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A global map of travel time to access
veterinarians

Nicola G. Criscuolo 1, Yu Wang 1 & Thomas P. Van Boeckel 2,3,4

Veterinarians play a vital role in providing healthcare, detecting zoonotic
outbreaks, and safeguarding the livelihood of those relying on animals for
subsistence. However, veterinary capacities are unequal between countries,
and their geography is seldom documented despite significant implications
for healthcare access. Here, we web-scrape 303,745 addresses of veterinary
practices from 115 countries and use geospatial models to map their global
distribution at 10×10 km2. Animals located more than one hour from veter-
inarians are overwhelmingly (93.8%) in low- and middle-income countries.
Globally, the number of isolated animals could be reduced by 32.9% by
increasing the number of veterinarians by 5%, provided that this effort is
geographically targeted. Our maps provide a global baseline to allocate
resources to improve access to care, enhance veterinary education, and
strengthen disease surveillance.

Maps play a critical role in prioritizing interventions for global infec-
tious diseases1. In human medicine, fine-scale maps have helped
quantify the burden of diseases such as malaria and dengue, which
together affect millions of people worldwide and pose significant
public health challenges2. Furthermore, maps facilitated geo-
graphically targeted campaigns to target insecticide bed nets in spe-
cific regions3. Concomitantly, maps of healthcare facilities4,5 have been
used to make international comparisons of access to primary care and
guide the deployment of important medicines such as antiretroviral
therapy against the human immunodeficiency virus6. In animal health,
similar efforts have been conducted to map diseases that threaten the
livelihood of those who raise animals for subsistence such as avian
influenza7, Rift Valley fever8, or antimicrobial resistance (AMR)9–12.

However, unlike in human medicine, mapping access to veter-
inarians – those who are the first line of defense against diseases of
animal origin13—has thus far lagged behind and was limited to the
national-level or, in a few countries, to the regional/province-level
(United States, France, Italy, Spain, Switzerland)14–19. The most notable
global effort to inventory veterinary capacities—currently led by the
World Organisation for Animal Health—is focused on country-level
performance assessments20. Despite these efforts, gaps remain in
mapping veterinary services at a fine-scale, potentially overshadowing
important geographic disparities in access to veterinary care, such as

between rural and urban areas, high-income (HICs) and low- and
middle-incomecountries21 (LMICs), or regionswith high versus (vs) low
food animals’density. This is particularly true for large LMICs currently
transitioning from extensive farming to intensive farming22, a phase
associated with an increased risk of emergence of zoonotic
pathogens23.

Important insight could be gained from assessing the state of the
veterinary workforce at a fine spatial scale. Firstly, by identifying areas
akin to medical deserts in human medicine24, i.e., areas with inade-
quate access to healthcare providers due to a lack of personnel,
facilities, or infrastructure. In such areas, long travel times to/for
veterinarians are a major obstacle to delivering care. While travel time
is only one dimension of the multifaceted challenge of access to care
(i.e.,: cost, education, regulatory hurdles), a recent meta-analysis
identified this factor as a leading cause for insufficient animal care in
LMICs25. Maps could guide capacity building in these regions using
travel time as a criterion for resource allocation. In addition, mapping
areas where veterinary capacities are currently insufficient could
indirectly help strengthen surveillance for potential pandemic
pathogens26 in regions associated with a high risk of disease
emergence27,28.

Between 2010 and 2020, platforms have appeared in many
countries that enable internet users to find veterinary practices in their
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vicinity using their postcodes/addresses29–32. Although these platforms
were not designed for public health purposes, they represent an
unprecedented opportunity to investigate the fine-scale geographic
distribution of veterinary practices and its determinants. However, to
convert this data into actionable insights for capacity-building deci-
sions several challenges must be addressed. First, platforms of veter-
inary practices addresses must be inventoried. Second, web-scraping
tools are needed to extract the large number of veterinary practices
addresses listed online, and these addresses must also be curated and
geocoded. Third, statistical models that capture variations in veter-
inary practices density and account for influencing factors must be
developed and validated regionally to ensure robust interpolation
between regions with extensive available data and those with limited
or sparse data. Fourth, model predictions must align with national and
international veterinary practices estimates. Finally, models should
account for variations in the presence of veterinary practices on online
platforms between countries characterized by different levels of eco-
nomic development and internet penetration.

In thiswork,wemap theglobal distributionof veterinarypractices
at 10 × 10 km2 resolution using geospatial models in combination with
a global address book of veterinary practices assembled from open-
access online platforms. We identify regions where food animals are
located over an hour from veterinary practices bymotorized transport
and highlight areas where veterinary capacity should be increased to
improve access to care.

Results
Building a global address book of veterinarians
We identified 87 online platforms listing addresses of veterinary
practices across 115 countries (Supplementary Fig. 1), including
OpenStreetMap and Google Maps, 16 national platforms listing

veterinary practices by postcode, 21 websites of veterinary councils,
and 48 national phonebooks. From these platforms, web-scraping
techniques (Methods) returned 404,635 records of potential addres-
ses of veterinary practices (Supplementary Fig. 2). After a data curation
phase to i) remove records that were not veterinary practices (e.g.,
veterinary pharmacies, that could be listed on national phonebooks
when searching for veterinary practices), ii) prevent duplicates across
platforms, and iii) remove permanently closed practices, our database
consisted of 303,745 addresses of veterinary practices (Fig. 1a and
Supplementary Fig. 3). Amajority of addresseswere retrieved from the
Americas (39.7%), Europe (38%), and Asia (18.2%), while Africa and
Oceania accounted for 2.1%, and 2% of records, respectively. The
specialization of veterinary practices (companion vs food animals) was
reported for 9.1% of the practices sampled. Amongst those, 85% cared
for companion animals, and 15% cared for food animals.

Global distribution of veterinarians
A global map of veterinary practices was generated at 10 × 10 km2

resolution using web-scraped addresses of veterinary practices in
combination with anthropogenic and environmental covariates in a
geospatial model (Methods, Supplementary Table 1, Supplementary
Fig. 4a). This map was cross-validated in nine world subregions (Sup-
plementary Fig. 5) and showed that LMICs accounted for 57% of all
predicted veterinary practices worldwide. Population density, gross
domestic product, and low travel time to cities were positively asso-
ciated with a high density of veterinary practices and had the highest
statistical influence on their geographic distribution (Methods, Sup-
plementary Table 2).

The number of veterinary practices per pixel was re-aggregated
nationally and compared with the number of practices reported by
veterinary associations, international organizations, and peer-

a

b c d

Livestock units of extensively raised food 
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Fig. 1 | Addresses of veterinary practices and livestock units of extensively
raised food animals per veterinary practice. a Green dots represent the geo-
graphic locations of veterinary practices, obtained by geocoding the addresses

within online platforms. Distribution of livestock units33 of extensively raised food
animals per veterinary practice (specialized in food animals) at the 10×10 km2

resolution in West Africa (b), India (c), and Mainland Southeast Asia (d).

