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Multiple intramolecular triggers converge to
preferential G protein coupling in the CB2R

Adrian Morales-Pastor1,13, Tamara Miljuš 2,3,4,5,6,13, Miguel Dieguez-Eceolaza 1,
Tomasz Maciej Stępniewski1,7, Vicente Ledesma-Martin1,
Franziska M. Heydenreich 8, Tilman Flock2, Bianca Plouffe 6,9,
Christian Le Gouill 6, Jean Duchaine6, David A. Sykes 4,10,11,
Colin Nicholson4,10, Eline J. Koers4,10, Wolfgang Guba12, Arne C. Rufer 12,
Uwe Grether 12, Michel Bouvier 6, Dmitry B. Veprintsev 2,3,4,10 &
Jana Selent 1

G protein-coupled receptors (GPCRs) are important therapeutic drug targets
for a wide range of diseases. Upon activation, GPCRs can initiate several sig-
naling pathways, each with unique therapeutic implications. Therefore,
understanding how drugs selectively engage specific signaling pathways
becomes paramount. However, achieving this selectivity remains highly chal-
lenging. To unravel the underlying multifaceted mechanisms, we integrate
systematic mutagenesis of the CB2R, comprehensive profiling of Gαi2 and
β-arrestin1 engagements and computer simulations to track the effects of
mutations on receptor dynamics. Our research revealsmultiple triggers within
a complex allosteric communication network (ACN) that converge to pre-
ferential CB2R coupling by modulating evolutionarily conserved motifs. Uti-
lizing network path analysis, we find that potent triggers are typically highly
connected nodes and are located near regions of high information transmis-
sion within the ACN. Our insights highlight the complexity of GPCR signaling
and provide a framework for the rational design of drug candidates tailored to
evoke specific functional responses, ultimately enhancing the precision and
efficacy of therapeutic interventions.

G protein-coupled receptors (GPCRs) are the largest family of cell-
surface receptors in humans1. They are involved in virtually every
physiological process, which makes them invaluable targets for drug
development. The cannabinoid receptor 2 (CB2R) is aGPCR thatplays a

crucial role in numerous physiological processes, including immune
response and inflammation2. This makes the CB2R a promising ther-
apeutic target for a variety of diseases, such as chronic pain, neu-
roinflammation, and cancer3,4.
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Currently, synthetic Δ9-THC derivatives (e.g. Nabilone5) are avail-
able for the treatment of chemotherapy-induced nausea and vomits.
However, these compounds are non-selective agonists of cannabinoid
receptors and may cause psychoactive effects via the CB1R

4. Addi-
tionally, they can also induce adverse cardiovascular liability in a dose-
dependent manner via the CB1R

6. In contrast, cannabinoid receptor
ligands that do not activate the CB1R typically lack psychoactive side
effects. An example is the FDA-approved phytocannabinoid cannabi-
diol for the treatment of epilepsy7 which acts as a negative allosteric
modulator of the CB1R

8 and a partial agonist at the CB2R
9. In addition,

cannabidiol has been widely used without prescription for the relief of
anxiety and stress10 as well as the management of pain11 and
inflammation12.

Presently, there are over 20 selective CB2R agonists in clinical
trials for a variety of inflammatory conditionswith good safetyprofiles.
Unfortunately, these compounds have not yet been approved,
reflecting their elusive therapeutic effect. A potential reason for this is
a broaddistributionofCB2R indifferent tissues, aswell as “ondemand”
engagement of the endocannabinoid system13, making the develop-
ment of systemically applied drugs challenging. Developing more
pathway-selective drugs represents a promising strategy to modulate
the endocannabinoid system with greater precision. An encouraging
approach to improve the specificity of drug action as well as modulate
its efficacy and to reduce potential side effects, is to exploit the con-
cept of signaling bias. Hereby, a drug preferentially activates specific
downstream signaling pathways over ones that are related to unwan-
ted side effects14–16.

Recent work provides evidence for the relevance of allosteric
communication and implicated networks in GPCR function and
signaling bias17,18. Allosteric communication networks (ACNs) serve
as dynamic infrastructure that facilitates communication between
remote regions within a GPCR, connecting critical sites like the
ligand-binding site to the intracellular effector coupling site. How-
ever, the details of how ACNs drive preferential engagement of a
specific effector protein remain largely elusive. A main challenge of
studying allostery in GPCRs is to monitor ACNs and their alterations
related to specific signaling conditions at appropriate spatio-
temporal resolution. Molecular dynamics (MD) simulations have
emerged as an invaluable tool for complementing static structural,
biophysical and biochemical data19–22 to access the proper resolu-
tion levels. They allow for the exploration of protein dynamics at an
atomic level, offering insights into the conformational changes at
microsecond timescale and corresponding intramolecular net-
works under conditions of signaling bias23,24. Knowledge of the
amino acid networks involved in this allosteric communication can
not only advance our understanding of GPCR signaling bias but also
boost the design of biased ligands with a more precise therapeutic
profile.

In this study, we dissect the allosteric communication networks
in the CB2R, combining high-throughput state-of-the-art computa-
tional and cell-based assay methods. In a systematic study, we first
probe the perturbation of each individual residue within the primary
structure of the CB2R through mutagenesis combined with G protein
activation and β-arrestin1 (βarr1) recruitment. This information is
integrated with time-resolved molecular dynamics of the mutation-
induced alteration of the CB2R ACNs using a machine learning pipe-
line. Most importantly, our study highlights multiple molecular
mechanisms and how they interact with the main communication
channels between the orthosteric ligand binding site and the intra-
cellular effector binding interfaces via highly conserved residues. Of
interest, mutations that preferentially trigger G protein coupling
show high connectivity and are typically located closer to ligand-
stabilized communication channels of high information transmission.
These insights have important implications for the rational develop-
ment of novel biased ligands targeting not only the orthosteric site

but also allosteric sites in the CB2R with a therapeutic potential to
treat inflammation and pain.

Results
Mutant position and sequence conservation impacts receptor
cell-surface expression
First, we analyzed how a mutation in each residue position impacts
cell-surface expression. To investigate this, we generated 360mutants
changing the corresponding amino acid to alanine or valine if the
amino acid was originally an alanine (see Supplementary Data 1,
Fig. 1A–C).Wefind that approximately 60%of allmutants exhibit a cell-
surface expression within the wild-type (WT)-like range (i.e., 80% to
120% of WT expression) (Fig. 1B). This finding suggests that most
residue positions in CB2R display remarkable resilience in maintaining
their cell-surface expression upon mutation to alanine/valine. Inter-
estingly, approximately 30% of the mutants show a decrease in
expression below the WT-like level, while only 10% of the mutants
display an increase (Fig. 1B). This observation indicates that
expression-impacting mutants in the CB2R predominantly reduce cell-
surface expression rather than increasing it. Such an effect can be
attributed to mutation-induced misfolding and subsequent seques-
tration in the endoplasmic reticulum or the Golgi complex25.

