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Computational explorationof global venoms
for antimicrobial discovery with Venomics
artificial intelligence

Changge Guan 1,2,3,4,5, Marcelo D. T. Torres 1,2,3,4,5, Sufen Li1,2,3,4 &
Cesar de la Fuente-Nunez 1,2,3,4

The rise of antibiotic-resistant pathogens, particularly gram-negative bacteria,
highlights the urgent need for novel therapeutics. Drug-resistant infections
now contribute to approximately 5 million deaths annually, yet traditional
antibiotic discovery has significantly stagnated. Venoms form an immense and
largely untapped reservoir of bioactivemoleculeswith antimicrobial potential.
In this study, wemined global venomics datasets to identify new antimicrobial
candidates. Using deep learning, we explored 16,123 venom proteins, gen-
erating 40,626,260 venom-encrypted peptides. From these, we identified 386
candidates that are structurally and functionally distinct from known anti-
microbial peptides. They display high net charge and elevated hydrophobicity,
characteristics conducive to bacterial-membrane disruption. Structural stu-
dies revealed that many of these peptides adopt flexible conformations that
transition to α-helical conformations in membrane-mimicking environments,
supporting their antimicrobial potential. Of the 58 peptides selected for
experimental validation, 53 display potent antimicrobial activity. Mechanistic
assays indicated that they primarily exert their effects through bacterial-
membranedepolarization,mirroringAMP-likemechanisms. In amurinemodel
of Acinetobacter baumannii infection, lead peptides significantly reduced
bacterial burden without observable toxicity. Our findings demonstrate that
venoms are a rich source of previously hidden antimicrobial scaffolds, and that
integrating large-scale computationalminingwith experimental validation can
accelerate the discovery of urgently needed antibiotics.

Drug-resistant infections account for approximately 5 million deaths
annually worldwide1, fueled by the rapid emergence of antibiotic-
resistant pathogens. Among these, gram-negative bacteria, identified
as priority pathogens by the World Health Organization (WHO), are
particularly adept at developing resistance. Despite this growing

threat, the development pipeline for novel antibiotics has stagnated
over the past few decades due to high costs and lengthy timelines,
emphasizing the urgent need for innovative therapeutic strategies2,3.

One promising yet underexplored avenue lies in the vast mole-
cular diversity of animal venoms, which have evolved over millions of
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years to interact with a wide range of biological targets4–7. These
venoms are rich in bioactive peptides and proteins that exhibit diverse
pharmacological effects, including antibacterial activity8–12. Venom-
derived peptides offer several advantages over conventional small-
molecule antibiotics. Unlike most traditional antibiotics, which target
specific bacterial enzymes or biosynthetic pathways, many venom
peptides act by disrupting bacterial membranes, a mechanism that
bacteria struggle to evade through conventional resistance
strategies8–14. In addition, venom peptides often exhibit broad-
spectrum activity against both gram-positive and gram-negative bac-
teria, making them attractive candidates for combating multidrug-
resistant pathogens. Venoms have already yielded therapeutic break-
throughs in other biomedical fields, with notable examples including
ziconotide, marketed as Prialt®, an analgesic derived from cone snail
venom used to treat chronic pain by selectively targeting voltage-
gated calcium channels15, and captopril, an antihypertensive agent
originally sourced from snake venom16. However, the potential of
venoms as a source of antimicrobial agents remains largely untapped,
in part due to the challenges associatedwith systematically identifying
bioactive peptides within complex venom proteomes.

Peptide-based antimicrobials represent an attractive alternative
to both traditional antibiotics and protein-based therapeutics17,18.
While small-molecule antibiotics are highly effective, they are often
vulnerable to rapid resistance evolution, particularly when they act on
single cellular targets. In contrast, proteins can achieve greater speci-
ficity but frequently suffer from issues related to stability, immuno-
genicity, and bioavailability17. Antimicrobial peptides, including
those derived from venoms, offer a compelling middle ground by
combining potent antimicrobial activity with structural flexibility and
modifiability19. Their ability to be engineered for improved stability,
selectivity, and pharmacokinetics makes them promising candidates
for next-generation antimicrobial therapies.

Despite the clear potential of venom peptides18,20,21, systematic
discovery efforts have been limited by the sheer complexity of venom
composition and the impracticality of high-throughput experimental
screening. Recent advances in bioinformatics and machine learning
have enabled the systematic mining of potential antimicrobial candi-
dates from proteomes22–29. In this study, we applied APEX, a sequence-
to-function deep learning-model22,30, to systematically mine venom
proteomes for antimicrobial candidates.

By leveraging neural network-based sequence encoding and
activity prediction, APEX allows for in silico screening of thousands of
venom-derived peptides, prioritizing candidates for experimental
validation. This computational approach dramatically accelerates the
identification of antimicrobial peptides, reducing relianceon resource-
intensive biochemical assays.

Our study integrates computational discovery with experimental
validation to uncover a set of venom-encrypted peptides (VEPs) with
potent antimicrobial activity (Fig. 1a).We identified and synthesized 58
promising VEPs, testing their efficacy against multiple clinically rele-
vant bacterial strains, including priority pathogens classified by the
WHO. Beyond in vitro screening, we further demonstrate the transla-
tional potential of these peptides through preclinical validation in a
murine model of Acinetobacter baumannii skin infection. Notably, our
findings support the notion that venom-derived peptides not only
retain their antimicrobial function when extracted from their parent
toxins but also can serve as templates for future peptide-based
therapeutics.

By combining machine learning, large-scale venom proteome
analysis, and extensive experimental validation, this study establishes
a framework for harnessing venom-derived peptides in antimicrobial
drug discovery. Our findings highlight the rich and largely untapped
potential of animal venoms in the fight against antibiotic resistance
and lay the groundwork for future research into computationally-
guided peptide discovery.

