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Ampere-level co-electrosynthesis of formate
from CO2 reduction paired with
formaldehyde dehydrogenation reactions

Zhengyuan Li 1,12, Peng Wang2,12, Guanqun Han3,12, Shize Yang 4,
Soumyabrata Roy 5,6, Shuting Xiang 7, Juan D. Jimenez8,
Vamsi Krishna Reddy Kondapalli 9, Xiang Lyu 10, Jianlin Li 11,
Alexey Serov 10, Ruizhi Li3, Vesselin Shanov 1,9, Sanjaya D. Senanayake 8,
Anatoly I. Frenkel 7,8, Pulickel M. Ajayan 6, Yujie Sun 3 ,
Thomas P. Senftle 2 & Jingjie Wu 1

Current catalysts face challenges with low formate selectivity at high current
densities during the CO2 electroreduction. Here, we showcase a versatile
strategy to enhance the formate production on p-block metal-based catalysts
by incorporating noble metal atoms on their surface, refining oxygen affinity,
and tuning adsorption of the critical oxygen-bound *OCHO intermediate. The
formate yield is observed to afford a volcano-like dependence on the *OCHO
binding strength across a series of modified catalysts. The rhodium-dispersed
indium oxide (Rh/In2O3) catalyst exhibits impressive performances, achieving
Faradaic efficiencies (FEs) of formate exceeding 90% across a broad current
density range of 0.20 to 1.21 A cm−2. In situ Raman spectroscopy and theore-
tical calculations reveal that the oxophilic Rh site facilitates *OCHO formation
byoptimizing its adsorption energy, placingRh/In2O3 near the volcano-shaped
apex. A bipolar electrosynthesis system, coupling the CO2 reduction at the
cathode with the formaldehyde oxidative dehydrogenation at the anode,
further boosts the FEof formate to nearly 190%with pure hydrogengeneration
under an ampere-level current density and a low cell voltage of 2.5 V in a
membrane electrode assembly cell.

The electrochemical carbon dioxide reduction reaction (CO2RR) to
valuable chemicals and fuels opens avenues to upgrade CO2 utilization
and recycling, especially when driven by renewable electricity1. Among
various products, formate (HCOO−)/formic acid (HCOOH) is an

appealing feedstock with considerable market potential in fields such
as pharmaceuticals, agriculture, and energy storage1. To date, high
selectivity for CO2RR toward HCOO− has been demonstrated using
p-block elements1,2, including indium (In), tin (Sn), lead (Pb), and
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bismuth (Bi). However,maintaining catalytic performance, particularly
with high selectivity at industrial-grade current densities exceeding
500mA cm−2, remains a great challenge1. This difficulty is primarily due
to the large overpotentials required to sustain the reaction at suchhigh
current densities, as well as the increased competition from the
hydrogen evolution reaction (HER)3.

Diverse efforts have been devoted to the development of more
active CO2RR catalysts, including nanostructure construction,
valence state tuning, facet engineering, doping, and alloying, moti-
vated by different mechanisms2. It would be a significant step for-
ward if a more generalized principle could be provided to guide the
rational design strategy in the CO2-to-HCOO

− conversion. Numerous
studies have elucidated that the adsorption strength of the oxygen-
bound intermediate (*OCHO) plays a decisive role in determining the
selectivity toward HCOO− (refs. 4,5). Thereby, it is reasonable to
propose that modulating surface oxygen affinity could influence the
stabilization and activation of *OCHO species5. Inspired by our
recent findings on tuning the reactivity of copper (Cu) surface via
noble metal single site modification6, we attempt to apply a similar
strategy to the HCOO−-generating catalysts, such as indium oxide
(In2O3) and tin oxide (SnO2), aiming to alter their oxygen affinities,
and accordingly optimize the adsorption energy of the *OCHO
intermediate toward a high reactivity of the CO2-to-HCOO−