Of note, the distribution of expression groups across the receptor
sequence reveals an interesting pattern (Fig. 1A). Mutations that result
in high CB2R expression levels tend to be preferentially located in
transmembrane domains (TMs) 2 and 3 (yellow circles). On the other
hand, mutants associated with low expression (red circles) are more
evenly dispersed throughout the transmembrane core of the protein,
with fewer occurrences in TM2 and TM3. This spatial association
between expression groups suggests a potential functional sig-
nificance of these specific transmembrane domains inmodulating cell-
surface expression levels in CB2R.

Furthermore, we studied the relationship between sequence
conservation and cell-surface expression. The sequence conservation
in the CB2R was computed based on the Jensen-Shannon Divergence
(JSD) scoring method26 from a class A human GPCR alignment
obtained from GPCRdb27. We observe that residues with lower con-
servation scores (<0.2) show less impact on cell-surface expression,
with most mutants belonging to the WT-like group (gray points,
Fig. 1C). In contrast, residueswith conservation scores >0.2 yield larger
expression deviations compared to the WT (arrows). This finding
supports the widely accepted viewpoint that highly conserved resi-
dues are crucial for vital receptor functions, such as protein folding or
trafficking to the cell membrane. Of interest are also residues that,
despite being highly conserved (conservation score > 0.4), show aWT-
like expression level upon mutation (gray points). Those residues are
likely involved in relevant receptor functions other than cell-surface
expression, e.g., ligand binding, coupling to transducer proteins or
signal transduction.

Low mutational resilience of βarr1 recruitment results in pre-
ferential Gαi2 coupling
We also systematically assessed the effect of 360 point mutations
within the CB2R on both Gαi2 coupling and βarr1 recruitment after
stimulation with the agonist HU-210 using the ebBRET-based Effector
Membrane Translocation Assay (EMTA) biosensor platform (Supple-
mentary Data 1). Briefly, receptor-mediated Gαi2 activation was mon-
itored through the translocation of a downstream effector Rap1GAP
subunit to the plasma membrane, where it selectively interacts with
activated Gi/o protein subfamily28. The same plasma membrane trans-
location principle is used to measure βarr1 recruitment to the
receptor25. Supplementary Data 4 shows BRET response scores of the
simulated mutants.

For this large-scale analysis, we decided to focus on cases with a
marked impact on coupling, i.e., the loss of Gαi2 or βarr1 engagement or
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both to obtain meaningful results. We defined four classes of receptor
mutants (Fig. 2A, see methods): (i) preferential Gαi2 coupling
(PrefCoupGαi2): no measurable βarr1 recruitment but preserved Gαi2

coupling (Emax>50%), (ii) preferentialβarr1 recruitment (PrefCoupβarr1):
no measurable Gαi2 coupling but preserved βarr1 recruitment (Emax >
50%), (iii) loss of receptor function (NoCoupGαi2_βarr1): no measurable
signal for Gαi2 nor βarr1 and finally (iv) preserved coupling
(CoupGαi2_βarr1): mutations that preserve Gαi2 coupling and βarr1
recruitment with an Emax > 50%. Using this classification, we observe
that 70% of mutants preserve coupling properties (Emax > 50%) to Gαi2

and βarr1, whereas 30% result in a loss of Gαi2, βarr1 or both (Fig. 2B,
Supplementary Fig. 1). Interestingly, our data indicate that coupling-
impaired mutants predominantly induce the loss of βarr1 recruitment
(19%), leading to preferential Gαi2 coupling,whereasGαi2 coupling seems
to be more robust to mutational alterations (only 2% specifically abro-
gated Gαi2 activation).

To investigate whether a loss of βarr1 recruitment is correlated
with a decrease in Gαi2 coupling, we plotted the Gαi efficacy (EmaxGi)
distribution for mutants with impaired βarr1 recruitment (i.e.,
PrefCoupGαi2 mutants) (Fig. 2C). The plot reveals that PrefCoupGαi2

mutants exhibit Gαi efficacies that are normally distributed around the
WT level (Fig. 2C), suggesting that abolishment of βarr1 recruitment
does not necessarily affect the efficacy of G protein signaling. Of note,
there is also a significant fraction of receptor mutants (12%) incapable
of coupling to both Gαi and βarr1 (Fig. 2B). These impactful mutations
are enriched in highly conserved regions (e.g., microswitches, high-
lightedwith a black circle, Fig. 2A) and represent approximately 50%of
highly conserved residues (Fig. 2D).

To obtain a more comprehensive understanding of the implica-
tion of residue conservation for receptor functionality, we plotted its

distribution for mutants with preserved Gαi2 and βarr1 coupling
(CoupGαi2_βarr1) compared to the ones with preferential Gαi2 coupling
(PrefCoupGαi2). To exclude a potential impact through differential
receptor expression level, we only plot mutations with a WT-like
expression level (i.e., 80% to 120%). We find that PrefCoupGαi2 mutants
(orange line, Fig. 2E) show a clear shift toward higher conservation
scores compared to CoupGαi2_βarr1 mutants (blue line, Fig. 2E). Inter-
estingly, the PrefCoupGαi2 mutant distribution shows a bimodal
behavior pointing to the existence of twopopulations.One population
is similar to the CoupGαi2_βarr1 mutant distribution with a peak at a
conservation score of 0.2 and a second population that is shifted to
higher scores with a peak at 0.42. Our data highlight the relationship
between the evolutionary conservation of a residue and its impact on
the receptor coupling preference.

Preferential Gαi2-coupled mutants are located in proximity to
network connections with high information transmission
We hypothesize that the receptor dynamics and the stabilization of
specific receptor states through an allosteric communication network
(ACN) are crucial for the functional response of the CB2R. In this fra-
mework, PrefCoupGαi2 mutants likely exert their effects by perturbing
the allosteric communication network in the CB2R compared to
mutants with preserved coupling to Gαi2 and βarr1 (CoupGαi2_βarr1).

To test this hypothesis, we performed all-atom molecular
dynamics (MD) simulations and sampled theACN for theWTCB2R (WT
ACN) in complex with the agonist HU-210 over 2 μs accumulated
simulation time (5 × 400ns). The ACN is computed based on contact
frequencies including hydrophobic interactions, hydrogen bonds and
water-mediated interactions. Then we identified the 100 shortest
pathways on this network (LigACN) that mediate the communication
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Fig. 1 | Cell surface expression of 360 CB2Rmutants. A CB2R snake plot showing
the distribution of mutants with low, WT-like, and high surface expression. These
categories correspond to less than 80% (red), between 80% and 120% (gray), and
more than 120% (yellow) of the wild-type expression level. B Barplot showing the
distribution of the three expression categories: low, WT-like and high.
C Relationship between evolutionary conservation of a residue and its impact on
cell-surface expression upon mutation. The conservation score (Jensen-Shannon

divergence) was computed for all residues within class A GPCRs. Residues with low
conservation scores have the least effect on cell-surface expression, whereas high
conservation scores can significantly impact cell-surface expression. Gray arrows
indicate the increasing impact. WT surface expression level (100%) is shown with a
solid horizontal gray line, while the two gray dashed lines delimit the boundaries of
the WT-like expression level. Source data are provided as a Source Data file.
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from the orthosteric ligand binding site to the intracellular coupling
site (Fig. 3A). To estimate information transmission of a contact in the
ACN, we computed the frequency of their appearance in 100 shortest
pathways (see methods, Fig. 3A, B, and Supplementary Data 3 for
transmission information computed as degeneracy for 35 simulated
mutants). For our interpretation, we treat the LigACN as the principal
contact network, which is stabilized by the ligand to promote a specific
receptor state and functional response. In contrast, the entireWTACN
encompasses the complete allosteric connectivity within CB2R and
provides valuable insights into connections that link remote receptor
regions to the LigACN. These connections represent a resource that
canbe harnessed by allostericmodulators, includingmembrane lipids,
small molecules, or other interacting proteins, to fine-tune receptor
conformational states and, consequently, modulate its response.