Results
Mining venoms for antimicrobials
We sourced venom proteins from four databases: ConoServer
(focusing on conopeptides, Supplementary Fig. 1)31, ArachnoServer
(spider proteins, Supplementary Fig. 2)32, ISOB (indigenous snake
proteins, Supplementary Fig. 3)33, and VenomZone (covering six taxa:
snakes, scorpions, spiders, cone snails, sea anemones, and insects,
Supplementary Fig. 4)34. The VenomZone dataset, curated from Uni-
ProtKB, was represented in our study by UniProt. Altogether, we
compiled 16,123 venom proteins, which were computationally
truncated (Supplementary Fig. 5) and processed to generate
40,626,260 VEPs.

To analyze differences across the databases, we performed a
species overlap analysis (Fig. 1b). UniProt contained the largest num-
ber of unique species (699), reflecting its extensive coverage. Con-
oserver and Arachnoserver encompassed smaller unique subsets (16
and 12, respectively), while ISOB contained no unique species. These
results highlight the complementary nature of these databases,
emphasizing the value of integrating multiple sources to achieve
comprehensive venom protein diversity.

Using APEX, a deep learning model, we predicted bacterial strain-
specific MIC values for each peptide and used the median MIC as a
measure of antimicrobial activity. We identified 7,379 VEPs with a
median MIC ≤32 µmol L−1 (Supplementary Data 1). Further filtering
criteria (see Methods: Venom-encrypted peptide selection) based on
sequence similarity to known antimicrobial peptides (AMPs) yielded
386 candidates with low similarity to existing AMPs (Supplementary
Table 1 and Supplementary Data 2).

To visualize sequence diversity, we compared the 386 VEPs with
19,762 known AMPs from the DBAASP database. Pairwise alignment
(see Methods: Peptide sequence similarity) and uniform manifold
approximation andprojection (UMAP) revealed thatmost knownAMPs
clustered densely, reflecting a high sequence similarity matrix (Fig. 1c).

Most known AMPs formed a dense cluster, indicating high
sequence similarity, with a minority scattered outside this cluster,
representing more diverse sequences. VEPs derived from ConoServer
and ArachnoServer tended to cluster closer to knownAMPs, reflecting
relatively higher sequence similarity. In contrast, UniProt-derived VEPs
mapped farther from the AMP cluster, partially overlapping with
scattered AMPs and occupying previously unexplored regions of
sequence space. ISOB-derived VEPs were themost distant from known
AMPs, forming isolated clusters that represent a promising source of
AMP sequences (Fig. 1c).

To determine whether VEPs with low sequence similarity to known
AMPs share key physicochemical characteristics, we analyzed their dis-
tribution inphysicochemical feature space (SupplementaryFig. 6).While
known AMPs from DBAASP clustered centrally, UniProt-derived VEPs
formed three distinct clusters, Arachnoserver-derived VEPs formed two
clusters, and ISOB and Conoserver each formed one cluster. UniProt
cluster overlapped with ConoServer, while the ISOB-derived cluster
remained entirely isolated. UniProt- and Arachnoserver-derived clusters
that did not overlap with known AMPs represent unexplored regions of
sequence space (Fig. 1c).

These findings suggest that our approach identifies both AMP-like
peptides that differ in sequence while sharing similar physicochemical
properties and entirely different AMP families that deviate in both
sequence and characteristics.

Composition and physicochemical features
A comparison of amino acid composition between VEPs and DBAASP
AMPs revealeddistinct profiles (Fig. 1d andSupplementaryFig. 7). VEPs
had lower cysteine, aspartic acid, histidine, and isoleucine, while
showing higher phenylalanine, lysine, and arginine content. ISOB-
derived VEPs were particularly enriched in phenylalanine, whereas
Conoserver-derived VEPs displayed pronounced arginine content.

Article https://doi.org/10.1038/s41467-025-60051-6

Nature Communications |         (2025) 16:6446 2

www.nature.com/naturecommunications


16 0

69912

0

0

0

0

0

103

0

74

0

0

14

Arachnoserver
(86)

Conoserver
(119) ISOB

(14)

Uniprot
(890)

A C D E F G H I K L M N P Q R S T V W Y
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Amino Acid

No
rm

al
iz

ed
 fr

eq
ue

nc
y

DBAASP
Arachnoserver

Conoserver
ISOB

UniProt
Predicted VEPs

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

20

25

UMAP-1

UM
AP

-2

Databases
Arachnoserver
Conoserver
ISOB
UniProt

Data
bas

e

Arac
hnose

rve
r

Conose
rve

r
ISOB

UniProt
-10

0

10

20

30

40

Ne
tC

ha
rg

e

p < 0.0001

p = 0.0020

p < 0.0001

p = 0.9865

p = 0.0089

p = 0.9796

p < 0.0001
p > 0.9999

p = 0.9940
p = 0.3111

Data
bas

e

Arac
hnose

rve
r

Conose
rve

r
ISOB

UniProt
-2

-1

0

1

2

3

No
rm

al
iz

ed
 H

yd
ro

ph
ob

ic
ity

p = 0.3071

p < 0.0001

p = 0.2177

p = 0.3340

p = 0.0105

p = 0.5797

p = 0.9321

p = 0.9966

p = 0.0005
p = 0.3844

b

a

d

c e f

Databases Venom
proteins

Truncated
venom proteins APEX

MIC prediction

Candidate venom
encrypted peptides

(VEPs) Predicted VEPs

Fig. 1 | Exploration of global venoms for antimicrobial discovery. a Mining
framework for AMPs. Our framework employs a three-stage approach to identify
AMP candidates from venomproteins. Initially, a peptide library is generated using
a sliding window method, extracting peptides ranging from 8 to 50 amino acid
residues in length. Subsequently, minimum inhibitory concentration (MIC) values
of peptides against bacterial strains were predicted by APEX. Finally, candidate
VEPs are selected based on sequence similarity, yielding a set of unique and potent
molecules. bA Venn diagram illustrating species overlap among the four databases
used as a source of venomproteins. Species names extracted from these databases
were analyzed to identify diversity. c Physicochemical feature space exploration.
The graph illustrates a bidimensional sequence space visualization of peptide
sequences found in DBAASP and antimicrobial venom-derived EPs (VEPs) dis-
covered by APEX in venom proteins from multiple source organisms. The physi-
cochemical features were calculated for peptide sequences, which wasmade up of

the feature vector for representing peptides. Each row in the matrix represents a
feature representation of a peptide based on its amino acid composition. Uniform
manifold approximation and projection (UMAP) was applied to reduce the feature
representation to two dimensions for visualization. d Comparison of amino acid
frequency in VEPs with known antimicrobial peptides (AMPs) from database. Dis-
tribution of two physicochemical properties for peptides with predicted anti-
microbial activity, compared with AMPs from databases: e net charge and
f normalized hydrophobicity. Net charge influences the initial electrostatic inter-
actions between the peptide and negatively charged bacterial membranes, while
hydrophobicity affects interactions with lipids in themembrane bilayers. Statistical
significance in (e, f) was determined using two-tailed t-tests followed by the
Mann–Whitney test; p values are shown in the graph. The solid line inside each box
represents the mean value for each group. Panel (a) created in BioRender. De la
Fuente-Nunez, C. (2025) https://BioRender.com/es1g25g.
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Notably, Arachnoserver- and ISOB-derived VEPs were enriched in
lysine.

To further understand the physicochemical properties con-
tributing to antimicrobial activity, we benchmarked VEPs against
known AMPs (Fig. 1e, f and Supplementary Fig. 8). VEPs were generally
more positively charged, facilitating electrostatic interactions with the
negatively charged bacterial membranes22. They alsbicity, likely driven
by their increased phenylalanine and arginine content. In ISOB- and
Conoserver-derived VEPs, these features enhanced amphiphilicity
(Supplementary Fig. 8a), promoting secondary structure formation
and membrane-associated activity.

Additionally, VEPs displayed higher isoelectric points than known
AMPs (Supplementary Fig. 8b), consistent with their elevated cationic
residue content. By design, the APEX model excluded peptides with
high cysteine content, thereby avoiding many Conoserver-derived
peptides rich in disulfide bridges. Despite their elevated phenylalanine
levels, VEPs maintained comparable normalized hydrophobic

moments (Supplementary Fig. 8c) and aggregation propensities
(Supplementary Fig. 8d) to conventional AMPs, with amphiphilic dis-
tribution likely mitigating hydrophobic clustering.

Collectively, these results delineate the unique composition and
physicochemical properties of VEPs, highlighting their potential as
promising antimicrobial candidates.

Antimicrobial activity assays
Among the 58 VEPs tested, 53 (91.4%) exhibited activity against at least
one pathogenic strain. Notably, all Arachnoserver-derived peptides
were active, emphasizing their strong antimicrobial potential (Fig. 2a).
In contrast, some UniProt-derived VEPs (from VenomZone) demon-
strated limited potency: UniprotKB-2 showed no activity, while
UniprotKB-6 and UniprotKB-11 were active only against Enterococcus
faecium.

The inactive or minimal activity of UniProtKB-2, -6, and -11 was
associated with lower hydrophobicity and net charge, underscoring

Fig. 2 | Antimicrobial activity and secondary structure profiles of anti-
microbials from venoms. a Heatmap displaying the antimicrobial activities
(μmol L-1) of active antimicrobial agents from venoms against 11 clinically relevant
pathogens, including antibiotic-resistant strains (gram-negative and gram-positive
bacteria as indicated as such by – and + succeeding their names). Briefly, 105 bac-
terial cells were incubated with serially diluted VEPs (1–64μmol L−1) at 37 °C. Bac-
terial growth was assessed by measuring the optical density at 600nm in a

microplate reader one day post-treatment. The MIC values presented in the heat-
map represent the mode of the replicates for each condition. b–e Ternary plots
showing the percentage of secondary structure for each peptide (at 50μmol L−1) in
four different solvents: b water, c Sodium dodecyl sulfate (SDS, 10mmol L−1) in
water, d 60% trifluoroethanol (TFE) in water, and e 50%methanol (MeOH) in water.
Secondary structure fractions were calculated using the BeStSel server39. Circles
indicate active VEPs, while crosses represent inactive peptides.
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the important role of these parameters in facilitating membrane
interactions. Conversely, ISOB-derived VEPs with enhanced normal-
ized hydrophobicity exhibited improved antimicrobial performance.
Among Conoserver-derived VEPs, an intermediate balance of hydro-
phobicity and net charge appeared to be optimal for activity. In
Arachnoserver-derived VEPs, where all candidates were active, efficacy
seemed to be driven by sequence-specific features rather than general
physicochemical properties.

These findings underscore the importance of physicochemical
characteristics, such as charge and hydrophobicity, in effective bac-
terial membrane disruption while also highlighting the significant role
of sequence-specific factors in determining antimicrobial efficacy.

Secondary structure studies
The secondary structure of short peptides is inherently dynamic, often
transitioning between disordered and ordered conformations
depending on the surrounding environment, particularly at hydro-
phobic/hydrophilic interfaces. These structural transitions are critical
for defining the biological functions of peptides, including their anti-
microbial activity.

To investigate the structural behavior of the synthesized VEPs,
we performed circular dichroism (CD) spectroscopy in diverse
environments: water, sodium dodecyl sulfate (SDS)/water
(10mmol L−1), methanol (MeOH)/water (1:1, v:v), and tri-
fluoroethanol (TFE)/water (3:2, v:v). Each medium was chosen to
simulate specific physicochemical conditions relevant to peptide
behavior. SDS micelles mimic biological lipid bilayers, offering a
membrane-like environment conducive to evaluating interactions
with bacterial membranes35. The TFE/water mixture is a known
helical-inducer that promotes intramolecular hydrogen bonding by
dehydrating peptide backbone amide groups, thereby favoring α-
helical conformations36,37. Conversely, the MeOH/water mixture
promotes interchain hydrogen bonding, stabilizing β-like struc-
tures, while hydrophobic side chains cluster to minimize contact
with water, enhancing β-like conformations38.

CD spectra were recorded for all VEPs at 50 µmol L−1 over a
wavelength range of 260 to 190 nm (Supplementary Fig. 9a–d). The
beta structure selection (BeStSel) algorithm was employed to decon-
volute the spectra and quantify the secondary structure content39 (Fig.
2b–e). As expected for short peptides (<50 amino acid residues), VEPs
were predominantly unstructured inwater (Fig. 2b and Supplementary
Fig. 9a, e), thoughwith a slight propensity towardβ-like conformations
(fβ < 45%; Supplementary Fig. 9e). A similar trend was observed in the
β-inducing medium (MeOH/water), where the β-content modestly
increased (Fig. 2e and Supplementary Fig. 9d, e).

In contrast, VEPs exhibited a pronounced structural transition in
SDS micelles (Fig. 2c and Supplementary Fig. 9c, e) and TFE/water
mixture (3:2, v:v; Fig. 2d and Supplementary Fig. 9b, e), adopting α-
helical conformations. This shift from disordered to α-helical struc-
tures highlights their responsiveness to membrane-mimicking envir-
onments and helical-inducing media, consistent with typical behavior
observed for antimicrobial peptides6,40,41.

Interestingly, this behavior distinguishes VEPs from other classes
of encrypted peptides, including those predicted by earlier proteome
mining using APEX22, whichpredominantly adopted unstructured orβ-
like conformations, even in membrane-like or helical-inducing envir-
onments. Similarly, small open reading frame-encodedpeptides (SEPs)
and bacterial proteome-derived encrypted peptides42,43 showed lim-
ited helical propensity under comparable conditions. Instead, VEPs
exhibited a structural response more akin to archaeasins, which also
demonstrated a clear transition to α-helical conformations in helical-
inducing media and upon interacting with lipid bilayers30. These find-
ings suggest that VEPs may be uniquely suited for membrane-
associated functions, likely contributing to their observed anti-
microbial efficacy.

Mechanism of action studies
To investigate whether VEPs exert their activity via membrane-related
mechanisms, we evaluated their effects on bacterial outer and cyto-
plasmic membranes using fluorescence assays. We used 1-(N-pheny-
lamino)-naphthalene (NPN) assays to assess bacterial outer membrane
permeabilization (Fig. 3a). Among the peptides tested, 23 VEPs effec-
tively permeabilized the outer membrane. Notably, Arachnoserver-18,
derived from the protein M-oxotoxin-Ot2d of the spider Oxyopes
takobius; ConoServer-6, derived from the protein Bt211 precursor, a
widely studied conotoxin from the betuline cone (Conus betulinus);
and ConoServer-7, derived from the protein Con-ins G1b precursor of
Conus geographus, a cone snail known for having the most potent
venom among the Conus genus44, showed superior permeabilization
activity. Polymyxin B and levofloxacin were used as controls in these
experiments24. Overall, VEPs demonstrated permeabilization compar-
able to or better than other AMPs7,45,46 or other human- or animal-
derived EPs22,24.

We next evaluated cytoplasmic membrane depolarization using
3,3′-dipropylthiadicarbocyanine iodide (DiSC3-5), a fluorophore that
detects membrane potential changes. Among the 28 peptides tested
against P. aeruginosa PAO1, 26 VEPs depolarized the cytoplasmic
membrane more effectively than the control groups treated with
polymyxin B and levofloxacin (Fig. 3b)24. However, the depolarization
efficacy of VEPs was less pronounced compared to other peptide
families42, such as those derived from archaeal proteomes
(archaeasins)30 and SEPs42. Against the gram-positive bacterium S.
aureus, VEPs exhibited slightly better depolarization activity than P.
aeruginosa (Fig. 3c), though their performance remained below that of
other reported peptide depolarizers23,43.

These findings suggest that VEPs primarily exert their anti-
microbial effects through cytoplasmic membrane depolarization
rather than outer membrane permeabilization. This mode of action
aligns with that of some AMPs 45,46 and EPs24 but differs from certain
computationally predicted peptides42.

In vitro cytotoxicity of VEPs
Cytotoxicity was assessed using human embryonic kidney (HEK293T)
cells. Some VEPs, especially from the UniprotKB and Arachnoserver
datasets, were cytotoxic at CC50 ≤ 64 µmol L−1 (Fig. 4a), mirroring their
potent antimicrobial activity. To further test the toxicity of these
molecules, we performed hemolysis assays by exposing the peptides
to human red blood cells (Supplementary Fig. 11). In general, the
peptideswere not asactive as againstHEK293Tcells, andonly themost
active ones presented some degree of hemolytic activity. VEPs from
UniprotKB, ISOB, and Conoserver datasets were not toxic. A few Ara-
chnoserver VEPs showed hemolytic activity and were not considered
for further in vivo experimental validation. These findings underscore
the importance of fine-tuning VEP properties to balance antimicrobial
efficacy with reduced cytotoxicity, guiding further peptide
optimization.

Anti-infective activity in preclinical animal models
To determine the in vivo efficacy of lead VEPs, we used a skin abscess
mouse model infected with A. baumannii, a clinically significant
pathogen (Fig. 4b). Based on their selectivity index (Supplementary
Table 3),we selected themost activeVEPswith low toxicity. ThreeVEPs
demonstrated promising activity: UniProtKB-7, derived from the Im-1
toxin of the scorpion Isometrus maculatus; ConoServer-14, derived
from the Elevenin-Vc1 protein of the cone snail Conus quercinus; and
Arachnoserver-5, derived from the M-lycotoxin-Gri2c protein of the
wolf spider Geolycosa riograndae.