Article https://doi.org/10.1038/s41467-025-60102-y

Nature Communications |         (2025) 16:5849 2

www.nature.com/naturecommunications


reviewed publications (Supplementary Table 3) in each country. For
70% of countries, re-aggregated predictions were within <40% of
national-level reports of the numbers of veterinary practices. For the
remaining 30% of countries, re-aggregated predictions were between
40-50%of national-level reports of the numbers of veterinarypractices
(Supplementary Fig. 6). Furthermore, 92.4% of our predictions were
lower than the national numbers of the estimated veterinary graduates
(Methods, Supplementary Fig. 6).

For veterinary practices specialized in food animals, the global
map of their distribution (vs companion animals, Supplementary
Fig. 7) showed that pixels with a majority of veterinary practices spe-
cialized in food animals were in Africa (54.6%), Oceania (43.4%), and
Latin America (29.8%). In contrast, this proportion decreased to 18.9%
in Europe, 13.5% in Asia, and only 6% in North America.

Globally, the number of livestock units (LSUs33, Methods) of food
animals raised extensively22 per veterinary practice was, on average,
5.4 across LMICs (Fig. 1b). This number fell to 0.2 in HICs. At the
country-level, we identified pixelswithmore than 5 LSUs of extensively
raised food animals per veterinary practice (hereafter referred to as
“high animals’density areas”) in 81.5%of Latin American countries, 92%
of African countries, and 63.3% of Asian countries.

Travel time to veterinary services
Global maps of coldspots of veterinary capacity (Fig. 2), i.e.,
10 × 10 km2 pixels where food animals were more than 1 h away by
motorized transport from the nearest veterinary practice (Methods),
showed that 188.8 million LSUs lived more than 1 h away from a
veterinary practice. That is equivalent to 1.2 times the biomass of
chicken, cattle, and pigs raised for food in the United States.

Asia had the highest percentage of animals living in coldspots
(44.4%), followed by Latin America (27.9%), and Africa (18.8%). The
highest percentages of all cattle in coldspots were in Brazil (22.1%),
Sudan (8.1%), China (7.6%), Chad (7.5%), and Australia (4.5%). For
chickens, the highest percentages were in China (15.2%), Bolivia (8.6%),
Russia (7.4%), Iran (7.6%), and Indonesia (7%), while for pigs were in
China (50.2%), Myanmar (7.4%), Papua New Guinea (6%), Russia (5.1%),
and Brazil (4.6%). Finally, at the species-level, LMICs accounted for 94%
of cattle, 93.4% of chickens, and 99.4% of pigs in coldspots. Countries
with the highest average travel time to reach an animal in coldspots
were Somalia, China, Guyana, Sudan, Papua New Guinea, and the
Central African Republic. These patterns remained consistent when
settingmaximum travel time thresholds to define coldspots at 2 or 4 h
(Supplementary Fig. 8).

Except for North America and Europe (excluding Russia), regions
with high percentages (>50%) of coldspots of veterinary capacity and
low animal densities (<5 LSUs/10 × 10 km2) were present in every con-
tinent (Fig. 3). Of even greater concerns were regions that combined
the presence of coldspots with growing animals’ densities (>5 LSUs/
10×10 km2). These were located predominantly in Asia, and to a lesser
extent in West Africa, and around the African Great Lakes. In Rwanda,
Malawi, Bangladesh, Papua New Guinea, Vietnam, Philippines, and
Haiti more than 75% of the aggregated LSUs of cattle, chickens, and
pigs were present in coldspots and/or high animals’ density areas.

A geographically targeted approach to improve access to
veterinarians
In countries with coldspots, we identified the locations where a
hypothetical 5% scale-up of veterinary practices could take place such
as to maximize the number of food animals living within 1 h from a
practice. A recursive exhaustive allocation approach (REA) testing
every location achieves the maximal possible coverage of food ani-
mals, but it is computationally expensive34. Therefore, we compared
three approximations to the REA (Methods): i) one based on countries
administrative division (administrative approach), ii) one based on
random allocations of veterinary practices in space (random

approach), and iii) one targeting specific areas of a highdensity of food
animals distant from veterinary practices (“contiguity approach”).

The comparison of these approaches with the REA in nine coun-
tries (Kenya, Panama, Ecuador, Liberia, Eritrea, Honduras, Nicaragua,
Costa Rica, and Cambodia) showed that, in each country, the con-
tiguity approach was, on average, 18.5 times faster than the REA
(Supplementary Fig. 9 and Supplementary Table 4) and was the only
one reaching >90% of the REA’s performance for reducing the number
of animals in coldspots when scaling up the number of veterinary
practices. In contrast, the administrative and the random approach
reduced the number of animals in coldspots, on average, only by 33.1%
and 42%, respectively, when compared to the REA (average coverage
range of the Monte Carlo simulations for the random approach:
22.2–63.2%).

Furthermore, values of kernel density estimation (KDE) maps
computed from the veterinary practices allocated by each approach
showed that the administrative and the random approach allocated
veterinary practices in different geographical locations than the REA.
In contrast, the geographical patterns of the veterinary practices
allocated through the contiguity approach matched that of the REA
(Supplementary Fig. 10). As a result, the average Pearson correlation
coefficient (r) computed between the values of each KDE map of the
REA and the contiguity approach was 0.96 (95% bootstrapped CIs:
[0.94, 0.97]; r2 = 0.92). Therefore, the contiguity approachwas applied
to all countries, to generate a global map of “supplementary” veter-
inary practices (Fig. 4).

Globally, a 5% increase in the number of veterinarypractices could
reduce the coldspots area by 6,600,000 km2 (comparable to 85% of
the size of Australia, Supplementary Fig. 11). The continents where the
contiguity approach removed the highest number of food animals
from coldspots were Asia (11%) and Latin America (8.6%). Overall, the
contiguity approach reduced the number of animals in coldspots by
27% for cattle, 34.3% for chickens, and 44.8% for pigs (Supplementary
Fig. 12). Together, these food animals correspond to89%of the LSUsof
Mexico. The countries that would concentrate the increase (5%) in the
global number of veterinary practices if these were targeted geo-
graphically were China (39.2%), Brazil (20.2%), Myanmar (5.5%), Vene-
zuela (4%), and Russia (3.8%) (Fig. 5).

At the sub-national level, the regions that would concentrate the
increase in the global number of veterinary practices for cattle (Sup-
plementary Fig. 13) were Mato Grosso, Rio Grande do Sul, Pará, and
Goiás (Brazil), Xizang, Qinghai, and Yunnan (China), Mahajanga
(Madagascar), Central Darfur (Sudan), Zinder (Niger), Kalmyk and
Orenburg (Russia), andQueensland andNorthernTerritory (Australia).
For chickens (Supplementary Fig. 14), the regions identifiedwereMato
Grosso (Brazil), Cochabamba and Santa Cruz (Bolivia), Durango
(Mexico), Jilin, Yunnan, Nei Mongol, and Guangxi (China), Antsiranana
(Madagascar), Northern Cape (South Africa), Zinder (Niger), Stavropol
and Leningrad (Russia), New South Wales (Australia) and West Coast
(NewZealand). For pigs (Supplementary Fig. 15) the regions wereMato
Grosso and Parà (Brazil), Sonora (Mexico), Yunnan, Guizhou, Sichuan,
and Guangxi (China), Gaza and Tete (Mozambique), and Omsk and
Tatarstan (Russia).