A first inspection of the LigACN stabilized by agonist HU-210
shows that it comprises several residues crucial for receptor function,
known as conserved microswitches (Fig. 3A). These microswitches
include residue R1313x50 from the DRY motif, residue N2917x45 and
S2927x46 in the sodium binding site, and all five residues in the NPxxY
motif N2957x49 to Y2997x53 (the GPCRdb numbering scheme is used29).
The presence of these highly conserved residues within the LigACN
strongly supports its relevance in transmitting information and main-
taining the protein’s function. Furthermore, we find that the LigACN
elicits a strong communication through the upper and lower part of
TM7 as well as the lower parts of TM2, 6 and 3.

We then determined the distance of PrefCoupGαi2 mutants to the
top connections with high information transmission in the LigACN
(LigACNtop, see method section) (Fig. 3C). Interestingly, we find that
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Fig. 2 | Induced coupling profiles by CB2R mutants. A Location of mutations in
the CB2R classified on a snake plot as: CoupGαi2_βarr1: preserved Gαi2 and βarr1
coupling (blue), PrefCoupGαi: preferential Gαi2 coupling through a loss of βarr1
recruitment (orange), PrefCoupβarr1: preferential βarr1 recruitment through loss of
Gαi2 coupling (red), and NoCoupGαi2_βarr1: Gαi2 and βarr1 couplings are lost (green).
Bold outlined positions indicate highly conserved residues/microswitches such as
NPxxY, CWxP, etc. B Distribution of coupling profiles classes (see also scatter plot
in Supplementary Fig. 1). C Emax distribution for CB2R mutants with a preferential
Gαi2 coupling profile. The Emax distribution resembles a normal distributionwhich
is confirmed by a two-side D’Agostino and Pearson’s test74 (p-value = 4.89 E−05

,

sample size: n = 64 βarr1 deficient mutants). D Distribution of coupling profiles for
mutants in conserved regions. Percentages differ considerably from the ones of the
full set of mutants in (Fig. 2B). E Kernel density estimation of the distribution of
conservation scores among PrefCoupGαi2mutants andCoupGαi2_βarr1mutantswith a
WT-like expression level (80% to 100%) showing a clear shift between both den-
sities. The statistical significance of this shift is confirmed using a one-side
Kolmogorov–Smirnov test75 (p-value of 0.07, sample size: n = 64 PrefCoupGαi2 and
251 CoupGαi2_βarr1 mutants). A conservation score distribution for all coupling
classes can be found in Supplementary Fig. 11. Source data are provided as a Source
data file.
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PrefCoupGαi2 mutants are present closer to the LigACNtop (i.e., 0 to 1
connection, Fig. 3D) whereas CoupGαi2_βarr1 mutants are located at
larger distances (2 to 4 edges). We verified that this closeness was
statistically significant by comparing its mean value to a null distribu-
tion built using random sets of residues (p-value 0.006). On top of this
proximity, inspection of the protein contact network revealed that
PrefCoupGαi2 mutants on average have higher connectivity (i.e., a
residue has more connections to other residues) than CoupGαi2_βarr1

mutants (Fig. 3B, E). Both proximity to highly information-transmissive
connections in the LigACN and the higher connectivity rationalize why
these residues have a significant functional impact on the receptor’s
coupling profile.

Multiple molecular mechanisms initiate Gαi2 preferential
coupling
To obtain a deeper mechanistic understanding of changes in the ACN
that drive preferential Gαi2 coupling as a result of the loss of βarr1
recruitment, we carried out additional MD simulations of a set of 34
mutants from the 360 point mutations including 14 PrefCoupGαi2

mutants, 20 CoupGαi2_βarr1 and the wild type, which belongs to
CoupGαi2_βarr1 (Fig. 4A, Supplementary Table 1). The selection of
mutants was done based on two criteria: (1) mutants show WT-like
expression levels, as a reduced/increased receptor expression can
significantly alter receptor signaling30 and (2) mutants are located in

receptor regions that are structurally resolved. With the aim to
understand the initial ACN re-arrangements for preferential Gαi2 cou-
pling as a result of βarr1 loss, we started from an inactive receptor state
(PDB ID 5ZTY31, see “Methods” section). For each simulatedmutant, we
monitored the dynamics of formation and disruption for different
interaction types within the entire receptor contact network. The
interaction stability for thousands of interatomic connections was
quantified by computing the contact frequency for the last 400 ns in 5
replicates (i.e., 2 μs total analysis time per mutant) (Fig. 4B).

First, we investigated if PrefCoupGαi2 mutants induce alterations
in the ligand-stabilized ACNs. In fact, we find that individual
PrefCoupGαi2 mutants typically induce larger LigACNs compared to
CoupGαi2_βarr1 mutants, i.e., increase the number of nodes in the path-
ways from the ligand to the intracellular receptor site (Fig. 4C). It
seems that PrefCoupGαi2 mutants disrupt information transmission
pipelines in theWT LigACN. This disruption leads to a branching of the
informationflowalong longer pathways includingmore residuenodes,
likely resulting in a less efficient transmission of information. The
functional readout of those mutants suggests that the inclusion of
more residues in the communication pipeline and in turn less efficient
information transmission is linked to a loss of β-arrestin recruitment in
the CB2R.