conversion.
To assess the profitability and rationality of CO2RR technology,

both cathodic and anodic reactions should be considered for the
entire electrolysis system. The oxygen evolution reaction (OER),
typically employed as the counter anodic half-reaction, consumes
over 90% of input energy on the basis of Gibbs free energy in an ideal
CO2 electrolyzer7,8. Replacing OER with a thermodynamically more
favorable organic oxidation reaction offers a promising approach to
lower the electricity consumption and co-produce value-added
chemicals9. For example, the electrooxidation of glycerol paired with
the CO(2)RR was reported to dramatically reduce the full-cell
voltage7,8. However, the wide distribution of C1 to C3 products from
glycerol oxidation poses a major challenge for the downstream
separation10. In addition, viscous glycerol likely impedes the mass
transfer7, particularly under an industrial-relevant current density,
limiting its practical implementation. Considering economic bene-
fits, many popular anodic reactions, such as the electrooxidation of
urea, ammonia, hydrazine, and alcohols, result in less expensive final
products than the raw reagents, thereby showing inadequate
viability9. Alternatively, the electrocatalytic oxidative dehydrogena-
tion (EOD) of aldehydes produces both valuable carboxylates and H2

at ultra-low potentials (close to 0 V vs. RHE)11,12. We speculate that
coupling CO2RR with the EOD of aldehyde would be an economically
feasible combination to simultaneously optimize the input energy
and output product value.

In this work, we highlight the importance of optimizing surface
oxygen affinity in the stabilization and activation of the key oxygen-
bound *OCHO intermediate for maximizing the CO2-to-HCOO

− con-
version by using a noble metal modification method. Combined
experimental and mechanistic investigations on various modified
samples demonstrate the presence of a volcano-type relationship
between the HCOO− yield and the *OCHO adsorption energy. Specifi-
cally, the Rh-dispersed In2O3 (Rh/In2O3) catalyst emerges as the most
active catalyst, achieving a Faradaic efficiency (FE) ofHCOO− up to 94%
at a partial current density of 808mAcm−2, corresponding to a gen-
eration rate of 15.1mmol h−1 cm−2. We further corroborate the com-
patibility and feasibility of dual HCOO− production in a membrane
electrode assembly (MEA) cell by coupling CO2RR at the cathode with
EOD of formaldehyde at the anode. This paired system not only
drastically reduces electricity consumption but also boosts the bipolar
HCOO− production rate to 52.0mmol h−1 cm−2 with a FE of
approximately 190%.

Results
Synthesis and characterization of Rh/In2O3 catalyst
A precipitation approach was first employed to obtain the In2O3

matrix. Subsequently, Rh/In2O3 was synthesized via a modified wet
impregnation method followed by calcination (Methods). The Rh
content was determined by the inductively coupled plasma optical
emission spectroscopy (ICP-OES; Supplementary Table 1). The optimal
Rh content is 2.06wt% aswill be discussed below. TheX-ray diffraction
(XRD) pattern shows that cubic In2O3 is the only crystalline phase
present in the Rh/In2O3 catalyst (Supplementary Fig. 1), without visible
Rh diffraction peaks, suggesting that Rh species are well dispersed.
High-magnification high-angle annular dark-field scanning transmis-
sion electron microscopy (HAADF-STEM) reveals that the Rh/In2O3

catalyst has a small particle size of ~15 nm, with well-defined lattice
fringes indexed to the (222) planes of In2O3 (Fig. 1a and Supplementary
Fig. 2). Energy-dispersive X-ray spectroscopy (EDS) mapping shows a
uniform distribution of Rh over the In2O3 matrix (Fig. 1b and Supple-
mentary Fig. 3). The absenceofobvious Rhparticles implies the atomic
dispersion of Rh sites. For comparison, the pristine In2O3 nanoparticles
were also prepared as a control sample. The In2O3 catalyst exhibits
similar crystallinity and morphology to Rh/In2O3 (Supplementary
Figs. 1 and 2), indicating that the incorporation of Rh causes minimal
effects on the structure of In2O3.