A single topical dose of each VEP at its MIC significantly reduced
bacterial counts 2 days post-infection. Arachnoserver-5 achieved a
two-log reduction in bacterial load, comparable to the activity of
polymyxin B and levofloxacin controls. Four days post-infection, all
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three VEPs continued to suppress bacterial growth, with
Arachnoserver-5 producing a three-log reduction relative to untreated
controls (Fig. 4c). Importantly, no significant changes in body weight
were observed in treated animals, indicating minimal toxicity under
these conditions (Supplementary Fig. 12).

Discussion
This work demonstrates how large-scale, machine-learning explora-
tion of venom proteomes—coupled with focused experimental vali-
dation—can unlock an untapped source of antibiotics. The VEPs
identified in this work exhibit distinct sequences and physicochemical
properties, retain membrane-active mechanisms characteristic of
known antimicrobial peptides, and demonstrate promising anti-
microbial activity in both in vitro assays and preclinical animalmodels.

Our findings highlight the power of combining digital data with
machine learning to accelerate antibiotic discovery, building on
advances in this emerging field22–24,29,47.

Future work will focus on performing targeted chemical mod-
ifications of these venom-derived peptides to further enhance their
stability, bioavailability, and selectivity. These optimization efforts aim
to maximize the therapeutic potential of VEPs as next-generation
antibiotics.

While APEX has proven effective in accelerating the discovery of
antimicrobials, several limitations remain. One constraint is its reliance

on discrete MIC values, which are recorded in multiples of 2, and the
exclusive use of AAindex features, potentially limiting prediction
accuracy and generalizability. Another limitation is the lack of inter-
pretability in APEX’s predictions, as it does not identify specific
sequence features responsible for antimicrobial activity. While
including all 34 strains could have provided additional computational
insights, experimental validation of a larger number of strains will be
pursued in future studies.

We acknowledge that the VEPs identifiedpresent high net positive
charge and hydrophobicity, which can potentially be associated with
toxicity. Nevertheless, herewe show that several of the leadcandidates
were not toxic against human red blood cells and human cell lines. In
addition, those features also play crucial roles in antimicrobial activity
and are thus needed to yield active compounds.

Moreover, venom-derived compounds may possess toxicity via
modulation of ion channels. Our predictions indicate that nearly 40%
of the identified VEPs were not expected to affect potassium channels
(Supplementary Table 4). However, ~60% of the peptides, including
those tested in vivo, were predicted to modulate ion channels, high-
lighting the need for further experimental validation. Future studies
should incorporate electrophysiological assays to directly evaluate the
effects of VEPs on specific ion channels, particularly since systemic
administration or prolonged topical use may cause unintended side
effects. Additional optimization may also be required to reduce

Fig. 3 | Mechanism of action of antimicrobials from venoms. To assess whether
VEPs act on bacterial membranes, all active peptides against P. aeruginosa PAO1
were subjected to outermembrane permeabilization, andpeptides active against P.
aeruginosa PAO1 and S. aureus ATCC 12600 were tested in cytoplasmic membrane
depolarization assays. The fluorescent probe 1-(N-phenylamino)naphthalene (NPN)
was used to assess membrane permeabilization (a) induced by the tested VEPs in P.
aeruginosa PAO1 cells. The fluorescent probe 3,3′-dipropylthiadicarbocyanine
iodide (DiSC3-5) was used to evaluate membrane depolarization of b P. aeruginosa
PAO1or c S. aureusATCC 12600causedbyVEPs. The values displayed represent the
relative fluorescence of both probes, with nonlinear fitting compared to the

baseline of the untreated control (buffer + bacteria + fluorescent dye) and bench-
marked against the antibiotics polymyxin B and levofloxacin. All experiments were
performed in three independent replicates. The relative fluorescence values in
(a–c) were calculated as the percentage difference between the sample and the
untreated control using Eq. 3 (Methods). The untreated control (buffer +
bacteria + fluorescent dye) served as the baseline, and polymyxin B was used as a
positive control for benchmarking. The protein and peptide structures depicted in
the figure were created with PyMOL Molecular Graphics System, version 3.1,
Schrödinger, LLC. Panel (a) created in BioRender. De La Fuente-Nunez, C. (2025)
https://BioRender.com/1bfl5da.
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potential toxicity. Expanding the panel of bacterial strains tested
would further enhanceour computational-experimental frameworkby
enabling feedback-driven refinement of the predictive model.

To address these limitations and enhance APEX’s utility, several
strategies can be implemented. First, incorporating self-attention lay-
ers or related explainability tools could identify sequence motifs that
drive activity, enhancing interpretability and guiding rational design.
Second, data-augmentation strategies and larger, more diverse train-
ing sets, including negative examples, should broaden model scope.
Employing data-augmentation techniques could enhance general-
izability across diverse peptide datasets. Third, integrating large lan-
guage models could capture complex sequence relationships, further
improving prediction accuracy and broadening APEX’s applicability.

In addition to these computational refinements, several experi-
mental considerations will guide future work. Although LB medium
was used in this study for initial peptide screening, future studies will
incorporate standardized media such as Mueller-Hinton broth, in
alignmentwith international guidelines for antimicrobial susceptibility
testing. The addition of compounds like Tween-80 to minimize pep-
tide adhesion to plastic surfaces will also be considered. Furthermore,
while topical application limits systemic exposure, the potential for ion
channel modulation, particularly of potassium channels, underscores
the need for electrophysiological assays to assess toxicity, especially if
systemic administration is envisioned. These steps will further
strengthen the development and evaluation of venom-derived pep-
tides as therapeutic candidates.

Fig. 4 | Cytotoxic and anti-infective activity of antimicrobials from venoms.
a Heatmap exhibiting the cytotoxic concentrations leading to 50% cell lysis (CC50)
in human embryonic kidney (HEK293T) cells, determined by interpolating dose-
response data using a nonlinear regression curve. All experiments were performed
in three independent replicates. b Schematic representation of the skin abscess
mouse model used to assess the anti-infective activity of VEPs (n = 6) against A.
baumannii ATCC 19606. c UniprotKB-7, conoserver-14, and arachnoserver-5 were
administered at their MIC in a single dose 2 h post-infection. Arachnoserver-5

inhibited the proliferation of the infection for up to 4 days after treatment com-
pared to the untreated control group, at levels comparable to the control anti-
biotics, polymyxin B and levofloxacin. To determine statistical significance in (c),
one-way ANOVA followed by Dunnett’s test was employed, and the respective p
values are presented for each group. All groups were compared with the untreated
control, and the violin plots display the median and upper and lower quartiles.
Panel (b) created in BioRender. De la Fuente-Nunez, C. (2025) https://BioRender.
com/ybengo5.
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Methods
Ethics statement
All animal experiments were conducted in accordance with the
guidelines established by the Institutional Animal Care and Use Com-
mittee (IACUC) at the University of Pennsylvania. All procedures were
reviewed and approved by University Laboratory Animal Resources
(ULAR) under protocol number 806763.

Encrypted peptides in venom proteomes
The venom protein sequences were collected from https://www.
snakebd.com/ (Snakes), https://arachnoserver.qfab.org/mainMenu.
html (Spider), https://www.conoserver.org/ (Carnivorous marine
cone snails), and https://venomzone.expasy.org/ (Venom Zone)
(accessed data: August 30th, 2023). About 654, 2206, 5494, and 7769
proteins were obtained from the above four databases, respectively.
Venom protein substrings ranging from 8 to 50 amino acids in the
sequences, comprising only canonical amino acids, were considered as
the venom-encrypted peptides (VEPs). The venom proteins were pre-
processed in three ways based on length: (1) no truncation for lengths
≤8; (2) truncation using a sliding window (range from 8 to maximum
sequence length) for lengths between 8 and 50; (3) truncation using a
sliding window (range from 8 to 50) for lengths >50. In total,
40,626,260VEPswere obtained fromvenomprotein sequences, which
were for further study.

APEX
APEX is a bacterial strain-specific antimicrobial activity predictor22, and
was trained on an in-house peptide dataset and publicly available
antimicrobial peptides (AMPs) from DBAASP48. Specifically, APEX is a
multiple-target tasks model that can predict minimum inhibitory
concentrations (MICs) values of peptides against 34 bacterial strains22.
Python 3.9 is required to set up APEX’s environment (https://gitlab.
com/machine-biology-group-public/apex/-/blob/main/README.md).
Next, install PyTorch version 1.11.0 with CUDA support by running the
following command:

pip install torch = =1.11.0 + cu113 torchvision = =0.12.0 +cu113
torchaudio = =0.11.0 --extra-index-url https://download.pytorch.org/
whl/cu113

After that, install the required dependency libraries using this
command:

pip install numpy = =1.23 scipy = =1.10 matplotlib = =3.9.4
pandas = =2.2.3 scikit-learn = =1.6.1 rdkit = =2024.3.2

This setup will ensure that all necessary packages are properly
installed for running APEX. To predict the sequence, prepare a text file
(for example: test_seqs.txt) in which each line contains one candidate
sequence. Then run the command:

python predict.py test_seqs.txt
The output will be a.csv file with MIC predictions organized by

sequence and strain. This file can be used to analyze the peptides
according to any requirements.

Venom-encrypted peptide selection
APEX was used to predict the antimicrobial activity for the 40,626,260
encrypted peptides derived from the venom proteome. Peptides with
less than eight amino acid residues often lack the necessary amphi-
pathicity and charge balance required for membrane interaction, thus
thosewere excluded from the selection process49,50.We used themean
MIC value against the eleven pathogen strains to rank and select the
encrypted peptides for chemical synthesis and experimental valida-
tion. When selecting the peptides, we also make sure they met the
following criteria:
1. The selected peptide should have ≤32μmol L−1 median MIC by

prediction.
2. The selected peptide should have <75% sequence similarity to all

in-house peptides and publicly available AMPs.

3. The selected peptides themselves should have <75% sequence
similarity.

After all filters, we performed an extra selection step where
synthesis feasibility and aggregation propensity were taken into
account.

Physicochemical property analysis
The twelve physicochemical properties of peptides, including nor-
malized hydrophobic moment, normalized hydrophobicity, net
charge, isoelectric point, penetration depth, tilt angle, disordered
conformation propensity, linear moment, propensity to aggregation
in vitro, angle subtended by the hydrophobic residues, amphiphilicity
index, and propensity to PPII coil, were obtained from the DBAASP
server48. Note that the Eisenberg and Weiss scale51 was chosen as the
hydrophobicity scale.

Phylogenetic tree visualization
To obtain the phylogenetic tree, the taxon IDs of organisms obtained
from four databases were uploaded to the NCBI Taxonomy Common
Tree (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.
cgi). The resulting tree file from NCBI was then visualized via iTOL
(https://itol.embl.de/).

Peptide sequence similarity
We applied the Needleman–Wunsch algorithm in the function “nee-
dleall” from the EMBOSS software package (version 6.6.0.0)52 to esti-
mate the similarity between our VEPwithmedianMIC≤32μmol L−1 and
AMPs in the DBAASP dataset. The parameters used are all default, and
the parameter ‘identity’ was sifted out for the graph.

AA frequencies calculation
The function “ProtParam.ProteinAnalysis” was imported from the
Biopython module “Bio.SeqUtils.ProtParam” (version 1.75)53, which
was used to count the total number of amino acids in a protein
sequence and calculate the percentage composition of each amino
acid in a protein sequence for two-level analysis, including amino acid
level and sequence level.

Amino acid level (Eq. 1):

AAi =

Pn
j = 1aaij

P20
i

Pn
j = 1aaij

ð1Þ

Where aaij is the number of amino acids i in sequence j and AAi is the
frequency of amino acid I. n is the total number of sequences and 20 is
the total number of amino acids.

Sequence level (Eq. 2):

AAi =

Pn
j = 1aaij

n
ð2Þ

Where aaij is the frequency of amino acid i in sequence j and AAi is the
frequency of amino acid i. n is the total number of sequences.

Peptide sequence space visualization
Given a peptide dataset, a similarity matrix containing the pairwise
peptide sequence similarity could be calculated by previous method
(peptide sequence similarity). Uniform manifold approximation and
projection (UMAP) was then used to transform the similarity matrix
into a two-dimensional space. We used this space as a proxy for the
peptide sequence space and visualized the peptides’ distribution/
spread/location in it.
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Ion channel modulation predictions
The ability of peptides modulating four ion channels, including
(sodium ion channel, potassium ion channel, calcium ion channel, and
nAChRs) were predicted using the deep learning model PrIMP with
multi-task learning by using the default parameter 14.

Peptide synthesis
All peptides used in the experiments were purchased from AAPPTec
and synthesized by solid-phase peptide synthesis using the Fmoc
strategy.

Bacterial strains and growth conditions
In this study, we used the following pathogenic bacterial strains: Aci-
netobacter baumannii ATCC 19606, Escherichia coli AIC221 [Escher-
ichia coli MG1655 phnE_2::FRT (control strain for AIC222)] and
Escherichia coli AIC222 [Escherichia coli MG1655 pmrA53 phnE_2::FRT
(polymyxin resistant; colistin-resistant strain)], Klebsiella pneumoniae
ATCC 13883, Pseudomonas aeruginosa PAO1, Pseudomonas aeruginosa
PA14, Staphylococcus aureus ATCC 12600, methicillin-resistant Sta-
phylococcus aureus ATCC BAA-1556, vancomycin-resistant Enter-
ococcus faecalisATCC 700802, and vancomycin-resistant Enterococcus
faecium ATCC 700221. Pseudomonas Isolation (Pseudomonas aerugi-
nosa strains) agar plates were exclusively used in the case of Pseudo-
monas species. All the other pathogens were grown in Luria-Bertani
(LB) broth and on LB agar. In all the experiments, bacteria were
inoculated from one isolated colony and grown overnight (16 h) in
liquid medium at 37 °C. In the following day, inoculums were diluted
1:100 in fresh media and incubated at 37 °C to mid-logarithmic phase.

Minimal inhibitory concentration assays
Broth microdilution assays were performed to determine the mini-
mum inhibitory concentration (MIC) values of each peptide. Peptides
were added to nontreated polystyrene microtiter 96-well plates and
twofold serially diluted in sterile water from 1 to 64μmol L−1. Bacterial
inoculum at 2 × 106 CFU mL−1 in LB medium was mixed 1:1 with the
peptide. The MIC was defined as the lowest concentration of peptide
able to completely inhibit bacterial growth after 24 h of incubation at
37 °C. All assays were done in three independent replicates.

Circular dichroism experiments
The circular dichroism experiments were conducted using a J1500
circular dichroism spectropolarimeter (Jasco) in the Biological Chem-
istry Resource Center (BCRC) at the University of Pennsylvania.
Experiments were performed at 25 °C, the spectra graphed are an
average of three accumulations obtained with a quartz cuvette with an
optical path length of 1.0mm, ranging from 260 to 190 nm at a rate of
50 nmmin−1 and a bandwidth of 0.5 nm. The concentration of all VEPs
tested was 50μmol L−1, and the measurements were performed in
water, mixture of water and trifluoroethanol (TFE) in a 3:2 ratio, mix-
ture of water and methanol (MeOH) in a 1:1 ratio, and sodium dodecyl
sulfate (SDS) in water at 10mmol L−1, with respective baselines recor-
ded prior to measurement. A Fourier transform filter was applied to
minimize background effects. Helical fraction values were calculated
using the single spectra analysis tool on the server BeStSel39. Ternary
plots were created in https://www.ternaryplot.com/ and subsequently
edited.

Outer membrane permeabilization assays
N-phenyl-1-napthylamine (NPN) uptake assay was used to evaluate the
ability of the peptides to permeabilize the bacterial outer membrane.
Inocula of P. aeruginosa PAO1 were grown to an OD at 600nm of
0.4mL−1, centrifuged (9391 × g at 4 °C for 10min), washed, and resus-
pended in 5mmol L−1 HEPES buffer (pH 7.4) containing 5mmol L−1

glucose. The bacterial suspension was added to a white 96-well plate
(100-μL per well) together with 4μL of NPN at 0.5mmol L−1.

Consequently, peptides diluted in water were added at their MIC to
each well, and the fluorescence was measured at λex = 350nm and
λem = 420 nm over time for 45min. The relative fluorescence was cal-
culated using the untreated control (buffer + bacteria + fluorescent
dye) and polymyxin B (positive control) as baselines, and the following
equation was applied to reflect % of difference between the baselines
and the sample (Eq. 3):

%dif f erence =
100*ð f luorescencesample � f luorescenceuntreated controlÞ

f luorescenceuntreated control
ð3Þ

Cytoplasmic membrane depolarization assays
The cytoplasmicmembrane depolarization assaywas performed using
themembrane potential-sensitive dye 3,3’-dipropylthiadicarbocyanine
iodide (DiSC3-5). P. aeruginosa PAO1 and S. aureus ATCC 12600 in the
mid-logarithmic phase were washed and resuspended at 0.05 ODmL−1

(optical value at 600nm) in HEPES buffer (pH 7.2) containing
20mmol L−1 glucose and 0.1mol L−1 KCl. DiSC3-5 at 20 μmol L−1 was
added to the bacterial suspension (100-μL per well) for 15min to sta-
bilize the fluorescence which indicates the incorporation of the dye
into the bacterial membrane, and then the peptides were mixed 1:1
with the bacteria to a final concentration corresponding to their MIC
values. Membrane depolarization was then followed by reading
changes in the fluorescence (λex = 622 nm, λem = 670 nm) over time for
60min. The relative fluorescence was calculated using the untreated
control (buffer + bacteria + fluorescent dye) and polymyxin B (positive
control) as baselines and Eq. 3 was applied to reflect % of difference
between the baselines and the sample.

Eukaryotic cell culture
HEK293T cells were obtained from the American Type Culture Col-
lection (CRL-3216). The cells were cultured in high-glucose Dulbecco’s
modified Eagle’s medium supplemented with 1% penicillin and strep-
tomycin (antibiotics) and 10% fetal bovine serum and grown at 37 °C in
a humidified atmosphere containing 5% CO2.

Cytotoxicity assays
One day before the experiment, an aliquot of 100μL of the cells at
50,000 cells per mL was seeded into each well of the cell-treated 96-
well plates used in the experiment (that is, 5000 cells per well). The
attached HEK293T cells were then exposed to increasing concentra-
tions of the peptides (8–128μmol L−1) for 24 h. After the incubation
period, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide tetrazolium reduction assay (MTT assay). TheMTT
reagent was dissolved at 0.5mgmL−1 in medium without phenol red
and was used to replace cell culture supernatants containing the
peptides (100μL per well), and the samples were incubated for 4 h at
37 °C in a humidified atmosphere containing 5% CO2 yielding the
insoluble formazan salt. The resulting salts were then resuspended in
hydrochloric acid (0.04mol L−1) in anhydrous isopropanol and quan-
tified by spectrophotometric measurements of absorbance at 570 nm.
All assays were done as three biological replicates.

Hemolysis assays
To assess the release of hemoglobin from human erythrocytes upon
treatment of each of the peptides, human red blood cells (RBCs) were
obtained from ZenBio (bloodtype A-) heparin anti-coagulated blood.
RBCs were washed with PBS (pH 7.4) three times by centrifugation at
800×g for 10min. Aliquots of 250-fold diluted cells (75μL) weremixed
with peptide solution (1–128μmol L−1; 75μL), and the mixture was
incubated for 1 h at room temperature. After the incubation, the plate
was centrifuged at 1300×g for 10min to precipitate cells and debris,
and an aliquot of 100μL of supernatant fromeachwell was transferred
to a new flat-bottom 96-well plate for absorbance reading (405 nm)
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using an automatic plate reader. The percentage of hemolysis was
definedby comparisonwith negative control (samples containing PBS)
and positive control [samples containing 1% (v/v) SDS in PBS solution]
(Eq. 4).

Hemolysis ð%Þ= 100× ðAbsorbancepeptide � Absorbancenegative controlÞ
ðAbsorbancepositive control � Absorbancenegative controlÞ

ð4Þ

Skin abscess infection mouse model
The back of 6-week-old female CD-1mice (Charles River stock number:
18679700-022) under anesthesia (isoflurane) were shaved and injured
with a superficial linear skin abrasionmadewith a needle. An aliquot of
A. baumannii ATCC 19606 (9.6 × 105 CFU mL−1; 20μL) previously
grown in LB medium until OD (optical value at 600nm) 0.5 and then
washed twice with sterile PBS (pH 7.4, 9,391×g for 2min) was added to
the scratched area. Peptides diluted in sterile water at MIC value were
administered to the wound area 2 h after the infection. Two- and four-
days post-infection animalswere euthanized, and the scarified skinwas
excised, homogenized using a bead beater (25Hz for 20min), tenfold
serially diluted, and plated on McConkey agar plates for CFU quanti-
fication. The experiments were performed using six mice per group
(n = 6). Mice were single-housed to avoid cross-contamination and
maintained under a 12-h light/dark cycle at 22 °C with controlled
humidity at 50%. The skin abscess infection mouse model was revised
and approved by the University Laboratory Animal Resources (ULAR)
from the University of Pennsylvania (Protocol 806763).

Quantification and statistical analysis
Reproducibility of the experimental assays. Unless otherwise sta-
ted, all assays were performed in three independent biological
replicates as indicated in each figure legend and experimental
models and methods details sections. The values obtained for
cytotoxic activity were estimated by nonlinear regression based on
the screen of peptides in a gradient of concentrations and represent
the cytotoxic concentration values needed to lyse and kill 50% of the
cells present in the experiment. In the skin abscess mousemodel, we
used six mice per group following established protocols approved
by the University Laboratory of Animal Resources (ULAR) of the
University of Pennsylvania.

Statistical tests. In themouse experiments, all the rawdata underwent
log10 transformation and the statistical significance was determined
using one-way ANOVA followed by Dunnett’s test. All the P values are
shown for each of the groups, all groups were compared to the
untreated control group. CC50 and HC50 values were derived from
dose-response curves obtained via nonlinear regression analysis,
representing the concentrations required to kill 50% of the cells in the
experiment.

Statistical analysis
All calculations and statistical analyses of the experimental data were
conducted using GraphPad Prism v.10.0.2. Statistical significance
between different groups was calculated using the tests indicated in
each figure legend. No statistical methods were used to predetermine
sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The main data generated in this study are available within the paper.
The datasets Supplementary Data 1, 2 have been deposited in

Mendeley Data under https://doi.org/10.17632/9m4g52grhj.1. All data
generated in this study, are available from the corresponding author
on reasonable request. Source data are provided as a Source Data file.
Source data are provided with this paper.

Code availability
APEX is available at GitLab: https://gitlab.com/machine-biology-group-
public/apex.
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