
Article https://doi.org/10.1038/s41467-025-60085-w

Memristive Bellman solver for decision-
making

Zhe Feng1,6, Zuheng Wu 1,6 , Jianxun Zou1,6, Lingli Cheng2, Xiaolong Zhao 3,
Xumeng Zhang 2, Jian Lu4, Cong Wang 5, Yilin Wang3, Haochen Wang1,
Wenbin Guo1, Zhibin Qian1, Yunlai Zhu1, Zuyu Xu1, Yuehua Dai 1 & Qi Liu 2

The Bellman equation, with a resource-consuming solving process, plays a
fundamental role in formulating and solving dynamic optimization problems.
The realization of the Bellman solver with memristive computing-in-memory
(MCIM) technology, is significant for implementing efficient dynamicdecision-
making. However, the iterative nature of the Bellman equation solving process
poses a challenge for efficient implementation on MCIM systems, which excel
at vector-matrix multiplication (VMM) operations but are less suited for
iterative algorithms. In this work, by incorporating the temporal dimension
and transforming the solution into recurrent dot product operations, a
memristive Bellman solver (MBS) is proposed, facilitating the implementation
of the Bellman equation solving process with efficient MCIM technology. The
MBS effectively reduces the iteration numbers and which further enhanced by
approximated solutions leveragingmemristor noise. Finally, the path planning
tasks are used to verify the feasibility of the proposed MBS. The theoretical
derivation and experimental results demonstrate that the MBS effectively
reduces the iteration cycles, facilitating the solving efficiency. This work could
be a sound of choice for developing high-efficiency decision-making systems.

The optimal decision-making system, minimizing or maximizing cer-
tain performance metrics by adjusting the control variables of the
system, is essential for various fields of application, such as aircraft
flight path planning, robot motion control, financial portfolio optimi-
zation, etc.1–3. Dynamic programming, a thought that divide a complex
problem into simple subproblems, is a common method to solve the
optimization problem of multi-stage decision process4,5. As the core
foundation of dynamic programming, the Bellman equation plays a
fundamental role in formulating and solving dynamic optimization
problems to decision-making6,7.

The Bellman equation describes the relationship between the
value of a state or action and the expected immediate reward plus the
valueof the subsequent state or action8–10. This iterative processmakes

solving of Bellman equation a computationally intensive task. Hence,
realization of Bellman solver with efficient computing technology is
significant for developing efficient dynamic decision-making system.
Fortunately, computing-in-memory (CIM) technologies are promising
for advancing the computing efficiency. Memristors, including
resistive11–13, phase change14–16, ferroelectric17–19 and magnetism
memristors20–22 with advantages of non-volatile memory
properties23–25, low power consumption26–28, have garnered significant
attention for CIM technologies realization (MCIM). The crossbar
structure can efficiently complete the vector matrix multiplication
(VMM) operations by using Ohm’s law and Kirchhoff’s law29–31. Hence,
implementing memristive Bellman solver (MBS) would have the
potential for facilitating efficient dynamic decision-making process.

Received: 29 September 2024

Accepted: 14 May 2025

Check for updates

1School of Integrated Circuits, Anhui University, Hefei, Anhui, China. 2Frontier Institute of Chip and System, Fudan University, Shanghai, China. 3School of
Microelectronics, University of Science and Technology of China, Hefei, China. 4Research Center for Intelligent Computing Hardware, Zhejiang Laboratory,
Hangzhou, China. 5Institute of Brain-inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation
Center of Advanced Microstructures, Nanjing University, Nanjing, China. 6These authors contributed equally: Zhe Feng, Zuheng Wu, Jianxun Zou.

e-mail: wuzuheng@ahu.edu.cn; daiyuehua@ahu.edu.cn; qi_liu@fudan.edu.cn

Nature Communications | (2025) 16:4925 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6465-5570
http://orcid.org/0000-0002-6465-5570
http://orcid.org/0000-0002-6465-5570
http://orcid.org/0000-0002-6465-5570
http://orcid.org/0000-0002-6465-5570
http://orcid.org/0000-0001-5307-9187
http://orcid.org/0000-0001-5307-9187
http://orcid.org/0000-0001-5307-9187
http://orcid.org/0000-0001-5307-9187
http://orcid.org/0000-0001-5307-9187
http://orcid.org/0000-0002-3828-151X
http://orcid.org/0000-0002-3828-151X
http://orcid.org/0000-0002-3828-151X
http://orcid.org/0000-0002-3828-151X
http://orcid.org/0000-0002-3828-151X
http://orcid.org/0000-0003-2072-9299
http://orcid.org/0000-0003-2072-9299
http://orcid.org/0000-0003-2072-9299
http://orcid.org/0000-0003-2072-9299
http://orcid.org/0000-0003-2072-9299
http://orcid.org/0009-0003-4500-6860
http://orcid.org/0009-0003-4500-6860
http://orcid.org/0009-0003-4500-6860
http://orcid.org/0009-0003-4500-6860
http://orcid.org/0009-0003-4500-6860
http://orcid.org/0000-0001-7062-831X
http://orcid.org/0000-0001-7062-831X
http://orcid.org/0000-0001-7062-831X
http://orcid.org/0000-0001-7062-831X
http://orcid.org/0000-0001-7062-831X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60085-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60085-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60085-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60085-w&domain=pdf
mailto:wuzuheng@ahu.edu.cn
mailto:daiyuehua@ahu.edu.cn
mailto:qi_liu@fudan.edu.cn
www.nature.com/naturecommunications

In previous works, researchers have demonstrated MCIM for
accelerating dynamic optimization and decision-making tasks, such as
reinforcement learning andMarkov decision problem.12,32. However, in
these works, the Bellman equation solving process still relies on Von-
Neumann computing systems. The Bellman equation is an iterative
double expectation equation, and its iterative solving process is
inherently difficult to implement efficiently on MCIM systems due to
the mismatch with the VMM operation principle. Furthermore, the
process of solving the Bellman equation is a precise process, which is
different from the approximate solution of the neural network. The
Bellman equation is fundamentally a precise mathematical formula-
tion to compute exact value functions or optimal policies, while neural
networks inherently rely on approximation due to their function
approximation nature. Therefore, as the complexity of the task being
solved increase, the number of iterations of Bellman’s solutionprocess
will increase sharply33–35. In addition, the intrinsic noise in memristive
devices further restricts the precise solution of the Bellman equation
based on MCIM. Whereas, the researchers prove that the recursive
memristive VMM operation and the intrinsic noise of the memristor
can accelerate the convergence rate and reduce the complexity of the
iterative algorithms36–38. Hence, the software and hardware co-
optimization efforts have to be paid for developing efficient MBS to
further enhance the efficiency of dynamic decision-making system.

