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Reveal genomic insights into cotton
domestication and improvement using gene
level functional haplotype-based GWAS

Guoan Qi 1,2,3, Yiqian Li1,3, Wanying Zhang1,3, Zegang Han1, Jinwen Chen1,
Ziqian Zhang1, Lisha Xuan1, Rui Chen1, Lei Fang 1,2, Yan Hu1,2 &
Tianzhen Zhang 1,2

Genome-wide association studies (GWAS) are widely used to detect associa-
tions between genetic variants and phenotypes. However, few studies have
thoroughly analyzed genes, the fundamental andmost crucial functional units.
Here, we develop an innovative strategy to translate genomic variants into
gene-level functional haplotypes (FHs), effectively reducing the interference
from complex genome structure and linkage disequilibrium (LD) present in
the conventional genetic mapping framework. Using refined mixed linear
models, gene-level FH is regressed with 20 cotton agronomic traits across 245
sets of phenotypic values in 3,724 accessions, directly identifying 532 quanti-
tative trait genes (QTGs) with significant breeding potential. The biological
functionof a superiorfiber qualityQTGencoding ferulic acid 5-hydroxylase 1 is
experimentally validated. Thereafter, we systematically analyze the genetic
basis of cotton domestication and improvement at the gene level. This report
provides genomic insight into the genetic dissection and efficient mapping of
functional genes in plants.

Polygenic inheritance forms the genetic basis of complex traits1, and
hence their dissection necessitates genomes with high-precision
resolution. Advances in high-throughput sequencing technologies
and emerging genome-wide association studies (GWAS) have revealed
substantial genetic variation associated with complex traits in
humans2,3, plants4,5, and animals6,7. Knowledge of these variations have
facilitated the resolution of the genetic architectures of complex traits,
genetic ancestry identification, and accurate prediction of phenotypes
from genotypes. However, although genomic variation, represented
by single-nucleotide polymorphisms (SNPs) and small structural var-
iations, has illuminated a wide range of genetic mechanisms, the gene
remains the determining biological factor in most applied genetic
studies. Thus, while a plethora of GWAS signals have been identified,
these associations rarely lead to the identification of causal genes8, and
the overall goal of assigning genetic mechanisms remains unfulfilled.

This discrepancy arises from the fact that strongly associated
variants are often in linkage disequilibrium (LD) with causal variants9,
and such LD may be unexpectedly strong in plant and animal species
subjected to long-term artificial selection, resulting in excessively long
candidate intervals for putative quantitative trait loci (QTL). Addi-
tionally, genome complexity, especially in polyploid species, leads to
higher gene density, further complicating the efficacy of gene map-
ping within current GWAS frameworks. Whole-exome sequencing
(WES) focuses on genetic signatures within gene exons10, but the
association strategy does not differ from that used for whole genome
sequencing (WGS), and at present it still faces potential issues with
detection power11. To date, few studies have comprehensively char-
acterized genetic variation in the gene unit, much less explored the
potential of using gene-based variation for direct mapping of func-
tional genes.
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Cotton is the most important source of natural fibers. Since
2012, genome assemblies of representative cotton species have
been constructed12–15, large-scale WGS of major germplasm
populations have been conducted and more than 4000 genomes
of cotton accessions have been determined13,16–22. Most modern
cultivars of upland cotton (Gossypium hirsutum L.) were domes-
ticated from the Yucatan Peninsula of Mesoamerica and therefore
possess the genetic ancestry of American cotton. Long-term
domestication has led to a genetic bottleneck and high levels of
LD23; moreover, as a typical allotetraploid crop, the cotton has a
complex genome which characterized by variable structure and
high gene density. Consequently, progress in mapping functional
genes underlying key agronomic traits remains slow, presenting
both significant opportunities and challenges for the advance-
ment of functional genomics in cotton.

In this work, we propose a genetic strategy to transform discrete
genomic variants into composite factorial functional haplotypes (FHs).
By recoding non-synonymous variations within the coding regions of
genes, FH reflects variations in protein sequences across a population.
We analyze gene-level FH in a comprehensive collection of 3724
accessions, encompassing 3636 wild and/or semi-wild species, land-
races, varieties, and modern cultivars of upland cotton and 88 G.
barbadense accessions as outgroup; investigate genetic diversity
changes related to cotton adaptation and domestication at the gene
level. Importantly, we apply a revised linear mixed model to the fac-
torial FH and conduct gene-level association analysis on a collection of
245 phenotypes covering 20 traits, including fiber quality, lint yield
and its components, plant architecture, maturity, and resistance. The
FH-based GWAS enables the efficient and direct mapping of quanti-
tative trait genes (QTGs), which initially identify 10,279 QTGs, and
further estimation of exact effect sizes confirms 532 genes with sig-
nificant breeding potentials. Finally, we perform CRISPR-Cas9 knock-
out experiments on a QTG encoding ferulic acid 5-hydroxylase 1,
demonstrating its loss to result in the expected superior phenotypic
changes in fiber quality.

Results
Mining of gene-level functional haplotype
We collected a total of 4392 upland cotton cultivars and lines (acces-
sions) ofG. hirsutum from four of our previously published datasets, as
well as four other publicly available datasets (Supplementary Data 1).
An additional 88 G. barbadense accessions were included as out-
groups.We categorized all samples into thosewith high (>10×) and low
(<10×) sequencing depth, and used the samples with high depth as a
reference panel to impute low-depth samples with the same geo-
graphic origin, i.e., population-specific imputation (Supplementary
Data 2). After performing quality control for the genomic variants, we
evaluated the combined samples and found those samples with lower
sequencingdepth exhibited unique but abnormal genetic ancestry and
sub-branching in the phylogenetic tree, and these samples cannot
cluster with either early landraces or modern cultivars of upland cot-
ton with same geographic origin (Supplementary Fig. 1). In addition,
we observed a distinct bimodal pattern of variant heterozygosity in
low-depth samples (Supplementary Fig. 2). The discrepancies between
low- and high-depth samples suggest significant technical rather than
biological differences. Consequently, we removed 756 accessions with
sequencing depth lower than 10×. For the remaining 3724 accessions,
we re-performed population-specific imputation without a reference
panel. After further quality control (biallelic, mapping quality >30,
inbreeding coefficient >−0.6,minor allele frequency [MAF] >0.001), we
finalized a dataset of 3724 accessions (Supplementary Data 3) with
23,057,253 genomic variants for subsequent FH identification. These
cotton accessions represent a wide range of geographic origins,
including wild species, semi-wild races, and early landraces from
Central America (CAL), North America (NAL), South America (SAL),

and South China (SCL); improved varieties from Africa, Asia, Europe,
and Oceania; and modern cultivars from the United States of America
(USA), the former Soviet Union (FSU), and China, including cotton
growing regions in YellowRiver (YRR), Yangtze River (YZR), Northwest
China (NWC), Southwest China (SWC), North China (NC), and East
China (EC).