To extract further structural information relevant for preferential
CB2R coupling, we reduced the dimensionality of simulated contact
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Fig. 3 | The allosteric communication network in the WT CB2R. A Depiction of
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dark blue) and their top connections with high information transmission
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orange spheres alongside the LigACN and its top connections (LigACNtop) on the
inactive CB2R structure (PDB ID: 6KPC32). D Distance of PrefCoupGαi2 and
CoupGαi2_βarr1 mutants to the LigACNtop. The distance is represented as the number
of edges from a mutation position to the LigACNtop (x-axis). The percentage of

mutants at a given distance is provided (y-axis). Note that the plotted distance
profile depends on the cutoff for the information transmission that defines the
LigACNtop (cutoff for top connections: 0.146). To confirm that the described ten-
dency holds true also for different cutoffs values, we provide distribution plots in
Supplementary Fig. 14. E Connectivity distribution plot of PrefCoupGαi2 mutants
(orange) and CoupGαi2_βarr1 (blue). Connectivity for each residue position is com-
puted as the number of connections in the network (see Fig. 3B). Vertical lines
indicate the mean value of each distribution. Statistical analysis between
PrefCoupGαi2 and CoupGαi2_βarr1 mutants was performed using one-side Student’s
t-test (*p <0.001, sample size: n = 14 PrefCoupGαi2 and 20 CoupGαi2_βarr1 mutants).
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-60003-0

Nature Communications |         (2025) 16:5265 5

www.nature.com/naturecommunications


networks byapplyingprincipal component analysis (PCA) and selected
the best performing principal component (PC) using a Support Vector
Classifier (SVC). Interestingly, projecting the data on a PC plane
defined by PC1 and PC10 reveals a separation of CoupGαi2_βarr1 mutants
(blue points) and the PrefCoupGαi2 mutants (orange points). In other
words, preferential Gαi2 coupling and loss of βarr1 recruitment in our
dataset is described by one PC (PC1) with high explained variability
(13%) and a second PC (PC10) with less explained variability (3%).
Apparently, there are also contacts with high variability (i.e., PC2 to 9)
that are not related to preferential Gαi2 coupling in the CB2R and that

could be linked to other receptor functions. This could include protein
folding, trafficking, post-translational modifications, receptor dimer-
ization, as well as interactions with other coupling partners such as
kinases (e.g., GRKs), RGS proteins, Filamin A, calmodulin or other
natural allosteric modulators like lipid molecules and ions. These
interactions enable the CB2R to mediate its full range of physiological
effects.

Interestingly, the spreading of themutants that preserve coupling
(CoupGαi2_βarr1, blue points) around the true WT system (red points)
indicates that some variability in the contact network is tolerated for
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CoupGαi2_βarr1 in blue (PDB ID: 6KPC). B MD simulations scheme: the initial system
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number of nodes) for PrefCoupGαi2 mutants compared to WT and CoupGαi2_βarr1

mutants. The data for LigACNs including interatomic contacts in the ACN for all 34
mutants and the wild type is found in Supplementary Data 2. The center line in
boxplots represents the median while the box boundaries extend from the first

(25%) and third (75%) quartile, representing the interquartile range (IQR). Boxplot
whiskers extend to 1.5*IQR and outliers are represented as points. Schematic
representations illustrate the impact of a mutation on the LigACNtop size.
D Principal Component Analysis (PCA) ofMDdata using contact frequencies for 10
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bridges, extended water bridges. The best-performing PC plane for separating
CoupGαi2_βarr1 and PrefCoupGαi2 is PC1 versus PC10, selected using a Support Vector
Classifier (SVC). The SVCmodel (blue contour line) encompasses the CoupGαi2_βarr1
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mutants (orange line) at peripheral regions. The WT control simulations are high-
lighted in red. Source data are provided as a Source data file.
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preserving coupling with an Emax > 50%. Intriguingly, we find that
PrefCoupGαi2 mutants (orange points) tend to shift further away from
the true WT center (red points) (Fig. 4D). Apparently, these mutations
perturb specific elements (i.e., stabilization or destabilization) in the
contact networks that fall outside the tolerated region of the
CoupGαi2_βarr1 mutants (blue points). In addition, we find that
PrefCoupGαi2 mutants move in three different directions forming
clusters 1 to 3. Hence, each cluster appears to differently disrupt the
contact network, leading to impaired βarr1 recruitment and pre-
ferential Gαi2 coupling. Ultimately, this suggests that different
mechanisms are implicated inpreferential Gαi2 coupling and the lossof
βarr1 recruitment in the CB2R. This could also explain why some
PrefCoupGαi2mutants fall within the blue cluster of preserved coupling
as they likely exploit another molecular mechanism that is not pro-
jected into the plane of PC1 and PC10.

Furthermore, we observe that the three PrefCoupGαi2 clusters
(orange points) are located at different distances from the true WT
simulations (red points). Specifically, cluster 3 is very close to the true
WTsimulations compared to clusters 1 and2. This suggests that cluster
3-specific contact stabilities are more sensitive and smaller network
alterations can push the CB2R from a preserved coupling profile to a
PrefCoupGαi2 profile. The PCA data separation is confirmed using a
machine-learning classification approach with a Support Vector Clas-
sifier (SVC), which effectively differentiates mutant populations (blue

contour, Fig. 4D). Additionally, K-means clustering analysis further
corroborates the presence of three distinct clusters (Supplemen-
tary Fig. 2).

Of note, we also simulated the same 34 mutants including 14
PrefCoupGαi2 mutants, 20 CoupGαi2_βarr1 and the wild type, which
belongs to CoupGαi2_βarr1 in the active CB2R structure coupled to theGα

subunit (PDB ID 6KPF32). Interestingly, we were not able to obtain
conclusive results discriminating PrefCoupGαi2 from the CoupGαi2_βarr1

profile (Supplementary Fig. 3). A possible reason for this is that G
protein binding to the CB2R and its penetration into the receptor core
disrupts many intramolecular contacts within the allosteric contact
network as TM helices move apart (Supplementary Fig. 4). This in turn
reduces the measurable impact of mutants on the contact network
within CB2R.

Contact alterations in conserved molecular switches are
involved in Gαi2 preferential coupling
To capture inmore detail the structural and dynamic alterations in the
receptor contact network that lead to Gαi2 preferential coupling, we
fitted a logistic regression for each PrefCoupGαi2 cluster to separate
them from the CoupGαi2_βarr1 group (see method). Top interaction
features (orange color scaled connections) that distinguish pre-
ferential Gαi2 from the preserved coupling profile are plotted on the
allosteric communication network (WT ACN, gray), including the
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data file.
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ligand-stabilized ACN (cyan) (Fig. 5A). The obtained representation
indicates thatmutational perturbation in preferential Gαi2 coupling for
clusters 1 to 3 (orange color scale) involves a complex andmultifaceted
modulation of the WT ACN (gray plus cyan) and the corresponding
LigACN (cyan). To further simplify the interpretation of these complex
perturbations of the WT ACN, we focus on highly conserved receptor
regions with known relevance for receptor function, such as the CWxP
motif, allosteric sodium binding site, NPxxYmotif, and the DRYmotif.
Cluster-specific modulations are depicted in Fig. 5B–D (detailed
structuraldescription canbe found inSupplementaryNote 1). A cluster
summary (Fig. 5E) reveals that the sodium binding site and the DRY
motif are modulated in all three identified clusters, the CWxP only in
clusters 1 and 2, and the NPxxY motif only in cluster 3. Based on the
finding that the DRYmotif and the sodium binding site aremodulated
in all three PrefCoupGαi2 clusters, it is tempting to speculate that they
play a critical role in preserving βarr1 recruitment. The observed
modulation of those motifs occurs indirectly through mutational
perturbations from topologically different sites. Unfortunately, we
couldnot assess the direct impact of thosemotifs on preferential CB2R
coupling as their mutation dramatically impacts receptor expression
(see Supplementary Data 1). Another interesting observation is that
detected perturbations around the sodium binding site, CWxP and
DRY motifs involve contact (de)stabilization effects through different
residues (Fig. 5E, Supplementary Fig. 5). This corroborates the finding
that multiple molecular mechanisms can converge into the same
receptor response, i.e., loss of βarr1 recruitment while preserving Gαi2

coupling with an Emax > 50%.