The high-resolution X-ray photoelectron spectroscopy (XPS)
analysis of In 3d confirms that the valence state of In is +3 for both
In2O3 and Rh/In2O3 (Fig. 1c)

13. Both catalysts also display similar O 1s
XPS spectra (Supplementary Fig. 4). In the high-resolution Rh 3d XPS
spectrum (Fig. 1d), two peaks at 308.5 eV and 313.2 eV can be ascribed
to the 3d5/2 and 3d3/2 of Rh3+, respectively14. X-ray absorption spec-
troscopy (XAS) analysis was performed to further explore the chemical
state and coordination environment of the Rh site on the In2O3matrix.
In agreement with the XPS analysis, the In K-edge X-ray absorption
near-edge structure (XANES) spectrum of Rh/In2O3 closely resembles
that of In2O3 (Fig. 1e). The similar extended X-ray absorption fine-
structure (EXAFS) spectra at the In K-edge confirm that the coordina-
tion structures of In2O3 matrix remain intact with and without Rh
incorporation (Supplementary Fig. 5). The Rh K-edge XANES spectrum
indicates that the Rh oxidation state in Rh/In2O3 is very close to +3
(Fig. 1f). The corresponding Rh K-edge EXAFS spectrum displays a
prominent peak at ~1.5 Å assigned to the first shell Rh–O scattering
path (Fig. 1g). The absence of a distinct Rh–Rh bond at a distance of
~2.4 Å in Rh/In2O3 indicates the lack of Rh particles. The high disper-
sion of Rh atoms is further corroborated by the EXAFS fitting results
(Supplementary Fig. 6 and Supplementary Table 2).

Electrocatalytic evaluation of Rh/In2O3 catalyst for CO2RR
The electrocatalytic performance of Rh/In2O3 was assessed in a flow
cell with 1.0M KOH as the electrolyte. Compared to pristine In2O3, the
reactivity of Rh/In2O3 for CO2RR to HCOO− improves with increasing
Rh content up to 2.06wt%, concurrently suppressing the formation of
CO and H2 (Fig. 2a and Supplementary Fig. 7). However, a further
increase inRh content leads to a decrease in selectivity towardHCOO−,
likely due to Rh aggregation favoring H2 evolution (Supplementary
Figs. 8 and 9). Thus, the optimal catalytic performance is achievedwith
Rh/In2O3 containing 2.06wt% of Rh, and all the subsequent CO2RR
experiments were carried out using this catalyst unless otherwise
noted. The FE of HCOO− on the Rh/In2O3 catalyst reaches 94% at
−0.88 V vs. RHE, meanwhile the partial current density of HCOO−

(jHCOO−) reaches 808mAcm−2, which are about 1.17- and 3.76-fold
higher than those on the pristine In2O3, respectively (Fig. 2a). Over a
wide cathodic potential window, the Rh/In2O3 catalyst consistently
demonstrates dramatically higher FE and jHCOO− than pristine In2O3.
(Fig. 2b, c). Remarkably, steady FEs of HCOO− (> 90%) are kept across a
broad current density range (0.20 <jtotal < 1.21 A cm−2). An impressive
jHCOO− of 1.09A cm−2 with a HCOO− FE of 90% is obtained at −0.94 V vs.
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RHE, corresponding to a formation rate of 20.4mmol h−1 cm−2 (Fig. 2c
and Supplementary Fig. 10). The Rh/In2O3 catalyst outperforms state-
of-the-art electrocatalysts for CO2-to-HCOO

− conversion, achieving
superior performance in both productivity and selectivity (Fig. 2d and
Supplementary Table 3).

Elucidating the role of surface oxygen affinity in CO2RR
toward HCOO−

The Rh/In2O3 catalyst exhibits a lower onset potential and significantly
higher electrochemically active surface area (ECSA)-normalized jHCOO−

than pristine In2O3 (Supplementary Figs. 11, 12 and Supplementary
Table 4). This signifies that the surface roughness is not themain factor
contributing to the enhanced catalytic performance. Systematic
characterizations of the post-catalytic Rh/In2O3 confirm well-
preserved morphology and uniformly distributed Rh, despite slight
reduction in the oxidation states of both In and Rh species (Supple-
mentary Fig. 13). The time-dependent in situ Raman measurements
were conducted to monitor the structural changes of Rh/In2O3 at