In this work, we propose an MBS with software and hardware co-
optimization efforts. Software-wise, we have incorporated the tem-
poral dimension and transformed the solution of iterative double
expectations into a recurrent dot product operation, which facilitates
the implementation of the Bellman equation solving process with
MCIM technology. The MBS effectively reduces the iteration numbers
(see Methods). Furthermore, hardware-wise, we found that the
inherent noise characteristics of memristors can contribute to finding
an approximate solution, further reducing the iterations (see Meth-
ods). Finally, the path planning tasks are used to verify the feasibility of
the proposed MBS. The results indicate that the MBS shows potential
improvements in computation complexity (from O(k|S |2) to O(k’|S|),
k ’< k, here, k and k’ denotes the number of iterations required for the
traditional Bellman equation and MBS to converge, respectively),
energy consumption (~103×) and computing speed (see Supplemen-
tary Table S1, S2 and Note 2 for details). This work offers a reliable
framework for building efficient dynamic decision-making systems.

Results and Discussion
Challenges and solutions for realizing a memristive
Bellman solver
As shown in Fig. 1a, dynamic programming, an idea that breaks down a
complex problem into simple ones, has been widely applied in various
dynamic optimization fields such as reinforcement learning, auto-
driving and path planning etc. The dynamic optimization problem
aims to find the optimal decision from the initial state to the end state.
The core foundation is to solve Bellman equation to find the most
valuable decision. Figure 1b illustrates a scene with three states (S1, S2,
S3) where each state can transition to any other state (including itself)
and S1 set as Start and S3 set as End. The decision could bemade by the
optimized value of each state, which could be obtained by solving the
Bellman equation. It should be noted that, here the presentation form
of Bellman equation,which is thebackward induction form, is different
from that of standard reinforcement learning12,39, but their mathema-
tical essence is the same (see Supplementary Note 1). Moreover, the
action space is implicitly incorporated into the state transition prob-
abilities. Figure 1c (left panel) shows the action implicit backward
induction Bellman equation for optimizing each state value in Fig. 1b,
which features an iterative solving process. It should be noted that in
the action implicit backward induction Bellman equation (without
time dimension), V(Sn) and V(Sn-1) represents the current state value
and the previous state value, respectively. The current state and the

previous state can be any one in the state space S. That is to say, in
Fig. 1c (left panel), the green-marked V(S1), V(S2) and V(S3) can repre-
sent the previous values of states S1, S2, and S3 respectively (because
the ∑ has been unfolded). However, the current state value marked in
red is uncertain. It can be any one of the states S1, S2, and S3. Therefore,
although formally it seems that the equation can be compatible with
MCIM. However, in the actual operation process, there is no time
dimension, and we cannot determine how the current output corre-
spond to next input. Therefore, the action implicit backward induction
Bellman equation cannot be compatible with MCIM. To facilitate the
Bellman solving process with efficient MCIM operation principle, the
time dimension has been introduced. The introduced time dimension
could transform the iterative solution process into a recurrent dot
product process (Fig. 1c, right panel) to reduce the computation
complexity (reduce iterationnumbers) (see SupplementaryNote 2 and
Methods), and without influencing the convergency properties of
Bellman equation solving process. The value of current state (V(St))
could be obtained by the dot product operation between the sum of
current state’s reward and value of previous state multiplied by an
attenuation constant (R(St)+ γV(St–1)) and the state transition prob-
abilities (

P
St�12SPðSt�1jStÞ. The dot product operation can be imple-

mented by the memristor array efficiently, by mapping the R(St)+
γV(St–1) as input and mapping the

P
St�12SPðSt�1jStÞ as conductances

(weights).
In addition, in digital computing systems, the solution process of

the Bellman equation is highly precise. However, if the transition
probabilities are the same, more iterations are needed to achieve the
distinction (Fig. 1d). As the complexity of the problem increases, the
likelihood of this scenario will also rise. That is to say, as the problem
grows more complex, the number of iterations needed to solve it will
increase. When the time dimension is introduced, solving the Bellman
equation usingMCIMwill face challenges. Due to the inherent noise of
memristors (such as write noise and read noise), the memristor cells
cannot accurately represent the state transition probabilities. For-
tunately, we found that the intrinsic noiseofmemristors could serve as
a significant computational resource to improve the efficiency of the
Bellman solving process. The intrinsic noise of memristors facilitates
the distinction of the same state transition probabilities, enabling an
approximate solution process and reducing iterations (Fig. 1e). Even
though solving the Bellman equation with MCIM involves approx-
imation, it does not affect the convergence of the Bellman equation
(seeMethods). That is to say, by leveraging approximate solutions, an
approximate optimal solution can still be found. In fact, in various
application scenarios, an approximately optimal solution is sufficient.

Memristive Bellman solver for decision-making
Here, theworkflowof theMBS for decision-making is introduced. First,
we take the scenario in Fig. 1b as an example to describe the process of
solving the Bellman equation using the MBS. To clarify the MBS
implementation, the two operators, that is, memristive Bellman dot
operator (MBdot operator) andmemristive Bellman recurrent operator
(MBr operator), are defined (Fig. 2a). TheMBdot operator indicates that
the dot product between the reward vector ([R(S1), R(S2), R(S3)]) and
the state transition probabilities. The reward vector is mapped to the
input of the memristor array, while the state transition probabilities
are mapped to the conductance states (weight matrix) of the mem-
ristor array. In thisMBdot operation process, the output result from the
previous time step is multiplied by the attenuation parameter γ and
returned to the input terminal, then combined with the input reward
signal to form the total input at the next time step. It is worth noting
that the number of MBdot operations correlates with the time para-
meter t. Additionally, within a single time step, only one state value is
updated. Hence, at the next time step, only the rewards corresponding
to the updated state change. After completing MBdot operations (one
solving round, that is, one MBr operation), the obtained reward vector

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 2

www.nature.com/naturecommunications

([R(S1) + γV(S1), R(S2) + γV(S2), R(S3) + γV(S3)]) will be used as the initial
reward for the next round solving process (iteration of MBr operation
to optimize the value of each state).

As illustrated in Fig. 2b, the results of adjacent MBr opera-
tions are compared to identify whether the MBS has completed
the solving process. The MBS completes the solving process, until
the difference between two adjacent MBr operation results is
lower than a specific threshold (ε, 0.1). Otherwise, the previous
MBr operation result is used as the next initial input of MBdot

operation. The recurrent MBdot operations and MBr operations
are performed to solve the Bellman equation. Furthermore, after
the MBS solves the Bellman equation, the weight matrix (deci-
sion) is updated (optimized) by the ε-greedy rule40. Subsequently,
the adjacent weight matrices are compared to determine whether
the weight matrix has converged to a stable state (the decision is
optimized to the optimal). The final weight matrix (the optimal
decision) is obtained once the difference between two adjacent
weight matrices (decisions) is lower than a specific threshold

(τ, 0.1). Otherwise, the whole process is repeated. (The pseudo-
code of the MBS is shown in Supplementary Note 3.).

As shown in Figs. 2c, S1 and S2, the simulation results indicate
that the MBS can effectively reduce the number of iterations for
value calculation across problems with varying state spaces, even
when memristors operate at different precision levels. Additionally,
the iteration number (MBdot × MBr) could be further reduced by
leveraging an approximate solution, as shown in Fig. 2d, e. During
simulations, the approximate solution scheme assigns read noise to
each weight state mapped to state transition probabilities, with this
noise following a Gaussian distribution. This read noise can acts as a
“random perturbation”, introducing an approximate and sampling
mechanism to the traditional precise solution scheme. This concept
shares similarities with simulated annealing or stochastic gradient
methods37. In each solving round, the read noise can help the state
value achieve a random jump, prematurely exiting the repetitive and
precise iterative process of detailed calculations, thereby achieving
approximate convergence results with fewer iterations. Hence,

d e

V(Sn)=R Sn +γ
Sn−1∈∈S

P Sn−1 Sn V(Sn−1)

V(Sn)=R
Sn

+γ
Sn−1

∈ S
P
Sn −1

Sn
V (Sn−1)

[

[

P S1 S2
P S2 S2
P S3 S2

[

[

P S1 S1
P S2 S1
P S3 S1

S2

S1

S3

P S2 S3

R(S1)

R(S2) R(S3)Bellman equation

Input

Output

…

…

…

…

………

………

[

R(S2) +γV(S2)
R(S3)

[

R(S1)+ γV(S1)

[

[

P S1 S3
P S2 S3
P S3 S3

V(S1)=R S1 +γ[P S1 S1 V(S1)

+P S2 S1 V(S2)+ P S3 S1 V(S3)]

V(S2)=R S2 +γ[P S1 S2 V(S1)

+P S2 S2 V(S2)+ P S3 S2 V(S3)]

V(S3)=R S3 +γ[P S1 S3 V(S1)

+P S2 S3 V(S2)+ P S3 S3 V(S3)]

Compatibility

√
Compatibility

Dynamic programming

CoreReinforcement
Learning Auto-driving

Path Planning

b

…

a

Memristive computing-in-
memory

Recurrent dot product
Bellman equation

Action implicit backward induction
Bellman equation

c

P S2 S2

P S3 S2

P S1 S1

P S3 S3

[

[

P S1 S2
P S2 S2
P S3 S2

[

[

P S1 S1
P S2 S1
P S3 S1

V(S1)=

V(S2)=

V(S3)=

[

R(S2)

R(S3)[

R(S1)+ γV(S1)

[

R(S2)

R(S3)

[

R(S1)

Start

End

Current could be Previous

V(
S t

)=
R
S t
+γ
V(
S t
−1

)·
S t
−1
∈
S
P
S t
−1

S tt1

t2

t3
or

or

End

Precise solution Approximate solution

Need more iterations to implement distinction of
same state transition probabilities

Intrinsic noise of memristor facilitates the
distinction of same state transition probabilities

Start

0.50
0.50 0.70

0.30 0.50

0.50
0.90
0.10P1

P2

P3
P4

P5
P6

Start

0.51
0.49 0.71

0.29 0.48

0.52
0.89
0.11P1

P2

P3
P4

P5
P6

Fig. 1 | Challenges and solutions for realizing memristive Bellman solver.
a Schematic of dynamic programming idea for various fields application, such as
reinforcement learning, auto-driving and path planning etc. b A scene with three
states (S1, S2, S3) where each state can transition to any other state (including itself).
The optimized value of each state could be obtained by solving the Bellman
equation for decision-making. c The action implicit backward induction Bellman
equation (without timedimension) for optimizing each state value in (b). Due to the
absence of time dimension, V(Sn) (redmarked)may be indeterminate for any state.
Therefore, although it seems compatiblewithMCIM, it cannot bedeterminedat the

time of hardware deployment whether the output corresponds to the subsequent
input. A MBS for optimizing each state value in b realized by incorporating the
temporal dimension and transforming the iterative solving process into recurrent
dot product operations, facilitating the compatibility with MCIM (right panel). d In
digital computing system, the Bellman solution process is a precise process.
However, when there are same state transition probabilities, it will be necessary to
conduct more iterations to achieve distinction. e The intrinsic noise of memristor
would facilitates the distinction of same state transition probabilities, featuring
approximate solution process and reducing iterations.

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 3

www.nature.com/naturecommunications

considering the intrinsic read noise of the memristor, it is expected
that the iteration number could be further reduced during hardware
implementation. Additionally, it is worth noting that the proposed
MBS is mainly suitable for scenarios where the state transition
probability can be determined. When making decisions for scenarios
where state transition strategies are difficult to determine, we can
solve the problem based on the Q-network12. Furthermore, we can
solve the loss value by embedding MBS into its training process and
accelerating the training process.

Memristor for Bellman solver hardware implementation
For hardware implementation of the MBS (Fig. S3), a 1 kb resistive
memristor array with a structure of 1 transistor 1 resistive memristor
(1T1R) is adopted. The fabrication process of the memristor array
aligns with our previous work41. Figure 3a_i shows the optical image of
the fabricated memristor array. The 1T1R structure is confirmed with
scanning transmission electron microscopy (STEM), as indicated in
Fig. 3a_ii. Furthermore, the memristor cell marked by the red box in
Fig. 3a_ii is zoomed, as shown in the Fig. 3a_iii. The memristor cell
shows a TiN/TaOx/HfOx/TiN stack structure, confirmed by the energy

dispersive spectrum (EDS) (Fig. S4). The memristor exhibits typical
bipolar resistive switching characteristics (Figs. 3b, S5). When the top
electrode is applied with a positive voltage sweep (0→ 1.75 V) and the
gate terminal is biased at 1.55 V, the memristor switches from a high
resistance state (HRS) to a low resistance state (LRS), i.e., SET process.
Conversely, when the negative voltage sweep (0→ −1.85 V) stimulus is
applied to the top electrode and the gate terminal biases with 4 V, the
memristor switches from LRS to HRS, i.e., RESET process. Here, the
conductance of the memristor is used to map the state transition
probabilities. The transition probabilities between different states are
different. Hence, the memristor needs to be programmed to different
state levels. To verify the multi-level programmability, the memristor
was programmedwith a fixed positive voltage sweep (0→ 2.5 V) on the
top electrode, varying the gate electrode bias (1.4 to 3 V, with a step of
0.05 V). The results indicate that the memristor can be reliably pro-
grammed to different state levels (Fig. 3c), which meets the demand
formapping the state transitionprobabilities. Furthermore, the typical
long-term potentiation (LTP) and long-term depression (LTD) prop-
erties also verify the multi-level programmability of the memris-
tor (Fig. S6).

b
MBr operator

a

Initial reward
[R(S1), R(S2),…,
R(Sn)] as input

MBdot_1 ……

… …

…

t = t1

MBdot_2

t = t2

MBdot_n

t = tn

MBdot Recurrent

O
utput

MBrn-MBrn-1 ε

MBr Recurrent No

Yes

Weight Update
(ε-Greedy rule)