Discussion
Allosteric communication networks are highly complex dynamic
entities that drive receptor conformational states and in turn deter-
mine their final functional outcome as a response to environmental
changes (e.g., mutations or ligand stimulation). Here, we investigated
the dynamics of such networks and their modulation related to pre-
ferential signaling of the CB2R. The results obtained from our study
shed light on several key aspects that link receptor structure and
dynamics to function. We anticipate that our findings will provide a
broadly applicable framework for understanding CB2R function due to
the integration of large-scale experimental data (a systematic muta-
tional scan of CB2R) with computational data (MD simulations of all
CB2R mutants retaining WT-like expression levels). Additionally, the
use of graph theory analysis andmachine learning-based classification
enhances the generalizability of our approach.

First of all, our functional readouts suggest that Gαi2 coupling is
more robust to mutational perturbations compared to βarr1 recruit-
ment in the CB2R (Fig. 2B). Our observation is in line with a similar
study on β2 adrenergic receptor (β2AR) where more than 75% of
mutational substitutions retain the receptor’s G protein coupling
profile33. However, it is important to mention that this is not a general
tendency for GPCRs, as shown recently for the angiotensin II type 1
receptor (AT1R)

18. For this receptor, β-arrestin recruitment is more
resistant to mutations compared to G protein binding. This could
possibly be related to the intrinsic propensity of GPCRs to differen-
tially engage in interactions with β-arrestins. While class A GPCRs for
arrestin recruitment (such as β2AR and CB2R) interact with arrestins
only transiently, class B receptors (V2R and AT1R) form more stable
interactions which are potentially more resistant to disruptions by
single-point mutagenesis34.

Plotting the Gαi2 preferential mutants on the static CB2R structure
offers a glimpse into their potential impact based on their location
within the receptor (Fig. 2A). Interestingly, mutations that impact β-
arrestin recruitment are mainly found in transmembrane helices and
only one was found in the receptor C-terminal tail (expanded discus-
sion in Supplementary Note 2). This might be surprising as serine and
threonine residues in intracellular regions are known to promote

arrestin recruitment upon GRK-mediated phosphorylation. However,
this result can be attributed to the ability of CB2R to recruit arrestin
independently of GRK phosphorylation, as previously reported35. We
further confirmed this finding using GRK2/3/5/6 knockout cell lines
(Supplementary Fig. 6).

Although static representations can be informative, they fall short
when studying themolecularmechanismthat drives themodulationof
a receptor that is in constant motion. Here, we demonstrate that the
intrinsic CB2R flexibility can be captured with atomistic resolution
through allosteric communication networks within the receptor in
which each interatomic connection is characterized through a distinct
contact frequency. Further network processing using graph theory
highlights how the agonist HU-210 allosterically communicates with
the intracellular coupling site of the CB2R mainly through TM7
(Fig. 3A). The relevanceof TM7-related agonistbindinggoes alongwith
a previous study for the β2 adrenergic receptor despite using a dif-
ferent approach. Applying the concept of correlated movements for
the detection of allosteric communication pipelines36, the authors find
that the inverse agonist-bound inactive states uses mainly TM6,
whereas agonists-bound active states favor TM7 as the main commu-
nication pipeline.

Investigating the mutant position, their information transmission
and connectivity within such networks reveals a complex modulation
of CB2R coupling (Fig. 3B). For a more detailed description, we intro-
duced the concept of the ligand-stabilized ACN (LigACN) which is part
of the overall CB2R ACN. The LigACN is important for stabilizing the
receptor in a specific conformational ensemble and thereforedirecting
the functional outcome of the ligand-stimulated receptor. Impor-
tantly, we find that Gαi2 preferential mutants are located closer to
connections of high transmission in the ligand-stabilized ACN
(Fig. 3B, C) and are of higher network connectivity (Fig. 3E). From this,
we can conclude that both information transmission and connectivity
are critical residue properties for modulating the allosteric network in
the CB2R and in turn its ability to recruit βarr1. Mechanistically, this can
be explained as follows: mutant perturbations of allosteric connec-
tions (i.e., loosening or strengthening) in the WT ACN and specifically
in the LigACN shift the CB2R conformational ensemble from states
with favorable affinities for multiple transducer proteins (e.g., Gαi,
βarr1, others) to states that lose βarr1 while preferentially preserving
Gαi2 with Emax > 50% (Supplementary Fig. 7).

Our findings are in line with previous studies of GPCRs24,37 and
other protein classes38, showing that disruption of allosteric com-
munication networks through mutations results in a significant
impact on protein function. This also has implications for allosteric
modulators that can fine-tune function by perturbing allosteric con-
nections between different protein regions39, even from peripheral
receptor sites. In this context, the obtained mutational CB2R map,
which resolves each amino acid position and its role for receptor
function is highly valuable for identifying novel allosteric sites for
drug discovery programs. Nevertheless, it is worth noting that not all
mutations occurring within our computed LigACN consistently exhi-
bit the same level of efficiency in altering Gαi2 preferential coupling.
This is not surprising as those positions might be involved in other
functional consequences (e.g., coupling to other (un)known signaling
partners) that are not taken into account in our study. Further
investigations are required to better understand these functional
relationships.

Ultimately, the most important finding of our study is related to
theobservation that there aremultiplemolecularmechanisms that can
induce the same functional response, i.e., preferential Gαi2 coupling. In
fact, this goes along with the applied concept of allosteric commu-
nication networks that includes regulatory triggers from different
receptor regions. Principal component analysis (Fig. 3D) and logistic
regression (Fig. 4) pinpoint three separate mechanisms that regulate
highly conserved receptor motifs such as CWxP, sodium binding site,
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NPxxY and DRY. The involvement of thosemicroswitches in impairing
β-arrestin recruitment hasbeen reported indifferent individual studies
(i.e., DRYmotif39–42, NPxxYmotif43, the toggle switch44, and the sodium
binding site45). Importantly, wefind that the samemolecular switchcan
be perturbed through different combinations of interactions and
contact stabilities as highlighted by our PrefCoupGαi2 clusters 1 to 3
(Fig. 5B–D). Ultimately, we anticipate the existence of other molecular
mechanisms based on the observation that not all PrefCoupGαi2

mutants in our dataset (e.g., S61A at the bottomof TM1) fall into one of
the three PrefCoupGαi2 clusters, but are located in the preserved sig-
naling cluster (Fig. 3C). Moreover, we expect that additional mechan-
isms will come into play when changing experimental conditions such
as the choice of agonist or the type of mutational substitution (e.g., as
occurring in single nucleotide polymorphisms). Given themultitude of
molecularmechanisms that induce preferential Gαi2 coupling suggests
that biased ligands may not all operate through a shared universal
mechanism. Instead, it is possible that chemically different ligand
classes achieve the same bias response by employing distinct struc-
tural mechanisms. A key factor in this process will be specific ligand-
receptor contacts within the binding pocket, which are unique to each
ligand class and which translate into the stabilization of distinct ACNs.