−0.88 V vs. RHE, where the maximum catalytic performance is
achieved. The characteristic Raman bands associated with oxide spe-
cies are present, supporting the robustness of oxidized indium under
CO2RR conditions (Supplementary Fig. 14). In line with prior studies,
the surface oxide site may partially remain and actively participate in
the adsorption and activation of intermediates during CO2RR
(refs. 15–20). We propose that the metal oxide serves as both the
support matrix for the atomic noble metal and an active species col-
laborating with the noble metal to direct the CO2RR to HCOO−

pathway.
In situ Raman spectra were measured as a function of potential to

identify possible intermediate adsorption behaviors. Pronounced
peaks at ~1350 and ~1540 cm−1 are attributed to the symmetric
stretching of O−C−O fromoxygen-bound *OCHO intermediate and the
asymmetric stretching of O−C−O from HCOO−, respectively
(Fig. 3a)21–23. Compared to bare In2O3, the Rh/In2O3 catalyst always
displays much stronger band intensities at various potentials, signify-
ing a more favorable formation of oxygen-bound intermediates and
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Fig. 1 | Structural and elemental characterization of Rh/In2O3 catalyst. a, b
HAADF-STEM image (a) and STEM-EDSmapping (b) of Rh/In2O3. c High-resolution
In 3d XPS spectra of In2O3 and Rh/In2O3. d High-resolution Rh 3d XPS spectrum of
Rh/In2O3. e, f XANES spectra at the In K-edge (e) and Rh K-edge (f) of Rh/In2O3.

g EXAFS spectra at the Rh K-edge of Rh/In2O3. The corresponding spectra of In2O3,
Rh2O3, and metal foils are used as references in e-g. Source data are provided as a
Source Data file.
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accelerated HCOO− production rate. The stabilization of the *OCHO
intermediate dictates the effective CO2-to-HCOO

− conversion.
We used density functional theory (DFT) calculations to

evaluate the favorability of *OCHO formation on In2O3 and Rh/
In2O3 surface sites (see Supplementary Note 1 for details). The
reduction pathway of CO2 to HCOOH requires two electron-
proton transfer steps: (1) * + CO2 + H+ + e− → *OCHO and (2)
*OCHO + H+ + e− →HCOOH + *. The endothermic reaction free
energy of the first step indicates that the *OCHO formation is the
potential-limiting step on the pristine In2O3 surface (Fig. 3b and
Supplementary data 1). The high oxophilicity of Rh stabilizes the
*OCHO intermediate substantially via the Rh–O coordination,
making HCOOH production much more energetically favorable
on Rh/In2O3 (Fig. 3b). Therefore, manipulating the oxygen affinity
of the catalyst surface via heterometal incorporation proves to be
a promising strategy for modulating the binding strength of
oxygen-bound intermediates, particularly *OCHO, in the HCOOH
formation pathway.

To further validate our hypothesis, we also tested if Ir, which has a
similar oxygen affinity to Rh (refs. 24,25), shows a similar effect when
incorporated into the In2O3 matrix using the same approach (Supple-
mentaryFig. 15). The resulting Ir-dispersed In2O3 (Ir/In2O3) catalyst also
boosts the HCOO− FE to 92% and the jHCOO− to 604mAcm−2 at −0.88 V
vs. RHE (Fig. 3c and Supplementary Fig. 16). DFT analysis also shows
that the Ir site can promote the stabilization of the *OCHO inter-
mediate and the favorability of HCOOH generation (Supplementary
Figs. 17–20).

In addition to In2O3-basedmaterials, we investigated the impact of
the Rhmodification on SnO2, another typical HCOO

−-selective catalyst
(Supplementary Fig. 21). Interestingly, the Rh-dispersed SnO2 (Rh/
SnO2) catalyst shows enhanced reactivity for CO2RR to HCOO− than
pristine SnO2 (Supplementary Fig. 22), despite SnO2 being a highly
oxophilic species26,27. In particular, the Rh/SnO2 catalyst yields a
HCOO− FE of 88% with a jHCOO− of 383mAcm−2 at −0.88 V vs. RHE,
whereas bare SnO2 only shows a HCOO− FE of 78% and a jHCOO− of
184mA cm−2 at a similar potential (Fig. 3c). The DFT computation
reveals that SnO2 has the most favorable reaction free energy of the
initial electron-proton transfer step (CO2 → *OCHO) among the inves-
tigated samples, including In2O3, Rh/In2O3, Ir/In2O3, SnO2, and Rh/
SnO2 (Supplementary Fig. 20). However, such strong *OCHO binding
on SnO2 hinders the following *OCHO reduction and desorption step
(*OCHO→HCOOH), resulting in a sluggish HCOOH production rate
(Supplementary Fig. 20). By contrast, the Rh site, with weaker oxo-
philicity than SnO2, has a weaker *OCHO adsorption strength alle-
viating the thermodynamic desorption barrier for converting *OCHO
to HCOOH on the Rh/SnO2 surface (Supplementary Fig. 20).

Collectively, the In2O3- and SnO2-based materials in our study
exhibit varying affinities to the key oxygen-bound *OCHO inter-
mediate, leading to different potential-limiting steps in convertingCO2

to HCOO−. Through changes in surface oxygen affinity, noble metal
modification influences the stabilization and activation of the *OCHO
intermediate, particularly taking the binding affinity of the *OCHO
intermediate to a moderate level for both cases of In2O3 and SnO2. A
volcano-shaped relationship emerges when correlating the
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experimentallymeasuredHCOO− activitieswith the *OCHOadsorption
free energies across different samples containing similar molar con-
tents of the noble metal (Fig. 3d and Supplementary Fig. 23). Note that
CO2 transport is not the limiting factor within the investigated
potential range in our flow cell according to the Tafel plots (Supple-
mentary Fig. 24). Thus, an optimal *OCHO binding is crucial for max-
imizing the CO2-to-HCOO

− conversion, as it balances the energetic
barriers of the two protonation steps in the reaction pathway. In our
work, Rh/In2O3 with the *OCHO binding strength of −0.07 eV tends to
be the most active catalyst for HCOO− production.

Coupling CO2RR and FOR in MEA cell
The cathodic CO2RR process is conventionally paired with an anodic
OER. However, OER is kinetic-sluggish and generates a low-value O2

product. Recently, we discovered that the formaldehyde (HCHO) oxi-
dation reaction (FOR) in alkaline media can undergo an EOD pathway
on Cu-based materials at low potenitals28. Distinguishing from the
conventional oxidation (HCHO+ 3OH−→HCOO−+ 2H2O + 2e−), our Cu-
foam-supported Cu-Ag catalyst (CuAg/CF) enables the oxidative
dehydrogenation of HCHO to co-produce H2 and HCOO− at a drasti-
cally lower anodic potential (2HCHO+4OH− → 2HCOO−+ H2 +
2H2O + 2e−)12,28. The highly porous foam substrate benefits mass
transport and gas desorption. The Ag modification facilitates C−H
bonddissociation of thediol intermediate onCuAg/CF (ref. 28). Taking
these advantages, the CuAg/CF electrode reaches anodic current
density of 500mA cm−2 at merely 0.36 V vs. RHE for the FOR (Sup-
plementary Fig. 25), which is a negative shift of ~1.4 V compared to
water oxidation on the Ni-foam-supported Ni nanoparticles (Ni/NF).

More importantly, the reaction rate of CO2RR to HCOO− on the Rh/
In2O3 catalyst is compatible with that of FOR on CuAg/CF, benefiting
the high-productivity co-electrosynthesis of HCOO− within a single
system under practical conditions.

We are thus motivated to design a reaction system by pairing
CO2RR with FOR that driven by the EOD mechanism (CO2RR//FOR),
anticipating a dual production of HCOO− at both poles of the elec-
trolyzer with high current densities under low cell voltages (Fig. 4a).
CO2RR//FOR was performed in an MEA cell by using CuAg/CF as the
anode and the Rh/In2O3 catalyst as the cathode. Paraformaldehyde
(10.0 g l−1) as a representative feedstock was fed to the anode con-
taining Ar-saturated KOH (1.0M) analyte (see Methods for details)28,29.
The linear sweep voltammetry (LSV) curve shows that a current density
of 500mAcm−2 requires a cell voltage of ~2.1 V for the CO2RR//FOR
system (Fig. 4b), much smaller than that of ~3.5 V for the conventional
CO2RR//OER system.We then assessed the HCOO− production using a
chronoamperometry model. The conventional CO2RR//OER system
delivers a HCOO− FE of ~90% with a jHCOO− of 847mAcm−2 and a pro-
duction rate of 15.8mmol h−1 cm−2 at a cell voltage of 3.9 V (Supple-
mentary Fig. 26). The majority of HCOO− products are collected at the
anode owing to the strong electromigration through the anion-
exchange membrane (AEM)30,31. On the other hand, the CO2RR//FOR
system can achieve HCOO− FEs of ~190% at cell voltages ranging from
2.1 to 2.5 V (Fig. 4c and Supplementary Fig. 27). A peak HCOO− for-
mation rate is ramped up to 52.0mmol h−1 cm−2 (Fig. 4d), along with
pure H2 simultaneously produced at the anode with a rate of
17.9mmol h−1 cm−2 (Supplementary Fig. 28). Compared to other sys-
tems coupling alternative anodic feedstocks for a bipolar HCOO−
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production, our integrated system achieves a superior current density
with a comparable HCOO− selectivity at a relatively lower cell voltage
(Fig. 4e and Supplementary Table 5). Moreover, the long-term stability
of CO2RR//FOR retains an average HCOO− formation rate of
27.7mmol h−1 cm−2 at a cell voltage of 2.1 V, producing ~51.3 g of
potassium formate and ~5.3 l of pure H2 after 22 h of electrolysis
(Supplementary Fig. 29).

To assess the economic viability of the HCOO− electrosynthesis
powered by renewable energy, a preliminary techno-economic
assessment (TEA) was performed considering the costs of capital,
separation, electricity, input chemicals, installation, balance of plant,
other operations, and carbonate regeneration (Supplementary Fig. 30
and Supplementary Note 2)32–35. The HCOOH and H2 products are

considered as the final products for sale in the analysis. The TEA cal-
culation, based on experimental data at a jtotal of 500mAcm−2 in the
MEA cell, reveals that the plant-gate levelized cost for 1 tonne of
HCOOH and the corresponding quantity of H2 is projected to be less
than the sum of their reference prices in CO2RR//FOR (Fig. 4f). In
specific, its plant-gate levelized cost mostly depends on the cost of
input chemicals since formaldehyde is supplied as the anodic feed-
stock. However, CO2RR//FORmarkedly reduces the costs of electricity
usage and carbonate regeneration by 5.37 and 3.22 times, respectively,
compared to those in the CO2RR//OER system (Fig. 4f). These findings
manifest that CO2RR//FOR using the Rh/In2O3 catalyst and a CuAg/CF
electrode exhibits better compatibility and economic feasibility than
traditional CO2RR//OER (Supplementary Fig. 31).
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Discussion
In summary,we report an efficient Rh/In2O3 catalyst that demonstrates
ampere-level performance in converting CO2 to HCOO−. The jHCOO−

can be ramped up to 1.09A cm−2, where the HCOO− FE still presents
90%. The mechanistic insight reveals that the affinity for the pivotal
oxygen-bound *OCHO intermediate governs the CO2RR reactivity
toward HCOO−. This assertion is supported by the observed volcano-
type relationship between the ECSA-normalized HCOO− yield and the
*OCHO binding energy. We emphasize that different optimizing
directions should be aimed when designing HCOO−-favorable cata-
lysts, as their oxygen affinities may vary the potential-limiting step in
the CO2RR. For catalysts with a relatively weak binding of *OCHO, such
as In2O3, incorporating stronger oxophilic species like Rh and Ir onto
the surface favors to stabilize the *OCHO intermediate. This alteration
effectively transforms the uphill step of CO2 protonation to *OCHO
into a downhill process. Conversely, in the case of SnO2 that exhibits
very strong binding strength to *OCHO, the modification with Rh
reduces its surface oxygen affinity. This mitigation facilitates the pro-
tonation of *OCHO to HCOOH. Thus, we demonstrate the applicability
and universality of regulating surface oxygen affinity through noble
metal modification to influence the adsorption of the oxygen-
coordinated intermediate in CO2RR. We also deduce that the modi-
fier can extend to other elements with an appropriate oxophilicity,
structure, and construction method. Moreover, we discover that
pairing theCO2RRonRh/In2O3with the FORonCuAg/CF can boost the
HCOO− FE to nearly 190% along with pure H2 generation at the anode,
merely requiring a low cell voltage of 2.5 V to achieve an ampere-level
current density. Integrating the EOD of aldehydes, an alternative
anodic reaction, with the high-performanceCO2RR holds the potential
for considerable productivity and economic advantages in the simul-
taneous production of valuable chemicals.

Methods
Chemicals and materials
Indium(III) chloride (InCl3, 98%), tin(IV) chloride (SnCl4, 98%), sodium
hexachlororhodate(III) (Na3RhCl6, 99%), sodium hexachloroiridate(III)
(Na3IrCl6, 99%), and sodium carbonate (Na2CO3, 99.5%) were pur-
chased from Sigma Aldrich and used as received.

Catalyst synthesis
Firstly, the In2O3 nanoparticles were prepared using a precipitation
method. Na2CO3 (0.5M) was added into InCl3 (0.5M) under strong
stirring until pH 10. The mixture was aged for 16 h and then collected
by washing and centrifugation. After drying at 60 °C overnight, the
precipitate was annealed at 300 °C for 5 h. The as-prepared In2O3 was
then pretreated in 10 vol% H2/Ar at 130 °C for 2 h in order to create
oxygen vacancies. The Rh/In2O3 catalyst was prepared by a wet
impregnation method. The Na3RhCl6 aqueous solution (1.0mgml−1)
was injected into the partially reduced In2O3 aqueous suspension
(10.0mgml−1) using a syringe pump at a rate of 1.0 µl min−1 under N2

protection. The oxygen vacancy served as the anchoring site to trap
RhCl6

3− (ref. 36). After vigorous stirring of 12 h under N2, the sample
was washed, dried, and calcined in air at 300 °C for 3 h.

A similar procedure was applied to synthesize In2O3, Ir/In2O3,
SnO2, and Rh/SnO2 by using corresponding salt precursors. ICP-OES
was used to determine the mass contents of Rh and Ir in different
samples (Supplementary Table 1).

Material characterizations
XPS data were collected from the PHI Quantera XPS instrument
equipped with an Al Kα radiation source. XRD was carried out on the
PANalytical X’Pert Pro MPD using Cu Kα radiation. HAADF-STEM and
EDS elemental mapping were conducted using the JEOL ARM 200F
microscope, which is equipped with a cold field emission gun and
operated at 200 kV voltage. XAS measurements were performed on

the Beamline 8-ID of the National Synchrotron Light Source II (NSLS II)
at Brookhaven National Laboratory. The Athena and Artemis software
in the Demeter package was employed for data processing and ana-
lysis. The theoretical EXAFS signal was fitted to the experimental
EXAFS data in R-space by Fourier transforming both the theoretical
and experimental data.

Electrocatalytic measurements of CO2RR in the flow cell
The CO2RR performance was evaluated in a flow cell with 1.0M KOH
electrolyte (pH 14.0 ± 0.1) at 25 °C. The Rh/In2O3 catalyst ink, con-
taining 5 wt% of Nafion, was spray-coated onto the gas diffusion layer
(GDL, Sigracet 39BB) to form the gas diffusion electrode (GDE) as the
cathode. The mass loadings of all samples were controlled at
~0.75mg cm−2 by weighing the mass difference before and after the
coating. A piece of Ni foam was used as the anode. A Nafion 117
membrane (Fuel Cell Store, 180 μm, 3 × 3 cm2) was used to separate
cathodic and anodic compartments. The fresh electrolyte (50ml)
was prepared before each testing and fed by syringe pumps at
1mlmin−1 and 2mlmin−1 to the cathode and anode, respectively. CO2

gas was supplied to the cathode at 50 sccm via a mass flow controller
(Alicat Scientific). A potentiostat (Gamry Interface 1010E) controlled
a constant voltage to the flow cell and recorded the corresponding
current. A programmable d.c. power supply (B&K Precision
XLN3640) was employed when the current density exceeded
1 A cm−2. The cathode potential was measured relative to the Ag/AgCl
(3M KCl) reference electrode, and converted to the RHE scale using:
ERHE = EAg/AgCl + 0.209V + 0.0591 × pH. The reference electrode
was calibrated using a standard hydrogen electrode before mea-
surements. The resistance was 3.0 ± 0.4Ω for an electrode area of
1 cm2, determined by potentiostatic electrochemical impedance
spectroscopy (EIS). A 100% iR compensation wasmanually applied to
each potential.

During the electrolysis, an in-line gas chromatograph (GC, SRI
Instruments MultipleGas#5) was used to monitor the gas products.
Argon, as an internal standard, was mixed with the effluent gas to
calibrate its flow rate. The liquid products were collected and quanti-
fied via 1H NMR (Bruker NEO 400MHz spectrometer). 500μl electro-
lyte wasmixed with 100μl internal standard of 5mM 3-(trimethylsilyl)
propionic-2,2,3,3-d4 acid sodium salt in D2O. The standard deviations
were calculated based on the measurements of three independent
electrodes. The FE for liquid products is calculated as:

FE %ð Þ= zFcV
Q

× 100%

where z is the number of electrons transferred for producing a target
product; F is the Faraday constant; c is themolarity of a target product
determined by 1H NMR; V is the volume of electrolyte collected; Q is
the total charge.

The formation rate for liquid products is calculated as:

formation rate =
cV
tS

where t is the electrolysis time; S is the geometric area of the electrode.

Electrocatalytic measurements in the MEA cell
In the CO2RR//OER system, the Rh/In2O3 GDE as the cathode and Ni/NF
as the anode28 were separated by an AEM (Fumasep FAA-3-50, 50μm,
3 × 3 cm2). Humidified CO2 at a rate of 50 sccm was supplied to the
cathode. Fresh KOH (1.0M) was pumped into the anode chamber at
20mlmin−1. A potentiostat (Gamry Interface 5000E) was applied to
monitor current densities in a two-electrode system at different cell
voltages without iR correction. A cold trap was placed downstream of
the effluent gas at the cathode to separate gas and liquid products. Due
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to the liquid product crossover, the FEs of liquid products were deter-
mined based on the sum fromboth the anode and cathode sides during
the same period. The rest procedure was identical to that in a flow cell.

For the CO2RR//FOR system, the CuAg/CF prepared by an elec-
trodeposition method28 was applied to replace Ni/NF as the anode for
the FOR. Because the commercial formaldehyde aqueous solution
normally contains methanol as the stabilizer and its concentration is
always limited (for example, 37wt%), we adopted paraformaldehyde
powder as the feedstock to investigate the FOR process in this case.
The formaldehyde molecule would be released from paraformalde-
hyde in the aqueous solution28,29. As guided by our previous study28, an
optimum composition of 10.0 g l−1 of paraformaldehyde in 1.0M KOH
was supplied to the anode. The followingmeasurementswere identical
to those in the CO2RR//OER system.

To minimize the influence of the Cannizzaro reaction of alde-
hydes in the alkaline condition, the analyte was acidified by 2M HCl
after the electrolysis and conducted 1H NMR measurements
immediately28. Due to the crossover of HCOO− product, both CO2RR
and FOR would account for the observed formation rates of HCOO− at
the anode in the MEA cell. To determine the FEs of HCOO−, we utilized
a water displacement method to quantify the H2 production at the
anode,which could transfer to the formation rates andFEsofHCOO− in
FORaccording to the stoichiometry. Then, the contributions ofHCOO−

formation rates inCO2RRcanbeobtained through subtracting those in
FOR from the total formation rates of HCOO− at the anode.Meanwhile,
the in-line GC was employed to check if CO2 and O2 were generated at
the anode, which are possibly originated from HCOO− oxidation and
OER, respectively.

In situ Raman measurements
In situ Raman experiment was carried out using a modified flow cell
developed by our group37 (Supplementary Fig. 14a). The Raman
spectra were recorded on a Renishaw inVia Raman microscope with a
785 nm laser. For each in situ Raman measurement, the acquisition
timewas 15 s, and the accumulation of scans was 3. Cathode potentials
were applied in the potentiostatic mode and converted to the RHE
scale accordingly.

Data availability
All the data that support the findings of this study are available in the
main text and the Supplementary Information, or from the corre-
sponding authors upon reasonable request. Source data are provided
in this paper.
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