Discussion
In this study, we assembled an address book of >300,000 veterinary
practices from 115 countries using web-scraping techniques (Meth-
ods), thereby creating a global geospatial database that would have
been virtually impossible to build via traditional “manual” data col-
lection. Although this data is irregular in nature, when used in com-
bination with statistical models it showed a good agreement with
national estimates of the number of veterinary practices. Furthermore,
we showed that it can supplement international efforts that document
veterinary capacities by providing insights into the geographic dis-
tribution of veterinary practices at unprecedented resolution
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(10 × 10 km2). The most notable of these efforts is led by the World
Organisation for Animal Health (WOAH)35, which established guide-
lines to evaluate the national performances in veterinary services
(PVS)20. To date, more than 140 countries have engaged in the PVS
pathway. This consists of a standardized global methodology that
every country can use to i) evaluate the status of its national veterinary
services, ii) identify its strengths and weaknesses, and iii) plan work-
force development. In this context, the methodology underlying the
PVS pathway could be supplemented with additional criteria for the
evaluation. For instance, the percentage of areas classified as geo-
graphic coldspots of veterinary capacity could be integrated into the
PVS. In addition, our study introduces a standalone metric for each
country and food animal: the average travel time for a veterinarian to
reach an animal in coldspots (Methods and Fig. 2). Thismetric enables
cross-country comparisons and offers an immediate overview of
veterinary services availability, potentially strengthening the PVS by
helping prioritize the allocation and scaling up of resources.

In this study, we also proposed a tentative strategy to reduce
coldspots of veterinary services when a limited workforce is available.

Our findings suggest that a 5% increase in the global veterinary work-
force, if geographically targeted, could bring within 1 h of motorized
transport from a veterinary practice 27% of the world’s cattle, 34.3% of
chickens, and 44.8% of pigs currently living in coldspots of veterinary
care akin tomedical deserts. This represents aneasily achievable target
to improve the livelihood of the 1.3 billion people who rely on food
animals for subsistence (of which 600 million are small-scale
farmers)36 and to enhance animal welfare37. In addition, it could help
strengthen surveillance against emerging pathogens. While numerous
studies have exploredoutbreaks in food animals7–9,38,39, there remains a
gap in assessing the capacities of veterinarians, who are among the key
actors involved in managing such outbreaks.

The regions that would benefit themost from increased access to
veterinary practices are East and Southeast Asia (for chicken and pigs)
and Brazil (cattle). However, a lack of access to care for cattle in Brazil
could also reflect an overall lack of incentives for health workers to
move to rural areas40, rather thana shortageof veterinary practices.On
theonehand, rural areas faceeconomic challenges that limit the ability
of farmers to afford veterinary services, making practices less viable.

Fig. 2 | Coldspotsofveterinary capacity incattle, chickens, andpigs.Travel time
for cattle (a), chickens (c), and pigs (e) living at least 1 h away by motorized
transport from a veterinary practice or school (“coldspots”). Average motorized

travel time per cattle (b), chickens (d), and pigs (f) living in coldspots per country.
Numbers in the bars represent the percentages of animals per country living in
coldspots, relative to the global number of animals in coldspots.
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On the other hand, veterinarians may prefer urban settings for better
work-life balance, as rural jobs often demand long hours and frequent
travel. Also, the lack of infrastructure and amenities, alongwith limited
opportunities for collaboration and professional growth, could further
discourage veterinarians from working in rural regions41.

Nevertheless, physical access is only one of many dimensions of
the challenge of access to care42. Costs, for instance, constitute a
barrier particularly in LMICs, where smallholder farmers may struggle
to afford veterinary services or medications, even from nearby clinics.
Training levels and expertise of veterinary personnel are equally cri-
tical. An insufficiently trained workforce may limit the quality of care,
especially in areas where diseases requiring specialized care, such as
foot-and-mouthdiseaseor avian influenza, are prevalent. Furthermore,
local disease burden can exacerbate these challenges, as areas with a
high prevalence of food animals’ diseases may requiremore resources
and skilled professionals tomanage potential outbreaks. Our efforts to
build a global database of veterinary practices could be broadened to
incorporate information on these additional factors affecting access to
care. However, assembling this information must necessarily take
place through a multi-stakeholder approach: via international

organization, but also potentially by involving individual practitioners
in data gathering and validation. In addition, while the “golden hour”
has been acknowledged in the context of trauma care as the optimal
timeframe for intervention, this threshold is a convenience benchmark
that can be subject to variations depending on the nature of the health
issue43. The tentative goal of this work is to provide the backbone for
an initial evaluation of areas lacking veterinary practices and illustrate
the value of high-resolution data for capacity building in animal health.

In HICs, the predictions derived from web-scraped data mirrored
past research from theUnited States, Canada, and France44–46, showing
that veterinary practices predominantly cluster in affluent urban areas
thereby reflecting the growing trend for specialization in pet care
(80–95%) over food animal care (5–20%)47. This translates into a
regional imbalance of veterinary practices, especially in North Amer-
ica, Europe, and Asia. In contrast, in LMICs, our predictions suggest
that the proportion of veterinary practices specialized in food animals
is higher (25–50%) but their number is limited, and their geographic
distribution is highly heterogenous leading to >93% of coldspots of
access to care being in LMICs. In addition, the number of LSUs per
veterinary practice in LMICs is 27 times higher than inHICs, potentially

Veterinary practices
observed

Veterinary practices
predicted

Supplementary veterinary
practices (5%)

a b

Fig. 4 | Veterinary practices allocated through a geographically targeted
approach. Results of the geographically targeted approach used to scale up
veterinary practices in two countries with coldspots: (a) Kenya and (b) Ecuador.
Coldspots were defined as 10 × 10 km2 pixels where food animals were farther than
1 h ofmotorized travel time from the nearest veterinary practice. Both panels show
the point patterns of veterinary practices observed (green), veterinary practices

predicted through the geospatial modeling (light brown, seeMethods), and the 5%
of supplementary predicted veterinary practices allocated through a geo-
graphically targeted approach (orange), i.e., an approach prioritizing the allocation
of veterinary practices in areas with a high density of food animals in coldspots and
far from predicted veterinary practices (“contiguity approach”, see Methods).

High animals’
density areas (%)

)
%( stopsdlo

C

Fig. 3 | Regional veterinary capacities available to food animals. Proportion of
10×10 km2 pixels per administrative unit where food animals were farther than 1 h
away by motorized transport from the nearest veterinary practice or school
(“coldspot”), combined with the proportion of pixels classified as high animals’

density areas, i.e., pixels where the number of extensively raised food animals
(converted in livestock units33) per veterinary practice was higher than 5. In regions
with a white background, the proportion of food animals in coldspots and/or high
animals’ density areas was lower than 1%.
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placing an overwhelming burden on veterinary professionals, which
can lead to insufficient care and slower disease detection. Causes for
limited access to care might include insufficient training and equip-
ment for diagnostic laboratories48, comparatively low salaries21, and
low standard of living in rural areas41.

Nevertheless, the data from LMICs that support this assessment is
currently limited: of the web-scraped veterinary database, just 33.6%
were from LMICs although these make up 79.8% of the global food
production. This discrepancy might rely both on gaps in veterinary
infrastructure in LMICs but also on limitations in the means to collect
addresses in these regions, due to poor internet penetration, less-
developed digital infrastructure, and the lack of online platforms list-
ing veterinary services. In this context, our study canprovide abaseline
for increasing veterinary capacities but also a starting point for better
documenting the veterinary workforce at a sub-national scale and
target investments to improve it. For example, in China—the largest
animal producer in the world—public data on the geographic dis-
tribution of veterinary practices could not be identified for this study,
and even national estimates of the number of veterinary practices
could only be found via press articles49. A unified global database of
veterinary practices might serve as a foundation to address this chal-
lenge and foster collaboration between the public and private sectors
to expand and enhance our database. An increasing number of veter-
inary practices are being integrated under large private companies,

whose business model is to pool resources and create economies of
scale50. Partnerships between organizations like the WOAH, the Food
and Agriculture Organization (FAO), and such companies could help
build on this shared vision, using the database of veterinary practices
as a common ground. Such collaboration could help extend the sys-
tematic expansion of veterinary coverage and knowledge about the
global state of veterinary services.

Our analysis of the access to veterinary practices comes with
limitations. First, our study focused on veterinarians—holders of a
university degree in veterinary medicine—and did not include “para-
vets” who are semi-autonomous professionals predominantly present
in LMICs whose qualifications vary considerably between countries.
Unlike veterinarians, paravets were not systematically inventoried on
online platforms and were therefore not included in our study
although they may play a crucial role in providing care.

Second, our database of web-scraped veterinary practices is likely
incomplete and remains awork in progress. In particular, veterinarians
with a stable client base (e.g., those working in rural areas) may not
perceive significant benefits in listing their addresses online. Relying
on online sources may also introduce a sampling bias—which we
attempted to account for—by implicitly overrepresenting areas with
high internet penetration where veterinarians are likelier to advertise
their services online. This is particularly relevant for some LMICs,
where the limited resources to inventory and maintain online

Fig. 5 | Where to increase veterinary capacities. Global maps of the regions that
concentrate a 5% global increase in veterinary practices to reduce coldspots of
veterinary capacity for cattle (a), chickens (c), and pigs (e). Barplots showing

countries where veterinary practices could be added to maximize the number of
cattle (b), chickens (d), and pigs (f) livingwithin 1 h of veterinary practices, grouped
by continent.
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infrastructures listing veterinary services can result in an under-
representation of the national veterinary capacity, including govern-
ment facilities. In addition, languagebarriers canposechallengeswhen
scraping non-English sources, leading to potential inaccuracies in data
translation or collection, which requires extensive data cleaning and
deduplication efforts. Lastly, privacy policies in some countries pre-
clude displaying addresses of veterinary practices online. Although in
our studyweused spatial covariates to account for the incompleteness
of the veterinary database, these limitations underscore the need to
complement web-scraping with other methods to improve data
accuracy and representativeness, such as encouraging veterinary stu-
dents and local officers to conduct field surveys and establish bilateral
collaborations with local non-governmental organizations and veter-
inary associations.

Third, information about the capacity (personnel/equipment) of
each veterinary practice is currently very challenging to access for
animal health. Online platforms typically only report the name of
practices or the full name of a veterinarian, without providing details
such as the number of personnel, available equipment, or the range of
services offered. For this reason, we considered each single address
sampled as a standalone veterinary practice. In contrast, human
healthcare mapping initiatives, such as “healthsites.io”, enrich geo-
graphic data of hospitals collected from OpenStreetMap51 with addi-
tional information, including whether they are public or private, the
medical specializations offered, and, in some cases, the beds
availability5. Similarly, Service Provision Assessments (SPAs) collect
data on service availability, quality of care, and facility infrastructure,
providing a comprehensive understanding of healthcare capacity
within a country. Achieving a comparable level of detail on the “qual-
ity” of care at the location of each practice should be a priority for the
future. This could include surveys and structured assessments mod-
eled after SPAs, as well as collaborations with local veterinary autho-
rities to facilitate the collection of data on clinic size, personnel
qualifications, equipment, diagnostic capabilities, and service types.
Additionally, leveraging crowdsourcing platforms or engaging practi-
tioners directly through digital tools could enrich the database with
qualitative and quantitative insights. Such advancements would help
bridge the gap between veterinary and human healthcare mapping,
providing amore nuanced understanding of global veterinary capacity
and supporting better-targeted interventions for animal health.

Fourth, the uncertainty associated with spatial interpolations of
the veterinary practicesmaps is reflected in confidence interval maps
(Supplementary Fig. 4). These uncertainty levels reflect the spatial
cross-validation procedure used to prevent regional overfitting.
However, these do not reflect a comparison with independent field
surveys since all data sources identified were included in the model
training and cross-validation to produce the most accurate maps
possible. In this context, covariates such as population density, gross
domestic product, and travel time to cities were the most influential
in modeling the distribution of veterinary practices. Although they
can be used to separate such distribution between HICs and LMICs,
they might not fully capture all the barriers associated with access to
veterinary care in rural or underdeveloped areas. Similarly, maps of
food animals’ density used for this study come with their own
uncertainty, and although they have been cross-validated to report
the most accurate predictions of food animals at the 10 × 10 km2

resolution52,53, the on-the-ground numbers of such animals can differ
from the ones predicted. In addition, other sources of uncertainty
concern regions of the world where animals and pastoralist com-
munities are nomadic54. Albeit limited in number globally, the
population density of animals raised in these systems may vary over
the years and affect the locations of coldspots. However, to the best
of our knowledge, global maps of herd movements that would
enable us to account for these variations do not exist to this day.
Future field campaigns could investigate how the network of

predicted veterinary practices should be adapted for optimally ser-
ving these communities.

Fifth, considering a 1-h timeframe for coldspots is a benchmark of
convenience for its interpretability and its comparability with the
“golden hour” used in human medicine55. However, while a 1-h time-
frame has been used in the context of trauma care for humans, it is
important to note that this is not a universally recognized standard for
animal care. The optimal timeframe for intervention can vary sig-
nificantly based on the specific medical condition43. For example, in
the context of access to antivenoms for snakebites, Ochoa and col-
leagues used travel time intervals to access facilities with antivenoms
of 0–30min, 30–60min, and >60min if the neurotoxic effects of
snakes’ venom have, respectively, severe, moderate, and mild risk of
mortality56. Our choice of a 1-h benchmark is therefore an initial
attempt to evaluate the lack of access to veterinary services, which
might differ for conditions or be revised for specific applications (i.e.,
reproductive care, outbreak investigation, etc.).

Sixth, areas of Brazil were identified as coldspot of access to care
for cattle. However, veterinary practices that have as sole clients a
single large farm—a common business structure in Brazil57—may have
little incentive for presence on online registers. Although our models
account for variations in the online presence (see “Investigating pre-
ferential sampling of addresses”, Methods) Brazil may have been dis-
proportionally affected by low online registration rates, potentially
leading to underestimating access to care.

Seventh, 70% of our re-aggregated predictions were within <40%
of national-level reports of the numbers of veterinarians while only
30% of our re-aggregated predictions were between 40 and 50% of
national-level reports of the numbers of veterinarians. Despite this
considerable variation, it is important to note the lack of consensus
among national estimates obtained from various sources (Supple-
mentary Fig. 6). This discrepancy may stem from inadequate data
sharing among entities responsible for maintaining databases on
national veterinary capacity. Similarly, estimates of the number of
veterinary graduates were collected in each country for comparison
with our maps. While graduates represent an upper plausible limit on
the number of veterinary practices active in each country, these esti-
mates did not account for veterinarians working in a country different
from the country of graduation.

Finally, our analyses did not incorporate long-distance mobile
veterinary practices, present in certain HICs such as Australia, where
veterinarians may occasionally travel via airplane to reach remote
farms58.

Methods
Collecting national estimates and addresses of veterinary
practices
BetweenMarch 2020 and June 2021, we conducted an online sampling
campaign on a global scale to collect data about veterinary practices.
We searched for addresses of veterinary practices to investigate their
global distribution and for their national estimates as a reference for
the comparisonwith our country-level predictions. Concretely, in each
country, we searched for (A) national estimates of the number of
veterinary practices, (B) annual estimates of the number of graduates
from veterinary schools, (C) addresses or geographic coordinates of
veterinary hospitals, clinics, and private practices, and (D) information
about the animals treated in these veterinary practices, i.e., companion
animals (cats, dogs, other pets) or food animals.

When searching for national estimates of veterinary practices (A),
we consulted websites of international organizations such as the
WOAH, the FAO, the World Veterinary Association (WVA), and the
World Small Animal Veterinary Association (WSAVA). In Europe, we
retrieved data from the website of the European Board of Veterinary
Specialization (EBVS) and the 2019 survey of the veterinary profession
in Europe59 compiled by the Federation of Veterinarians of Europe
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(FVE). For the rest of the world, we consulted websites of national
associations and universities, governmental reports, and estimates by
statistical agencies. We also searched national estimates on scientific
reports, peer-reviewed publications, and online newspapers.

In addition, we sent 309 emails to veterinary associations and
governmental agencies to request national estimates of veterinary
practices (response rate of 16.8%). From this search, we found 117
national-level estimates of the number of veterinary practices across
79 countries. We collected 79 estimates from international organiza-
tions and national associations, 13 from governmental agencies, 20
from online newspapers and blogs, and 8 from scientific literature
(Supplementary Table 3).

Next, we estimated the number of graduates who may still be
practicing veterinary medicine in the year 2022 (B) as the upper
threshold for comparing the number of veterinary practices we pre-
dicted at the national level. First, we defined a global list of veterinary
schools available from the WOAH questionnaires on the veterinary
educational establishments60 andWikipedia61. In addition, we sent 659
emails to veterinary schools (response rate of 4.7%) and consulted the
WOAH questionnaires to collect school-specific data about the range
of graduates per year and the average number of years required to
obtain a degree in veterinary medicine. Also, we collected the foun-
dation year of each school and the retirement age per country62. For
calculating the number of graduates, we made the following assump-
tions: (1) 10% of students graduate each year from a veterinary school,
(2) older schools have a bigger range of graduates per year than newer
schools, (3) the first valid year considered to estimate the number of
graduates is given by the foundation date of the school plus the years
required to obtain the degree, (4) the last valid year considered for
graduation is 2022, and (5) veterinarians who are now retired based on
a country’s retirement age were excluded from the number of gradu-
ates estimated. Then, for each school, we calculated the number of
graduates, NG, as Eq. (1):

NG=
XYA

n = 1

10% � GMAX + n� 1ð Þ � GMAX � GMIN

YA� 1

� �
ð1Þ

Where YA is the number of years, net of the retirement age, in which
students graduated from the school, and GMAX and GMIN are, respec-
tively, the maximum and minimum number of graduates per year.
Through Eq. (1) we summed NG for each national veterinary school,
estimating the national-level number of graduates from680 veterinary
schools out of the 719 sampled across 120 countries.

For assembling the global database of addresses of veterinary
practices (C-D), we first identified the types of online sources listing
their addresses or coordinates.We prioritized the data collection from
i) online platforms specifically designed to search veterinary practices
by postcode (e.g., https://findavet.rcvs.org.uk/home/), ii) websites of
national phonebooks, like countries Yellow Pages, iii) websites of
national veterinary associations and governmental agencies as the
ministries of agriculture, and iv) open-access web maps like Open-
StreetMap and Google Maps.

We retrieved websites of data sources listed in points i) to iii) by
querying internet browsers both in English and the main country lan-
guage. The key search string we used to identify platforms listing
veterinary practices addresses combined the country namewith terms
such as “find a veterinarian”, “veterinarians nearme”, “veterinarians by
address”, and “veterinarians by postcode”. For finding national pho-
nebooks, we combined the country name with the terms “national
phonebook”, “yellow pages”, and “white pages”, and used the list of
World’s Yellow Pages websites available from Wikipedia63. Finally, for
thewebsites of veterinary associations and governmental agencies, we
combined the country name with the terms “veterinary association”,
“veterinary union”, “veterinary council”, “ministry of agriculture”, and
“national statistics institute”. In addition, we used generic queries like

“list of veterinarians” followed by the country name to find data
potentially present in online sources not considered.

Next, we defined the key search terms to use on each online data
source to display addresses of veterinary practices. Specifically, for
online platforms listing veterinary practices by postcode, we searched
the complete list of veterinary practices in the country, without spe-
cifying a city or a postcode in the website’s search box. For national
phonebooks, we obtained webpages containing lists of addresses
through the search terms “veterinarian”, “veterinarians”, “vet”, “veter-
inary clinic”, “veterinary hospital”, and “veterinary practice”. For the
websites of veterinary councils, we collected the online list or the
downloadable PDF of the veterinary practices registered. Finally, when
sampling addresses through OpenStreetMap, we used the dedicated
Application Programming Interface (API) available in the R package
osmdata64 to query the OpenStreetMap database one country at a
time. As reported by the OpenStreetMap glossary, we built the API
query by using the term “amenity” to subset the group of services
listed on the database and the term “veterinary” as the key to refine the
search. According to the glossary, a query built with these tags gives in
return “placeswhere a veterinary surgeon, alsoknown as a veterinarian
or vet, practices”65. In contrast, the API to query the Google Maps
database, available in the R package googleway66, allowed for only
three queries per zone, which are too few to list veterinary practices in
a country. Therefore, we defined multiple country-level queries for
every city listed on the opendatasoft database67 through strings con-
taining the term “veterinarian” followed by the city and the country
name. In addition, we restricted the search only to places offering
veterinary care using the tag “veterinary_care” in the function to query
Google’s database, as reported in the API’s user manual68.

Each query of Google Maps always returned the names and
addresses of veterinary practices complete with geographic coordi-
nates. In contrast, every OpenStreetMap query returned entries with
geographic coordinates, but only 37.7% of them were complete with
names and addresses of veterinary practices. Everyother online source
inspected provided only the addresses of veterinary practices, and,
where available, their name and specialization, as text strings. There-
fore, we used different means to extract such information from PDFs
and web pages. For PDFs, we used the R package tabulizer69 to extract
the file’s tables containing the addresses of veterinary practices. When
addresses were only available on online platforms, we sampled them
through web-scraping70. Specifically, we coded web-scraping software
(web-scrapers) in the R and Python programming languages through
the packages rvest71 and BeautifulSoup72. Before launching the web-
scrapers, we used the R package robotstxt73 to ensure that web-
scrapers had the right to access the online platforms. This information
is contained inside source code of each platform, built through the
HyperText Markup Language (HTML). In platforms denying access to
web-scrapers (2 out of 87), we collected addresses of veterinary
practices manually. In addition, we used the selenium WebDriver
package74 to automate web navigation through web-crawlers to
visualize and sample data in multiple web pages of the same website.
This practice was also used with websites embedding applications
displaying data only upon users’ interaction with specific buttons (e.g.,
buttons that open sub-sections containing the addresses of veterinary
practices).

Finally, we used every address sampled as input for Google geo-
coding API75 to retrieve its geographic coordinates if not already
available (detailed point pattern examples in Supplementary Fig. 16).

Data curation of the addresses of veterinary practices
Addresses of veterinary practices from diverse sources led to collect-
ing duplicated addresses or entries not specifically related to the
veterinary medical profession. Therefore, assembling a database with
unique geographic entries of veterinary practices required screening
for (1) duplicated addresses of veterinary practices sampled from
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different online data sources, (2) entries related to the broader field of
veterinary care where the presence of veterinarians is not required
(e.g., veterinary pharmacies), and (3) entries wrongly geocoded by
Google’s API because of missing information inside the text strings of
the addresses.

For step (1), we first combined the database’s strings reporting the
name, the address, and the geographic coordinates of each entry.
Then, we calculated the pairwise strings’ similarity through the
Levenshtein similarity76. For this first screening, we set a threshold of
90% similarity to consider two strings as duplicates and remove one of
them from the database. However, we also identified duplicates when
two or more online data sources reported a veterinary practice name
and address in different ways. For example, several websites reported
strings with truncated addresses, buildings’ numbers placed before
the street name or vice versa, or missing addresses’ names, as for data
collected especially from OpenStreetMap. For this reason, we per-
formed a second screening using geographic coordinates of sampled
data and classified an observation as duplicate if falling within an area
of ~10m radius built around another veterinary practice (Supplemen-
tary Fig. 17a).

In step (2) we removed entries related to facilities different from
veterinary practices. Hence, we first restricted the screening to entries
where a facility’s name didn’t imply the presence of a veterinarian
working in that facility (e.g., the store “Budget Pet Supplies” in Eng-
land). Next, we used Google’s language API to translate more than 100
words (e.g., “veterinary pharmacies”, “pet shop”, “pet supplies”, “pet
food”, “kennel”, etc.) in every language available in the Google data-
base. Then, we screened the remaining entries for patterns in the
facilities’ names matching the translated words and removed the
matching entries from the database.

Nevertheless, online data sources often list facilities that are dif-
ferent from veterinary practices but whose names don’t contain
information on the type of service they provide (e.g., the dogs’ training
center “Pets with Problems”, Supplementary Fig. 17b). For this reason,
we combined web-crawling and web-scraping software to perform
automatic Google searches using names and addresses of the
unscreened veterinary practices to collect information on the service
they provide, listed in the webpage of the Google results (Supple-
mentary Fig. 17b). Then, we removed entries not corresponding to
veterinary practices. Since Google also lists the status of a facility, with
this method we could also identify veterinary practices permanently
closed, excluding them from the database.

Step (3) of data curation concerned entries of veterinary practices
addresses wrongly geocoded by the Google API. Hence, for each
country, we overlayed their shapefiles to spatial points of sampled
addresses and retained in the database only the ones falling within the
boundaries of the shapefiles.

Predicting the global distribution of veterinary practices
We aggregated the geocoded addresses of veterinary practices in
pixels of 0.08333 decimal degrees, or ~10 × 10 km2 at the equator. As a
result, we obtained counts of veterinary practices per pixel that we
modeled through a geospatial analysis to predict the distribution of
veterinary practices at the global level.

First, we selected spatial covariates potentially related to the
distribution of veterinary practices. Previous country-level studies
showed that veterinary practices distribution depends on the high
population density and income levels of a region44,45, and opportu-
nities to share practices for early graduates46. For this reason, we
selected spatial covariates that could correctly represent this observed
tendency of veterinary practices to aggregate in urban areas. Specifi-
cally, we included in our stack maps of population density, Gross
Domestic Product (GDP), and travel time to cities with more than
50,000 inhabitants (hereafter referred to as “major cities”). Besides
socio-economic indicators, we also selected agricultural covariates

potentially useful to represent the separation of veterinary practices
between rural and urban areas. Hence, we included the proportion of
areas used for croplands and pastures, and the density of cattle,
chickens, pigs, and sheep available from the 4th version of theGridded
Livestock of the World database (GLW4). All covariates, except the
proportion of areas used for croplands and pastures, were log10-
transformed and all of them were resampled at the 10 × 10 km2 reso-
lution. Plots, measure units, and references of these covariates and
support maps used in this study are available in Supplementary Fig. 18
and Supplementary Table 1.

Before incorporating covariates in themodels, we quantified their
correlation through a version of the Variance Inflation Factor (VIF)
adapted for spatial objects77. As for theVIF used in linear regression,we
used a threshold of 10 to exclude correlated covariates78 (VIF values in
Supplementary Table 5). Furthermore, in a similar approach used to
create gridded maps of the human population79–81, we used the
10 × 10 km2 resolution map of the world settlement footprint (WSF)82

to outline areas where there are human settlements. We used such
areas to identify the pixels for constraining both themodeling analysis
and the predictions of veterinary practices.

Second, we modeled the counts of veterinary practices as a
Poisson variable using environmental and anthropogenic covariates as
fixed effects. In addition, we used a Gaussian Random Field (GRF),
discretized to finite elements called mesh through the Stochastic
Partial Different Equation method (SPDE)83,84, as a random effect to
account for spatial autocorrelation85,86. A statistical model with these
characteristics is called Log-Gaussian Poisson Regression model87

(LGPR). Given the global scale of the study, we fitted the LGPRmodels
through the Integrated Nested Laplace Approximation algorithm
(INLA) for computational efficiency87–90.

Third, we defined the geographic areas where to train and
validate the accuracy of LGPR models. Specifically, we divided the
world into subregions according to the division proposed by the
United Nations91. However, we divided the “Europe and Northern
America” subregion into three different subregions to have a com-
parable number of subregions consisting of HICs and LMICs as clas-
sified by the World Bank21. As a result, from West to East, we defined
9 subregions: North America, Latin America and the Caribbean
(abbreviated as “Latin America”), Europe, Northern Africa andWestern
Asia (abbreviated as “Middle East”), Sub-Saharan Africa, Russian Fed-
eration, Central and Southern Asia (abbreviated as “Central Asia”),
Eastern and South-Eastern Asia (abbreviated as “Eastern Asia”), and
Oceania (Supplementary Fig. 19).

In each subregion, we initialized the SPDE model by creating the
mesh and assigning priors to the function used to capture the spatial
autocorrelation of the outcome (i.e., counts of veterinary practices).
First, we used subregions’ shapefiles to define the mesh reticulate
where to apply the SPDE algorithm.As suggested by Lindgren et al., we
defined a regular mesh inside the whole study area where we sampled
the outcome90. Also, we defined a 2.5-decimal degree buffer zone
outside the shapefile borders to capture spatial autocorrelation of the
outcome present along borders while avoiding issues related to the
edge effect92. Then, we defined the mesh resolution of the study area
(inner mesh), represented by the subregions, by setting a maximum
length of the triangle vertices of 0.15 decimal degrees. In contrast, for
the mesh in the buffer zone (outer mesh), we allowed for a maximum
length of 10 decimal degrees since this area does not influence pre-
dictions’ accuracy93. We set the minimum length of triangle vertices of
the innermesh to0.01 decimal degrees to cover every part of the study
area. Then, we applied a Matérn covariance function to the mesh to
capture the spatial autocorrelation of the outcome by specifying its
hyperparameters. Since we lacked information about spatial depen-
dence among veterinary practices, we assigned Penalized-Complexity
priors94 to the hyperparameters of the covariance function by setting a
probability lower than 0.01 both for the range and its standard
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deviation of being higher, respectively, than 0.2 and 0.05 decimal
degrees.

Fourth, we used INLA to fit different LGPRmodels by including in
the formula, besides the SPDE, one spatial covariate at the time to
assess the importance of each covariate. For eachmodel, we calculated
the Deviance Information Criterion (DIC)95,96, whose lower values
suggest better model performances97. If a covariate did not decrease
the DIC, we excluded it from the LGPR formula. Then, of all the cov-
ariates selected, we retained in the final formula just the ones whose
95% credible intervals of their posterior means did not cross zero98

(Supplementary Fig. 20 and Supplementary Table 6). Once we identi-
fied the subregional LGPR model with the lowest DIC (hereafter
referred to as “best subregional model”), we reran the models
removing one covariate at a time to calculate the change in theDICand
identify the covariates with the highest effect in predicting the dis-
tribution of veterinarypractices. Second,wecompared theDICof each
best subregional LGPR model with and without the SPDE model to
understand if adding a random effect to capture spatial autocorrela-
tion to the models’ formula decreased the DIC99 (Supplemen-
tary Fig. 21).

Next, we assessed the accuracy of the best subregional models by
comparing values of predicted vs observed counts of veterinary
practices through the adjusted Coefficient of Determination based on
the deviance residuals of the model (R2

DEV )
100–102. We validated the

predictions’ accuracy of every model by computing the R2
DEV between

thepredicted and theobserved counts of veterinarypractices per pixel
both in the subregions where we trained themodels and in all external
subregions (Supplementary Fig. 5). In addition, for each subregion
we quantified the uncertainty of predictions by mapping their stan-
dard deviation and 95% confidence intervals97 (Supplementary
Fig. 4b and 4c).

Fifth, we assembled the global map of veterinary practices dis-
tribution. Once assessed the accuracy of the LGPRmodels, we used the
predictions obtained by each subregional model that returned the
highest R2

DEV to assemble the global map of the distribution of veter-
inary practices, regardless of their specialization.

We further verified the goodness of our geospatial analysis by
checking the agreement between the national estimates of veterinary
practices and their country-level numbers aggregated from the pixel-
level predictions. Specifically, for each country, we summed the pixel-
level predictions of the number of veterinary practices and compared
the result with national estimates of veterinary practices sampled from
veterinary associations, governmental agencies, peer-reviewed litera-
ture, and online newspapers, and with the estimated number of
graduates from veterinary schools.

Furthermore, we investigated the preferential sampling of
the addresses of veterinary practices. In our study, we only used
online data sources to collect the addresses of veterinary prac-
tices. However, if veterinarians register online only in certain
areas to compete for a pool of patients, our sampling campaign
could be preferential. Although preferential sampling can lead to
biased predictions of the response103, works have shown that the
inclusion of spatial covariates and a random effect accounting for
spatial autocorrelation can typically account for this bias104–106.
Hence, we selected five countries (Austria, Belgium, Denmark,
Netherlands, and Switzerland) as study areas to inspect for the
presence of preferentially sampled addresses of veterinary prac-
tices using two methods: (1) a joint model proposed by Pennino
et al. based on a Log-Gaussian Cox Process (LGCP) to account for
preferential sampling103,104 where we used the R2

DEV to compare
the accuracy of the predictions of the LGCP with the accuracy
obtained through the LGPR models fitted in the same study areas
(Supplementary Fig. 22), and (2) a Monte Carlo test that targets
the excess of clustered sampling locations in areas of high or low

spatial autocorrelation of data by using the K-Nearest Neighbors
algorithm107,108.

Predicting the proportion of veterinary practices specialized in
food animals
We used the available information about the specialization of veter-
inary practices to investigate the separation between veterinary prac-
tices specialized in treating food animals and veterinary practices
specialized in treating companion animals. The purposes were to (1)
model the distribution of the proportion of veterinary practices spe-
cialized in treating food animals and predicting it in areas where we
didn’t find information about the specialization of veterinary practices
and (2) understand the effect of the covariates used to predict the
global distribution of veterinary practices on the proportion of food vs
companion animals’ veterinary practices.

First, we separated spatial points of veterinary practices specia-
lized in treating food animals from the rest of the veterinary practices
sampled. We found this information only through governmental
agencies and online platforms listing veterinary practices by postcode
in Mexico, Argentina, Chile, Great Britain, Belgium, Switzerland, Italy,
South Africa, and Iran. Next, we aggregated these points in pixels with
a resolution of 10 × 10 km2 and calculated, for each pixel, the ratio
between the count of food animals’ veterinary practices and the other
veterinary practices sampled. Since 80.1% of the ratios computed was
between 0 and 1, we used this share of values to predict the proportion
of veterinary practices specialized in food animals.

Second, we used the beta regression model (BRM)109 to predict
the proportion of food animals’ veterinary practices at the 10 × 10 km2

resolution and to investigate its relationshipwith the spatial covariates
selected in this study. We used the best subset selection method110 to
compute BRMs with every possible combination of covariates. From
the batch of BRMs, we extracted just the ones where every covariate
was significantly related to the response according to the z-test on the
regression coefficients (p-value < 0.05). We identified the best BRM as
the one with the lowest Akaike Information Criterion (AIC) value,
performed a 10-fold cross-validation, and analyzed plots of its resi-
duals (Supplementary Fig. 23a and 23b). Then, we mapped the pro-
portion of veterinary practices specialized in food animals. We used
the BRM with the lowest AIC value to predict the proportion of food
animals’ veterinary practices in every 10 × 10 km2 pixel where we pre-
dicted the presence of veterinary practices at the global level.

Third, we compared the distribution of veterinary practices with
food animals’ density and AMR. The map of the proportion of food vs
companion animals’ veterinary practices wasmultiplied for themap of
the distribution of veterinary practices to obtain the map of the dis-
tribution of food animals’ veterinary practices. This map was used to
identify pixels where food animals outnumber veterinary practices for
food animals. Therefore, we compared the global distributions of
veterinary practices for food animals and food animals raised in
extensive farm systems. Conversely to intensive farm systems, where
food animals are housed in confined spaces that facilitate the regular
monitoring of their health, extensive farm systems may involve less
frequent contact with veterinarians, who might rely more on visual
inspections during routine checks or when specific health concerns
arise111. For this task, we expressed the 10 × 10 km2 resolution density
maps of food animals raised extensively22 in livestock units (LSUs),
which is a means to compare different food animals’ productions
according to the Eurostat glossary33; for the conversion we used the
coefficients of 0.014 for chickens, and 0.5 for pigs. Then, we summed
the LSUs pixels’ values for each species into a single layer, divided it for
the global map of the distribution of veterinary practices, and pro-
duced a 10 × 10 km2 resolution global map of the geographic dis-
tribution of LSUs of extensively raised food animals per veterinary
practice.
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In addition, we investigated if pixels with high LSUs of extensively
raised food animals per veterinary practices could be related to
the distribution of AMR in food animals. Therefore, we calculated
the Pearson correlation between the distribution of LSUs of
extensively raised food animals per food animals’ veterinary
practice and the distribution of AMR in cattle, chickens, and pigs
available for LMICs9. However, this analysis returned a Pearson’s r of
0.3 (r2 = 0.09).

Identification of coldspots of veterinary capacity in food
animals
In the human population, the “golden hour” refers to the evidence that
people cared within 1 h after a traumatic event have a high chance of a
positive health outcome55. Comparably, we defined a veterinary cold-
spot as a pixel of 10×10 km2 where cattle, chickens, and pigs, which
together represent 84.2% of the biomass of animals farmed
worldwide112, are farther than 1 h of motorized travel time (TTM) from
the nearest veterinary practice.

For each country, we disaggregated the map of veterinary prac-
tices for food animals at a resolution of 1 km2. In addition, we used the
Google geocoding API to include in such a map also the locations of
the veterinary schools sampled, as they are often equipped with
veterinary clinics. Then we intersected this map with the 1 km2 reso-
lution GLW4 maps of cattle, chickens, and pigs’ density. Through this
step, we identified pixels with cattle, chickens, and pigs but no veter-
inary practices. We called these pixels “pixels of isolated animals” (PIA)
if they contained, according to the GLW4, at least 1 cattle head, 1 pig,
and 10 chickens, since 1 chicken is present almost everywhere in the
world52,53. The PIAmap of cattle in Kenya is reported in Supplementary
Fig. 24a; we will refer to this country throughout the manuscript to
show small-scale examples of our results. Next, we defined the starting
points of veterinarians that travel to PIA as the centroids of the pixels
with veterinary schools and predicted veterinary practices, and we
used a friction surface to calculate the cumulative cost, in hours, to
travel from these centroids to every pixel of themap. For this study, we
used the 2020 version of the global motorized friction surface at 1 km2

resolution produced by The Malaria Atlas Project4,113 (Supplementary
Table 1 and Supplementary Fig. 24b). This friction surface is a “walking
+ motorized friction surface”, i.e., it represents a scenario where peo-
ple must walk to the closest roads (at an average speed of 5 km/h)
where it is possible to use motorized vehicles (e.g., public transport,
cars), assuming that such vehicles are available without delay when
reaching the roads. Then, through the R package gdistance114,115, we
combined veterinary practices coordinates, PIA, and the friction sur-
face to calculate 1 km2 resolution TTM maps. Specifically, we calculated
the cumulative TTM required by veterinarians to cross each pixel of the
friction surface to reach everyother countrypixel. This calculationwas
done using the eight-directional least-cost path algorithm115. Further-
more, no corrections were made for the slopes (isotropic movement),
since this is usually applied to pedestrians and cyclists116. From these
maps, we extracted only PIA where TTM was higher than 1 h (Supple-
mentary Fig. 25a) to identify coldspots.

We computed coldspots maps separately for each country to
exclude potential veterinarians traveling across national borders.
Then, we aggregated these country-level maps at 10 × 10 km2 resolu-
tion and assembled them to obtain global maps of coldspots of
veterinary capacity for cattle, chickens, and pigs. The aggregation of
coldspots maps from the 1 km2 resolution (i.e., the resolution of the
friction surface) to the 10 × 10 km2 resolution caused a 1% area loss for
cattle coldspots, 5% for chickens coldspots, and 7% for pigs coldspots.

In addition, we subset the GLW4 maps through the coldspots
maps to quantify the number of food animals living inside coldspots.
Hereafter, wewill refer to such animals as “isolated animals” (IA). Then,
we weighted the TTM of every coldspot based on its IA value. The
metric, calculated for cattle, chickens, and pigs coldspots in each

country, was defined as Eq. (2):

TTIA =

PNC
i ðTTM

i � IAiÞPNC
i IAi

ð2Þ

Where i represents the i-pixel of the coldspotsmap andNC the number
of pixels with coldspots. We used Eq. (2) to compute this metric with
three maximum TTM thresholds of 6, 4, and 2 h for each coldspot. The
reasonwas to understand if extremelyhighTTM values (e.g.,TTM > 24 h)
could affect the sensitivity of TTIA and change the ranking of countries
with the highest TTIA (Fig. 2).

Geographic allocation of veterinary practices to improve access
to care
In each country with coldspots, we tried to minimize IA by developing
the fastest spatial approach to allocate an additional 5% of the veter-
inary practices predicted in a country. For the allocation, we targeted
10 × 10 km2 areas where we didn’t predict veterinary practices and
where there are human settlements according to the WSF map82;
hereafter, we will refer to these areas as “candidates”. An exhaustive
allocation approach that adds veterinary practices in every possible
candidate will select only the candidates where additional veterinary
practices will bring the highest number of IA within 1 h of motorized
travel time from a practice. However, an exhaustive approach can be
performed iteratively, i.e., testing one candidate at a time and choos-
ing at each iteration the one minimizing IA (recursive exhaustive
approach, REA), or simultaneously, i.e., allocating batches of all the
possible combinations of the n-veterinary practices available at the
same time (simultaneous exhaustive approach, SEA). In addition, an
exhaustive allocation approach is a variation of the maximal coverage
location problem (MCLP)117,118, which is computationally expensive to
solve the higher the number of candidates and the bigger the size of a
country119, and faster approximations of theMCLPhavebeenproposed
depending on the nature of the facilities to allocate120,121. Therefore, we
performed the allocation analysis through different steps.

In step (1), we compared the results of the REA and the SEA
applied to a small testing area symbolizing a country with coldspots.
The purpose was to verify that the two exhaustive approaches pro-
duced the same results to select the fastest one for our next analysis.
Specifically, the REA tests every candidate and allocates a veterinary
practice inside the candidate minimizing IA. