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Metabolites in plasma form biosignatures of a range of common complex
human diseases. Discovering variants with pleiotropic effects across metabo-
lites can reveal underlying biological mechanisms. We therefore performed
uni- and multivariate genome-wide association studies (GWAS) on 249 circu-
lating metabolic markers across 328,006 UK Biobank and Estonian Biobank
participants. We investigated rare variation through whole exome sequencing
gene burden tests, analysed the role of body mass index through Mendelian
randomization, andperformedgenome-wide interaction analyseswith sex.We
discovered 15,585 loci summedover the univariateGWAS,withhigh pleiotropy
across markers, linked to a wide range of disorders. Findings from common
and rare variant gene tests converged on lipid homeostasis pathways. 31 loci
interacted with sex, mapped to genes involved in cholesterol processing. The
findings offer insights into the genetic architecture of circulating metabolites,
revealing pleiotropic loci, highlighting the role of rare variation, and unco-
vering sex-specific molecular mechanisms of lipid metabolism.

Lipoproteins, fatty acids, amino acids and ketone bodies are circulat-
ing markers of metabolic processes essential for human health. Reli-
able quantification of absolute concentrations of these metabolites
can now be achieved through high-throughput nuclear magnetic
resonance (NMR) spectroscopy1. Metabolomics data in large popula-
tion samples such as the UK Biobank (UKB), coupled to national health
records, has allowed researchers to identify numerous associations
between patterns of metabolite concentrations and a wide range of
common medical conditions2. These metabolites hold potential for
precision medicine as they have been shown to predict long term
outcomes3, and could aid in combatting key public health issues,
including the adverse effects of the worldwide obesity epidemic4.

Charting the pleiotropic genetic architecture of metabolic bio-
markers, through the effects of common and rare variants, is key to
understanding interindividual differences in metabolic processes.
Genome-wide association studies (GWAS) of metabolomics data have
confirmed there is a substantial genetic component to these metabo-
lite concentrations and have identified hundreds of genetic variants
associated with individual metabolites5–7. The sets of metabolites
included inmetabolomics panels are strongly genetically correlated to
each other8; joint analysis through a multivariate approach may
improve discovery of variants with widespread effects by leveraging
shared genetic signal across the metabolites9. Additionally, char-
acterizing the influence of rare variants on metabolites through whole
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exome sequencing (WES) data complements previous GWAS efforts,
as rare variants are likely to beparticularly impactful andpoint towards
promising drug targets10,11.

Obesity and sex are likely important moderators of the relation
between an individual’s genetic make-up and metabolic health. As
obesity and its downstream medical conditions co-occur with changes
in metabolite concentrations12; disentangling the causal role of obesity
in determining these levels can aid in devising treatment strategies.
Biological sex is a further important determinant of metabolic activity13,
yet there is little knowledge about sex-dependent genetic influences.
Males and females differ substantially in basal metabolic activity, as well
as in their propensity to develop prominent metabolic conditions, such
as obesity, coronary artery disease (CAD) and type 2 diabetes (T2D)14.
Previous studies have shown that there is a genetic basis for sex differ-
ences in metabolism, beyond the impact of gonadal hormones15.

Here, we take advantage of the latest generation of targeted
metabolomics technology available in the UKB and Estonian Biobank
(EstBB), to perform a large GWAS of circulating metabolic traits, lever-
aging NMR spectroscopy data from over 300,000 individuals. We
expand on previous work on this data by employing a multivariate
approach to boost discovery of variants with widespread shared effects
across metabolites, and perform quantification of the global genetic
architecture. We further incorporate WES data to increase knowledge
about the impact of both common and rare variants. Lastly, we identify
widespread sex-specific effects and estimate the influence of obesity
(indexed by bodymass index, BMI) to provide insight into the influence
of individual, clinically relevant factors.

Results
We conducted GWAS of 249 circulating metabolites from the Night-
ingale NMR metabolomic platform, charting their shared and specific

genetic architectures. This panel encompasses 228 lipids, lipoproteins
and fatty acids, and 21 non-lipids, including amino acids, ketone bod-
ies, fluid balance, glycolysis- and inflammation-related metabolites.
See Supplementary Data 1 for an overview of these circulating meta-
bolites, their categories, and sample sizes. For the main analyses we
used data fromUKB, including 207,836White British participants, with
a mean age of 57.4 years (standard deviation (SD) 8.0 years), 53.7%
female. Additionally, there were data on 27,509 non-White British UKB
participants, with a mean age of 54.5 years (SD = 8.4 years), 54.3%
female. From EstBB, we included 92,661 unrelated White European
participants, with a mean age of 50.9 years (SD = 16.2 years), 65.7%
female, which we used to test for generalization of the discovered loci
across different populations. For each of these subsets, identical ana-
lyses were carried out, covarying for age, sex, and the first twenty
geneticprincipal components to control for population stratification16.

Univariate GWAS
We estimated the effective number of independent traits in our ana-
lyses to be 96, based on matrix spectral decomposition17 of the phe-
notypic correlation between all 249 metabolite concentrations. We
therefore set the univariate GWAS significance threshold at
α = 5 × 10−8/96 = 5.2 × 10−10. The GWAS of all individual 249metabolites
revealed amedian of 63 loci discovered permetabolite (range 8 to 98),
for a total of 15,585 loci when summing over the individual univariate
GWAS, as shown in Fig. 1a. Accounting for locus boundary overlap
across the univariate GWAS, there were 465 unique genomic regions
involved, suggesting high numbers of shared genetic variants across
the metabolites. Of these, 166 regions were novel, in that they did not
overlap with the 276 regions identified by the previously largest GWAS
of 233 metabolites of the Nightingale metabolomics panel5. The most
significant novel loci were rs4760682, mapped to the PFKM gene, and

Fig. 1 | Discovered loci for individual metabolites. a Scatterplot displaying the
effect sizes (y-axis) of all 15,585 locus lead variants identified through univariate
genome-wide association study (GWAS) of 249metabolites, ordered by theirminor
allele frequency (x-axis) andcolour codedbymetabolite category. The two lociwith
the strongest effects on individual GWAS are demarcated by vertical dashed lines
and annotated. On the right side of the figure, the local genomic regions of these
two loci are depicted, with b showing rs7412 mapped to APOE and c showing

rs1047891mapped toCPRS1, both ofwhichwere also the onlyfine-mappedvariants
in these regions. The chromosomal location is on the x-axis and -log10(p-value) on
the y-axis, with colours reflecting the linkage disequilibrium between the lead and
surrounding variants, as indicated in the legend. Thebottompanel shows the genes
located in these regions. The vertical dashed lines highlight the position of the lead
variants in their respective genes.
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rs7584089, mapped to PDK1. Both showed strongest association with
pyruvate levels (B = −0.11, p = 2.6 × 10−187; B = −0.09, p = 8.9 × 10−117).
This befits the central role that themappedgenesplay in glycolysis and
fatty acidmetabolism,with their overexpressionpreviously coupled to
T2D18, cancer19, and Alzheimer’s disease20. Supplementary Data 1 lists
the number of significant loci and lead SNPs for each of the 249 indi-
vidualmetabolites. SupplementaryDatas 2 and 3 list information on all
discovered regions (permetabolite and aggregated), andwhether they
are novel. All Manhattan plots are provided in Supplementary Data 19.

We applied a combination of PolyFun and FINEMAP, Bayesian fine-
mapping procedures bundled in the SAFFARI pipeline21, to each of the
univariate GWAS summary statistics, to obtain a set of high-confidence
causal variants and genes. Out of the original 15,585 loci, we retained
2629 variants that had a posterior probability >0.95 of being part of a
credible set. We then mapped these variants to 2498 protein-coding
genes using OpenTargets22. The two fine-mapped loci with the largest
effect sizes (rs7412, APOE, and rs1047891, CSP1) had strongly divergent
patterns of associations, being highly pleiotropic (influencing nearly all
lipid measures) versus one individual association (with glycine). APOE is
well-known for playing a central role in lipid homeostasis, and variation
in its gene has been associatedwith a wide variety of traits23. CPS1 on the
other hand is an enzyme involved in a specific pathway degrading
choline to urea, with variation in its gene linked to blood pressure and
CAD through its strong effects on glycine levels24. Figure 1b and c
illustrates themapping of these genomic regions. Supplementary Data 4
lists the fine-mapping results in more details, including all mapped
genes and their coupling to individual metabolites.

We checked cross-population generalization of the effects of fine-
mapped variants in the White EstBB cohort and in the non-White British
UKB subset. For the EstBB replication set (n =92,645 individuals), 99.0%
of the 2,019 available variants showed the same direction of effect, and
91.3% of these effects were nominally significant. In the additional UKB
subset (n= 27,509 individuals), we found that 95.9% of all 2,207 available
fine-mapped variants showed the same direction of effects, and 75.3%
were nominally significant. Thus, our results suggest cross-population
generalization of the discovered genetic associations. Supplementary
Fig. 1 shows the relationship between the number of discovered loci in
UKB and replicated loci in EstBB, per metabolite.

Multivariate GWAS
Genetic variants are likely to have pleiotropic effects across the
metabolites, given these metabolites are components of the same
biological system, as also indicated by the univariate GWAS findings.
We therefore jointly analysed all measures with the Multivariate
Omnibus Statistical Test (MOSTest)9, which prioritizes the identifica-
tion of pleiotropic variants by leveraging shared genetic signal across
the univariate measures, yielding a multivariate association with each
genetic variant.

For the primary sample, MOSTest revealed 12,216 independent
significant SNPs and 2690 lead SNPs across all metabolites, for a total
of 534 loci covering 8.3% of the genome, see Fig. 2a. The lead SNPs of
96 of these loci did not showgenome-wide significant effects on any of
the individual metabolites, i.e. they were detected only through
MOSTest due to their distributed signal across the metabolites.

Fig. 2 | Discovery of pleiotropic variants and their relationship to disease.
aManhattan plot of the output of the multivariate genome-wide association study
(GWAS) on all 249 metabolites, with the observed -log10(p-value) for each variant
shown on the y-axis. The x-axis shows the relative genomic location, grouped by
chromosome, and the red dashed line indicates the genome-wide significance
threshold of 5 × 10−8. The colour coding represents the number of genome-wide
significant associations of each variant with metabolites at the univariate level,
ranging from 0 (in black) to 214 (in red), illustrating the extent of pleiotropy. Loci

with p < 1 × 10−300 have been annotated with mapped gene names. b heatmap
showing 30 multivariate GWAS-identified loci with the highest number of
Bonferroni-corrected significant associations with diseases, based on published
GWAS. On the x-axis are the locus lead variants with mapped genes, and on the
y-axis the categories of diseases as compiled by OpenTargets. The cell colouring
indicates the -log10(p-value) of the variant-disease association, as indicated by the
legend on the right.
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Supplementary Fig. 2 summarizes the significance of the locus lead
SNPs across all metabolites, illustrating the pervasive pleiotropy of
most discovered variants. Indeed, 48 of these SNPs showed a genome-
wide significant association with more than 100 metabolites, as sum-
marized in Supplementary Data 5. This table also lists the comparison
to the previous GWAS, showing that 274 of these 276 regions overlap
with the MOSTest-discovered loci, while MOSTest uncovered another
241 loci not reported in this previous GWAS.

We performed phenome-wide association studies (pheWAS) of
each of the 534 loci identified through MOSTest, querying GWAS
Catalog and FinnGenGWAS summary statistics through the ‘otargen’R
package, leveraging theOpenTargets ‘diseases’ categorization in order
to determine clinical relevance25. Therewere a total of 1253 Bonferroni-
corrected significant associations, with 341 unique traits across 372
studies. The results, fully listed in Supplementary Data 6, show that
many of the discovered variants are associated with cardiovascular
diseases, as expected, as well as commonly comorbid conditions.
Specific variants also show high pleiotropy across diseases, as illu-
strated in Fig. 2b. For instance, the pleiotropic variant rs3184504 was
mapped to SH2B3 on chromosome 12, which is a key regulator of
signalling pathways involved in inflammatory responses26. Among the

ten most pleiotropic variants was also a novel locus at chromosome 7
mapped to IRF5, which encodes a transcription factor that induces
proinflammatory cytokines, and has been named a potential ther-
apeutic target for a wide range of autoimmune diseases27. These
examples reflect the well-known coupling of low-grade inflammation
to metabolic dysregulation, contributing to patterns of comorbidity28.

Gene-based analyses
Next, we ran gene-based analyses to identify themost significant genes
and their enrichment among specific biological pathways. Aggregating
across all common variants within 17,849 protein-coding genes, we
found 1921 significant genes based on the 249 individual univariate
GWAS summary statistics, and 2590 genes from the multivariate
GWAS. Tests of tissue-specificity, covarying for mean expression
across all tissues, revealed differential gene expression in the liver for
nearly all metabolites (243 out of 249), in line with its central role in
metabolism of both lipids and amino acids. Differential expression in
other tissues was more specific to a metabolite category, as can be
seen for the spleen, summarized in Fig. 3a. Competitive gene-set
analysis for each individual metabolite GWAS, testing for 7522 Gene
Ontology (GO) biological processes, primarily uncovered associations

Fig. 3 | Functional annotation of gene-based tests. a Stacked bar plot summar-
izing the output of tests of tissue-specific gene expression, with the top 15 tissues
on the x-axis. b Competitive gene-set analysis of Gene Ontology biological pro-
cesses, with top 15 pathways listed on the x-axis. For both plots, the number of

significant associations with metabolites is shown on the y-axis and the colours
indicate metabolite categories. c Venn diagram of the number of genes identified
through gene-based tests of the multivariate GWAS, univariate GWAS and rare
variant WES data.
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with lipoprotein particle modification, organization, and homeostasis,
see Fig. 3b. Supplementary Data 7 lists all identified genes, and Table 8
contains the complete results of the gene-set analyses for each indi-
vidual metabolite.

Rare variant data
We ran SKAT-O29 gene burden tests on the UKB WES data
(N = 200,330), restricted to intragenic variants with MAF <0.005, to
characterize the impact of rare exonic variation on metabolites. There
were 338 protein-coding genes with a significant burden, see Supple-
mentary Data 9. Figure 4 lists the top genes identified, showcasing the

widespread impact of apolipoprotein genes, well-known for their
association with obesity and Alzheimer’s disease (AD), on the lipid
metabolites. Many of the additional identified highly pleiotropic genes
with impactful rare variants also play roles inmetabolic conditions and
healthy ageing through interrelated pathways30–32, directly or indir-
ectly. For instance, ZPR1 codes for a zinc finger protein that regulates
axonal growth, which has been coupled to neuronal cell death fol-
lowing a high-fat diet33. As impactful rare variation signals potential for
manipulation of these pathways, we queried the drug-gene interaction
database (DGIdb v5.0.6)34 and found significant enrichment for targets
of nine drugs. These include three lipid-lowering agents, three

Fig. 4 | Genes associatedwithmetabolites based on rare variants. a Stacked bar
plot showing the number of significant associations (x-axis) with genes identified
through whole-exome sequencing-based gene burden tests (y-axis), coloured by
metabolite category. b Grouped scatterplot, showing the -log10(p-value) of

Bonferroni-corrected significant genes on the y-axis, grouped by category on the
x-axis, with the dot colours also reflecting category. The top three most significant
genes per category are annotated.

Article https://doi.org/10.1038/s41467-025-60058-z

Nature Communications |         (2025) 16:4961 5

www.nature.com/naturecommunications


antibacterial drugs, a drug used to treat leukemia, an anticonvulsant,
and a platelet aggregation inhibitor (Supplementary Data 10).

See Fig. 3c for overlapping and unique components of the iden-
tified sets of genes through the three different gene-level analyses,
capturing genes with effects driven by rare, common, and/or pleio-
tropic variants. The unique and shared sets of genes were coupled to
the GWAS Catalog through hypergeometric tests, with results sum-
marized in Supplementary Data 11.

Global genetic architecture
Wedetermined the SNP-based heritability, h2, as well as the polygenicity
and average magnitude of non-null effects (‘discoverability’)35,36 for each
metabolite. Overall, the output showed that the metabolites vary widely
in their global genetic architecture; h2 ranged from 02 (acetoacetate,
standard error (SE) =0.002) to 0.21 (triglycerides to total lipids in very
large HDL, SE =0.001), all p-values < 1.1 × 10−21. Polygenicity estimates
spread across two orders of magnitude, from oligogenic (phenylalanine
with an estimated 17 causal variants) to moderately polygenic (creati-
nine with an estimated 1529 causal variants). Similarly, discoverability
ranged from 1.2 × 10−4 (lactate) to 2.4 × 10−3 (omega-3%). Supplementary
Fig.. 3 depicts the estimated proportion of h2 explained as a function of
sample size, for 37 metabolites validated for clinical use1. This showed
that over 70%of h2 for omega-3 andomega-6 fatty acid concentrations is
explained by the currently discovered variants. All estimates, for each of
the 249 metabolites, are listed in Supplementary Data 1.

Analyses of BMI and sex
Given BMI and sex have been associated with substantial inter-
individual variation in metabolic activity12,13, we sought to determine
the phenotypic, causal and genetic relation of these individual deter-
minants with the metabolites. First, we conducted linear regression
analyses, regressing each metabolite onto BMI, sex, BMI*sex, and age.
These models produced highly significant associations with BMI, sex,
and their interaction across nearly all metabolites, as summarized in
Supplementary Data 12. This underscores the importance of sex and
BMI as individual-level influences when investigating the biological
underpinnings of metabolic processes. Notably, there was a very high
correlation between the coefficients of BMI and sex (r =0.87,
p = 4.1 × 10−79), indicating that these factors share mechanisms that in
turn impact metabolites.

As BMI is a modifiable factor, we next sought to estimate the
causal nature of the identified relationships between BMI and meta-
bolites. We ran bidirectional two-sample Mendelian randomization
(MR), combining inverse variance weighted (IVW) MR with the
weighted median and MR Egger approach37. There were no instances
where the metabolites had a significant causal effect on BMI con-
sistently across the different MR methods. BMI had a multiple
comparisons-corrected significant (p <0.05/96) causal effect on 79

metabolites for the IVW and weighted median approach. However,
when further thresholded by the MR Egger approach, sensitive to
horizontal pleiotropy, the causal effect of BMI on only six metabolites
remained: albumin, phenylalanine, average diameter for LDL particles,
cholesterol % in small LDL, tyrosine, and valine, see Fig. 5. The full
results, in both directions, are provided in Supplementary Datas 13–15.

Sex-specific genetic influences
Our identification of significant interactions between BMI and sex on
metabolite concentrations underlines the need for sex-specific
research into metabolic health. We therefore first ran univariate
GWAS within both sexes separately, to compare the overall genetic
architecture between men (n = 96,281) and women (n = 111,560).
Through paired t-tests applied to sex-specific LDSC heritability esti-
mates, we found that the mean h2 was significantly higher for women
than for men (h2 = 0.148 vs. .132, t = 12.8, p < 1 × 10−16). Men’s h2 was still
higher than that of the overall GWAS (h2 = 0.132 vs. 0.128, t = 7.5,
p = 9 × 10−13), suggesting heritability estimates may be lowered by
combining two subsamples (men and women) with differing genetic
influences.We further calculated genetic correlations between the two
sets of sex-specific GWAS and found that these ranged between 0.85
and 1. While these correlations were high, the majority differed sig-
nificantly from 1, as reported in Supplementary Data 16.

Given the identification of sex-specific genetic components
through LDSC, we ran multivariate GWAS with an interaction term
between sex and each genetic variant, to discover individual variants
with sex-specific effects. We found 31 loci with a genome-wide sig-
nificant interaction effect. Of these, 8 loci had no whole-genome sig-
nificant interaction effect on any individual metabolite. Next, we
mapped the loci to 29 genes through OpenTargets, see Fig. 6a. Func-
tional annotation of the 29 mapped genes revealed tissue-specific
upregulation in kidney, liver, and heart tissues based on GTEx v8 data,
and enrichment for GO pathways involved primarily in cholesterol
regulation. Coupling these 29 genes to the GWAS Catalog showed
enrichment among gene lists reported for metabolic syndrome, CAD,
T2D, and steatotic liver disease, which are well-known for having sex
differences in prevalence and etiology14.

Follow-up in the univariate summary statistics showed that the
interaction effects were often present for numerous metabolites, with
one interaction effect (rs1065853, APOE) being genome-wide sig-
nificant across 110 metabolites. Figure 6b provides an example of
univariate cross-over interaction between sex and the rs1065853
genetic variant on lipid levels, with highly significant effects in females
(B = 0.145, p < 1 x 10-16), but not males (B = −0.002, p =0.84). Figure 6c
shows another significant sex*gene variant interaction effect of
rs964184 (ZPR1), which also influences cholesterol levels only in
females (B =0.110, p = 1 x 10-16) and not males (B =0.008, p =0.21). In
total, there were 496 univariate genome-wide significant interactions.
In EstBB, the concordance rate was 99.3%, and 113 out of 158 (71.5%) of
the available lead variants was nominally significant. In the non-White
UKB subset, the concordance rate was 90.7%, with 268 out of the 496
lead variants being nominally significant (54.0%). The lists of all mul-
tivariate and univariate loci with significant interactions are provided
in Supplementary Data 17 and 18.

Discussion
Here, we reported results from a large-scale GWAS of circulating
metabolite concentrations. This led to the identification of the largest
number of discovered genetic determinants across these metabolites
to date, mapped to genes with roles in lipid homeostasis. Using a
multivariate approach, our findings emphasized the pervasive pleio-
tropy across metabolic measures that underscore and expand the
findings from other GWAS using this data7. We further went beyond
previous studies by integrating WES data in our analyses to uncover a
sizeable role for rare variants.We identified the causal effect of BMI on

Fig. 5 | Causal influences of body mass index (BMI) on the metabolites. Plot
listing coefficients from two-sample Mendelian randomization (MR) analyses on
the x-axis, and the6differentmetabolites that showeda significant influenceofBMI
on the y-axis. The dots and lines represent the point estimates with their standard
error around the mean, colour-coded by the MR method used.
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specific amino acids, indicating obesity as a primary target for
improving metabolic health. Last, we discovered sex-specific genetic
effects on metabolite concentrations, which may explain the sub-
stantial sex differences in metabolic health.

Locus discovery was high, in line with the estimated genetic
architecture. The complementary univariate and multivariate GWAS
approaches employed in this study particularly emphasized the per-
vasive pleiotropy across the set of includedmetabolites, in accordance
with previous findings8. Joint analyses of these interrelated measures
are essential to boost discovery of variants with small, yet distributed
effects. The clinical relevance of this discovery is underscored by the
results of the pheWAS analyses, showing the association of many of
these pleiotropic variants with medical conditions across domains.
This likely contributes to the extensive comorbidity across complex
medical conditions with a cardiometabolic component38,39, which is an
important determinant of clinical outcomes39,40.

The gene-based analyses illustrated the relative contributions of
common and rare variation, with extensive pleiotropy, to determining
metabolite levels. TheWES gene burden tests, aggregating across rare
variants, identified335 geneswithwidespreadassociations acrossboth
lipid and non-lipidmetabolite categories. Among themost pleiotropic
were apolipoprotein genes, well-known for their involvement in dia-
betes andCADaswell as in brain disorders41. Particularly notable in this
context is the identification of BACE1 on chromosome 11 among the
most influenced genes, the protein product of which is central to
the generation of amyloid-B peptides in neurons and a key enzyme in
the pathophysiology of AD42. Overall, this rare variant data confirms
the presence of impactful rare variants with high potential for drugg-
ability, as confirmed by the coupling to DGIdb. The generated data on

the specificity of these genetic effects on metabolites is important
information for research into comorbidities and for predicting utility
as a biomarker and drug target.

The findings of the gene-by-sex interaction analyses underscore
the substantial differences between males and females in
metabolism13. This is likely to be a strong explanatory factor of sex
differences in the prevalence of a wide array of cardiometabolic
conditions14, advocating for the investigation of sex-specific mechan-
isms. The notoriously low power of interaction effects43 is counter-
acted by our multivariate approach. MOSTest is insensitive to
differences in the directions of these interactions across the univariate
measures, which would hamper other approaches to aggregation
across measures. The identification of the widespread sex-dependent
effects of rs1065853 showcases thepotential of these interaction terms
to identify variants that explain interindividual variation beyond their
main effects. This SNP, located in a known enhancer of APOE, is well
known for its association with numerous metabolic and clinical out-
comes, including AD andCAD44,45. The identification of such non-linear
effects represent a new frontier in genomics, which needs to be
explored in order to further resolve interindividual heterogeneity. Our
findings particularly suggest value of additional sex-specific research
into obesity and metabolic health.

TheMRanalyses provided evidence for the causal effect of BMI, as
a proxy of obesity, on circulating metabolic biomarkers, emphasizing
the importance of obesity as a primary target for treatment of cardi-
ometabolic conditions. In accordancewith previous findings in smaller
samples, we show that BMI has a significant causal effect on levels of
several metabolites46, primarily amino acids, while there was no evi-
dence of effects of any metabolites on BMI. Obesity therefore appears

Fig. 6 | Genome-wide interactions between sex and genetic variants.
a Manhattan plot of the multivariate genome-wide association study with an
interaction termwith sex on all 249metabolites, with the observed −log10(p-value)
of each interaction shown on the y-axis. The x-axis shows the relative genomic
location, grouped by chromosome, and the red dashed line indicates the genome-
wide significance threshold of 5 × 10−8. The y-axis is clipped at -log10(p)=150. Loci
have been annotated with mapped gene names. b Illustration of an identified

significant cross-over interaction between sex and rs1065853 on chromosome 19,
showing opposite effects on phospholipid concentrations (y-axis) in men and
women (x-axis). c An interaction effect of rs964184 on chromosome 11, illustrating
effects on very low density lipoprotein (VLDL) cholesterol concentrations only in
women. In both plots, the line colors indicate genotypes, and error bars represent
standard error of the mean. Male n = 96 281, female n = 111 560.
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to drive changes in these amino acids, which may then cause
complications47. Branched chain amino acids, including valine, have
been robustly associatedwith an increased risk of T2D48, whichmay be
driven by higher BMI and insulin resistance49. The importance of tar-
geting BMI is further underscored by our finding that higher BMI
lowers albumin levels, which is a key marker of liver function and
general nutritional status, as well as a predictor of a wide range of
cardiovascular outcomes50. Notably, the use of MR methods that
safeguard against horizontal pleiotropy substantially reduced the
number of causal relationships identified with lipid-related measures.
This suggests a sizeable role for pleiotropic effects complicating the
relationship between genetically mediated obesity and these mea-
sures, in line with our GWAS findings. It speaks, for instance, to the
complex role of theGLP-1 secretory system, currently hailed as a highly
promising therapeutic target for treatment of obesity, with divergent
findings across both human and animal studies51. A better under-
standing of the role of genetic susceptibility and sources of inter-
individual variation is needed to optimize individual outcomes.

Strengths of this study are the large sample size and the use of
high quality, accurately measured metabolomics data. We further
complemented the analysis of common variants influencing individual
metabolites with a multivariate approach for greater discovery of
pleiotropic variants and inclusion of WES data to uncover the role of
rare variants. While this allowed for greater insight into the overall
genetic architecture of metabolism, focused follow-up studies are
needed to generate a deeper understanding of the specific determi-
nants of subsets of metabolites. Genetic discovery was based on a
single large cohort, with a relatively homogeneous population of
White British individuals. We included two replication samples with
varying genetic ancestry, enabling estimation of generalization of the
findings. However, given known ethnic differences in the association
between obesity and metabolic conditions such as T2D52, the role of
ethnicity should be investigated in further detail. It should also be
noted that the data collection was not done under fasting conditions,
which has been shown to obscure associations between genetic var-
iation and metabolites5. Ideally, future studies include gene-by-time
interaction analyses to further increase our understanding of the
genetic regulation of metabolite concentrations.

To conclude,metabolic health is central to themost prevalent and
impactful medical conditions in our society, indicating a strong need
for new therapeutic targets. Knowledge about causal individual-level
determinants is central to develop effective strategies that optimally
treat the individual. Here, we showed that accurate NMR-derived cir-
culating metabolite concentrations share genetic influences that can
be leveraged to boost discovery of pleiotropic variants of high rele-
vance for cardiometabolic diseases. The summary statistics made
freely available can be used by follow-up studies to further enhance
our understanding of metabolism and related diseases, identify
potential drug targets for these diseases, and contribute to the
development ofmore effective interventions by identifying individual-
level determinants.

Methods
The conducted research complies with all relevant ethical regulations.
It has been approved by the UK’s National Health Service National
Research Ethics Service (ref. 11/NW/0382) and the Estonian Council on
Bioethics and Human Research (24 March 2020, nr 1.1-12/624). The
study design and conduct complied with all relevant regulations
regarding the use of human study participants and was conducted in
accordance to the criteria set by the Declaration of Helsinki.

Participants
For the UKB, we obtained data under accession number 27412. The
composition, set-up, and data gathering protocols of the UKB have
been extensively described elsewhere53. It has obtained informed

consent from its participants. For the primary analyses, we selected
unrelated White Europeans (KING cut-off 0.05)54 that had the Night-
ingale metabolomics data, as well as genetic and complete covariate
data available (N = 207,836, mean age 57.4 years (SD = 8.0), 53.7 %
female). BMI was taken from UKB field 21001, with a mean of 27.4
(SD = 4.8). For the generalization analyses, we made use of data from
non-White EuropeanUKBparticipants (N = 27,509,mean age 54.5 years
(SD = 8.4), 54.3 % female). Ethnicitywas based on self-report confirmed
by genetics (UKB field 22006).

EstBB is a volunteer-based biobank composed of ~213,000 indi-
viduals with data available on genotype, phenotype and electronic
health records55. All EstBB participants have signed an informed con-
sent form. All analyses were conducted using data according to release
S60 from EstBB. Specifically, individuals were selected under condi-
tions identical to those used for the UKB data for filtering and quality
control, resulting in 92,661 unrelated White European participants,
with a mean age of 50.9 years (SD = 16.2 years), 65.7% female. BMI
values (mean 26.1, SD = 5.3) were either calculated at the time of
recruitment and blood donation or referenced from EHR within a year
from enrollment.

Data collection and pre-processing
We included all 249 metabolites from the Nightingale NMR metabo-
lomics panel, encompassing 228 lipids, lipoproteins or fatty acids and
21 non-lipid traits, namely amino acids, ketone bodies, fluid balance,
glycolysis-, and inflammation-related metabolites, as QC’ed and
released by UKB2. We applied additional pre-processing through the
‘ukbnmr’ R package, to remove sources of technical noise56.

We applied rank-based inverse normal transformation57 to each
measure, leading to normally distributed measures as input for
the GWAS.

Univariate GWAS and univariate interaction GWAS
We made use of the UKB v3 imputed data, which has undergone
extensive quality control procedures as described by the UKB genetics
team58. After converting the BGEN format to PLINK binary format59,
we set a minor allele frequency threshold of 0.005, leaving
11,144,506 SNPs.

We carried out univariate GWAS on each of the 249 metabolites
through PLINK2, which were then combined into a multivariate GWAS
through the freely available MOSTest software (https://github.com/
precimed/mostest). Details about the procedure and its extensive
validation have been described previously9. GWAS on each of the
normalized measures were carried out using the standard additive
model of linear association between genotype vector, gj, and pheno-
type vector, y. In all analyses we covaried for mean-centered age and
twenty genetic principal components. We additionally covaried for
biological sex, except in the sex-specific analyses.

Association of genotype*sex interaction with each of 249 meta-
bolites was tested with PLINK2, including genotype, sex, mean-
centered age and 20 genetic principal components as covariates.
Produced univariate GWASs were then combined into multivariate
MOSTest analysis. Calibration of the null distribution for the MOSTest
analysis was performed permuting both genotypes and sex
independently.

Clumping
For both univariate and multivariate GWAS, independent significant
variants and genomic loci were identified in accordance with the Psy-
chiatric Genomics Consortium locus definition60. First, we selected a
subset of variants that passed genome-wide significance threshold,
and used PLINK to perform a clumping procedure at LD r2 = 0.6 to
identify the list of independent significant variants. Second,wequeried
the reference panel for all candidate variants in LD r2 of 0.1 or higher
with any independent significant variant. Further, for each
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independent significant variant, its corresponding genomic loci were
defined as a contiguous region of the independent significant variants’
chromosome, containing all candidate variants in r2 = 0.1 or higher LD
with the independent significant variant. Adjacent genomic loci were
merged if separated by less than 250KB. A subset of independent
significant variants with LD r2< 0.1 was selected as lead variants (with
potentiallymore thanone lead variant per locus). Finally for each locus
the most significant among all lead variants was defined as the locus
lead variant. Allele LD correlations were computed from a random
subset of 10% of the study population to lower computational burden.
The number of unique significant loci across all univariate GWAS was
determined through the min-P approach61.

Gene mapping
We used the Variant-to-Gene (V2G) pipeline from Open Targets
Genetics, to map lead variants to genes based on the strongest evi-
dence from quantitative trait loci (QTL) experiments, chromatin
interaction experiments, in silico functional prediction, and proximity
of each variant to the canonical transcription start site of genes22.

PheWAS
We used the ‘otargen’ R package to conduct the pheWAS analyses on
each of the 534 MOSTest-identified locus lead SNPs. We restricted the
analyses to the FinnGen andGWASCatalog study sources, and selected
only traits that had the term ‘disease’ in the trait category. The results
were thresholded to associations of each of the locus lead SNP at
p <0.05 divided by the unique number of traits included (n = 7684).

Fine-mapping procedure
Weused the SAFFARI pipeline to performstatistical and functionalfine
mapping21. This consisted of applying PolyFun+FINEMAP to eachof the
GWAS in order to identify sets of functionally-informed highly credible
causal variants, selecting those that were part of a credible set with a
posterior probability >0.95 prioritizing these for follow-up. By default,
SAFFARI excludes themajor histocompatibility complex (MHC) region
on chromosome 6 (28–34Mb).

WES gene burden tests
WeusedRegenie (v3.1.1) to performomnibus SKAT-O tests to combine
variance component tests and burden tests for each of the 249
metabolites, with age, sex and 20 genetic principal components as
covariates.Wemerged the genotypedata of chromosome1 to 22 into a
single PLINK file, lifted the genomic build from GRCh37 to GRCh38,
and filtered with PLINK (--maf 0.01 --mac 20 --geno 0.1 --hwe 1e-15
--mind 0.1) to select 591,260 SNPs for step 1. Step 2 variants were rare
(MAF < 0.005) with the following annotation masks: LoF, missense
(0/5), missense (5/5), missense (>=1/5), and synonymous. We used
relevant annotation files described elsewhere: https://biobank.ctsu.ox.
ac.uk/crystal/refer.cgi?id=916. We included the same set of protein
coding genes and multiple comparisons correction as used for the
MAGMA gene-based analyses. The analyses were conducted on the
Research Analysis Platform (https://ukbiobank.dnanexus.com).

Gene-set analyses
We carried out gene-based analyses using MAGMA v1.08 with default
settings, which entails the application of a SNP-widemeanmodel62. We
used a randomly selected set of 10,000 white British UKB participants
as reference panel. Gene-set analyses were done in a similar manner,
restricting the sets under investigation to those that are part of the
Gene Ontology biological processes subset (n = 7522), as listed in the
Molecular Signatures Database (MsigdB; c5.bp.v7.1).

For tissue-specificity analyses, we applied MAGMA gene-property
analyses to test relationships between tissue-specific gene expression
profiles and the identified gene associations. This encompassed run-
ning one-sided tests for each of 30 general tissue types, testing

whether the association between each tissue’s known gene expression
levels and the gene-based Z-scores is greater than 0, corrected for the
average expression across all tissue types and a set of technical con-
founders. We used preprocessed and normalized GTEx v8 tissue
expression values63 as provided through FUMA’s downloads (https://
fuma.ctglab.nl/).