Y

Memristive Bellman solver

No

Yes

O
ptim

al
solution

Memristive decision optimization

MBr

WMn-WMn-1 τ

c d e

0 200 400 600 800
102

103

104

105

106

107

 Bellman equation

)#(
snoitareti

eulaV

State numbers (#)

 MBS

0 200 400 600 800
0

200

400

600

800

1000

M
B r

)#(
selcyctnerrucer

State numbers (#)

 MBS with approximate solution
 MBS with precise solution

0 200 400 600 800
0

20

40

60

80

M
B d

ot
)#(

selcyctnerrucer

State numbers (#)

 MBS with approximate solution
 MBS with precise solution

× 104

t1 Dot production t3 Dot productiont2 Dot production

Output

Input[

R(S2)

R(S3)[

R(S1)

V(S1)

P S1 S1

P S2 S1

P S3 S1

P S1 S2

P S2 S2

P S3 S2

P S1 S3

P S2 S3

P S3 S3

P S1 S1

P S2 S1

P S3 S1

P S1 S2

P S2 S2

P S3 S2

P S1 S3

P S2 S3

P S3 S3

Input[

R(S2)

R(S3)[

R(S1)+ γV(S1)

OutputV(S2)

P S1 S1

P S2 S1

P S3 S1

P S1 S2

P S2 S2

P S3 S2

P S1 S3

P S2 S3

P S3 S3

Input[

R(S3)[

R(S1)+ γV(S1)

R(S2)+ γV(S2)

V(S3)Output

[

[

R(S1)+ γV(S1)

R(S2)+ γV(S2)

R(S3)+ γV(S3)

MBdot operator

pV(VV S1)
V(S1)=R S1 P S1 S1 +

R(S2) P S2 S1 +R(S3) P S3 S1

MBdot operator

pV(VV S2)
V(S2)=[R S1 +γV(S1)]P S1 S2 +

R(S2) P S2 S2 +R(S3) P S3 S2
MBdot operator

V(VV S3
p

V(S3)=[R S1 +γV(S1)]P S1 S3 +

[R(S2)+γV(S2)]P S2 S3 +R(S3) P S3 S3

Fig. 2 | Thework flows ofmemristive Bellman solver for decision-making. a The
solving process of recurrent dot product Bellman equation for the application
scene in Fig. 1b. Here, two operators are defined, that is, memristive Bellman dot
operator (MBdot operator) and memristive Bellman recurrent operator (MBr
operator). The blue arrows indicate that the current flows at each time step.
b Memristive Bellman solver and memristive decision optimization. The Bellman
solved by performance recurrent MBdot and MBr operations, until the difference
between two adjacent MBr operation results lower than a specific threshold (ε).

After the Bellman equation solved by MBS, the weights (conductance states of
memristor) would be updated according to ε-greedy rule to optimize the deci-
sion. The updated weights would be compared with previous weights until the
difference is less than the threshold (τ), namely, the weights are approaching
stability, meaning the decision optimization process finished. c The value itera-
tion numbers variation with the state space. The comparison of the (d), MBdot
recurrent cycles and (e), MBr recurrent cycles with approximate solution and
precise solution.

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 4

www.nature.com/naturecommunications

It should be noted that, as illustrated in Fig. 2a, the MBS
working process needs to perform recurrent MBdot operations
(i.e., read operations). Hence, the read noise would influence the
solving effect, making the Bellman equation cannot be precisely
solved. Whereas, theoretical derivation and simulation results
indicate that the intrinsic noise (δintrinsic) facilitates efficient
convergence of the Bellman equation to an approximate optimal
solution (see Methods). The intrinsic noise needs to meet the
Gaussian distribution, and the Gaussian distribution of memristor
conductance states has been demonstrated in various previous
works37,42. Here, to investigate the read noise properties of the
fabricated TiN/TaOx/HfOx/TiN memristor, the memristors were
programmed to different conductance level and read for 20000
cycles (Fig. 3d). As shown in Fig. 3e, the read noise of each con-
ductance level obeys a Gaussian distribution. The results

indicated that the fabricated TiN/TaOx/HfOx/TiN memristor can
be effectively utilized for hardware implementation of the MBS.

Memristive Bellman solver for path planning tasks
To investigate the feasibility of the MBS for practical decision-making
applications, the path planning tasks are implementedwith theMBS. In
these tasks, the cost function is Cost =

PT
t = 1γ

t�1RðStÞ. Where R(St) is
the reward (or cost) at state St, γ is the discount factor, andT is the total
number of steps taken to reach the goal. First, a 5 × 5 maze path
planning task is implemented (Fig. 4a). In this maze, the state_1,
state_25 and state_12 is set as Start, End and Bonus, respectively. The
state_13 and state_16 is set as Trap. Each state can perform four actions,
namely, up, down, left, and right. The aimof this task is to plan the path
from state_1 to state_25 through state_12. The path is realized by the
transition between states. The initial decision (weight matrix) of the

-2 -1 0 1 2

40

80

120 Vg:1.55 V
Vt:1.75 V

SET
Vg:4 V
Vt:-1.85 V

Voltage (V)

4

3
2

1

RESET
a b

i ii

2

200 nm

iii

TiN
HfOx

TaOx

TiN

Fig. 3 | The characteristics of the TiN/TaOx/HfOx/TiNmemristor formemristive
Bellman solver implementation. a (i) The optical image of 1 kb memristor array.
(ii) The STEM image of the 1T1R cell. (iii) The STEM image of the memristor cell.
b The typical I-V curve of the memristor. c The multi-level program properties of

thememristor, enabled by adjusting the gate voltage from 1.4 V to 3.0 V with a step
of 0.05V.d The read noise ofmemristorwith 10 different conductance states. Each
conductance is read with 20,000 times. e The distribution of the conductance
obeys the Gaussian distribution.

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 5

www.nature.com/naturecommunications

probability of transitions between states is shown in Fig. 4b. The higher
conductanceofmemristor represents the higher transition probability
between the states. The results indicate that the path is hard to
determine from the initial decision, owing to the transition prob-
abilities between states are close. For example, the blue line in Fig. 4b
indicates that the probability of state_7 transiting to state_2, state_6,
state_8 and state_12 is almost same. Hence, the decision needs to be

optimized by MBS. It should be noted that due to the intrinsic read
noiseof thememristor, for complex problem, the decisionmay cannot
be optimized to the optimal decision. Fortunately, the read noise of
thememristor obeys Gaussian distribution (Fig. 3e), which enables the
MBS to obtain the approximate optimal decision (see Methods).

The results show that the decision needs to be optimized 4 times
by the MBS to obtain the approximate optimal decision (Fig. 4c

0

20

40

60

Simulation Experiment

ApproximateApproximate

M
B r

)#(
snoitaretI

Precise

62

42.8

37.2

f

0

20

40

60

Simulation Experiment

ApproximateApproximate

M
B

r
)#(

snoitareti

Precise

50

37.5 35.7

i

States

a

Fig. 4 |Memristive Bellman solver for path planning tasks. a Schematic of a 5 × 5
maze path planning scene, containing 25 states. In this maze, the state_1, state_25,
and state_12 is set as Start, End, and Bonus, respectively. The state_13 and state_16 is
set as Trap. Each state can perform four actions, namely, up, down, left, and right.
b The initial decision (weight matrix) of the probability of transitions between
states. c The approximate optimal decision (weight matrix) of the probability of
transitions between states. d The value evolution tendency under the four times
Bellman equation solving process. e The approximate optimal decision (weight

matrix) for taking appropriate action (up, down, right, or left) of each state. f The
comparison of the iteration (recurrent) times of the Bellman equation precise and
approximate solving process. g Schematic of a constructed road mapping scene,
containing 19 states. In this roadmap, the state_1 and state 18 is set as Start and End,
respectively. Each state can only transmit to an adjacent state without obstacles
(such as lake). h The approximate optimal decision (weight matrix) of the prob-
ability of transitions between states. i The comparison of the iteration (recurrent)
times of the Bellman equation precise and approximate solving process.

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 6

www.nature.com/naturecommunications

and S7). The approximate optimal decision (weight matrix) of the
probability of transitions between states is shown in Fig. 4c. The results
indicate that each state has only one significant maximum probability
of moving to the next state, which benefits the decision making.
According to the approximate optimal decision, the path could be
planned as the red arrows in Fig. 4a, which is same as the precise
optimal decision (blue arrows in Fig. 4a). It should be noted that, as
shown in Fig. S7, the path could be planned by only 2 times optimi-
zation. However, it still needs to be determined whether this path
(strategy) is the optimal one or not. As shown in Fig. S8, after going
through different rounds of optimization, the strategy keeps conver-
ging (the differences among the weights keep decreasing). It is not
until the fourth round of optimization that the weights remained
basically unchanged (i.e., reached convergence). Hence, the decision
was optimized 4 times during the experiment. The reward and value
evolution tendency under the optimization process is shown in Fig. 4d
and S9–S10. In addition, the decision of each state to choose appro-
priate action is also optimized by the optimization process (Fig. S11).
The approximate optimal decision (weight matrix) for taking appro-
priate action (up, down, right or left) of each state is shown in Fig. 4e.
According to the state-action pairs decision, the path planning result is
accordance with the state transition map, as the red arrows and state
numbers illustrated in Fig. 4e. For the maze path planning task, the
MBS shows obviously efficiency than traditional solving scheme. The
(average) iteration numbers of 10 times the Bellman equation solving
process for this path planning task is shown in Figs. 4f and S12. The
results indicate that, by introducing noise, the approximated solving
process could effectively reduce the iteration cycles, facilitating the
decision-making efficiency.

In addition, a road mapping task (containing 19 states) is con-
structed to verify the effectiveness of MBS for decision-making
(Fig. 4g). In this road map, the state_1 and state 18 is set as Start and
End, respectively. Different from the maze path planning task, each
state can take four fixed actions. In this road map, each state can only
transmit to an adjacent state without obstacles (such as lake). After 4
times optimization, the approximate optimal decision is made by the
MBS (Figs. 4h, S13–S15). The decision-making efficiency is also
improved by adopting approximative solving process (Figs. 4i, S16).
The results indicate that the MBS is suitable for various path planning
scenes to make decisions. In addition, the estimation results indicate
that the MBS shows obviously energy consumption advantages than
GPU for both the tasks (Supplementary Note 2).

The simulation results indicate that the MBS effectively reduces
the total number of value iterations for both tasks (Fig. S17). Further-
more, the experimental results based on the approximate solution are
better than the simulation results. In the simulation process, only the
read noise of the memristor has been considered. Whereas, during the
whole decision-making process, the updating of weights is involved in
the experiment, which introduces the write error (Fig. S18). We further
simulated thewrite error influence on the iteration speed (Fig. S19). The
results indicate that the write error could facilitate the iteration speed
in a certain range. Hence, this may be due to the existence of the write
error in the weight update process of the experiment, whichmakes the
difference in weights more obvious and achieves the optimal decision
faster. For example, according to the initial decision, the probability
(weight) of state_1 transitioning to state_2 and state_6 is almost the
same (0.5), as the green line indicated in Fig. 4b). During the decision
optimization process, the probability (weight) updates according to ε-
greedy rule. However, the transition of state_1 to state_2 or state_6 can
both satisfy the demand of decision optimization. Therefore, in the
process of simulation, the probability will be equal. However, there is a
write error during the experiment, and the transfer of state_1 to state_2
or state_6 will cause a distinction, which can speed up the whole opti-
mization process, facilitating the decision-making efficiency.

In summary, we propose anMBS that benefits from both software
and hardware co-optimization. On the software side, we have inte-
grated the temporal dimension and converted the iterative double
expectations into recurrent dot product operations, which streamline
the implementation of the Bellman equation using MCIM technology
and reduce its computation complexity (reduced iterations). In fact, it
should be noted that the operation of the recurrent dot product canbe
adapted to any type of memory device based on CIM technologies. On
the hardware side, we leverage the inherent noise characteristics of
memristors to enable approximate solutions instead of precise ones,
further reducing iterations. We validated the proposed MBS through
path planning tasks. Theoretical analysis and experimental results
show that the MBS significantly reduces the number of iterations
required, enhancing solving efficiency. This approach offers a pro-
mising solution for developing more efficient dynamic decision-
making systems.

Methods
Recurrent dot product Bellman equation
The Bellman equation is a fundamental equation in dynamic pro-
gramming and reinforcement learning, used to compute the value
function, which represents the expected cumulative reward starting
from state S. The Bellman equation is expressed as:

VðSnÞ=RðSnÞ+ γ
X

Sn�12S
PðSn�1jSnÞVðSn�1Þ ð1Þ

Here, theV(Sn) is the value functionof the current state Sn,R(Sn) is
current reward function, γ is a discount constant,P(Sn�1jSn) is the state
transition probability from previous states to current state, S is the set
of all possible states (state space), Sn represents the current state and
Sn−1 represents previous states.

This equation is iterative, meaning it requires repeated calcula-
tions to converge to the optimal value function. However, this iterative
naturemakes it challenging to implement efficientlyonMCIM systems.
To make the Bellman equation compatible with MCIM systems, we
introduce a time dimension to describe the relationship between the
current state and previous states. Let St and St−1 represent the state at
time t and t−1, respectively. The Bellman equation can then be
rewritten as:

VðStÞ=RðStÞ+ γ
X

Sn�12S
PðSn�1jStÞVðSn�1Þ ð2Þ

Here, Sn−1 represents all possible previous states, while St−1
represents the state at the previous time t−1. Hence, in equation (2), Sn
−1 cannot be directly replaced by St−1 because Sn−1 refers to all previous
states, whereas St−1 refers to a single state at time t − 1.

To simplify the equation, wemake two key assumptions based on
the temporal difference (TD) algorithm and the local property of the
state space43,44.

Temporal smoothness assumption. When the learning process is
close to convergence, the value function at two adjacent time steps t
and t − 1 is approximately equal. That is:

VðStÞ � VðSt�1Þ ð3Þ
Local consistency assumption. In a local regionof the state space, the
value function is approximately constant. This means:

VðStÞ � VðSn�1Þ ð4Þ

for all Sn−1 in the neighborhood of St.

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 7

www.nature.com/naturecommunications

Combining these two assumptions, we obtain that:

VðSt�1Þ � VðSn�1Þ ð5Þ
Hence, the (2) could be written as:

VðStÞ=RðStÞ+ γ
X

Sn�12S
PðSn�1jStÞVðSt�1Þ ð6Þ

Since the sum of probabilities over all possible transitions is equal
to 1 (i.e.,

P
Sn�12SPðSn�1jStÞ= 1, the equation simplifies to:

VðStÞ=RðStÞ+ γVðSt�1Þ ð7Þ
To reintroduce the state transition probabilities,weexpress (7) as:

VðStÞ= ½RðStÞ+ γVðSt�1Þ�
X

St�12S
PðSt�1jSÞ ð8Þ

Here, the S represents the whole state space. Each time, the state
could be one state of the whole state space. Hence, this can be further
rewritten using the dot product notation:

VðStÞ= ½RðStÞ+ γVðSt�1Þ�
X

St�12S
PðSt�1jStÞ ð9Þ

In summary, by introducing the time dimension and making the
above approximations, we transform the original iterative Bellman
equation into a recurrent dot product form,which facilitates its solving
by MCIM technology.

Additionally, the assumptions (a) and (b) would introduce error in
the original Bellman equation, we need to further discuss the applic-
able conditions of the recurrent dot product Bellman equation.

The error from assumption (a) must be bounded:

VðStÞ � VðSt�1Þ
�� ��≤ δt ð10Þ

Where δt is a small positive constant (tolerance for temporal
variation).

The error from assumption (b) must be bounded:

VðSn�1Þ � VðSt�1Þ
�� ��≤ δs, 8 Sn�1 wherePðSn�1jStÞ>0, andX

Sn�12S
PðSn�1jStÞ= 1 ð11Þ

Where δs is a small positive constant (tolerance for temporal
variation).

Hence, the error introduced by these assumptions is ð2Þ�ð7Þ
�� ��:

Ej j= γ½
X

Sn�12S
PðSn�1jStÞVðSn�1Þ � VðSt�1Þ�

������

������
= γ½VðSn�1Þ � VðSt�1Þ�
�� ��≤ γδs

ð12Þ
In order to ensure that (2) and (7) are basically equivalent, then:

Ej j≪ VðStÞ
�� �� ð13Þ

That is:

γδs ≪ VðStÞ
�� �� ð14Þ

The (14) ensures that the error induced by local consistency
assumption is negligible. The error induced by temporal smoothness
assumption should alsobenegligible. Hence, the applicable conditions
of recurrent dot product Bellman equation are:

maxðγδs, δtÞ≪ VðStÞ
�� �� ð15Þ

Proof the convergence of recurrent dot Bellman equation
To proof the convergence of recurrent dot Bellman equation, wewant
to introduce the Banach fixed-point theorem firstly. The Banach fixed-
point theorem (also known as the contraction mapping theorem)
states that if a function G is a contraction mapping on a complete
metric space, thenG has a unique fixed point45. This fixed point can be
found by iteratively applying G to any initial point in the space.
According to the Banach fixed-point theorem, we can proof that the
recurrent dot Bellman equation converges to a unique solution, pro-
vided that the mapping G defined by the recurrent dot Bellman
equation is a contraction.

We define the mapping G as follows:

GðVðSt�1ÞÞ=VðSt Þ ð16Þ

Here,G takes the value function V(St−1) at time t − 1 andmaps it to
the value function V(St) at time t. Using the recurrent dot Bellman
equation, G can be expressed as:

GðVðSt�1ÞÞ= ½RðStÞ+ γVðSt�1Þ� �
X

St�12S
PðSt�1jStÞ ð17Þ

The goal is to prove that G is a contraction mapping, which will
ensure that the recurrent dot Bellman equation converges to a unique
solution. ThemappingG is contraction if there exists a constant γ (with
0 < γ < 1) such that for any two value functions V and W:

GðVÞ � GðWÞ
�� ���� ��

1 ≤ γ V�Wj jj j1 ð18Þ

Here, the � � �j jj j1 is infinity norm. The infinity norm of a vector
X = {x1, x2, …, xn} is defined as:

Xj jj j1 =max jx1j, x2
�� , :::,j jxn

��� � ð19Þ

To prove thatG is a contractionmapping, we start by considering
two value functions V and W. Using the definition of G in Eq. (16), we
compute G(V)-G(W)

GðVÞ � GðWÞ= ½RðStÞ+ γVðSt�1Þ� �
X

St�12S
PðSt�1jStÞ � ½RðStÞ+ γWðSt�1Þ�

�
X

St�12S
PðSt�1jStÞ

ð20Þ

Simplifying, we get:

GðVÞ � GðWÞ= γ½VðSt�1Þ� �WðSt�1Þ
� �

X

St�12S
PðSt�1jStÞ ð21Þ

Similarly, for traditional Bellman equation, there is:

GðVÞ � GðWÞ= γ
X

Sn�12S
PðSn�1jSnÞ½VðSn�1Þ� �WðSn�1Þ

�
ð22Þ

Next, we apply the infinity norm � � �j jj j1 to both sides of (21) and
(22). we obtain:

GðVÞ � GðWÞ
�� ���� ��

1 = γ½VðSt�1Þ� �WðSt�1Þ
��

X

St�12S
PðSt�1jStÞ

������

������

������

������
1

≤ γ
X

St�12S
PðSt�1jStÞ

������

������

������

������
1

� V�Wj jj j1

ð23Þ

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 8

www.nature.com/naturecommunications

GðVÞ � GðWÞ
�� ���� ��

1 = γ
X

Sn�12S
PðSn�1jSnÞ½VðSn�1Þ� �WðSn�1Þ

�
������

������

������

������
1

≤ γ V�Wj jj j1

ð24Þ

Here, jjPSt�12SPðSt�1jStÞjj1 ≤ 1, Hence, for both of recurrent dot
Bellman equation and traditional Bellman equation, the G is a con-
traction mapping.

To apply the Banach fixed-point theorem, wemust also show that
the state space S is a complete metric space. A metric space is com-
plete if everyCauchy sequence in the spaceconverges to apointwithin
the space.

Let S = {S1, S2, …, St} be a finite set of states.
Define a metric d on S as:

dðSi, SjÞ= VðSiÞ � VðSjÞ
���

���
���

���
1

ð25Þ

Since S is finite, any Cauchy sequence {Sn} in S must eventually
repeat some state S* infinitely often. This ensures that {Sn}converges to
S*46. That is the state space S is a complete metric space.

Since G is a contraction mapping and the state space S is com-
plete, the Banach fixed-point theorem guarantees that G has a uni-
ssque fixed point V*, such thatG(V*) =V*. This proves that the recurrent
dot Bellman equation converges to a unique solution. Furthermore, it
should be noted that, here

γ
X

St�12S
PðSt�1jStÞ

������

������

������

������
1

� V�Wj jj j1 ≤ γ V�Wj jj j1 ð26Þ

Hence, the recurrent dot Bellman equation convergency speed is
faster than traditional Bellman equation.

Recurrent dot product Bellman equation approximate solution
In the memristive recurrent dot Bellman equation, the state transition
probability PðSt�1jStÞ is mapped to the conductance states of mem-
ristors. However, memristors exhibit intrinsic read noise (δintrinsic),
making it difficult to achieve precise solutions. Instead of treating this
noise as a drawback, we leverage it to find an approximate solution to
the Bellman equation. By introducing the δintrinsic, the state transition
probability could be replaced by σðSt�1jStÞ:

σðSt�1jStÞ=PðSt�1jStÞ+ δintrinsic ð27Þ

Then the recurrent dot product Bellman equation becomes:

VðStÞ= ½RðStÞ+ γVðSt�1Þ� �
X

St�12S
σðSt�1jStÞ ð28Þ

The sum
P

St�12SσðSt�1jStÞ includes the intrinsic noise, that is:

X

St�12S
σðSt�1jStÞ=

X

St�12S
PðSt�1jStÞ+

X

St�12S
δintrinsic ð29Þ

Since
P

St�12SσðSt�1jStÞ= 1 (by definition of probability), we have:

X

St�12S
σðSt�1jStÞ= 1 +

X

St�12S
δintrinsic ð30Þ

The intrinsic read noise of memristor follows Gaussian distribu-
tion, whichhasbeen reported in various previousworks37,42, and tested
in our measurement results. That is:

δintrinsic � Nð0,φ2Þ ð31Þ

Here, theφ2 is the read noise variance. We set |S| as the number of
states. Therefore,

P
St�12Sδintrinsic is equivalent to adding δintrinsic | S|

times. When summing |S| independent Gaussian variables, the result-
ing sum is also Gaussian. That is:

X

St�12S
δintrinsic � Nð0, Sj jφ2Þ ð32Þ

Here, |S|φ2 is the total variance of the sum, which scales linearly with
the number of terms |S|.

Hence,

X

St�12S
σðSt�1jStÞ � Nð1, jSjφ2Þ ð33Þ

Using Chebyshev’s inequality, we can show that the noise is
bounded with high probability. Specifically, there exists a constant K
(with 0 <K ≤ 1) such that:

X

St�12S
σðSt�1jStÞ

������

������

������

������
1

≤ K ð34Þ

Then, we define a mapping F as:

FðVðSt�1ÞÞ=VðStÞ ð35Þ

Similarly, we could obtain:

FðVÞ � FðWÞ
�� ���� ��

1 ≤ γK
X

St�12S
PðSt�1jStÞ

������

������

������

������
1

� V�Wj jj j1 ð36Þ

Causing 0 < γ < 1 and 0 <K ≤ 1, 0 < γK < 1. That is, F is a compres-
sion mapping, and the recurrent dot product Bellman equation con-
verges to an approximate solution.

Furthermore, during the approximate solution process, the con-
traction factor is reduced from γ to γK. This indicates that the approx-
imate solution is faster (at least not slower) than the precise solution.

Programming protocol of the write-and-verify strategy for
weight update
The programming protocol of the write-and-verify strategy for weight
update is shown in Fig S20, schematically. When update the weights,
the device is reset to high resistance state firstly. Then the SET pulse is
applied on the device according to the target. If the device resistance
wrote to the acceptive range, the write operation is success. If the
resistance is high, then the gate voltage is increased and then another
SET pulse is applied to decrease its resistance. If the resistance is lower
than the lowest resistance of the acceptance range, or the write-and-
verify operation reaches a limit, then the write is a failure.

Data availability
The data that support the findings of this study are provided as a
Source Data file with this paper. Source data are provided with
this paper.

Code availability
The codes are available at https://github.com/495008566/MBS.git.

References
1. Roozegar, M., Mahjoob, M. J. & Jahromi, M. Optimal motion plan-

ning and control of a nonholonomic spherical robot using dynamic
programming approach: simulation and experimental results.
Mechatronics 39, 174–184 (2016).

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 9

https://github.com/495008566/MBS.git
www.nature.com/naturecommunications

2. Zhou, B., Gao, F., Wang, L., Liu, C. & Shen, S. Robust and efficient
quadrotor trajectory generation for fast autonomous flight. IEEE
Robot. Autom. Lett. 4, 3529–3536 (2019).

3. Mitten, L. Preference order dynamic programming. Manag. Sci. 21,
43–46 (1974).

4. Bellman, R. Dynamic programming. science 153, 34–37 (1966).
5. Lee, J. & Lee, J. Approximate dynamic programming based

approach to process control and scheduling. Comput. Chem. Eng.
30, 1603–1618 (2006).

6. Gast, N., Gaujal, B. & Le Boudec, J. Y. Mean field forMarkov decision
processes: from discrete to continuous optimization. IEEE Trans.
Autom. Control 57, 2266–2280 (2012).

7. Powell, W. B. A unified framework for optimization under uncer-
tainty. INFORMS TutORials in Operations Research, 45–83. (2016).

8. Guo, X., Song, X. & Zhang, Y. First passage optimality for
continuous-time Markov decision processes with varying discount
factors and history-dependent policies. IEEE Trans. Autom. Control
59, 163–174 (2013).

9. Abe, N., Biermann, A. & Long, P. Reinforcement learning with
immediate rewards and linear hypotheses. Algorithmica 37,
263–293 (2003).

10. Lutter, M. Continuous-time fitted value iteration for robust policies.
In Inductive Biases in Machine Learning for Robotics and Control,
156, 71–111. (2023).

11. Boybat, I. et al. Neuromorphic computing with multi-memristive
synapses. Nat. Commun. 9, 2514 (2018).

12. Wang, Z. et al. Reinforcement learning with analogue memristor
arrays. Nat. Electron. 2, 115–124 (2019).

13. Wu, Z. et al. A habituation sensory nervous systemwithmemristors.
Adv. Mater. 32, 2004398 (2020).

14. Joshi, V. et al. Accurate deep neural network inference using com-
putational phase-change memory. Nat. Commun. 11, 2473 (2020).

15. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network infer-
ence. Nat. Electron. 6, 680–693 (2023).

16. Lim, D. H. et al. Spontaneous sparse learning for PCM-based
memristor neural networks. Nat. Commun. 12, 319 (2021).

17. Berdan, R. et al. Low-power linear computation using nonlinear
ferroelectric tunnel junction memristors. Nat. Electron. 3,
259–266 (2020).

18. Kim, I. J., Kim, M. K. & Lee, J. S. Highly-scaled and fully-integrated 3-
dimensional ferroelectric transistor array for hardware imple-
mentation of neural networks. Nat. Commun. 14, 504 (2023).

19. Kim, M. K., Kim, I. J. & Lee, J. S. CMOS-compatible compute-in-
memory accelerators based on integrated ferroelectric synaptic
arrays for convolution neural networks. Sci. Adv. 8,
eabm8537 (2022).

20. Papp, Á, Porod, W. & Csaba, G. Nanoscale neural network using
non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

21. Kaiser, J. et al. Hardware-aware in situ learning based on stochastic
magnetic tunnel junctions. Phys. Rev. Appl. 17, 014016 (2022).

22. Zahedinejad, M. et al. Memristive control of mutual spin Hall nano-
oscillator synchronization for neuromorphic computing.Nat.Mater.
21, 81–87 (2022).

23. Hao, Y. et al. Uniform, fast, and reliable CMOS compatible resistive
switching memory. J. Semicond. 43, 054102 (2022).

24. Shi, T. et al. A review of resistive switching devices: performance
improvement, characterization, and applications. Small Struct. 2,
2000109 (2021).

25. Zhang,Y. et al. Evolutionof theconductivefilament system inHfO2-
based memristors observed by direct atomic-scale imaging. Nat.
Commun. 12, 7232 (2021).

26. Milano, G. et al. In materia reservoir computing with a fully mem-
ristive architecture based on self-organizing nanowire networks.
Nat. Mater. 21, 195–202 (2022).

27. Rao, M. et al. Thousands of conductance levels in memristors
integrated on CMOS. Nature 615, 823–829 (2023).

28. Onen, M. et al. Nanosecond protonic programmable resistors for
analog deep learning. Science 377, 539–543 (2022).

29. Li, C. et al. Analogue signal and image processing with large
memristor crossbars. Nat. Electron. 1, 52–59 (2018).

30. Lin, P. et al. Three-dimensional memristor circuits as complex
neural networks. Nat. Electron. 3, 225–232 (2020).

31. Yao, P. et al. Face classification using electronic synapses. Nat.
Commun. 8, 15199 (2017).

32. Dalgaty, T. et al. In situ learning using intrinsic memristor variability
via Markov chain Monte Carlo sampling. Nat. Electron. 4, 151–161
(2021).

33. Barto, A. & Mahadevan, S. Recent Advances in Hierarchical
Reinforcement Learning. Discret. Event Dyn. Syst. 13, 341–379
(2003).

34. Rust, J. Using randomization to break the curse of dimensionality.
Econometrica: J. Econometr. Soc., 487–516 (1997).

35. Ormoneit, D. & Sen, Ś Kernel-based reinforcement learning. Mach.
Learn. 49, 161–178 (2002).

36. Mahmoodi, M. R., Prezioso, M. & Strukov, D. B. Versatile stochastic
dot product circuits based on nonvolatile memories for high per-
formance neurocomputing and neurooptimization. Nat. Commun.
10, 5113 (2019).

37. Cai, F. et al. Power-efficient combinatorial optimization using
intrinsic noise inmemristor Hopfield neural networks.Nat. Electron.
3, 409–418 (2020).

38. Sun, Z., Pedretti, G., Ambrosi, E., Bricalli, A. & Ielmini, D. In-memory
Eigenvector Computation in Time O (1). Adv. Intell. Syst. 2,
2000042 (2020).

39. Mnih, V. et al. Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015).

40. Zhu, R., Zhao, Y. Q., Chen, G., Ma, S. & Zhao, H. Greedy outcome
weighted tree learning of optimal personalized treatment rules.
Biometrics 73, 391–400 (2017).

41. Lin, H. et al. Implementation of highly reliable and energy efficient
in-memory hamming distance computations in 1 Kb 1-Transistor-1-
Memristor arrays. Adv. Mater. Technol. 6, 2100745 (2021).

42. Lu, J. et al. Quantitatively evaluating the effect of read noise in
memristive Hopfield network on solving traveling salesman pro-
blem. IEEE Electron. Device Lett. 41, 1688–1691 (2020).

43. Bradtke, S. & Barto, A. Linear least-squares algorithms for temporal
difference learning. Mach. Learn. 22, 33–57 (1996).

44. Cervellera, C., Gaggero,M. &Macciò, D. Low-discrepancy sampling
for approximate dynamic programming with local approximators.
Comput. Oper. Res. 43, 108–115 (2014).

45. Rincón-Zapatero, J. P. & Rodríguez-Palmero, C. Existence and
uniqueness of solutions to the Bellman equation in the unbounded
case. Econometrica 71, 1519–1555 (2003).

46. Rudin, W. Principles of Mathematical Analysis, 3rd edn. (McGraw-
Hill, 1976).

Acknowledgements
This work was supported in part by the National Natural Science Foun-
dation of China (NSFC) under Grant Nos. 62304001, 62274002 and
62201005, in part by the Anhui Provincial Natural Science Foundation
under Grant No 2308085QF213, in part by the Natural Science Research
Project of Anhui Educational Committee under Grant No
2023AH050072.

Author contributions
Z. Wu, Y. Dai and Q. Liu directed the research. Z. Feng, Z. Wu and J. Zou
conceptualize the memristive Bellman solve and related applications.
Z. Feng, Z. Wu and L. Cheng completes the device characterization.
Z. Feng, and J. Zou completes system construction and test. Z. Feng,

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 10

www.nature.com/naturecommunications

Z. Wu and H. Wang completes the theoretical derivation. X. Zhao,
X. Zhang, C. Wang, J. Lu, Y. Wang, W. Guo, Z. Qian, Y. Zhu, and Z. Xu
helped with data analysis. All authors reviewed and edited the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-60085-w.

Correspondence and requests for materials should be addressed to
Zuheng Wu, Yuehua Dai or Qi Liu.

Peer review information Nature Communications thanks the anon-
ymous, reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-60085-w

Nature Communications | (2025) 16:4925 11

https://doi.org/10.1038/s41467-025-60085-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Memristive Bellman solver for decision-making
	Results and Discussion
	Challenges and solutions for realizing a memristive Bellman solver
	Memristive Bellman solver for decision-making
	Memristor for Bellman solver hardware implementation
	Memristive Bellman solver for path planning tasks

	Methods
	Recurrent dot product Bellman equation
	Temporal smoothness assumption
	Local consistency assumption

	Proof the convergence of recurrent dot Bellman equation
	Recurrent dot product Bellman equation approximate solution
	Programming protocol of the write-and-verify strategy for weight update

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