Interestingly, there is experimental evidence that this proposed
concept is common for GPCRs. For instance, it has been shown for two
chemically different agonists of the δ opioid receptor that their ability
to activate Gαi is differentially impacted by a N7x45Amutation, a residue
that is part of the highly conserved allosteric sodium binding site deep
inside the receptor (Supplementary Table 2). Whereas, the peptide
agonist DADLE completely loses its ability to activate Gαi, the agonist
BW373U86maintains its Gαi activation properties similar to that of the
WT upon a N7x45A mutation. Overall, these findings corroborate that
structurally diverse ligands with unique ligand receptor interaction
profiles engage distinct ligand-specific networks to achieve the same
functional outcome. This has significant implications for drug
responses and personalized medicine. For example, a patient harbor-
ing a specific genetic variant may respond differently to a treatment
depending on whether the variant affects the ligand-specific
ACN or not.

In addition to explaining ‘diverse ligands with the same functional
outcome’, our framework also accounts for ‘closely related ligands
with different functional responses’ as observed in monoaminergic
receptors. Subtlemodifications in the ligand’s chemical structure—and
consequently ligand-receptor interactions—can convert a natural
agonist into a biased agonistst46–48. According to our structural fra-
mework, this is due to alterations of the stabilized ACNs triggered by
the different ligand receptor contacts.

Ultimately, β-arrestin recruitment for many GPCRs depends on
GRK-mediated phosphorylation49 including prototypical receptors
such as β2AR

50 and AT1R
51. Importantly, since CB2R recruits βarr1

independently of GRKs (Supplementary Fig. 6), mutant-induced
alterations in the ACNs are unlikely to affect GRK-mediated phos-
phorylation. Instead, they may impact alternative β-arrestin recruit-
ment mechanisms such as its direct interaction with the receptor core
to yield a preferential G protein coupling profile. By delving into these
unique mechanisms, we can advance our understanding of biased
signaling and target GPCR-mediated signaling pathways more effec-
tively to eventually broaden our repertoire of therapeutic approaches.

In conclusion, our study provides insights into the intricate
interplay of multiple triggers on complex allosteric communication
networks in the CB2R and their final functional outcomes. Potent
triggers of such changes in ACNs that lead to distinct intracellular
signaling responses are characterized by high connectivity and their
close vicinity to high information-transmissive connections. Our find-
ings have important implications for elaborating drug design strate-
gies aimedat tailoring receptor response towardsmoreefficacious and
safer drugs. However, given the complexity of nature and the

involvement of multiple molecular mechanisms, further research is
necessary to fully comprehend these intricate processes and their
potential applications in drug development.

Methods
Plasmids and mutagenesis
Human CB2R gene was optimized for expression in mammalian sys-
tems and synthesized (Genewiz). The CB2R gene was fused to an
N-terminal signal sequence, SNAP-tag, TwinStrep-tag and a C-terminal
1D4-tag, and cloned into pcDNA4/TO vector. Single-point mutants
were generated for all 360 CB2R residues where non-alanine amino
acids were replaced by alanine, and alanines were replaced by valines.
For that purpose, PCR with mutation-containing primers was used as
described in Heydenreich et al.52. Plasmids encoding β-arrestin1-
RlucIl53, human GRK254, rGFP-CAAX25,54, and wild-type Gαi2 protein
and an effector protein fused with RlucII (Rap1GAP-RlucII)28 were
previously described. Briefly, for the G protein activation assay,
receptor andwild-typeGαi2 subunitwere co-transfectedwithRap1GAP-
RlucII effector and rGFP-CAAX, while in β-arrestin1 recruitment assay,
receptor was co-transfected with β-arrestin1-RlucII, wild-type GRK2,
and rGFP-CAAX. In both assays an increase in BRET signal was mon-
itored upon ligand-induced Rap1GAP or β-arrestin recruitment to the
plasma membrane.

Transfection
Human embryonic kidney (HEK) 293 T cells55 were cultured in DMEM,
4.5 g/L glucose, with L-glutamine and phenol red, without sodium
pyruvate (#319-015, Wisent Inc., Montreal, Canada), supplemented
with 10% Newborn Calf Serum (NCS, iron fortified, #075-350, Wisent
Inc., Montreal, Canada) and 1x Penicillin-Streptomycin (PS, #450-201,
Wisent Inc., Montreal, Canada) in adherent culture at 37 °C, 5% CO2.
For transfection, medium without phenol red was used (#319-051,
Wisent Inc., Montreal, Canada). Cells were dissociated using 0.05%
Trypsin with 0.53mM EDTA (#325-142, Wisent Inc., Montreal, Canada)
and transiently transfected with receptor and biosensor DNA using
25 kDa linear polyethylenimine (#23966, Polysciences Inc., Warring-
ton, PA, USA) in Cellstar® PS 96-well cell culture plates (Greiner Bio-
One, Germany) at a density of 20,000 cells per well.

BRET experiments
Coelenterazine 400a (#340, Prolume Ltd., Pinetop, AZ, USA) was used
as the luciferase substrate. HU-210 was purchased from Toronto
Research Chemicals (#TRC-H673500, Toronto, ON, Canada) BRET
experiments were performed 2 days post-transfection, when culture
medium was replaced by 100μL Tyrode’s buffer (137mM NaCl, 1mM
MgCl2, 1mM CaCl, 0.9mMKCl, 3.6mMNaH, 11.9mMNaHCO3, 25mM
HEPES, 5.55mM D-glucose, pH = 7.4). A volume of 0.4μL of ligand was
added to cell plates using a BiomekFX Lab Automation Workstation
(Beckman) and apreviously calibrated pin tool, followedby incubation
at 37 °C for 5min in a Cytomat 6001 (Thermo Scientific). Coelenter-
azine 400a working solution (50μM DBC and 1% Pluronic F-127 in
Tyrode’s buffer) was added with a Multidrop Combi (Thermo Scien-
tific) to a final concentration of 5μM and shaken for 10 s. The plates
were further incubated for 5min at room temperature before the BRET
signal was read on a Synergy Neo (Biotek) equipped with dual photo-
multiplier tubes (PMTs) (emission recorded at 410 and 515 nm, gain
settings of 150 for each PMT and 1.2 s integration time).

Cell surface ELISA measurements
HEK293T cells were transfected as above using only receptor-coding
plasmids in poly-D-lysine-coated 96-well plates and incubated at 37 °C
and 5% CO2 for 2 days. Cells were washed with PBS (200μL/well) and
fixed with 3% paraformaldehyde (50μL/well) for 10min, followed by
three washing steps (100μL/well, PBS +0.5% BSA). Receptor was
detected by primary rabbit anti-SNAP antibody (50μL/well of 1:2000
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dilution, #A00684, GenScript, 1 h at RT) and anti-rabbit HRP antibody
(50μL/well of a 1:1000dilution, #NA934,GEHealthcare, 1 h atRT),with
washing steps as above, followed by three wash steps with PBS. Sig-
maFast solution (100μL/well) was added, followed by incubation at RT
protected from light, until color change was observed. To stop the
reaction, 25μL 3M HCl were added to each well and 100μL of the
solution were transferred to a new transparent 96-well plate for the
measurement. The absorbance at 492 nmwasmeasured using a Tecan
GENios Plus microplate reader, reporting on the amount of receptor
expressed.

Effect of the receptor expression level on maximal ligand‑in-
duced response
Receptor titrations were performed to determine the effect of recep-
tor expression level on Emax values of both pathways. Various
amounts of CB2R DNA were transfected (0, 0.1, 0.5, 1, 2.5, 5, 10, 25, 50,
100, 150, 200% of the amount used for each biosensor), together with
other biosensor components induplicates. Twodays post‑transfection
one replicate was used to perform ELISA, while the other replicate was
used to measure BRET signal upon stimulation with 1μM HU-210, as
described above. Change in BRET signal (Emax) vs. amount of CB2R
transfected (percentage of the amount used for each biosensor), and
cell‑surface expression level (determinedby ELISA) vs. amount ofCB2R
transfected were measured. Correlations of the Emax and ELI-
SA‑measured expression levels were determined for each pathway,
and data fit equation parameters (linear regression for Gαi2 activation
and non-linear hyperbolic fit for β-arrestin1 recruitment) were used to
correct Emax output of each mutant for its previously measured
expression level (Supplementary Data 1).

BRET data analysis
The BRET response was determined by the ratio of the light intensity
emitted by the acceptor (rGFP, measured at 515 nm), over the light
intensity emitted by the BRET donor (RlucII, measured at 410 nm).
Single-replicate concentration-response curves were fitted to a Hill
equation with a Hill coefficient of 1. For each concentration-response
curve, the maximum response of signal (Emax) and the ligand con-
centration at half-maximal signal response (as pEC50) was determined
using the custom software DataFitter (https://github.com/dbv123w/
DataFitter), followed by averaging over biological triplicates. For fur-
ther analysis, Emax of CB2R mutants was corrected for the mutant
expression levels and normalized to the WT value (Supplementary
Fig. 8), while pEC50of eachmutant was subtracted from theWT value.
Both raw and corrected values are reported (Supplementary Data 1).

Model generation and molecular dynamics simulation
As a starting point, we have selected the inactive crystal structure of
the CB2R bound to the antagonist AM10257 (PDB code: 5ZTY31) as well
as the active structure bound to the agonist AM12033 (PDB ID: 6KPF32).
The sequence of the receptor was reverted to the canonical human
sequence using data from UNIPROT [P34972]. Residues between
positions 222 and 235 of the ICL3 were removed and endings were
capped using ACE and CT3 terminal patches following the GPCRm
standard protocol20. According to this protocol, experimentally unre-
solved ICL3 loops that are longer than 10 amino acids are notmodeled
due to the complication of accurate structural predictions of these
highly flexible regions. The approach for this protocol is also based on
the observations that GPCRs are able to couple and activate G proteins
also in the absence of the ICL356. Nevertheless, to ensure that no arti-
facts are introduced into TM5 and TM6 dynamics due the lack of ICL3,
we carried out a control simulation with the ICL3 modeled. For the
ICL3 construction, we used the loop modeling tool and standard set-
tings of the MOE 2022.02 software (Chemical Computing Group). We
find that the Root Mean Square Fluctuations (RMSF) of TM5 and TM6
are very similar (Supplementary Fig. 9).

The initial position of the ligand was generated based on the
positionof thehighly similar agonistAM12033 co-solved in the inactive
CB2R CryoEM structure (PDB ID: 6KPC32) (Supplementary Fig. 10). The
resulting complex was embedded in a 54% POPC, 36% POPG and 10%
cholesterol membrane, based on the coordinates available in the OPM
database57. The pre-equilibrated membrane was generated in
CHARMM-GUI58. Protonation states at a pH of 7.4 were assigned using
Propka, and residues facing the membrane were manually curated to
avoid charges facing themembrane. The obtained systemwas solvated
with TIP3waters, and the ionic strength of the solutionwasmaintained
at 0.15M using NaCl ions.

The obtained complex was equilibrated for 100ns in NPT condi-
tions, with constraints applied to the protein backbone and using the
Berendsen barostat59. From the equilibrated system, we generated
systems for each of the studied mutants (see list in Supplementary
Table 1). Every system underwent a short 5 ns NPT equilibration phase
to adjust the environment to the introduced mutation. Afterward, we
applied a simulation scheme in which each mutant evolved for 1 μs
simulation time in an NVT ensemble (Fig. 3B). The last 400 ns were
carried out in 5 replicates for the inactive CB2R reaching a total
simulation time of 2.6 μs per mutant (i.e, 600ns plus 5* 400 ns = 2.6
μs). Running multiple independent replicates provides the advantage
of sampling different regions of conformational space and enhances
results reproducibility (i.e., no enhanced sampling is required)20,22,60. In
addition, this approach is sufficient to allow the system to compre-
hensively explore the conformational space around the experimental
starting structure which minimizes the dependence on the initial
configuration. In addition, we carried out 3 replicates for the active
CB2R reaching a total simulation time of 1.8 μs per mutant (i.e, 600ns
plus 3* 400ns = 1.8 μs).

All simulations were carried out using the ACEMD engine61. Para-
meters were obtained from the Charmm36M forcefield generated in
November 201762, with ligand parameters generated in Paramchem63,64

with the CgenFF forcefield65,66. The temperature was maintained at
310K. For NPT runs we have employed a 2 fs timestep, and for NVT
runs a 4 fs one. This was possible due to the hydrogen mass reparti-
tioning scheme employed within ACEMD. The reliability and repro-
ducibility checklist for molecular dynamics simulations is found in
Supplementary Table 3.

Conservation metrics computation
To calculate the evolutionary conservation score for each residue of
the CB2R, we obtained the structural sequence alignment of class A
GPCRs from GPCRdb and input it into Capra et al.‘s online tool with
the Jensen-Shannon Divergence (JSD) scoring method26. The default
values were used for all parameters, including a window size of 3 and
BLOSUM 62 matrices for both the background and target. The JSD
measures the similarity between two probability distributions by
comparing the distribution of amino acids from a sample in a par-
ticular position with the distribution of a set without evolutionary
pressure26. The JSD ranges from 0 to 1, where 0 indicates identical
distributions, and 1 means that the distributions have no overlap.
Hence, a JSD score of 1 indicates that the two probability distribu-
tions are entirely dissimilar with no common features. We then used
conservation scores to investigate the relationship between the
impact of mutations on coupling affinities and the evolutionary
pressure on each residue. To achieve this, we calculated the ratio of
Gαi2 preferential mutants above each JSD score obtained in the
analysis. For example, we found that out of all the residues with a
conservation score of 0.36 or higher, 70% are Gαi2 preferential,
compared to the 40% found in the whole sequence. A conservation
score distribution of the mutants with a WT-like expression level
(80% to 100%) can be found in Fig. 2E. A conservation score dis-
tribution for all mutants (independently of the expression level) can
be found in Supplementary Fig. 11.
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Contacts computation
The contact computation in the simulations was done using the Get-
Contacts package [https://getcontacts.github.io/]. All the interaction
types supported by the software were used to compute interaction
frequencies. Namely, 3 types of hydrogen bonds, salt bridges, pi-
cation, pi-stacking, t-stacking, hydrophobic, Van der Waals including
hydrophobic contacts, water bridges and extended water bridges.
Each of the interaction types has a set of conditions regarding the
distance and relative angle of the two groups involved. The complete
specifications of these criteria can be found in the GetContacts repo-
sitory. After computing the interactions in each frame, the overall
contact frequency between pairs of residues was computed. This was
achieved by counting all the frames where any contact type was
established between two residues and dividing it by the total number
of frames of the simulation.

ACN computation
ACN computation. We used the AlloViz v0.1 Python package67 to
construct ACNs for the different simulations and replicas based on the
residue contact frequencies. The raw contact frequencies were pro-
cessed as in Foutch et al.68 by (1) removing the contacts between
consecutive residues in the amino acid sequence, as their interactions
are consistently established and provide limited useful information,
and (2) defining a lower frequency threshold of 0.1 to filter out con-
tacts that are rarely established. Finally, we built the networks by
connecting the pairs of interacting residues (nodes) with edges,
weighted by their contact frequency.

Ligand-stabilized ACN (LigACN). Taking the resulting networks
from the WT simulations, we used the Dijkstra’s algorithm as
implemented in NetworkX69 (https://networkx.org/) to calculate the
100 shortest pathways connecting the ligand CHEMBL5085420
(source) and four selected residues in the intracellular domain of the
receptor (sinks) for each replica (Fig. 3B). This resulted in a total of
2000 pathways (100 pathways × 4 sinks × 5 replicas). The sinks,
namely Arg131 (3 × 50), Asp240 (6 × 30), Ser303 (8 × 47) and Ser69
(2 × 39), were selected based on their proximity to the G protein in
the CB2R-G protein complex (Supplementary Fig. 12). The robust-
ness of this approach was evaluated by assessing the impact of
selecting alternative sink residues on the shortest pathways (see
Supplementary Fig. 13). Subsequently, we computed the informa-
tion transmission through each edge in the network as their
degeneracy, that is, the frequency with which they appear in the
shortest pathways.

Computing the distance to the top connections with highest
information transmission (LigACNtop)
The top connections with highest information transmission
(LigACNtop) are defined setting a degeneracy cutoff ≥ 0.146 (light
blue edges in Fig. 3A). Then, we computed the distance of
PrefCoupGαi2 and CoupGαi2_βarr1 mutants to the LigACNtop (Fig. 3D).
The distance is defined as the number of edges in the shortest path
between the mutant residue of interest and any residue from the
LigACNtop. The obtained plot shows that mutants with coupling bias
(PrefCoupGαi2) are located overall closer to the LigACNtop at dis-
tances 0 and 1 compared to mutants that behave like the WT
receptor (CoupGαi2_βarr1). We tested if the proximity of PrefCoupGαi2

mutants to the LigACNtop was higher than could be expected by
chance. For this, we calculate the quantile of the distance of
PrefCoupGαi2 mutants in the distribution of the distance of random
residue sets. Finally, to check for a potential bias by the selected
degeneracy cutoff, we also computed the mutant distances for a
range of different degeneracy thresholds (0–0.2) which further
confirmed our observations (Supplementary Fig. 14).

Definition of a balanced set of CB2R alanine mutants for
unveiling the determinants Gαi2 preferential signaling
We compiled a balanced dataset of CoupGαi2_βarr1 and Gαi2 preferential
mutants according to the following criteria: (i) CoupGαi2_βarr1 with
EmaxGαi2 and Emaxβarr1 > 50%, (ii) preferential Gαi2 coupling with an
EmaxGαi2 > 50% and no measurable arrestin activity (Supplementary
Data 1, Supplementary Fig. 15). As cell-surface expression can alter
receptor signaling30, we prioritized the selection of mutants with WT-
like expression levels. A final requirement for mutant selection was
that mutants are in receptor regions that had been structurally
resolved previously to allow their investigations in reliable three-
dimensional dynamics models. The final set consists of the wild type
and 34 mutants of which 20 were CoupGαi2_βarr1 and 14 were Gαi2 pre-
ferringmutants (PrefCoupGαi2). The location of selectedmutants in the
CB2R is indicated in Fig. 4A. Despite themutant class definition relying
exclusively on Emax, it is not ignoring EC50. This is because all the
mutants without measurable efficacy also presented a potency of 0.
So, independently of which criteria, Emax or EC50, is used, the com-
positions of the groups would be identical.

Principal component analysis and clustering definition
We conducted a principal component analysis (PCA) on the contact
frequencies data in order to reduce its dimensionality and to detect
variables that are able to discern between the two mutant groups
PrefCoupGαi2 and CoupGαi2_βarr1. The PCA was constructed using con-
tact frequencies taking into account all residues in the CB2R. The
matrix used to calculate the Principal Components (PCs) is 175 ((34
mutants + WT) × 5 replicates) × 4421 (contacts). Then, we explored all
45 pairwise combinations of such components. This inspection
revealed the presence of a set of outlier simulations, all of them
belonging to the A53V mutant. After the removal of this mutant, we
found the best-performing PC plane, defined by PC1 and PC10, by
using a Support Vector Classifier (SVC)70. The SVC model clearly
separates the data into three different clusters for Gαi2 preferential
mutants and one cluster for CoupGαi2_βarr1 mutants. Ultimately, we also
confirmed this clustering using the K-means algorithm71.

Cluster characterization
To characterize each cluster, we used logistic regression to differ-
entiate between the wild type-like and the preferential coupling clus-
ter. Because the model could not generalize well with divided training
and validation data, we opted to train a regularized model with high
bias on the entire dataset. After training, we extracted the coefficients
of each predictor variable, sorted them based on absolute value, and
selected the top 20 variables. We then associated the coefficient with
the residues involved in the interaction that formed the predictor
variable. Model and model training was done using the scikit-learn
Python module72. From all interactions that were highlighted by the
highest coefficients in absolute value from the logistic regression we
paid special attention to those involving conserved residues and
interactions that were densely packed in a specific region of the
receptor.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available as a
Supplementary Information and Supplementary Data 1 to 4. The MD
data generated in this study have been deposited in the GPCRmd
database under accession code: https://gpcrmd.org/dynadb/
publications/1540/. 3D structures used in this study: 6KPC, 5ZTY,
6KPF. Source data are provided with this paper.
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Code availability
The python code for data processing is available at GitHub (https://
github.com/GPCRmd/prefcoup_cb2r)73. Additional data supporting
the findings are available from the corresponding authors upon
request.
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