Regarding genome-wide variation, great attention was paid to
non-synonymous mutations, with different genotype combinations
for a given gene within a population being considered to constitute
distinct FHs (Fig. 1). For example, when there is a single non-
synonymous mutation in a gene, the FH genotype (i.e., FH-1, FH-2,
and FH-3) is equivalent to the additive genotype of that mutation
(i.e., AA, Aa, and aa); whereas when there are two non-synonymous
mutations, there are at most 32, i.e., nine FH types in the population
according to the combinatorial genotypes of the two mutations; and
if there are three non-synonymous mutations, the gene has up to 27
FH types. By analogy, when there are M non-synonymous mutations
in a gene, the gene has at most 3 M FH types, but its maximumwill not
exceed the population size N. By further analyzing the frequency of
FHs within different populations, such as those of different geo-
graphic origins, and their correlations with agronomic traits of
interest, key FHs with their represented genes can be identified. The
fundamental rationale of our strategy is the extraction of protein
variation based on genomic variation, an approach that transforms
the analysis object from single-point variation to gene/protein var-
iation, thereby greatly optimizing and simplifying the interpretability
of subsequent genetic analysis. Furthermore, this approach
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Fig. 1 | Strategy of FH construction.
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facilitates efficient genemapping in association analysis. In analyzing
the 3724 accessions, we screened out 1,402,043 exonic variants,
which included 334,406 non-synonymous variants located in 60,154
out of 71,994 genes that directly change the corresponding protein
sequences. These variants resulted in a genome-wide total of
1,368,685 FHs across the entire population, with an average of over
22 FHs in each gene (Supplementary Data 4).

The landscape of FHs reveals directional gene selection during
cotton adaptation and domestication
In the global set of cotton accessions, genomic FHs are unevenly dis-
tributed across chromosomes, with FH abundance correlating posi-
tively with the number of genes on the chromosome (Fig. 2a,
Supplementary Fig. 3, and Supplementary Table 1). To make gene
diversity comparable across populations with different sample sizes,

Fig. 2 | FH landscape revealed gene diversity and directional selection in the
global upland cotton population. a FH numbers identified on distinct chromo-
somes (bar, left y-axis) and the average gene diversity EH (line, right y-axis). Mul-
tiple comparisons of EH in different chromosomes were conducted by the least
significant difference (LSD) test, with p values adjusted by the Benjamini–
Hochberg method. b Distribution of EH across sub-genomes At and Dt. **p <0.01.

c Changes in gene diversity characteristics from cotton semi-wild species, early
landraces to modern cultivated accessions. Red dots indicate the mean genetic
diversity of each population. N represents the sample size. d Functional investi-
gation for sequence-conserved and highly polymorphic genes. e Enrichment ana-
lysis revealing the directional selection from early landraces to modern cultivars.
Source data are provided as a Source Data file.
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we calculated Shannon’s equilibrium index (EH) for each gene in the
population. The average EH indicated significant differences in gene
diversity across chromosomes and sub-genomes, suggesting that the
adaptation and domestication of upland cotton introduced varying
degrees of directional selection on the genome (Fig. 2a, b). For
instance, chr. D02 is among the chromosomes containing the most
FHs (91,206) and also has the highest average EH (0.0573), which
suggests genes on this chromosome have a higher level of diversity
and are less subject to natural and artificial selection. Conversely, chr.
D11, despite having an even higher number of FHs (92,593), exhibited
the lowest average EH (0.0391), implying strong intervention from
artificial selection on its genes. Further population-level analysis
revealed significantly higher gene diversities in cottons fromCAL, NAL
(Mexico), SAL, and SCL, which represent wild and semi-wild race spe-
cies and early landraces. In contrast, modern cultivars, especially from
the USA and Chinese YZR and YRR, exhibited relatively lower gene
diversities (Fig. 2c). Notably, the gene diversity pattern in the SCL
population (HainanprovinceandGuangxi province) is similar to that in
American landraces, indicating the ancient genetic components of
early landraces in SCL and their geographic origin. These results are
consistent with modern cotton breeding history across the world.

To investigate the functions of genes with different degrees of
FH diversity, we first focused on sequence-conserved genes (SCGs),
which lack any missense variants across the entire population. By
integrating RNA-Seq data from whole cotton tissues (Supplementary
Data 5), we found that 57.54% of SCGs had potential functions related
to cellular existence and cell fate, which are critical to the organism
(Fig. 2d, Supplementary Table 2, and Supplementary Data 6).
Regarding function classifications, ~29.92% of SCGs were house-
keeping genes expressed in all 34 tested tissues, 21.98% were silent
genes not expressed in any tested tissue, and 5.65% were genes
expressed in specific organisms. For the remaining 42.46% of SCGs,
functional enrichment analysis identified many as related to actin
and microtubule processes, such as microtubule-based process and
structural constituent of cytoskeleton, and others as involved in
basic cell development functions such as electron transfer activity
and photosynthesis (Supplementary Data 7). These fiber-associated
SCGs are considered to have been fixed in the cotton breeding
process.

At the other extreme, we also analyzed the functions of genes
with highly variable sequences (highly polymorphic genes, HPGs,
EH > 0.3). Interestingly, the majority (62.69%) of HPGs had seemingly
random functions, while the remaining 37.31% were clearly related to
disease response and foreign substances recognition (Supplemen-
tary Table 3). Furthermore, most HPGs (93.53%) were subject to
strong positive selection (Ka/Ks > 1, Supplementary Data 8). This
finding is similar to the major histocompatibility complex (MHC) and
T cell receptors (TR) in human genetic research, both of which
possess an unusually large number of alleles and extremely diverse
protein types that determine unique antigenic compositions at the
individual level and their interactions. This result suggests the pos-
sibility of a shared or similar genetic mechanism underlying immu-
nity among life kingdoms.

We further analyzed the functions of genes with rapidly
decreased gene diversity (ΔEH > 0.3) in modern cotton cultivars
compared to early landraces. These genes are enriched in biological
pathways related to carbohydrates, polysaccharides, ADP binding,
pollen recognition, and intracellular signaling (Fig. 2e and Supple-
mentary Data 9). Finally, genes with moderately reduced EH
(0.1 <ΔEH < 0.3) in modern cultivars relative to earlier accessions are
enriched in pathways involving microtubule binding and movement,
ATPase activity, ubiquitination, and cytokinin metabolism. These
findings are consistent with the results of recent cotton breeding
efforts to improve agronomic traits, particularly lint yield and fiber
quality.

FH-based haplotype analysis reflects population structure and
elite gene transferring during development
Utilizing the genotypes encoded by factorial FH, we applied a general
method to calculate the genetic distance between sample pairs, and
then constructed a phylogenetic tree based upon those distances
(Methods). This analysis classified the 3724 cotton accessions into six
clusters, in which the 88 G. barbadense accessions were clustered into
group 1 (Outgroup, G1) and the remaining 3636G. hirsutum accessions
into five groups (G2 to G6; Fig. 3a). Among these groups, G2 collected
most accessions from YZR and a considerable portion from YRR, due
to similar geographical and climatic conditions and frequent intro-
ductions; G3 consisted of another portion of the YRR cultivars; G4
containedmost accessions from theUSA; G5 includedmost accessions
from NWC and FSU; and G6 encompassed most early landraces from
America and Southern China, consistent with cotton breeding practice
in China.

We further compared the similarities and differences of phylo-
genetic trees constructed on the basis of FH and SNP information.
Despite the distribution density of genes being far lower than that of
SNPs, FH-based genotyping completely reproduced the subgroup
characteristics observed when classifying on SNPs, and also accurately
reflected the population structure. At the group level, FH-G1 corre-
sponds to SNP-G1, FH-G2, and FH-G3 to SNP-G4 and SNP-G5, FH-G4 to
SNP-G6, FH-G5 to SNP-G3, and SNP-G6 and FH-G6 to SNP-G2 and SNP-
G6 (Fig. 3b). Nonetheless, some discrepancies were observed in the
attributional assignments of genetic components between FHs and
SNPs. For example, the cultivars from SWC in FH-G6, which clustered
with early landraces from the American continents and SC, were
assigned to SNP-G6, which contained modern cultivars from the USA
and NWC, indicating potential differences in genetic characteristics
reflected.

Next, FH-based haplotypes on two typical regions of structural
variation on chr. A06 and A08were further investigated. Comparisons
of the merged FH and SNP haplotypes suggested that FHs are able to
capture structural variations previously implied by SNPs (Supple-
mentary Figs. 4, 5). Additionally, since FH allows genes to be coded in
both a more flexible and more diverse manner, the FH-based haplo-
type allows dividing structural variation into finer haplotype blocks,
enablingmore accurate tracking of genetic ancestry. On chr. A06, hap-
block (HB)−2 and HB-3 reflected different genetic components that
could not be distinguished based on SNP data; and the genetic
ancestry of HB-1 and HB-4 were easily attributed to NAL and SCL,
respectively (Fig. 3c). In addition, evidence of genetic sharing in HB-2,
HB-3, and HB-4 supported genetic transferring between SCL and SWC.
Meanwhile, HBs on chr. A08 revealed unique genetic footprints of
adaptation in cottons from NWC, YRR, and YZR. HB-1 on chr. A08 was
unique to the NWC cultivars, while the other FH-HBs reflected the
discovery and fixation of superior genes originated from USA cottons
in Chinese breeding programs (Fig. 3d). This result is consistent with
the historical introduction of upland cotton cultivars from the USA to
China over the last century, and subsequent pedigree selection and
cross breeding in major cultivation areas over the past 70 years. Inte-
gration with agronomic traits revealed the genetic polymorphisms
reflected by HBs on chr. A06 and A08 to be associated with important
lint yield components, lint percentage (LP), and fiber qualities such as
fiber length (FL) and strength (FS) (Fig. 3e). This genetic pleiotropy of
A08 HB is indicated as the result of the combined action of pleiotropy
QTL and LD linked non-pleiotropy QTL (Supplementary Table 4).
Beyond chr. A06 and chr. A08, FH also provided a more accurate and
finer genetic adaptation pattern and population structure for chr. A01,
A13, D01, D06, D07, and D08 (Supplementary Fig. 6).

Haplotype blocks of FH on major structural variants strongly
suggest superior allele/gene transferring between the introduced
germplasm and modern cultivars in the breeding process. We
accordingly used the number of shared FHs to calculate a coefficient
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reflecting the intensity of gene transference between populations
(Methods, Fig. 3f, and Supplementary Data 10). The results highlighted
two transferring hotspots among earlier landraces and modern culti-
vars. First, in early landraces, a relatively high gene transference was

observed between G. barbadense accessions and cottons sampled
from Central American countries and Caribbean islands, this finding is
inferred to relate to the similar geographical origins of upland and
island cotton. In addition, strong gene transference was observed

Fig. 3 | Population structure and domestication pattern revealed by FH in the
3724 cottons. a Phylogenetic analysis of the global cottonpopulation based onFH.
Germplasm geographical origins and release dates are annotated on the periphery
of the phylogenetic tree. All germplasms are clustered into six groups G1–G6 based
on their geographic origin and tree topology. b Comparison of sample clustering
between the FH tree and SNP tree. The geographical origins of the clusters’ main
accessions (>5%) are annotated by the fan chart. Genomic divergence in chr. c A06

and d A08 as revealed by FH. Germplasms with the same FH are assigned to one
haplotype block (HB). eDifferent HBs in chr. A06 and A08 are associated with fiber
improvement. The center line represents the median, the lower and upper box
hinges corresponding to the first and third quantiles, and whiskers extend to the
minimum and maximum values. n represents the sample size. f Intensity of gene
transference between population pairs. Only intensities exceeding 0.15 are labeled.
Source data are provided as a Source Data file.
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among CAL, NAL, and SAL, which suggests the introduction of early
cotton landraces within the American continents. A very high level of
gene transference was also found from NAL to SCL, once again indi-
cating an ancient genetic background for landraces in SouthernChina.
The transferences from NAL to SCL may have originated from the
global trading activities of European colonizers during the Age of the
Great Seas19. A recent genomics study found that wild cotton seeds
from the island of Hainan were able to survive floating in seawater for
more than six months, raising the possibility that SCL progenitors
drifted over the Pacific Ocean24. Second, modern cotton cultivars
exhibited another hotspot with frequent gene transference, particu-
larly from the USA to YRR and YZR, and among those from NWC, YRR,
FSU, and NC. These results are in line with current understanding of
cotton breeding history in China19,25.

FH-basedGWASmappedQTGs associatedwith agronomic traits
Despite the fact that short variations are abundantly investigated in
genetic research, the vast majority of genetic studies, especially in
plant and animal genetics, still rely on genes for further elucidation
of regulatory mechanisms and the development of improved culti-
vars. In this study, we converted short variant information into gene-
level FH, enabling the direct mapping of QTGs related to target
agronomic traits. For the QTG mapping, we collected a total of 245
sets of phenotypic data covering 20 agronomy traits regarding lint
yield, fiber quality, plant architecture, resistance, and maturity
(Supplementary Data 11). Using a linear mixed model that incorpo-
rates the genetic kinship matrix generated from FH genotype as
random effects and the first two principal components (PCs) as fixed
covariates, we performed single-gene regression for 60,154 genes
against the 245 phenotypes. The factorial FH genotype were dummy
coded, and a reduced phenotype was applied in regression to save
computational time (Methods). This FH-GWAS initially identified
10,279 genes significantly associated with agronomic traits (Supple-
mentary Data 12). After simple clumping to remove other significant
genes within 500 kilobase (kb), a total of 5022 QTG clusters were
identified (Supplementary Data 13). As an essential comparison, we
also conducted conventional SNP/Indel GWAS for the 245 pheno-
types, which incorporates the genetic kinship matrix generated from
SNP/Indel genotype instead as random effects and the first two PCs
as fixed covariates. After clumping, this yielded 6533 candidate QTLs
significantly associated with the phenotypes (Supplementary Data
14). Generally, the number of QTLs is higher than the number of
QTGs, likely due to possible non-coding associations (Fig. 4a).
Nonetheless, the number of QTGs showed a strong positive corre-
lation with the number of QTLs, especially in those traits with mul-
tiple environments and large sample sizes. Chr. A08 and D11 were
notable for containing the most QTGs. The high number in chr. A08
may result from the extremely large LD caused by structural variation
covering over 70 megabases (Mb); in chr. D11, it is likely due to
associations with numerous phenotypes. This high degree of func-
tional influence may also explain why chr. D11 features the highest
number of FHs but the lowest average gene density.

We next exploredwhetherQTLs andQTGs reflect similar genomic
regions associated with a phenotype. The number of overlapped QTLs
and QTGs increased with flanking region size (1 to 5Mb; Fig. 4b). In
crops with high genome linkage, casual genes may be located very far
away from significantQTLs; this once again emphasizes the superiority
and necessity of FH-based GWAS in gene mapping studies. Further-
more, under the condition where the flanking region was 5Mb, only
approximately 35% of QTLs and 25% of QTGs were found to overlap.
This indicates that different genomic signatures are discovered by
SNP/Indel and gene-level FH association analyses. We found that QTGs
for fiber quality, lint yield, plant architecture, and resistance were
situated mainly in the A sub-genome (Fig. 4c), which explains its lower

gene diversity (Fig. 2b), in that the A sub-genome has experienced
stronger selection pressures than the D sub-genome.

Taking the FH in TM-1 (coded as FH-1) as the reference FH, we
calculated exact phenotypic effects for the alternative FHs in all 10,279
potential QTGs (Supplementary Data 15). Among all 72,559 alternative
FHs, 19,228 FHs in 8917 genes were found to have significant pheno-
typic effects compared to the reference FH. Of these, 9411 FHs were
identified to have significantly superior effects on agronomic traits,
whereas 9817 FHs which mainly concentrated in the early landraces
(Supplementary Data 16) had significantly adverse effects. A total of
7724 FHs in 3701 genes were implied to be pleiotropy across multiple
traits. The association study detected statistically significant pheno-
typic correlations in 8917 genes, while most of the identified effect
sizes were low (Supplementary Fig. 7), which is consistent with poly-
genic architecture for complex traits26. Further screening for rare
variants and minor effects revealed 532 high-frequency genes with
major effects, which are of direct breeding value (Supplementary
Data 17).

At the individual level, we found the relative number of superior
FHs (the number of superior FHsminus the number of inferior FHs in a
given sample) and the average effects of significant FHs to be highly
correlated with most phenotypes (Fig. 4d, Supplementary Fig. 8, and
Supplementary Table 5). This result illustrates the reliability of the
QTGs identified in FH-GWAS. Considering the release dates of the
various accessions, we examined the pattern of change in the number
of superior FHs in accessions from the beginning of the 20th century
to the present (Fig. 4e and Supplementary Fig. 9). This revealed
superior FH presence to have massively increased over time for lint
yield traits of LP, lint index (LI), fiber weight per boll (FWPB), boll
weight (BW); for fiber quality traits of fiber uniformity (FU), spinning
consistency index (SCI); and for plant height (PH), which relates to
plant architecture, and verticillium wilt index (VW), which relates to
disease and stress resistance. These trends are particularly evident in
cultivars selected after the 1990s, where the efficiency of breeding
selection markedly improved due to advancements in and maturation
of the molecular biology techniques applied in genetic breeding. For
some agronomic traits such as FL, FS, and FD, the long history of
cultivar improvement resulted in only a relatively limited introduction
of superior FHs until the early 21st century. However, these FHs
became more abundant in cultivars from the year 2000 onwards,
suggesting a shift in the goals of cotton breeding. Interestingly,
superior FHs related to FM and FE showed obvious decreases in cul-
tivars released over the last 30 years (Supplementary Fig. 10), a result
that is consistent with the decreased fiber fineness in recent cultivars
and implies great potential for improvement of these traits in future
cotton genetic breeding.

There are well-known phenotypic correlations for several impor-
tant traits related to cotton fiber, particularly the positive correlations
between fiber quality traits (e.g., between FL and FS) and negative
correlations between fiber quality and lint yield traits. We resolved the
genetic basis of these phenotypic correlations from the gene per-
spective. For the positively correlated FL and FS, we found almost all
pleiotropic FHs (99.73%) to have the same effect direction (Fig. 4f and
Supplementary Table 6), which implies a synergistic improvement in
FL and FS by the selection of a causal gene; meanwhile, for FHs with
isotropic or inverse effects for FL and FS, the exact phenotypic effects
showed no significant difference. For the negatively correlated FS and
LP, although isotropic FHs also constituted the major part (79.41%) of
pleiotropic FHs, we observed a clearly higher proportion of FHs
(20.59%) with inverse effects. More importantly, these inverse-effect
FHs are generally capable of improving one of the two traits to a
greater extent, meaning they are often more observable and prefer-
able in breeding activities, albeit at the expense of impairing the
other trait.
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Validation of the effects of key QTGs on fiber quality
To validate the reliability of QTG identification by FH-GWAS, we chose
the gene GH_D11G1903, whose FH diversity showed significant asso-
ciation with fiber quality traits in multiple phenotypes (Fig. 5a). This
gene, named GhFAH1 hereafter, encodes ferulic acid 5-hydroxylase 1,
which has previously been reported to affect the biosynthesis of

phenylpropanoids27, and phenylalanine-derived specialized metabo-
lites that are included in the structural components of plant cell walls.
There are three missense variants identified in GhFAH1 (Supplemen-
tary Data 18), which derive eight types of FHs in the entire population
(Supplementary Table 7). Our analysis identified threemajor FHs (FH-1,
FH-2, and FH-4) for GhFAH1; relative to the reference FH in TM-1, the
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other two FHs contain heterozygous and homozygous missense
mutations at the same position, resulting in a change of amino acid
from glycine to serine. FH haplotype analysis showed significant
decreases in FL and SCI for samples carrying the alternative FHs

(Fig. 5b). The gene GhFAH1 is located in the QTL candidate region
represented by lead variant D11_20177498 (Fig. 5c) and neighboring
variant D11_20531989 (Supplementary Fig. 11). We also investigated
GhFAH1 expression across the entire TM-1 plant tissues and found it to

Fig. 4 | FH-based GWAS identified key QTGs associated with agronomic traits
and revealed the genetic basis of variety improvement in cotton. aComparison
of the numbers of QTGs and QTLs associated with the phenotype. b Proportion of
overlapped QTLs and QTGs according to flanking region size. c Distribution of
QTGs on the sub-genome. d Relationship of the relative number of superior FHs
(left panel), average effects of all significant FHs (right panel), andphenotypes. Each
point represents a sample, point size represents the average effect size of sig-
nificant FHs. e Relative number of superior FHs possessed by cottons registered or
introduced in different time periods. n is the sample size. f Genetic basis of

phenotypic correlations in cotton. Pie charts plot the proportion of FHs with sig-
nificant pleiotropy effects on FL, FS, and FS, LP (upper panel), and boxplots show
the absolute effect sizes for FHs with inverse or isotropic pleiotropic effects (lower
panel), n is the number of genes with corresponding pleiotropic effects, two-sided
student t-test are used for statistical inference (**p <0.01, ns not significant). In a
boxplot, the center line represents the median, the lower and upper box hinges
corresponding to the first and third quantiles, whiskers extend to theminimumand
maximum values, and individual points beyond the whiskers (if present) denote
outliers. Source data are provided as a Source Data file.

Fig. 5 | CRISPR-Cas9 knock-out (KO) experiment validates the phenotypic
effects of GhFAH1 on fiber quality. a Association study revealed GH_D11G1903
(GhFAH1) as significantly affecting FL and SCI. b Haplotype analysis showed the
phenotypic effects of different FHs ofGhFAH1. n is the sample size. The center line
represents the median, the lower and upper box hinges corresponding to the first
and third quantiles, and whiskers extend to the minimum and maximum values.
c Colocalization between GhFAH1 and the candidate QTLs. d Correlations between
GhFAH1 expression in 20DPA fiber and 90 phenotypes in 207G. hirsutum cultivars.

e Expression of GhFAH1 (TPM) in 20 DPA ovules of several early landraces and
modern cultivars. Data were presented as mean values ± SEM. f Sanger sequencing
chromatogram illustrating a 2 bp deletion in target GhFAH1. g Fiber quality eva-
luation for receptor parent W0 and KO lines. h Phenotypes of mature fibers of W0
and KO lines. Two-sided Mann–Whitney U-test was applied for statistical test
(*p <0.05, •p <0.1). Error bar represents the standard error, n is the sample size,
data were presented as mean values ± SEM. Source data are provided as a Source
Data file.
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be specifically highly expressed in 20 and 25 days-post-anthesis (DPA)
fibers (Supplementary Fig. 12). Furthermore, examination of its
expression in 20 DPA fibers of 207 G. hirsutum accessions revealed
subtle yet notable correlations with the fiber traits FL, FS, and FM
(Fig. 5d and Supplementary Data 19, 20). In addition, earlier landraces,
especially Yucatanense (YUC), showed predominant GhFAH1 expres-
sion in 20DPAovules, while its expressionwas lacking inmostmodern
cultivars (Fig. 5e and Supplementary Data 21). These transcriptomic
evidences suggest a potential negative impact of GhFAH1 on superior
fiber establishment. We successfully performed CRISPR-Cas9 editing
of GhFAH1 (Fig. 5f and Supplementary Data 22) that resulted in sig-
nificantly longer and finer fibers (Fig. 5g, h and Supplementary
Data 23).

Finally, we compared our QTG results with previous genetic fine
mapping studies and transgenic experiments, which literature pro-
vided a total of seven genes with validated functions in fiber devel-
opment (Supplementary Data 24). These results confirm the broad
validity of FH-GWAS as an effective method for identifying key QTGs
related to agronomic traits.

Discussion
Large-scale population sequencing and a sophisticated statistical
genetics framework have led to major breakthroughs in the life sci-
ences, resolving the geneticmechanisms of complex life activities with
unprecedented precision. Although a large number of QTLs have been
confirmed in GWAS studies, these results have generally disappointed
in terms of driving the discovery of biological causes of phenotypes.
Achieving sufficient identification of QTGs fromQTLs remains fraught
with difficulty. This challenge is particularly prominent in plants,which
typically exhibit stronger LD due to extensive artificial selection and
complex genome structures28. Recently, the genetic characterization
of large populations has provided a new opportunity for overcoming
this challenge. In this study, we proposed a strategy in which a multi-
dimensional reduction-like analysis29 is performed on the non-
synonymous variants present in a gene. In this first FH panel of 3724
cotton accessions representing the most comprehensive upland cot-
ton collections to date, our analysis yielded a total of 1,368,685 FHs
representing global cotton protein diversity. Although FH utilizes
only about 3.8% of the total genomic information, it is fully capable
of reflecting both known structural information, such as in cotton
chr. A06 and A0819, along with adaptive signatures in the genome
(Figs. 2e, 3a). Being highly informative, FH and its merged blocks allow
more accurate tracing of genetic ancestry for genomic segments
(Fig. 3c, d and Supplementary Figs. 4–6) and also reveal additional
knowledge about the history of human introductions as well as gene
transference events at the gene level (Fig. 3f).

Genetic mapping has always been a central task in applied
genetics. Our study leveraged the FH coding strategy and a tailored
linear mixed model to achieve efficient narrowing of candidate gene
sets and directmapping of QTGs in some scenarios at the GWAS stage.
Compared with conventional GWAS based on short variants, the FH-
based GWAS detected fewer significant clumped QTGs (5022) than
significant clumped QTLs (6533), as the wider distribution of SNP or
short structural variants revealed extra genomic signatures in non-
coding regions. In addition, only 25% of the identified QTLs and 35% of
QTGs shared the same candidate interval (Fig. 4b). This finding sug-
gests long-range linkage between the significant and causal variant or
gene23,30, and additionally illustrates the unique advantage of FH in
discovering associations between protein sequence variation and
phenotype. That is, although both SNP-GWAS and FH-GWAS could
identify unique genetic signatures, apparently the QTGs identified by
FH-GWAS are more readily applicable and more amenable to genetic
interpretation. We selected GhFAH1 for validation, FH of which were
significantly associated with fiber quality and specifically expressed
during the critical development stages of fiber. The impact of this gene

on fiber quality was confirmed by CRISPR-Cas9 gene editing. Taken
together, these results demonstrate the feasibility of directmappingof
QTGs through FH-based GWAS. Efficient gene mapping for complex
traits in animal and plant species will promote and accelerate the
development of breeding 5.0, which leverages big data and artificial
intelligence for deep mining and breeding design, and operates at the
gene level through transgenic technology (Fig. 6).

In addition to comparing FH-GWAS with SNP-GWAS, the poly-
genicity of common complex traits reflected in FH-GWAS is also worth
attention. For the 20 agronomic traits tested in this study, a seemingly
large number of 8916 genes were identified as significantly related to
phenotypes (Supplementary Data 15). This result preserves the
potential impact of rare variants on phenotypes, which is commonly
present in plantmutants. In other words, we did not adopt a very strict
screening of FH frequency in the initial association analysis, in light of
having applied stringent screening conditions to the initially identified
variants to ensure their authenticity. In addition, the effect sizes of
significant FHs were consistent with the theoretical normal distribu-
tion in the polygenicity framework (Supplementary Fig. 7), and
these low-effect but undeniable associations indicate a small genetic
contribution of common genetic variants or a highly polygenic
contribution involving many variants. Nevertheless, we need to
emphasize that addition evaluation is especially required for the
application of those significant FH with low frequency under the cur-
rent strategy. Upon further screening, we identified 532 high-
frequency genes with major effects, which are observable in conven-
tional breeding and can be used as reliable references for further
breeding practices.

Gene-level FH-based association analysis has laid the foundation
for broad and more readily interpretable genetic discoveries. How-
ever, as a refined model within the GWAS framework, this method
remains susceptible to various forms of cryptic relatedness that may
introduce spurious associations. Multi-omics assessment of sig-
nificantly associated QTGs remains indispensable to refine the genetic
rationale of QTG-influenced traits. Besides, it is also important to
acknowledge that our analytic framework focuses on genotypic con-
figuration and does not account for haplotype phase information. This
modeling strategy introduces theoretical limitations, as heterozygous
genotypes within FHs may encode distinct peptide products depend-
ing on allelic phase. Consequently, haplotype-specific effects at the
gene level may be incompletely resolved. Nevertheless, we should
emphasize that the association between phenotypes and FHs con-
taining homozygous non-synonymous mutations under this frame-
work remains valid and appropriate, but the indeterminate
classification of heterozygous sites reduces statistical power to dis-
tinguish causal FHs from confounding associations, resulting in con-
servative bias in statistical interpretations. Further inclusion of phase
information is essential, while currently there is still a lack of a
haplotype-resolved reference genome in cotton, and the polyploid
complexity of the species has limited the application of computa-
tionally inferred phase information, which risks introducing sub-
stantial technical artifacts.

China has achieved remarkable success in improving cotton cul-
tivars and promoting their production. However, in recent years, both
the acreage of cotton cultivation and total yield have declined31. While
ensuringhigh yields, it is crucial to develophigh lint yield cultivarswith
excellent fiber quality. This study has found that, over the past 30
years, the number of superior FHs related to lint yield have increased
significantly (Fig. 4e). Meanwhile, since 2000, superior FHs related to
FL have also increased, but those related to FM and FE have decreased
in number, which is consistent with the development trend of China’s
cottonproduction. At present, the number of superior genes related to
lint yield has basically reached a bottleneck, and the number of inferior
genes is very limited (Supplementary Data 16). However, there are
relatively few superior genes and many inferior genes related to fiber
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fineness, elongation rate, andmaturity, which could be considered the
next main direction for cotton genetic breeding.

Concomitant achievement of high lint yield and superior fiber
quality have been the main goal of cotton genetic breeding in the past
few decades. However, long-term phenotypic studies and recent
genomic analyses have revealed what is now a well-established nega-
tive correlation of these traits in both morphology and genetics. Sev-
eral previous studies have analyzed the genetic basis for this strong
negative correlation, examining additive effects of QTL (clusters).
These studies have found that most QTLs affecting both lint yield and
fiber quality have opposite additive effects, while those affecting
multiple fiber quality traits such as FL and FS share the same effect
direction32–34. In the present study, our identification of consistent
effect direction of QTGs for FL and FS is consistent with previous
findings; however, and quite interestingly, we found that most QTGs
with pleiotropic effects on LP and FL also have the same effect direc-
tions (Fig. 4f), however, these same-direction QTGs have very small
effects, while those with inverse directions are relatively fewer, but

their effect in improving one of the traits is very strong. Thus, our
findings strongly indicate that there are a large number of genes in the
cotton genome that can simultaneously improve bothfiber quality and
lint yield, but they have rarely been mapped in breeding practice
because of their minor effects. Meanwhile, genes that can significantly
improve yield or quality aremore likely to be selected by breeders, but
potentially impair the other trait. These results provide insights into
key issues in cotton breeding and suggest a theoretical basis for
achieving current major breeding goals.

Methods
Sample collection and calling of genomic variations
In this study, we collected the raw sequencing data of 4480 cottons
from eight public datasets (Supplementary Data 1). These cottons
represent global cotton origin areas as well as major cultivation areas.
The raw sequencing data were trimmed using fastp (ver. 0.23.4) with
default parameters35, and the clean reads were mapped against the
G. hirsutum genetic standard reference genome TM-112 using BWA

Fig. 6 | Pipeline of intelligent precision breeding (Breeding 5.0).
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(ver. 0.7.17-r1188)36. The mapping results were sorted and compressed
with samtools (ver. 1.11)37. PCR duplication was marked using sam-
bamba (ver. 0.6.6)38. Genomic variations were identified using the
bcftools (ver. 1.11) “mpileup” and “call” commands in batch39. Variants
with mapping quality (QUAL) lower than 30 were discarded. Indel
markers from different batches were left-aligned and normalized with
the bcftools “norm” command to avoid ambiguity in the merge step,
and all datasets were merged using the bcftools “merge” command.
Variant imputation was conducted by Beagle (ver. 5.4)40. After quality
control for the genomic variations (biallelic, mapping quality >30,
heterozygosity <0.1, number of homozygotes for alternative allele
>10), a total of 4480 accessions and 9,052,728 variants were retained.
Samples with different sequencing depths were evaluated by principal
component analysis (PCA) and ancestry estimation. After evaluation of
the merged dataset, we removed samples with low sequencing depth,
and variants with an inbreeding coefficient lower than −0.6 and MAF
lower than 0.001. Finally, 3724 samples with 23,057,253 genomic var-
iants were retained (Supplementary Data 3).

Construction of the FH dataset
For the 23,057,253 genomic variants, we annotated their effects using
snpEff (ver. 5.1)41 and extracted a total of 334,406 non-synonymous
variants that directly alter protein sequences (SupplementaryData 25).
In cases where multiple missense variants were present, the genotype
combination in each sample was extracted as the FH genotype of that
sample for that gene. To illustrate, if the genotype of FH-5 for a gene is
022, it indicates the presence of three non-synonymous mutations.
The additive genotypes for these three variants are 0, 2, and 2,
respectively, indicating that the sample is homozygous for the refer-
ence allele in the first variant and homozygous for the alternative allele
in the other two variants. Based on this principle, the FH for every gene
in the reference genome TM-1 will always be a combination of 0 s
(referred to as FH-1). This facilitates estimation of the phenotypic
effects of different FHs. Notably, the genotype coding is changed from
the numericmethod used for SNPs or Indels that counts allele number,
such as 0, 1, 2, to the factorial method, for example, FH-10 represents
type ten for this gene.

Genetic diversity and selection pressure analysis
Shannon’s equitability index (EH) is commonly used to characterize the
distribution equitability of species with given abundance42,43. In this
study, we use EH to measure the gene diversity across different chro-
mosomes and populations. For a given gene, the EH is calculated as
follows:

EH = � 1
lnN

X
i

pi lnpi ð1Þ

in which pi is the prevalence of the i-th FH for this gene in the popu-
lation, and N is the population size. The EH ranges from 0, indicating
this gene is sequence-conserved as only one reference FH (FH-1, pi = 1)
exists in the population, to 1, indicating this gene is extremely variable
because every sample in the population has a unique FH (pi = 1/N). For
genes with varying diversity across populations, we investigated their
potential biological functions by gene ontology (GO) enrichment
analysis using the R package clusterProfiler (ver. 4.6.2)44.

To quantify selection pressure, we calculated the ratio of non-
synonymous substitutions and synonymous substitutions (Ka/Ks)45 for
each gene:

Ka=Ks =
P

iNiQi�variant=Qi�alleleP
iNiX i�variant=Xi�allele

ð2Þ

in which Ni is the number of samples with the i-th FH, Qi-variant and
Xi-variant denote the number of non-synonymous and synonymous

variants in the i-th FH, and Qi-allele and Xi-allele represent the number of
non-synonymous and synonymous alleles. When Ka/Ks is equal to 1, it
indicates the gene is subject to neutral selection, while Ka/Ks greater
than 1 or less than 1 represents positive selection and purifying
selection, respectively.

Phylogenetic analysis and ancestry estimation
We constructed phylogenetic trees from both genomic markers and
FH markers. For the regular genomic variants, PCA, phylogenetic
analysis, and ancestral estimation were conducted on the LD-pruned
dataset comprising 43,602 independent variants. These variants were
extracted on the basis of having pairwise correlations lower than 0.05
with any other variants located within a 100 kb window. The LD-
pruning step and PCA analysis were conducted using the PLINK2 (ver.
2.00a6LM)46 software with respective input parameters “indep-pair-
wise 100 kb 0.05” and “--pca”. The neighbor-joining tree was con-
structed for the large genomic variant dataset using the FastTree (ver.
2.1.11SSE3)47 with default parameters. Ancestral estimation for all
samples was conducted using Admixture (ver. 1.3.0)48 with default
parameters. For the FH dataset, the genotype coding being factorial
rather than numeric made the previous method not applicable.
Instead, we firstly calculated the general genetic distance

d =D=L ð3Þ

in which D is the number of genes that possess different FH between
two individuals and L is the total number of genes, along with its
associated variance D(1-D)/L. The general genetic relatedness score is
then calcuted by 1-d. Then we used the general relatedness matrix to
construct the neighbor-joining tree. These two steps were implemen-
ted using the functions “dist.gene()” and “nj()” in the R package ape
(ver. 5.8)49.

Gene transference intensity
Our study measured the level of pairwise subpopulation gene trans-
ferencecausedbynatural factors or humanactivities by calculating the
relative number of genes sharing the same type (i.e., FH). Specifically,
the gene transference intensity (Gs) between subpopulations A and B
was calculated as

Gs =
1
M

X
i

wini ð4Þ

in which M is the total number of genes; ni is the number of genes
specifically share same FH between i subpopulations; i ranges from 2,
representing the gene share the sameFHonlybetween subpopulations
A and B, which provides themost direct evidence of gene transference
between those subpopulations, to the maximum number of sub-
populations, representing gene shares same FHs across the entire
population; and wi is the weight score

wi = e
�ði�2Þ2

10 ð5Þ

which considers the contribution of genes with same FH shared in
different numbers of subpopulations to determine gene transference
in the pair. When i is 2, wi reaches it maximum value of 1, and as i
increases, it decreases. When i is higher than 8, wi is 0.027, meaning
that FHs occurring in more than eight subpopulations are not infor-
mative in revealing the gene transference between subpopulations A
and B. After all Gs were computed, they were further normalized
through division by the intra-population Gs value.

FH-GWAS modeling
We performed linear mixed model-based GWAS to identify candidate
QTGs for the agronomic traits of interest in cotton. The statistical
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model is described as:

y =Xcβc +Fjgj + r + e ð6Þ

where y is an n× 1 vector of phenotypic value for n samples; Xc is the
incidence matrix of fixed covariates, which includes the intercept
coefficient 1 and the top two PCs, with their corresponding effects βc;
gj is a vector of genetic effect captured by the tested gene with
gj � Nð0, Iσ2

g Þ, in which σ2
g is variance; and Fj is the n×m codingmatrix

for the j-th gene. For sample i that carries the factorial FH q in the j-th
gene, qwas coded to the dummy vector Fij by setting the q-th element
in an all-zero vector to 1,

Fij = 01, 02, . . . , 0q�1, 1, 0q+ 1, . . .0m

h i
ð7Þ

in which m is the total number of FH types observed for the tested
gene. Additionally, r is a vector of genetic effect captured by genetic
relatedness with r � Nð0,Gσ2

r Þ, the covariance matrix of r is Gσ2
r ,

meaning the variance of each individual’s genetic effect is scaled by
their kinship coefficient (diagonal of G, the general relatedness matrix
applied for phylogenetic analysis), and the covariance between indi-
viduals is determined by their pairwise genetic relatedness (off-diag-
onal of G); and e is the residual vectorwith e � Nð0, Iσ2

eÞ. To reduce the
computational burden, we firstly fitted the following model

y =Xcβc + r + e ð8Þ

and calculated the reduced phenotype ey as

ey = y� r̂ ð9Þ

inwhich r̂ is the vector of estimated effect of genetic relatedness. Then,
twomodels with orwithout the tested genewere fitted, the null model
(H0) is

ey =Xcβc + e ð10Þ

and alternative model (H1) is

ey =Xcβc +Fjgj + e ð11Þ

The likelihood ratio test was applied to the two models to deter-
mine whether the variance σ2

g of gj is significantly greater than 0 (one-
sided alternative), with degree of freedom 1. A suggestive threshold of
1e−5 was applied for determining the significance of the test gene in
affecting the phenotype. The GWAS analysis was conducted by the R
package lme4qtl (ver. 0.2.2)50.

SNP and indel GWAS
The filtered SNP and Indel set in VCF format are converted to variant-
major text genotype table (tped) using PLINK2, and GWAS was con-
ducted by software efficient mixed model association eXpedited
(EMMAX, ver. 20120210)51, with genetic kinshipmatrix and thefirst two
principal components as covariates. The statistical analysis tests the
significance of the variant's effect using a two-sided generalized least
squares F-test, and a suggestive threshold of 1e−5 was taken as the
threshold.

Clumping of QTLs and QTGs
Significant genomic variants (SNPs and Indels) and genes were
clumped in order to take LD into account in the results interpretation.
For significant variants, any sites less than 1Mb away from an index
variant (variant having p value lower than 1e-5) and greater than 0.1
correlation with it were assigned to that index variant’s clump; this
clumping step was conducted using the PLINK2 “--clump” command,

with the current population as the reference panel. For genes sig-
nificantly associated with phenotypes in the FH-based GWAS, a simple
clumping was conducted by keeping the most significant gene while
removing any other significant genes within 500 kb.

Calculation of FH effects on phenotypes
For a givenQTG identified as significantly associatedwith a phenotype,
we calculated the phenotypic effects of the FHs it contains across the
population. The FH in the reference genome TM-1 was always defined
as FH-1 and used as the base FH to which average phenotypes of the
other FHs (such as FH−2, FH-3, etc.) were compared. FHs appearing in
less than two samples were removed. The average phenotypic value
among samples containing the FH-q was calculated as

�yq =
1
nq

X
i

yqi ð12Þ

and the effect size of FH-q was defined as the difference between �yq
and �y1. Multiple comparisons of phenotype for samples with different
FHs were conducted by means of the least significant difference (LSD)
test, with p values adjusted by the Benjamini–Hochberg method.
Genes of high breeding value were screened based on a frequency of
occurrenceofmore than 30 in the population, and an effect size of less
than 5% quantile or more than 95% quantile for the corresponding
phenotype.

Validation of biological functions of target QTGs
CRISPR/Cas9 genome editing was used to generate knock-out lines for
GhFAH1. The sgRNA sequences (5’-GGACCTGTGGAGCCATCTCG-3’)
were designed by the web tool CRISPR-P 2.0 and cloned into the
sgRNA-Cas9 expression vector (with oligonucleotides forward
sequence 5’-ACGGCCCGTAATGAGCGAAA-3’, and reverse sequence
5’-CACCTCAAGATGGGGTTCCT-3’), then introduced into G. hirsutum
accession W0 via Agrobacterium tumefaciens-mediated transforma-
tion. Primer pairs bracketing the target regions were used to amplify
the DNA of the transgenic plants, and the derived PCR products were
sequenced to confirm mutation of the target genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data were collected from the following NCBI
accessions: PRJNA605345, PRJNA680449, PRJNA414461, PRJNA564187,
PRJNA744011, PRJNA752720, PRJNA375965, PRJNA336461, PRJNA613140,
and PRJNA848197. The phenotype data were collected from publications
listed in Supplementary Data 1. The reference genome and annotation
files of TM−1 were downloaded from COTTONOMICS (http://cotton.zju.
edu.cn/). The coding sequence of GhFAH1 has been deposited into NCBI
GenBank under accession. PV231350 [https://www.ncbi.nlm.nih.gov/
nuccore/PV231350]. Source data are provided with this paper.

Code availability
The R scripts for converting genomic variants into FH, and all other
analysis scripts, codes for the results present in this study, were
deposited in theGitHub repository [https://github.com/GuoanQi1996/
FHGenotyping].
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