endoplasmic reticulum (ER)

associated protein degradation1. Imbalanced cellular proteostasis and
accumulation of unfolded proteins cause excessive cytokine production
and intrinsic autoinflammation. VEXAS patients have a wide range of
multisystem inflammatory manifestations, including recurrent fever,
relapsing polychondritis, vasculitis, pneumonitis, orbital inflammatory
syndrome, and Sweet syndrome3–6. Hematological abnormalities resem-
bling myelodysplastic syndrome, as well as plasma cell dyscrasia, and
thromboembolic disease are also frequently observed7–9.
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The original VEXAS report described the upregulation of inflam-
matory pathways in neutrophils and monocytes and the activation of
the unfolded protein response (UPR) pathway in myeloid cells1. We
recently showed that UBA1-mutated (mtUBA1) bone marrow (BM)
myeloid cells upregulatemultiple inflammatory response pathways, as
compared to wild-type UBA1 (wtUBA1) cells, indicating that autoin-
flammation in VEXAS is initiated by mtUBA1 hematopoietic stem and
progenitor cells (HSPCs)10.

In VEXAS, somatic UBA1 mutations occur in the hematopoietic
stem cells (HSC), but they are ultimately restricted to mature myeloid
cells in peripheral blood (PB), such as neutrophils and monocytes.
Conversely, mature T and B lymphocytes, and natural killer (NK) cells
are rarely mtUBA111. All these lymphoid cells are decreased in the PB of
VEXAS patients, implying wtUBA1 lymphoid cells may not be actively
involved in the pathophysiology of VEXAS. However, plasma cell dys-
crasias and monoclonal B cell lymphocytosis are observed in patients
despite decreasedB-lineage cells and the absenceofUBA1mutations in
those cells7. In addition, T cells appear to be clonally expanded in
the BM10.

In this study, we use single-cell multi-omics to comprehensively
describe immunological features of VEXAS syndrome. In addition, we
employ genotyping of transcriptomes (GoT) to link genetic variation
to single-cell transcriptomes. Our result reveals a broad immune sys-
tem activation, with upregulation of multiple inflammatory response
pathways in disease. Dysfunctional transcriptional features are present
in VEXAS monocytes, irrespective of their UBA1 mutation status.
mtUBA1 NK cells present with an increased inflammation signature of
enhanced cytotoxicity. Among lymphocyte subsets, predominantly
wtUBA1, we identify clonal expansion of effector memory CD8+ T cells
and skewed B cell differentiation, with loss of transitional B cells and
expansion of plasmablasts. In VEXAS, systemic inflammation is driven
by innate and adaptive immune dysregulation, including bothmtUBA1
and wtUBA1 cells.

Results
Study design and single-cell RNA profiling of PB immune cells
Froma VEXAS cohort of 56 patients prospectively evaluated at the NIH
Clinical Center, nine patients (all males, median age 70 [range, 60–74])
and five age- and sex-matched healthy donors (all males, median age
66 [range, 61–70])were studiedbymulti-omics single-cell RNAanalysis
(Fig. 1a). PB mononuclear cells (PBMC) isolated from these individuals
were subjected to single-cell RNA sequencing (scRNA-seq) and single-
cell T cell receptor/B cell receptor sequencing (scTCR/BCR-seq) using
the 10x Genomics platform, followed by various bioinformatics ana-
lyses using high-quality immune cells obtained from VEXAS patients
(125,806 cells) and healthy donors (52,362 cells). Details of patients’
characteristics are provided in Supplementary Data 1. Consistent with
previous reports1,4,5, patients were cytopenic, with prominent macro-
cytic anemia, thrombocytopenia, monocytopenia, and lymphocyto-
penia (Fig. 1b).

Ten major cell subtypes were identified in VEXAS patients and
healthy donors by Granulator (v1.12.0)12 based on scRNA-seq gene
expression profiles: CD4+ and CD8+ T cells, B cells, plasmablasts, nat-
ural killer (NK) cells, mucosal-associated invariant T cells (MAIT),
gamma delta T cells (gdT), monocytes, neutrophils, and dendritic cells
(DC) (Fig. 1c, d and Supplementary Fig. 1a, b). GoT libraries were
constructed from cDNA samples with UBA1 p.M41 mutations (n = 8;
VEXAS 9-15,17) using a previously described method with some
modifications13. Since GoT was employed to identify UBA1 mutations
within cDNA libraries from VEXAS patients and was not suitable for
detection of splice site mutations, GoT library was not constructed
from healthy donors or VEXAS 16, who has a UBA1 mutation at a spli-
cing site (c.118-1G). While the cb_sniffer analysis14 of the 10x gene
expression data detected UBA1 transcripts in only 4.9% cells, the GoT
approach identified UBA1 transcripts in 16.8% cells (19,542 out of

116,547 cells) (Fig. 1e and Supplementary Fig. 1c, d; Supplementary
Data 2). mtUBA1 transcripts were enriched inmonocytes, DCs, and NK
cells, but absent in B and T cells (Fig. 1f and Supplementary Fig. 1e;
Supplementary Data 2), consistent with our previous single-cell DNA
sequencing data of PB from VEXAS patients11.

Altered cellular profiles in VEXAS patients
PBMC composition in the scRNA-seq data of VEXAS patients was
abnormal. Compared to healthy donors, differential abundance ana-
lysis showed that VEXAS patients had prominently increased plasma-
blasts and moderately higher CD8+ and CD4+ T cells, while NK cells,
MAITs, DCs, and B cells were decreased (Fig. 2a, b and Supplementary
Fig. 2a). Many genes related to the inflammatory response pathways
were differentially upregulated in VEXAS, particularly in the IFN-α, IFN-
γ, and TNF response pathways (Supplementary Fig. 2b). UMAP
embedding of gene module scores showed that the IFN-α response
pathwaywas uniformly upregulated in all major cell subtypes; the IFN-
γ and TNF response pathways were predominantly upregulated in
CD8+ T, NK cells, and monocytes in VEXAS patients (Fig. 2c). Gene
module scores of the IFN-α, IFN-γ, and TNF response pathways were
significantly higher in most cell subtypes of VEXAS than in cells from
healthy donors (Fig. 2d).

Cell activation of different immune cell types in VEXAS was
associatedwith increased upregulation of ligand-receptor interactions
involved in inflammation and cell adhesion; ligand-receptor interac-
tions included IL18-IL18R1, IL1B-IL1R2, and THBS1-ITGB1. Ligands and
receptors were coordinately upregulated among innate immune cells
(monocytes, DCs, and NK cells) and adaptive immune cells, such as
CD8+ T and B cells (Fig. 2e).

Broad immune cell activation in VEXAS translated to increased
pro-inflammatory cytokines in plasmaof patients. As expected, IL-6, IL-
18, IFN-γ, and TNF expression levels were higher in VEXAS than in
healthy donors. Expression of chemokines including CXCL5, CXCL6,
and MCP4 was lower in VEXAS (Fig. 2f and Supplementary Fig. 2c). By
principal component analysis (PCA), there was clear separation of
plasma cytokine expression patterns in VEXAS from healthy donors
(Supplementary Fig. 2d).

Dysfunctional monocytes in VEXAS
To explore innate immune cell states in VEXAS, 24,887monocytes and
704 DCs were isolated (after excluding contaminated small cell clus-
ters). Cells were subclustered into five subtypes, including classical
monocytes, intermediate monocytes, non-classical monocytes, con-
ventional DCs (cDC), and plasmacytoid DCs (pDC), based on tran-
scriptional profiles of sortedbulkdata sets andexpressionof canonical
monocyte/DC gene markers. (Fig. 3a and Supplementary Fig. 3a)15.
Differential abundance analysis showed cDCs, pDCs, and non-classical
monocytes to be significantly reduced in VEXAS (Fig. 3b, c), consistent
with previous reports1. VEXASmonocytes showed downregulated HLA
class II genes and upregulated alarmin-related S100A genes (Fig. 3d;
Supplementary Data 3). Gene set enrichment analysis (GSEA) of
monocytes and cDCs from VEXAS (pDCs were removed due to a low
number of cells in cases) showed upregulation of multiple inflamma-
tory response and apoptosis pathways across all cell subtypes com-
pared to those from healthy donors (Fig. 3e).

Although none of the patients had active bacterial infection at the
time of blood collection, a gene expression profile of monocytes from
VEXAS (increased alarmin-related S100A gene and decreased HLA
class II gene expression) was similar to that of dysfunctional mono-
cytes that have been described in severe sepsis16. Integration of our
scRNA-seq data with published scRNA-seq data derived from mono-
cytes of patients withmultisystem autoimmune inflammatory diseases
[including systemic lupus erythematosus (SLE), microscopic poly-
angiitis (MPA), and Behcet’s disease (BD)]17–19 was performed to com-
pare relative expression levels of HLA class II genes, sepsis-associated
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monocyte signature genes16, and genes related to S100A alarmins and
inflammatory responses across different autoimmune diseases. We
observed pronounced decreases in HLA class II gene module scores,
increases in sepsis-associated monocyte signature gene and alarmin-
related S100A gene scores in VEXAS, when compared to those in
healthy donors and in other autoimmune diseases (Fig. 3f and Sup-
plementary Fig. 3b). In contrast, genemodule scores for the IFN-α, IFN-

γ, and TNF response pathways were similar among VEXAS and other
autoimmune diseases (Supplementary Fig. 3b).

To investigate whether monocytes dysregulation in VEXAS was
specific to mtUBA1 cells, GoT analysis was employed to identify UBA1
transcripts, resulting in detection of UBA1 transcripts in 1632 out of
16,821 monocytes (651 mtUBA1 and 981 wtUBA1 monocytes) (Fig. 3g).
mtUBA1monocytes were evenly distributed in all monocyte subtypes,
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and a ratio of mtUBA1 monocytes along pseudotime trajectories was
similar to that of wtUBA1 monocytes (Fig. 3h and Supplementary
Fig. 3c). Gene module scores of the apoptosis pathway in wtUBA1
monocytes tracked by pseudotime were similar to those of mtUBA1
monocytes, and both were higher than for monocytes from healthy
donors (Supplementary Fig. 3d). Unexpectedly, there were very few
differentially expressed genes between mtUBA1 and wtUBA1 mono-
cytes; no differences were observed in both the sepsis-associated
monocyte signature gene and HLA class II gene module scores, sug-
gesting a global dysfunctional gene signature of VEXAS monocytes,
irrespective of the UBA1 genotype (Supplementary Fig. 3e, f; Supple-
mentary Data 3).

To functionally validate monocyte dysregulation, we measured
efferocytosis, a process by which apoptotic cells are removed by
“professional” phagocytic cells20, using CD14+ monocytes isolated
from an additional six VEXAS patients and six healthy donors (Sup-
plementary Data 1). After induction of apoptosis with Staurosporine,
CSFE-labeled apoptotic “bait” neutrophils from an unrelated healthy
donor were fed to “effector” monocytes (Supplementary Fig. 4a, b).
Monocytes fromVEXAS patients exhibited a significant decrease in the
frequency of CSFE+ apoptotic cell uptake (Fig. 3i and Supplementary
Fig. 4b), indicating impaired efferocytosis. Additionally, cytokine
responses of monocytes from VEXAS patients measured after lipopo-
lysaccharide (LPS) stimulation showed significantly blunted cytokine
release relative to those from healthy donors (Fig. 3j and Supplemen-
tary Fig. 4c). Blunted cytokine production by monocytes from VEXAS
patients was also observed after stimulation with other toll-like
receptor (TLR) ligands (Supplementary Fig. 4d), demonstrating that
monocytes of VEXAS patients were functionally impaired.

Inflammatory mtUBA1 NK cells in VEXAS patients
Despite the absence of UBA1 mutations in B and T cells, some VEXAS
patients have small fractions of mtUBA1 NK cells in PB11. To elucidate
NK cell features in VEXAS, 11,846 NK cells were subclustered into four
subsets, including CD56bright, early CD56dim, CD56dim, and adaptive-like
NK cells, according to previously published transcriptional signatures
of NK cells (Fig. 4a)21. The adaptive-like NK cells featured high
expression of CD3E, LAG3, and IL-32with no expression of FCER1G and
TCRs, consistent with published scRNA-seq data (except for low
expression of KLRC2/NKG2C, the canonical markers for adaptive NK
cells after human cytomegalovirus (HCMV) infection) (Supplementary
Fig. 5a, b)21,22. Differential abundance analysis identified elevated
adaptive-like NK cells in VEXAS (Fig. 4b, c); flow cytometry confirmed
the scRNA-seq data (Supplementary Fig. 5c, d).

GoT analysis clarified NK cell features linked to UBA1 mutations:
UBA1 transcripts were identified in 669 out of 3867 NK cells (125
mtUBA1 and 574 wtUBA1 NK cells) (Fig. 4d). In contrast to monocytes,
we observed progressive loss of mtUBA1 NK cells along pseudotime
trajectories (Fig. 4e and Supplementary Fig. 5e). Upregulation of gene
pathways associated with inflammation and apoptosis were seen
across all NK subtypes in VEXAS (Fig. 4f), but differences of gene
module scores of those gene pathways between patients and healthy
donors decreased with differentiation (Supplementary Fig. 5f), indi-
cating that upregulation of the inflammatory and apoptosis pathways

was dependent on a proportion of mtUBA1 cells in each NK cell sub-
type. When gene expression levels were compared between mtUBA1
and wtUBA1 NK cells, genes associated with the interferon response
pathways (IFITM1, IFITM2, and AREG) and the TNF response pathway
(TNFRSF4, TNFRSF18, and IL2RB) were enriched in mtUBA1 NK cells
(Fig. 4g; Supplementary Data 4). In comparison of genemodule scores
between mtUBA1 and wtUBA1 NK cells, there was cell-intrinsic upre-
gulation of the inflammatory and cytotoxic activity pathways with
enhanced apoptosis in mtUBA1 NK cells (Fig. 4h).

Clonal expansion andactivationof effectormemoryCD8+Tcells
in VEXAS
To better characterize T cells in VEXAS, 128,236 T cells were sub-
clustered according to transcriptional profiles of sorted bulk data sets
and expression of canonical T cell gene markers23. Ten T cell subtypes
were identified: naïve CD4+ T cells, central memory CD4+ T cells,
effectermemory CD4+ T cells, naïveCD8+ T cells, centralmemoryCD8+

T cells, effecter memory CD8+ T cells, MAIT, gdT, proliferative T cells
(proT), and regulatory T cells (Treg) (Fig. 5a and Supplementary
Fig. 6a). By differential abundance analysis, frequencies of central and
effector memory CD8+ T cells, and Treg were elevated, and effector
memory CD4+ T cells and MAIT were reduced (Fig. 5b, c).

scTCR-seq based on scRNA-seq libraries identified 119,850 cells with
productive TCRs (Supplementary Fig. 1b). V(D)J sequences of TCR
repertoireswere analyzed to assess clonal relationships among individual
T cells. In almost all T cell subsets, more than 60% of cells expressed
TCRs, except forMAIT and gdT subsets (Fig. 5d). Large clonal expansions
were observedparticularly in effector CD8+ T cells andmorepronounced
in VEXAS patients than in healthy donors (Fig. 5d, e). We determined
T cells clonal expansion index by both the Gini index (a measure of the
“unevenness” of the number of RNA molecules per unique VDJ region
sequence) and the Shannondiversity index (ameasureof theunevenness
of unique VDJ region sequences per clone). CD8+ T cells from VEXAS
patients had higher Gini index and lower Shannon diversity index com-
pared to those from healthy donors, indicating restricted TCR usage in
CD8+ T cells in VEXAS (Fig. 5f). Examination of CDR3 homology, which
might implicate a potential common antigen, showed little sharing of
TCR clones among VEXAS patients, or with healthy donors (Supple-
mentary Fig. 6b).WhenGLIPH224, an algorithm for clustering TCRs based
on amino-acid level similarities, was used to identify common TCR
groups and differential abundance in VEXAS, no TCR groups specific to
VEXAS were found (Supplementary Data 5). Thus, TCR usage in VEXAS
wasprivate rather thandisease-specific; no shared target antigens driving
clonal expansions of CD8+ T cells in VEXAS were identified.

Immune response pathways, especially the IFN-γ response
pathway, were upregulated across CD8+ T cell subtypes in VEXAS
patients, all mostly wtUBA1 (Supplementary Fig. 6c). Genes rela-
ted to the IFN-γ response pathway, T-cell mediated cytotoxicity,
and T cell exhaustion were upregulated along pseudotime tra-
jectories, more prominent in VEXAS patients than in healthy
donors (Fig. 5g and Supplementary Fig. 6d). Expanded CD8+ T cell
clones, defined as >20 cells with identical CDR3 sequences,
showed higher IFN-γ response, T-cell mediated cytotoxicity, and
exhaustion scores than did expanded reactive CD8+ T cells from

Fig. 1 | Multi-omics single-cell sequencing analysis of PBMCs from VEXAS
patients and healthy donors. a Overview of the experimental workflow. A figure
was created with BioRender. Mizumaki, H. (2025) [https://BioRender.com/
n37z398]. b Hemoglobin levels (HGB), platelet counts (PLT), white blood cell
counts (WBC), neutrophil counts, monocyte counts, B cell counts, NK cell counts,
and T cell counts from VEXAS patients (n = 9). Background shading shows a normal
reference range for each parameter. Data are presented as mean and SD. c A Uni-
formManifold Approximation and Projection (UMAP) plot of 178,168 cells from all
subjects (n = 14, left). UMAP plots of 125,806 peripheral blood mononuclear cells
(PBMCs) derived from VEXAS patients (n = 9, upper right) and 52,362 PBMCs

derived from healthy donors (n = 5, lower right). Leiden clusters based on 5’ gene
expression are shown and colored by major cell types. d A violin plot showing
expression distributions of selected canonical marker genes in 10major cell types.
Rows and columns represent selected marker genes and cell types, respectively.
e A UMAP plot of cells with projected mutation status assignment for wild-type
UBA1 (wtUBA1; n = 18,140 cells) and mutated UBA1 (mtUBA1; n = 1402 cells). f Nor-
malized frequency of mtUBA1 cells in major cell types. Cell types with more than
100 cells were analyzed. gdT gamma delta T cells, MAIT mucosa-associated invar-
iant T cell. Source data are provided as a Source Data file.
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healthy donors (Supplementary Fig. 6e), indicating more pro-
nounced adaptive inflammatory response.

Clonal expansion and skewed differentiation of B-lineage cells
in VEXAS
Plasma cell dyscrasias, monoclonal B cell lymphocytosis, and multiple
myeloma are common in VEXAS patients, even though VEXAS patients

commonly exhibit B cell lymphocytopenia and their B cells rarely
harbor the UBA1 mutations1,11. To further define B cell features in
VEXAS, 11,335 B cells were subclustered into six subsets including
naïve, IgM memory, classical memory, double negative, and plasma-
blasts, according to previously reported transcriptional profiles of
sorted bulk data sets and the expression of canonical gene markers
(Fig. 6a and Supplementary Fig. 7a)25. Differential abundance analysis
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identified prominent decreases in transitional B cells and naïve B cells,
and an increase in plasmablasts in VEXAS patients (Fig. 6b, c); flow
cytometry confirmed the scRNA-seq data (Fig. 6d and Supplementary
Fig. 7b, c). scBCR-seq identified 9799 cells with productive BCRs
(Supplementary Fig. 1b). Increased numbers of expanded BCR clono-
typeswere found in VEXASpatients, especially in plasmablasts, relative
to healthy donors (Fig. 6e, f). When V(D)J gene usage was compared
between VEXAS and healthy donors, therewas no obvious bias in IGHV
gene usage in B cells in disease (Supplementary Fig. 7d).

scBCR-seq data were analyzed for Ig repertoires. Various immu-
noglobulin (Ig) isotypes distributions (IgA, IgD, IgG, and IgM, but not
IgE) and their somatic hypermutations (SHM)were evaluated in each B
cell subtype; transitional B cell populations were excluded from ana-
lysis due to the extremely small numbers in patients. Consistent with
the canonical gene profile, Ig sequences expressed by naïve B cells
were IgDor IgM in isotypeswith lowSHM(mutation frequency≤ 3%) or
no SHM (Fig. 6g and Supplementary Fig. 7e, f). Memory B cells
expressed Igs of a diverse array of isotypes, including IgA1, IgA2, IgG1,
IgG2, IgG3, IgM, and to a lesser extent IgD with high SHM (mutation
frequency > 3%).

While differences in isotype distributions of both IgM and classi-
cal memory B cells were modest between VEXAS patients and healthy
donors, a higher level of SHM was observed in IgM memory B cells
from VEXAS patients in comparison to healthy donors (Fig. 6g and
Supplementary Fig. 7f, g). A small proportion of transcriptionally-
defined IgMmemory B cells expressed non-IgM Igs, and differences in
SHM were still evident even analyzing only IgM-expressed memory B
cells (Supplementary Fig. 7h). In contrast to the modest differences in
isotype distributions observed in naïve and memory B cells, plasma-
blasts in VEXAS exhibited significant IgG bias with highSHM compared
to those in healthy donors (Fig. 6g and Supplementary Fig. 7g).

Transcriptional features of plasmablasts from VEXAS patients,
largely wtUBA1, were further assessed, identifying significant upregu-
lation of genes involved in protein processing in ER, the ER stress
response pathways (such as MTOR1 signaling and the UPR pathway),
and the cell-cycling pathways in VEXAS in comparison to healthy
donors (Fig. 6h). These results indicate enhanced antibody production
and cell-proliferation in plasmablasts from VEXAS patients.

In summary, VEXAS B cells were characterized by skewed differ-
entiation frommemory B cells toward amature phenotypewith loss of
transitional B cells and increased plasmablasts displaying a significant
IgG bias, high SHM, and upregulation of protein processing genes.

Discussion
VEXAS is a clonal myeloid disease with heterogeneous systemic man-
ifestations that overlap many established hematological and rheuma-
tologic diseases. While inflammation remains themain presentation in
those with canonical UBA1mutations, there is variability in the organs
involved, glucocorticoid requirements, response to biologic therapies,
as well as overall disease course among patients. Besides genotype-

phenotype associations based on residual cytoplasmic UBA1b
isoform11, there is little explanation for variable penetrance and target
organ involvement in VEXAS. Mutations in UBA1 disturb critical path-
ways in cellular homeostasis. Indeed, UBA1 mutations are tolerated
differently by different cellular compartments in the marrow and have
distinct effects on functionality26,27. In this study, we aimed to assess
contributions ofmature innate and adaptive immune cells to disease in
VEXAS using multi-modal single-cell techniques.

VEXAS patients presented a broad immune activation with upre-
gulation of inflammatory response pathways in all PB cell types, irre-
spective of the UBA1 genotype, as well as increased levels of pro-
inflammatory cytokines. Both wtUBA1 and mtUBA1 monocytes in
VEXAS exhibited dysfunctional transcriptional features. Functionally,
thesemonocytes showed impaired efferocytosis and blunted cytokine
production. Despite progressive loss in PB, mtUBA1 NK cells also
showed upregulation of genes associated with inflammatory response
and cytotoxicity pathways. T and B cell compartments were char-
acterized by clonal expansion of CD8+ effector memory T cells with
high cytotoxicity and exhaustion levels, and increased clonal plasma-
blasts with enhanced antibody production and cell proliferation,
respectively.

In VEXAS, mature myeloid cells, including neutrophils, mono-
cytes, and DC cells, are largely mtUBA1 and expected to be the main
drivers of systemic inflammation. Although both neutrophils and
monocytes harbor UBA1 mutations, in the marrow, there is a differ-
entiation bias towards neutrophils over monocytes with increased
expression in the CEBPA master transcription factor and decreased
expression in IRF810; with notable monocytopenia in 30% of patients7.
Consistent with a previous report26, in PB, DCs were severely
decreased, and monocytes, despite of a pro-inflammatory transcrip-
tional profile with upregulation of multiple immune response path-
ways, were dysfunctional. Monocytes from VEXAS patients had a
distinct but overlapping transcriptional signature with severe sepsis
and other autoimmune diseases; HLA class II genes were down-
regulated while alarmin-related S100A genes were upregulated. Most
of the patients in the scRNA-seq cohort were in the late phase of their
disease (median time from symptom onset was 7.1 [range, from 1.9 to
10.1] years), and prolonged inflammation itself may have diminished
the capacity of VEXAS monocytes to release proinflammatory cyto-
kines in response to additional exposure to stimuli, despite intrinsi-
cally upregulated immune response pathways. Despite dysfunctional
features, monocytes were highly interactive with other immune cells,
as inferred computationally from ligand-receptor interactions.

Efferocytosis was blunted in monocytes from patients, irrespec-
tive of UBA1 mutation status. Efferocytosis is critical for tissue home-
ostasis, and defective efferocytosis results in the accumulation of
apoptotic cells, secondary necrosis, and release of pro-inflammatory
cellular contents such as damage-associated molecular patterns
(DAMP)20. Inadequate efferocytosis may be another pathogenic con-
tributor to inflammation in VEXAS.Quantitative andqualitative defects

Fig. 2 | Compositional changes and activation of the inflammatory pathways in
immunecells fromVEXASpatients. aAneighborhoodgraph of PBMCsusingMilo
differential abundance testing. Nodes represent neighborhoods from the PBMC
population. A color scale indicates log2-fold change (FC) differences between
VEXASpatients andhealthy donors. Significant changes are colored in blue and red.
Nondifferential abundance Nhoods (a false discovery rate [FDR] ≥ 0.10) are indi-
cated in white. b Beeswarm and box plots showing the distribution of log2FC
differences between VEXAS (n = 9) and healthy donors (n = 5) in neighborhoods in
different cell type clusters. Colors are represented similarly to (a). A box plot shows
median and interquartile ranges (IQR); lower and upper hinges correspond to the
first and third quartiles, respectively. An upper whisker extends from the hinge to
the largest value no further than 1.5*IQR from the hinge. A lower whisker extends
from the hinge to the smallest value at most 1.5*IQR from the hinge. c UMAP plots
overlaid with projections of the IFN-α, IFN-γ, and TNF response pathway gene

module scores.dGenemodule scores of IFN-α, IFN-γ, andTNF responses in PBMCs.
A heatmap depicting differences between average scores of VEXAS patients and
those of healthy donors in each of 10 cell types. Gene module scores of cells of
VEXAS patients were compared to those of healthy donors in each cell type using
the two-sided Welch’s t-test and shown as *P < 1.0 × 10–10, **P < 1.0 × 10–100. e Pre-
dicted ligand-receptor interactions of significantly upregulated genes in VEXAS
patients as compared to healthy donors. f A volcano plot displaying normalized
protein expression of cytokines in plasma measured by the Olink Target 96
Inflammation panel immunoassay. The plot shows 92 plasma cytokines differen-
tially expressedbetweenVEXASpatients andhealthydonors. x and y axes represent
amagnitudeof a cytokine’s log2FC and a significance scale by the -log10 (p adjusted
[padj]), respectively. A black dotted line indicates padj = 0.05. Significantly dysre-
gulated cytokines are highlighted in red. gdT gamma delta T cells, MAIT mucosa-
associated invariant T cell. Source data are provided as a Source Data file.
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in monocytes may also explain the increased risk of opportunistic
serious infections by intracellular pathogens, such as atypical myco-
bacterial infections and legionellosis, in VEXAS28–31.

In contrast to monocytes, UBA1 mutations directly impacted the
transcriptional profile of a subset of NK cells. NK cells originate from
lymphoid progenitors, but they participate in cytolytic innate and
antigen-specific adaptive immune responses32. Similar to mtUBA1

lymphoid progenitor cells10, mtUBA1 NK cells progressively decreased
withdifferentiation compared towtUBA1NKcells. Comparisonofgene
expression between mtUBA1 and wtUBA1 NK cells uncovered elevated
expression of the inflammatory and cytotoxic pathways inmtUBA1 NK
cells. CD56bright NK cells, efficient cytokine producers, were mostly
mtUBA1 and could also contribute to auto-inflammation in VEXAS. In
contrast, adaptive-like NK cells, mostly wtUBA1, were expanded in
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VEXAS compared to healthy donors, but they exhibited a non-
inflammatory transcriptomic profile.

Clonal expansions of specific T and B cell subsets were observed
in VEXAS. As previously shown in BM10, CD8+ T cells in PB of VEXAS
were clonally expanded with upregulated IFN-γ and cytotoxicity
pathways.Within the B cell compartment, there was a striking increase
in clonal plasmablasts even in patients with severe B cell lymphopenia;
expanded clones displayed high SHM. Autoantibodies produced by
these SHM cells have been associated with development of some
autoimmune diseases33,34. An increased ratio of plasmablasts to total B
cells in PB occurs in ANCA-associated vasculitis (AAV) and SLE,
accompanied by elevated levels of autoantibodies such as anti-
dsDNA35,36. Cases of VEXAS associated with SLE and AAV have been
reported, and the presence of lupus anticoagulant is not
uncommon8,37–39. Screening of autoantibodies in large VEXAS cohorts,
in comparison with other autoimmune diseases, would help under-
stand a role of autoreactive B cells in the syndrome.

Without evidence of disease-specific antigens, nonspecific anti-
gens produced by mtUBA1 myeloid cells as a result of dysregulated
protein degradation may trigger clonal expansion of lymphoid cells in
VEXAS. Since plasmablasts are short-lived and antibody-secreting B
cells mature into plasma cells, clonal expansion of these cells may also
account for monoclonal gammopathy that is found in 1/3 of VEXAS
patients.

Another feature of the B cell compartment in VEXAS was the
depletion of transitional B cells, which are thought to represent a link
between immature and mature B cells in the marrow and the
periphery40. As UBA1 mutations are absent in mature B cells but pre-
sent in most lymphoid progenitor cells in BM11, mtUBA1 B cells appear
to be negatively selected during transitional B cell maturation in BM,
producing a deficit of terminal cells. Transitional B cells, phenotypi-
cally and functionally related to IL-10-producing regulatory B cells,
play regulatory roles under inflammatory conditions, and their loss
may also contribute to the uncontrolled autoinflammation in VEXAS40.

Immune dysregulation irrespective of UBA1 mutations was
observed in lymphocytic cells that are often decreased in PB of VEXAS
patients; we observed upregulation of the apoptosis andTNF response
pathways in PB cells. As reported for the cytotoxicity of upregulated
UPR pathways27, effects of TNF are highly cell-type dependent; HSCs
are resistant to TNF cytotoxicity, but TNF induces apoptosis in com-
mitted progenitor and mature cells41. In VEXAS, these immune com-
partments might be subjected to apoptosis due to chronic
overactivation of the TNF response pathway. In contrast, neutrophils
generally remain normal to elevated throughout the disease course
and are predominant in biopsies of affected tissues11,42. We found
decreased levels of many chemokines in the blood of VEXAS patients,
especially CXCL5, which is generated by lung and other epithelial cells
under inflammation and acts as a potent chemoattractant and

an activator of neutrophils via CXCR1 and CXCR2 receptors43,44. Dys-
regulated chemokine expression in blood, with the upregulation of
ligand-receptor interactions involved in cell adhesion in VEXAS, indi-
cates migration of immune cells from blood to tissues, explaining the
infiltration of maturemyeloid cells in inflamed tissues such as the lung
and skin.

Broad immune activation with upregulation of multiple immune
response pathways was observed across all immune cells, especially
NK cells, CD8+ T cells, andmonocytes, with increased levels ofmultiple
inflammatory cytokines, such as IL-6, IFN-γ, TNF, and IL-18 in plasma.
The immunological networks by connectome analysis depicted
abundant cellular interactions among innate and adaptive immune
cells. These data cross-validate findings from other approaches and
highlight the scope of VEXAS hyper-immunity; they are relevant for
therapeutic approaches in VEXAS, and explain failures of targeted
agents such as TNF and IL-1 blockade45. Non-targeted treatments such
as hypomethylating agents and JAK inhibitors produce better clinical
response46–49.

Our study has some limitations. First, all VEXAS patients were
treated with corticosteroids, with some other agents to control severe
autoinflammation; such therapies could affect responses and cyto-
toxicity in immune cell samples. Nevertheless, VEXAS patients showed
upregulation of multiple inflammatory pathways as compared to
healthy donors. In addition, GoT analysis allowed us to compare
mtUBA1 and wtUBA1 cells, which were equally subjected to anti-
inflammatory drugs. Second, neutrophils could not be investigated
due to the lownumberof cells captured inour scRNA-seqexperiments.
scRNA-seq analysis of neutrophils is needed for better understanding
of the VEXAS pathophysiology. Third, female VEXAS patients are
extremely rare, limited to individuals who havemonosomy X50,51, there
is obvious sex bias.

In summary, systemic inflammation in VEXAS is driven by innate
and adaptive immune dysregulation irrespective of UBA1 mutations.
Our scRNA-seq data, validated by an independent cohort using tradi-
tional immunological methods such as flow cytometry and in vitro
functional assays, support the hypothesis that autoinflammation
initiated by mtUBA1 myeloid cells significantly impacts residual
wtUBA1 lymphoid cells, perpetuating a vicious cycle of harmful auto-
immunity. Our work provides a deeper understanding of VEXAS
pathophysiology and can serve as a guide for therapeuticdevelopment
in this complex disease.

Methods
Human samples
PB samples were obtained from VEXAS patients after written informed
consent under the protocol (www.clinicaltrials.gov NCT05012111)
approved by the Institutional ReviewBoards of theNational Heart, Lung,
and Blood Institute (NHLBI), in accordance with the Declaration of

Fig. 3 | Dysfunctional monocytes in VEXAS. a A UMAP plot of 24,887 monocytes
and 704 dendritic cells (DC). b A neighborhood graph of monocytes/DCs, which
was generated similarly as in Fig. 2a. c Beeswarm and box plots of monocytes/DCs
for VEXAS (n= 9) and healthy donors (n = 5), which were generated similarly as in
Fig. 2b.dA volcano plot of differentially expressedgenesofmonocytes in VEXAS as
compared to healthy donor: upregulated anddownregulatedgenes in red andblue,
respectively. A horizontal dotted line represents padj = 0.05, vertical dotted lines
indicate absolute log2FC values = +–0.25. P values were calculated with the two-
sidedWilcoxon rank-sum test and Bonferroni correction formultiple comparisons.
e A dot plot showing gene set enrichment scores of top 10 upregulated hallmark
pathways across subtypes. Dot sizes indicate mean normalized enrichment score
(NES) differences between VEXAS and healthy donors, and the color scale indicates
FDR values; non-significant pathways (FDR ≥0.10) in gray. f Genemodule scores of
HLA class II genes and sepsis-associated monocyte signatures in monocytes across
VEXAS (n = 9), healthy donors (n = 5), and other multisystem autoimmune diseases
(Systemic lupus erythematosus (SLE), n = 33;microscopic polyangiitis (MPA), n = 8;

Behcet’s disease (BD), n = 4). Data are presented as mean with SD. P values were
calculated with the two-sided unpaired Mann–Whitney U test. g A UMAP plot of
cells with projected UBA1mutation status as wtUBA1 (981 cells) and mtUBA1
monocytes (651 cells).hDynamic changesofmtUBA1 andwtUBA1monocytes ratios
to all monocytes in VEXAS patients (log scale on y axis) along differentiation
(pseudotime ordering from classical to non-classicalmonocytes on x axis). Data are
presented as mean with 1.96*SE. i Frequency of CSFE+ bait cells among CytoTell
Blue+CD14+ monocytes (VEXAS, n = 6; healthy donors, n = 6). Data are presented as
mean with SD. P values were calculated using the two-sided unpaired
Mann–Whitney U test. j Cytokine detection of IFN-γ, IL-6, and IL-1β in culture
supernatants of purified CD14+ monocytes (VEXAS, n = 10; healthy donors, n = 10).
Data are presented as mean with SD. P values were calculated using the two-sided
unpairedMann–WhitneyU test. cMono classicalmonocytes, intMono intermediate
monocytes, ncMono non-classical monocytes, cDC conventional DCs, pDC plas-
macytoid DCs. Source data are provided as a Source Data file.
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Helsinki. Age- and sex-matchedhealthy donorswere enrolled as controls
under protocol NCT00442195 in NHLBI.

Blood sample processing
PB samples from patients and healthy donors were collected into
ethylenediaminetetraacetic acid (EDTA) tubes. PB samples were pro-
cessed within 4 h after collection, followed by construction of scRNA-
seq libraries for VEXAS 9–17, or cryopreserved until use for the rest of
VEXAS patients.

PB mononuclear cells (PBMC) were isolated by Ficoll-Hypaque
density gradient centrifugation using Ficall-Paque Premium

mononuclear cell separation medium (#17544202, Cytiva). Briefly, PB
samples diluted twofold with phosphate buffered saline (PBS)
(#10010031, ThermoFisher Scientific)were layered on topof 1 volume
Ficall-Paquemedium in a 50-ml Falcon tube and centrifuged at 1140 × g
for 20min at room temperature with brake off. Isolated PBMCs were
treated with ACK lysing buffer (#118-156-101, Quality Biological) for
lysis of red blood cells, washed with PBS, and resuspended in IMDM
(#12440-053, Thermo Fisher Scientific) + 2% fetal bovine serum (FBS,
#12306C, Sigma-Aldrich). Resuspended PBMCs were subjected to
scRNA-seq. Aliquots of PBMCs were cryopreserved in 10% DMSO
(#D2650-100ML, Thermo Fisher Scientific) in heat-inactivated FBS.
Plasma was isolated by centrifugation of a EDTA-treated tube and
cryopreserved in a –80 °C freezer for subsequent measurement of
cytokines.

Plasma cytokine processing and data analysis
Amultiplexed Olink Target 96 Inflammation (Olink Biosciences) panel
including 92 proteins from 59 plasma samples of 36 VEXAS patients
and 12 healthy donors were profiled. Values used in the analyses were
normalized protein expression units (NPX). Differentially expressed
cytokines were identified with the Mann–Whitney U test. PCA plots
were generated using Olink Analyze (v3.7.0) (Olink Biosciences).

Efferocytosis assay
Frequency of CD14+ efferocytes was assessed by the Efferocytosis
Assay kit (#601770, Cayman Chemical) and as previously described52.
CD14+ monocytes were used as effectors, and apoptotic neutrophils as
target cells. Ex-vivo CD14+ monocytes rather than differentiated mac-
rophageswereused in the assaydue to lowcell availability. For effector
cells, CD14+ monocytes were isolated from cryopreserved PBMCs (1 ×
107 cells) by using CD14 MicroBeads (#130-118-906, Miltenyi Biotec)
following manufacturer instructions. Briefly, 1 × 107 PBMCs were
thawed and incubated with 20μl of microbeads and 80μl of buffer at
4 °C for 15min. After incubation, cells were washed with 3ml of buffer
and resuspended in 500μl of buffer. Positive selection was performed
using the MACS Separator (Miltenyi Biotec). After separation, cells
were counted and stained with CytoTellTM Blue provided in the kit
according to manufacturer instructions. In brief, cells were resus-
pended in 200μl of buffer containing 1XCytoTellTM Blue (stockdiluted
1:400 in buffer), incubated at 37 °C for 30min, andwashed three times
with R10 (RPMI medium with 10% FBS and Penicillin-Streptomycin;
Thermo Fisher Scientific), resuspend in R10 at 1 × 106 cells/μl, and used
for the efferocytosis assay.

Fig. 4 | Compositional and transcriptomic landscapes of mtUBA1 NK cells.
a A UMAP plot of 11,846 NK cells. b A neighborhood (Nhood) graph of NK cells,
whichwas generated similarly as in Fig. 2a. cBeeswarmand boxplots of NK cells for
VEXAS (n = 9) and healthy donors (n = 5), which were generated similarly as in
Fig. 2b. d AUMAP plot of cells with projected UBA1mutation status assignment for
wtUBA1 (574 cells) and mtUBA1 NK cells (125 cells). e Dynamic changes of mtUBA1
and wtUBA1 NK cell ratios to all NK cells in VEXAS patients along differentiation. x
axis, pseudotime ordering from CD56bright NK cells to adaptive-like NK cells esti-
mated by slingshot; y axis, ratios of cell numbers of mtUBA1 or wtUBA1 NK cells to
all VEXAS NK cells on a log scale. Data are presented as mean with 1.96*SE. f A dot
plot showing gene set enrichment scores of top 10 upregulated hallmark pathways
across subtypes. Dot sizes indicate mean normalized enrichment score (NES) dif-
ferences between VEXAS patients and healthy donors, and the color scale indicates
FDR values. Non-significant pathways (FDR ≥0.10) are in gray. g A volcano plot of
differentially expressed genes between mtUBA1 NK cells and wtUBA1 NK cells.
Genes upregulated anddownregulated inVEXASpatients arehighlighted in red and
blue, respectively. A horizontal dotted line, apadj value = 0.05; vertical dotted lines,
absolute log2FC values = −0.25 and 0.25. h Gene module scores of the IFN-γ
response, TNF response, leukocyte mediated cytotoxicity, and apoptosis pathways
in mtUBA1 and wtUBA1NK cells. P values were calculated with the two-sided
unpaired Mann–Whitney U test. Source data are provided as a Source Data file.
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As target cells, neutrophils were isolated from blood of one
unrelated healthy donor. Briefly, following isolation of PBMCs by Ficoll
Plaque (#17544202, Cytiva), an equal volume of a solution of 20%
dextran in water was added to a cellular pellet, gently mixed, and
incubated for 1min. After incubation, approximately three volumes of
PBS were added, mixed again, and then incubated in the dark for
50–60min. A clear top layer of the tube containing neutrophils was

collected, washed with PBS, and centrifuged at 1140 × g for 10min.
Cells were treated with ACK lysing buffer at 37 °C for 5min, washed
with R10, and counted. Neutrophils were stained with CFSE provided
by the kit following manufacturer instructions. Briefly, neutrophils
were resuspended in buffer (1 × 107 cells/ml), an equal volumeof buffer
containing 2XCFSE (a stock diluted 1:200 in buffer)was added to cells,
incubated at 37 °C for 30min, and washed three times with R10.
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Apoptosis of neutrophils was induced by treatment with Staur-
osporine apoptosis inducer provided in the kit. Briefly, isolated cells
were resuspended in R10 containing Staurosporine (a stock diluted
1:1000) and incubated at 37 °C for 3 h. After incubation, cells were
washed two times with R10, resuspend in R10 at 1 × 106 cells/μl, and
used for the efferocytosis assay. Effector CD14+ monocytes and target
apoptotic neutrophils were cultured alone (as controls) or cocultured
at a ratio of one effector CD14+ cells to three target apoptotic neu-
trophils. After incubation at 37 °C overnight (15 h), cells were washed
with PBS, fixed with 1% paraformaldehyde in PBS, and acquired with a
flow cytometer. Flow cytometry acquisitions were performed on the
BD LSRFortessa (BD Biosciences) and examined using FACSDiva soft-
ware (BD Biosciences) by acquiring all stained cells. Data was further
analyzed using FlowJo v10.9 (TreeStar). Frequency of CD14+ effer-
ocytes was determined as frequency of CFSE+ cells (neutrophils) in the
CytoTellTM Blue+ cells (CD14+ cells), therefore representing frequency
of CD14+ cells that engulfed apoptotic neutrophils. Supplementary
Fig. 4b shows gating strategy: FSC/SSC/Sigle cells/CytoTell
Blue+/CFSE+.

In vitro stimulation of monocytes
Monocytes were isolated from frozen PBMCs by positive selection
using the CD14Microbeads (#130-118-906, Miltenyi Biotec) and plated
at 25,000-30,000 cells/well in 96-well round-bottom plates. Mono-
cytes were resuspended in RPMI medium (#11875093, Thermo Fisher
Scientific) supplemented with 10% FBS (#12306C, Sigma-Aldrich) and
1% Penicillin-Streptomycin (#15140148, Thermo Fisher Scientific), and
stimulated in the absence or presence of LPS (100 ng/ml; #15140148,
Innaxon) for 8 h at 37 °C. After stimulation, supernatants were har-
vested, centrifuged at 800× g for 5min at room temperature, and
stored at –80 °C until use. Cytokine levels were measured by the
multiplex bead-based immunoassay using the ImmuneMonitoring 65-
Plex Human ProcartaPlex Panel (#EPX650-10065-901, R&D Systems),
according to the manufacturer’s instructions. To confirm the blunted
cytokine production from VEXAS monocytes, purified CD14+ mono-
cytes from additional VEXAS patients were stimulated in the absence
or presence of LPS (100 ng/ml; #15140148, Innaxon), Pam3CSK4 (a
synthetic ligand for TLR 1/2) (100 ng/ml, #tlrl-pms, InvivoGen), and
R848 (a synthetic ligand for TLR7/8) (2.5μM, #tlrl-r848-1, InvivoGen)
for 8 h at 37 °C. After stimulation, supernatants were harvested, cen-
trifuged at 800 × g for 5min at room temperature, and stored at
–80 °Cuntil use. Cytokine levelsweremeasuredby themultiplex bead-
based immunoassay using theHumanLuminex®Discovery Assay (R&D
Systems), according to the manufacturer’s instructions. Data were
acquired on the LUMINEX-200 (Thermo Fisher Scientific) instrument
and analyzed by Bio-Plex Manager 6.1.1 software (Bio-Rad).

Flow cytometry
To identify NK cells, cryopreserved PBMCs (5–10 × 106 cells) were
thawed and stained with the following fluorochrome-conjugated
monoclonal antibodies (mAbs) in a total volume of 100μl: APC-Cy7
anti-CD3 (clone SK7; #344818, 2.5μl), APC-Cy7 anti-CD14 (clone
M5E2; #301820, 2.5μl), PE-Cy7 anti-CD56 (clone 5.1H11; #362510,
2.5 μl), APC anti-CD16 (clone B73.1; #360705, 2.5μl), BV510 anti-CD57
(clone QA17A04; #393313, 2.5 μl) from BioLegend; APC-Cy7 anti-

CD19 (clone SJ25C1; #557791, 5 μl) from BD Bioscience; and 7-AAD
(#00-6993-50, 3 μl) from Thermo Fisher Scientific for dead
cell exclusion. For intracellular staining of FcεR1γ, cells were
fixed and permeabilized with the Cyto-Fast Fix/Perm Buffer Set
(BioLegend) after surface markers' staining, subsequently stained
with FITC anti-FcεRI Antibody, a γ subunit (#FCABS400F,
2 μl) from Millipore Sigma. NK cell populations were identified
as CD56+Lin-(CD3&CD14&CD19). CD56bright NK cells were identified
as CD16-CD56bright and CD56dim NK cells as CD16+CD56dim.
Adaptive-like NK cells were identified as lowSSC/Singlets/Live/
CD56+CD3-CD14-CD19-/CD16+CD56dim/CD57+FcεR1γ-, as published
previously53,54.

For B cells, cryopreserved PBMCs (5–10 × 106 cells) were thawed
and stained with fluorochrome-conjugated mAbs in a total volume of
100μl: APC-Cy7 anti-CD3 (clone SK7; #344818, 2.5μl), APC-Cy7 anti-
CD14 (clone M5E2; #301820, 2.5μl), FITC anti-CD20 (clone 2H7;
#302303, 2.5μl), PE anti-IgD (clone IA6-2; #348203, 2.5μl), BV785 anti-
CD27 (clone O323; #302832, 2.5μl), BV605 anti-CD24 (clone ML5;
#311123, 5μl), and BV421 anti-CD19 (cloneH1B19; #302233, 2.5μl) from
BioLegend; APC anti-CD38 (clone HB7; #340439, 2.5μl) from BD
Bioscience; and 7-AAD (#00-6993-50, 3μl) from Thermo Fisher Sci-
entific used to exclude dead cells. B cell populations were identified as
CD19+Lin-(CD3&CD14&CD56). Mature B cells were identified as
CD24±CD38-, transitional B cells as CD24+CD38+, and plasmablasts as
CD24-CD38+. Mature B cells were further divided into four subtypes
based on their CD24 and IgD expression: class-switched memory B
(CD27+IgD-), class-unswitched memory B (CD27+IgD+), naïve B
(CD27-IgD+), and double negative B (CD27-IgD-), as published
previously55,56.

Preparation and sequencingof libraries: scRNA-seq, scTCR/BCR-
seq, and GoT
Total PBMCs from VEXAS patients and healthy donors were sub-
jected to scRNA-seq analysis using the Chromium Next GEM Single
Cell 5’ Reagent Kits v2 (Dual Index) System (#PN-1000244, 10x
Genomics), following the manufacturer’s protocols. In brief, PBMCs
were washed with 1X PBS with 0.04% FBS. Cell concentrations and
viabilities were determined using the LUNA-II™ Automated Cell
Counter (Logos biosystems) and the trypan blue staining method.
Cells loaded into a Chip K were subjected to single cell partitioning,
lysis, and barcoding using the Chromium Single Cell Controller (10x
Genomics). Subsequently, cDNA was generated in a thermal cycler
and purified with Dynabeads MyOne SILANE (#PN-2000048, 10x
Genomics), followed by cDNA amplification. cDNA was allocated for
gene expression library construction (50 ng of cDNA), targeted
genotyping (10 μl of cDNA), and TCR/BCR library construction (2μl
of cDNA). Any remaining cDNA was stored. For gene expression
library construction, amplified cDNA was fragmented, end-repaired,
and A-tailing double-sided size-selected with solid phase reversible
immobilization (SPRI)-select beads (#B23318, Beckman Coulter). For
TCR/BCR library construction, V(D)J amplification was performed
twice, followed by double-sided size selection with SPRIselect beads.
For GoT library construction, three serial PCRs were performed on
10μl of the remaining samples set aside during step 2.3, based on the
UBA1 M41 mutation of interest. A first PCR was performed with a

Fig. 5 | Clonal expansion of effector CD8+ T cells with enhanced inflammation
and cytotoxicity in VEXAS. a A UMAP plot of 128,236T cells. b A neighborhood
(Nhood) graph of T cells, which was generated similarly as in Fig. 2a. c Beeswarm
and box plots of T cells for VEXAS (n = 9) and healthy donors (n = 5), which were
generated similarly as in Fig. 2b. d Distributions of T cell clone states in each
subtype betweenVEXASpatients and healthy donors. eUMAPembedding of T cells
from VEXAS patients (right) and healthy donors (left) colored by clonal expansion
sizes. fGini indexand Shannondiversity indexofTCRclonality inCD4+ T cells, CD8+

T cells, and total T cells from VEXAS (n= 9) and healthy donors (n = 5). Data are

presented as mean with SD. P values were calculated with the two-sided unpaired
Mann–Whitney U test. g Dynamic changes of gene module scores of the IFN-γ
response, T-cell mediated cytotoxicity, and exhaustion pathways in CD8+ T cells
from VEXAS patients and healthy donors along differentiation. x axis, pseudotime
ordering from naïve CD8+ T cells to effector memory CD8+ T cells estimated by
slingshot; y axis, genemodule scores for each pathway. Data are presented asmean
with 1.96*SE. gdT gamma delta T cells, MAIT mucosa-associated invariant T cell,
proT proliferative T, Treg regulatory T cells, TCR T cell receptor. Source data are
provided as a Source Data file.
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partial read 1 primer which binds to the partial read 1 of the Illumina
sequencing handle (5’-CTACACGACGCTCTTCCGATCT-3’) and a
nested reverse primer (5’-GTCATGTAGGGTAACAGCCTTGAC-3’) to
amplify genotyping fragments before sample indexing using a ther-
mocycler program: 95 °C for 2min; 12 cycles of 95 °C for 30 s, 52 °C
for 50 s, and 72 °C for 60 s; and 72 °C for 7min. Using the 1st PCR
product, a 2nd PCR was carried out with a forward PCR primer

(containing P5, sample index (i5), and a partial read 1 handle (5’-
AATGATACGGCGACCACCGAGATCTACACXXXXXXXXXXACACTCTT
TCCCTACACGACGCTC-3’) to complete the read 1) and a second
locus-specific reverse primer (containing a partial read 2 handle and
a locus-specific region (5’-CGTGTGCTCTTCCGATCTCAACACATA-
CAGCTGCCGGGAGTAAAGG-3’) to UBA1 M41 site): 95 °C for 2min; 10
cycles of 95 °C for 30 s, 52 °C for 50 s, 72 °C for 60 s; and 72 °C for
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7min. After these two rounds of amplification and then SPRI pur-
ification, the 2nd PCR product was subjected to a 3rd PCR with a
generic forward PCR primer (P5-generic, 5’-AATGATACGG
CGACCACCGAGATCTACAC-3’) to retain the cell barcode (CB) and
unique molecular identifier (UMI) together with an RPI primer (5’-
CAAGCAGAAGACGGCATACGAGATXXXXXXXXXXGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCT-3’) to complete read 2 and P7 end of
the library: 95 °C for 2min; 6 cycles of 95 °C for 30 s, 52 °C for 50 s,
72 °C for 60 s; and 72 °C for 7min. Qualities and quantities of the
libraries were assessed using the Agilent 2100 Bioanalyzer (Agilent
Technologies). Gene expression and TCR/BCR libraries were pooled
together to receive around 20,000 and 5000 reads per cell,
respectively, and sequenced using the Illumina NovaSeq 6000 sys-
tem with read lengths of 26 bp read 1, 10 bp i7 index, 10 bp i5 index,
90 bp read 2. GoT libraries were sequenced separately to receive
around 5000 reads per cell using the Illumina NovaSeq 6000 system
with read lengths of 26 bp read 1, 10 bp i7 index, 10 bp i5 index,
90 bp read 2.

Raw data preprocessing and quality control of scRNA-seq data
After single-cell libraries were sequenced using the Illumina system,
the Cell Ranger ver 7.0.1 pipeline (https://www.10xgenomics.com/
support/software/cell-ranger/latest) was utilized to process scRNA-seq
rawdata for read alignment to the genome and generation of gene-cell
expression matrices57. Specifically, sequencing reads in FASTQ files
were aligned to the human reference genome (hg38) using the STAR
aligner58 with annotation by ENSEMBL. The uniquely aligned reads
were subjected to measurement of gene expression levels for all
ENSEMBL genes with UMIs. Low quality cells were excluded from
further analyses if the number of genes detected was < 500 genes/cell
(potential fragments), >6000 genes/cell (potential doublets), or > 5%
mitochondrial reads/cell, and remaining single cells were subjected to
subsequent data analysis.

TCR reads were aligned to the GRCh38 reference genome and
consensus TCR was annotated with the cellranger vdj program (10x
Genomics, version 7.0.1). TCR libraries were sequenced with a final
average of 7827 readpairs/cell. On average, 5697 readsmapped to either
the TRA or TRB loci in each cell. The 10x cellranger vdj pipeline provided
at https://support.10xgenomics.com/single-cell-vdj/software/pipelines/
latest/using/vdj was used to perform TCR annotation. Barcodes with
higher numbers of Unique UMI counts than those of simulated back-
ground were considered as cell barcodes. V(D)J read filtering and
assembly were implemented as described in a previous study59. cell-
ranger trimmed known adaptor and primer sequences from the 5’ and 3’
ends of reads, followed by filtering away reads lacking at least one 15-bp
exact match against at least one reference segment (TCR, TRA, and TRB
gene annotations in ENSEMBL version 87). Subsequently, cellranger
built a De Bruijn graph of reads independently, resulting in de novo
assembly for each barcode. The assembler produced contig sequences
assigned at least one UMI and each assembled contig was aligned
against all of the germline segment reference sequences of the V, D, J, C,
and 5’ UTR regions. cellranger searched a CDR3 motif (Cys-to-FGXG/
WGXG) in a frame defined by the start codon in the L +V region or all 6
frames when the L +V region was absent. Most cell barcodes contained
two matching productive contigs, comprising either a TCRA or a TCRB.

However, there was a biological possibility that few productive contigs
(low sensitivity) or > 2 productive contigs (some cells containmore than
one TCRB or TCRA chain) were associated with one cell barcode60.
Similarly, the cellranger vdj program also processed BCR reads with the
IMGT database of GRCh38 genome as reference. Only productive con-
tigs of BCR were kept for further analyses.

Downstream analyses were mainly performed using the R soft-
ware package61 in Seurat62 (http://satijalab.org/seurat/, v4.0.4) on
PBMCs63. Raw reads in each cell were first scaled by a library size to
10,000 and then log-transformed. To improve downstream dimen-
sionality reduction and clustering, we selected top 2000 highly vari-
able genes for PCA of high-dimensional data. Top 50 principal
components were imported into function of FindIntegrationAnchors
to integrate datasets from all samples and the integrated data were
used for unsupervised clustering of cells with a graph-based clustering
approach64, and further reduced dimension with UMAP. Cell type
identity was assigned to each cluster based on significance in overlap
between signature genes of PBMCs12 and cluster-specific genes (Fish-
er’s exact test). Gene Set Enrichment Analysis (GSEA; http://software.
broadinstitute.org/gsea) and Gene Ontology (GO)65 (the Gene Ontol-
ogy Consortium, 2023) were used to interpret gene set enrichment
and pathways of defined differentially expressed genes.

GoT bioinformatics analysis
We downloaded the IronThrone which genotypes individual cells
(https://github.com/dan-landau/IronThrone-GoT), and modified the
code to adapt to our sequencing data and the slurm high performance
computing system. In brief, all amplicon reads were shuffled and
subsetted into smaller groups of reads (default 125,000 reads per
group). The original IronThrone algorithmwas then runon each oneof
these groups in parallel. Pairwise Levenshtein distances between all
UMIspairedwere calculatedwithin a single-cell barcode, andUMIpairs
with a Levenshtein distance below a predetermined threshold
[default = ceiling (0.1 ×UMI length), or 2 bases for a 12-base UMI] were
defined as ‘matches’. The initial UMI was obtained by the greatest
number of matched UMIs. This process was repeated for the UMI with
the next highest number of matches until no additional collapsing was
possible. Rare UMIs with an equal number of mutant and wild-type
reads were removed as ambiguous. Given the hemizygous nature of
the UBA1 mutation in male patients, cell barcodes with a minimum of
one wild-type read were genotyped as wtUBA1, while those with a
minimum of onemutant read were genotyped as mtUBA1. The code is
available at https://github.com/shouguog/NHLBIGoT.

Cell type assignment in major cell types
To identify clusters within each major cell type, we performed a sec-
ond round of clustering and cell type annotation on monocytes/DCs,
NK cells, T cells (CD4+ T, CD8+ T, MAIT, and gdT), and B cells (B and
plasmablasts), separately.

For cell type assignment of monocytes, the gene expression data
of monocytes (GSE25913) were downloaded15, which include the clas-
sical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical
(CD14+CD16++) monocyte subtypes. Subtype specific genes were
designated as the highest expressed genes in one subtype on the rest.
A monocyte subtype was classified by assigning to each cluster based

Fig. 6 | Skewed differentiation of B cells and clonal expansion of plasmablasts
in VEXAS. a A UMAP plot of 11,335 B cells. b A neighborhood (Nhood) graph of B
cells, which was generated similarly as in Fig. 2a. c Beeswarm and box plots of each
B cell subtype for VEXAS (n = 9) and healthy donors (n = 5), which were generated
similarly as in Fig. 2b. d Proportions of B cell subtypes relative to the total number
of B cells in VEXAS (n= 11, red dots) and healthy donors (n = 8, blue dots) by flow
cytometry. Data are presented as mean with SD. P values were calculated with
the two-sided unpaired Mann–Whitney U test. e UMAP plots of B cells from VEXAS
patients (right) and healthy donors (left) colored by clonal expansion sizes.

f Distributions of B cell clone states in each subtype in VEXAS patients and healthy
donors. g Isotype distributions of immunoglobulins expressed by each tran-
scriptionally defined B cell subpopulation within all subjects. h A bar chart showing
gene set enrichment scores of top 10 upregulated hallmark pathways in plasma-
blasts fromVEXASpatients. A horizontal axisdisplays normalized enrichment score
(NES) differences between VEXAS patients and healthy donors. A color scale indi-
cates FDR values. BCR B-cell receptor. Source data are provided as a Source
Data file.
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on significance of overlapping between monocyte subtypes and
cluster-specific genes (Fisher’s exact test).

For cell type assignment of NK cells, the gene expression data of
NK cells (GSE197037) were downloaded21, which include the CD56bright

NK, Early CD56dim NK, CD56dim NK, and adaptive-like NK cell subtypes.
Subtype specific genes were designated as the highest expressed
genes in one subtype on the rest. A NK cell subtype was classified by
assigning to each cluster based on significance of overlapping between
NK subtypes and cluster-specific genes.

For cell type assignment of T cells, the gene expression data of
T cells (GSE93777) were downloaded23, which include naïve, central,
and effector T cell populations. Top 250 most population-specific
genes were as signatures of subtypes. We used this gene set to define
cell types. CD4+, CD8+, and related subtypes were assigned to each
cluster based on significance in overlap between T cells and cluster-
specific genes.

For cell type assignment of B cells, the gene expression data of B
cells (E-MTAB-9544)weredownloaded25, which include the transitional
B, naïve B, IgM memory B, classical memory B, and double negative B
cell subtypes. Subtype specific genes were designated as the highest
expressed genes in one subtype on the rest. A B cell subtype was
classified by assigning to each cluster based on the significance of
overlapping between B cell subtypes and cluster-specific genes.

We thenmanually refined all cell cluster annotations based on the
expression of canonical marker genes (Supplementary Fig. 3a, 5a, 6a,
and 7a).

Differential abundance analysis
Differences in cell abundances between the baseline samples of
patients and the healthy donors were analyzed by differential abun-
dance testing with the miloR package (https://bioconductor.org/
packages/release/bioc/html/miloR.html)66. Specifically, the Seurat
objects were converted to SingleCellExperiment objects, and the PCAs
and UMAPs of Seurat objects were also assigned to the single CellEx-
periment objects. Each neighborhood was assigned to a cell-type label
based on the majority voting of cells belonging to that neighborhood.
A neighborhoodwas labeled as “Mixed” if themost abundant label was
present in < 75% of cells within that neighborhood66.

Single-cell mutation identification and analysis using cb_sniffer
cb_sniffer (https://github.com/sridnona/cb_sniffer), a Pysam-based
tool, was used with default parameters14 to identify single-nucleotide
variations inUBA1 in single cells from aligned sequencedata generated
by cellranger. Reads that had no Chromium Cellular Barcode (CB) tag
or no Chromium Molecular Barcode (UB) tag were filtered out. Then,
cell-associated tags for downstream analyses of UMIs were obtained.
Usually, duplicate reads existed for a given UB and a base at a mutant
position were identical across all reads. In rare cases when there were
inconsistent reads, the most common base was chosen if a mutation
was present in at least 75% of the reads. All reads corresponding to the
UB were discarded when there was no common base at the mutation
positions (> 75% reads).

Differentially expressed genes and heatmap generation
Differentially expressed genes of VEXAS patients’ and healthy donors’
cells were defined using FindMarkers function in Seurat in which a
gene expression level in one cell subset was comparedwith those in all
others. Genes with P value < 0.05 and Log (average fold change) > 0.1
were regarded as differentially expressed genes. Heatmaps and net-
work visualization were created with ggplot2 and heatmap.2 in the R
package.

Gene set enrichment analysis
Preranked gene-set analysis on MsigDB v2023.2 Hallmark gene sets
was performed using preranked gene lists with the GSEA software

(http://software.broadinstitute.org/gsea). Genes were preranked
according to log2 fold change values for all preranked gene-set ana-
lysis procedures.

Definition of module scores
TNF response scores were calculated using a gene set termed ‘GOB-
P_RESPONSE_TO_TUMOR_NECROSIS_FACTOR1’(GO:0034612). IFN-α
response scores were calculated using a gene set termed ‘GOBP_RE-
SPONSE_TO_TYPE_I_INTERFERON’(GO:0034340). IFN-γ response scores
were calculated using a gene set termed ‘GOBP_RESPONSE_-
TO_INTERFERON_GAMMA’(GO:0034341). Cytotoxicity scores of NK
cells were calculated using a gene set termed ‘GOBP_LEUKOCYTE_ME-
DIATED_CYTOTOXICITY’ (GO:0001909). Apoptosis scores were calcu-
lated using a gene set termed ‘HALLMARK_APOPTOSIS’. Cytotoxicity
scores of CD8+ T cells were calculated using a gene set termed
‘GOBP_T_CELL_MEDIATED_CYTOTOXICITY’(GO:0001913).

We also calculated an HLA class II gene score, sepsis-associated
monocyte signature score, and exhaustion score based on the fol-
lowing gene sets. TheHLA class II genes consist ofHLA-DRA,HLA-DRB1,
HLA-DRB5, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DMA, HLA-DMB,
HLA-DPA1, and HLA-DPB1. The alarmin-related S100A genes consist of
S100A8, S100A9, and S100A12. The Exhaustion genes consist of
CXCL13, HAVCR2, PDCD1, TIGIT, LAG3, CTLA4, LAYN, RBPJ, VCAM1,
GZMB, TOX, and MYO7A. The sepsis-associated monocyte signature
genes were defined based on the published reference gene set16. The
module scores were calculatedwith AddModuleScore function built in
the Seurat62.

Comparison of gene pathway module scores
To compare dysfunctional and inflammatory gene profiles in
monocytes of VEXAS with several other rheumatological diseases,
we calculated module scores (expression levels) of several path-
ways in monocytes of VEXAS patients in the current study, with
data from published datasets (GSE135779) for systemic lupus
erythematosus (SLE), E-GEAD-635 for microscopic polyangiitis
(MPA) patients, and GSE198616 for Behcet’s disease (BD) patients.
Gene sets for the interferon response pathways, the TNF response
pathway, the HLA class II genes, the S100A genes, and the sepsis-
associated monocyte signature genes were as described above.
Their module scores (expression levels) in our and these three
datasets were calculated with the AddModuleScore function. The
module scores were normalized with healthy donors included in
individual studies, and the double-sided t-test was used to assess
the difference between VEXAS and three other diseases (SLE,
MPA, and BD).

Dynamic changes ofmtUBA1andwtUBA1 cells in VEXASpatients
along differentiation
In order to estimate T cell differentiation, trajectory inference
was performed with the R package Slingshot67. The analyses were
performed for CD8+ T cells. The UMAP matrix was fed into
Slingshot and a naïve CD8+ T cell population was manually
designated as the root of all inferred trajectories considering
naïve CD8+ T cells differentiate to other CD8+ T cells. A pseudo-
time variable was inferred by fitting simultaneous principal curves
for further analysis. Similarly, pseudotime was estimated by
Slingshot in monocytes and NK cells.

Ligand receptor analysis
Cell-cell interactions based on the expression of known ligand-
receptor pairs in different cell types were calculated using Con-
nectome version 1.0.268. The algorithm was run on log-normalized
expression values for cell populations of PBMCs with default para-
meters and no subsampling to identify enriched ligand-receptor pairs
in VEXAS patients and healthy donors.
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Diversity index calculation
Several methods represent the number of clones (identical TCR
chains) present (richness) and of their relative frequency (evenness).
The Shannonentropyweighs both of these aspects of diversity equally,
and it is an intuitive measure whereby the maximum value is deter-
mined by the total size of the repertoire. Entropy values decrease with
increasing inequality of frequency as a result of clonal expansion. The
Shannon entropy in a population of N clones with nucleotide fre-
quency pi is defined by Eq. (1):

H Pð Þ= �
Xn

i = 1

pilog2pi ð1Þ

TheGini coefficient is a number aimed atmeasuring the inequality
in a distribution. It is most often used in economics to measure a
country’s wealth distribution and has been widely used in the diversity
assessment of TCRs. The Gini index and Shannon entropy for diversity
and clonality analyses were calculated with the R package of tCR
(https://imminfo.github.io/tcr/)69.

Identification of TCR motifs with shared antigen specificity
using GLIPH2
GLIPH224 was applied to T cells of VEXAS patients and healthy donors
to identify clusters of TCRs that recognize the same epitope based on
CDR3β amino acid sequence similarities, with default parameters.
CDR3β amino acid sequences of top 1000 most abundant CDRs were
used to identify significantmotif lists and associated TCR convergence
groups.

Somatic hypermutation analysis
The BCR sequence data was processed by the Immcantation toolbox
(v4.0.0)70 using the IgBLAST and IMGT germline sequence databases,
with default parameter values. Specifically, the output files filter-
ed_contig.fasta and filtered_contig_annotations.csv from cellrangerVDJ
were input into AssignGenes.py and MakeDb.py to create a tab-
delimiteddatabasefile to store sequencealignment information. Then,
the number of somatic mutations for each sequence was calculated
using observedMutations (Shazam v1.1.0). The mutation rate was
categorized into four groups: germline (mutation frequency = 0), low
(0 < mutation frequency ≤ 3 %), and high (mutation frequency > 3%).
Antibody isotypes for cells were identified based on the presence of
immunoglobulin constant region categories. Paired scBCR-seq data
were integrated with scRNA-seq based on their matched unique cell
barcodes.

Statistics
No data were excluded from the analyses. No statistical method was
used to predetermine sample size. We did not use any study design
that required randomization or blinding. Statistical analyses were
performed as described in the figure legends. Comparison between
groups was performed using the GraphPad Prism (v10.2.0; GraphPad
software, La Jolla, CA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and analyzed sequencing data in this study have been
deposited in the NCBI Gene Expression Omnibus under the primary
accession code GSE249131 and Sequence Read Archive under acces-
sion code PRJNA1047528, and are publicly available. All data are
included in the Supplementary Information or available from the
authors, as are unique reagents used in this Article. The raw numbers
for charts and graphs are available in the Source Data file whenever
possible. Source data are provided with this paper.

Code availability
Code for Genotyping of Transcriptomes is available at a dedicated
Github repository [https://github.com/shouguog/NHLBIGoT] and
Zenoda [https://doi.org/10.5281/zenodo.15046442]71. Any additional
analysis scripts and information required to reanalyze the data
reported in this paper are available from the lead contact upon
request.
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