Multiple comparison’s correction for these analyses consisted of a
Bonferroni correction for the number of protein-coding genes, with
α =0.05/17,849= 2.8 x 10-6

Drug enrichment analysis
TheDrug Gene InteractionDatabase (DGIdb, (https://www.dgidb.org/)
v.5.0.6 (04/04/2024)34 was used to identify drug-gene interactions
among the genes identified from the WES gene burden tests. The
DGIdb provides information on drugfig

-gene interactions from 28 diverse sources that are aggregated and
normalized. The database collects drug-gene interactions based on
information about therapeutic targets and their corresponding drugs,
knowledge from clinical trials, as well as potentially clinically actionable
drug-gene associations based on metadata such as molecule structure
and molecular weight34. Gene-set enrichment analysis (GSEA) was per-
formed to test if the genes identified from the WES gene burden tests
were significantly (FDR<0.05) enriched for targets of specific drugs.

LDSC
We applied univariate64 and cross-trait65 LDSC to estimate narrow-sense
heritability and genetic correlations, respectively. For this, we formatted
the GWAS summary statistics using our standardized pipeline, including
‘munging’ and removal of all variants in the extended MHC region
(chr6:26–34Mb), in accordance with recommendations (https://github.
com/precimed/python_convert/blob/master/sumstats.py).

MiXeR analysis
We applied a causal mixture model35,36 to each of the main univariate
GWAS summary statistics, with the extended MHC region excluded, to
estimate the percentage of variance explained by genome-wide sig-
nificant SNPs as a function of sample size. For each SNP, i,MiXeRmodels
its additive genetic effect of allele substitution,βi, as a point-normal

mixture, βi = 1� π1

� �
N 0,0ð Þ+π1N 0, σ2

β

� �
, where π1 represents the

proportion of non-null SNPs (‘polygenicity‘) and σ2
β represents the var-

iance of effect sizes of non-null SNPs (‘discoverability‘). Then, for each
SNP, j, MiXeR incorporates LD information and allele frequencies for
9,997,231 SNPs extracted from the EUR population of the 1000 Gen-
omes Phase3 data to estimate the expected probability distribution of

the signed test statistic, zj = δj + ϵj =N
P

i

ffiffiffiffiffi
Hi

p
rijβi + ϵj, where N is the

sample size, Hi indicates heterozygosity of i-th SNP, rij indicates an

allelic correlation between i-th and j-th SNPs, and ϵj � N 0,σ2
0

� �
is the

residual variance. Further, the three parameters, π1, σ
2
β, σ

2
0, are fitted by

direct maximization of the likelihood function. Finally, given the esti-
mated parameters of the model, the power curveS Nð Þ is then calculated

from the posterior distribution p δj jzj ,N
� �

.
For quality control of the MiXeR results, we used the Akaike

Information Criterion (AIC), comparing the Gaussianmixturemodel fit
to that of the infinitesimalmodel. In this study, the AIC values of all 249
metabolites were positive, i.e. the Gaussian mixture had better model
fit, warranting the inclusion of the results.

Mendelian randomization
We ran bidirectional MR, investigating the causal relationships
between BMI and the 249 metabolites, with the TwoSampleMR R
package. For this, we combined the BMI GWAS summary statistics
from the GIANT consortium with no UKB participants (N = 339 224)66,
to prevent sample overlap, with the metabolomics GWAS summary
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statistics generated in this study. We selected only genome wide sig-
nificant variants for the analysis, clumped using PLINK with
clump_p = 1, clump_r2 = 0.001, clump_kb = 10000 against the 1000
Genomes Phase3 503 EUR samples keeping other settings default. We
calculated MR regression coefficients using the inverse variance
weighted method and the weighted median method. To create robust
findings, we only selected findings that showed a multiple
comparisons-significance (p < .05/96) across both these methods. As
an additional check, we ranMR-Egger and selected those relationships
with nominal significance on this test.

Statistical analyses
All pre-processing steps and analyses performed outside the above-
mentioned tools and software, e.g. formatting the data and creating
the graphs, were carried out in R, v4.2.

Sensitivity analyses
We ran two sets of variations on the primary GWAS, to investigate the
role ofmedication and of the preprocessing pipeline. First, we re-ran the
primary GWAS controlling for insulin, blood pressure, and cholesterol-
lowering medication. Second, we re-ran without the ‘ukbnmr’ pre-
processing pipeline, directly on the originally released metabolomics
data. For both variations, the produced summary statistics were highly
comparablewith the primaryGWAS,withmedian genetic correlations of
0.992 and 0.998 across the metabolites, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data incorporated in this work were gathered from public resour-
ces. All input data described for the main analyses are available through
UK Biobank, subject to approval from the UK Biobank access commit-
tee. See https://www.ukbiobank.ac.uk/enable-your-research/apply-for-
access for further details. The output data is provided in the Supple-
mentary Data tables, as referenced in the Results. GWAS summary sta-
tistics have been uploaded to Zenodo, with the following DOIs: [main
UKB], [meta-analysed UKB and EstBB], [sex-interaction], [male-specific],
[female-specific], [MOSTest main and sex-interaction]. Source data are
provided with this paper.

Code availability
The MOSTest and MiXeR code is available via https://github.com/
precimed (GPLv3 license).
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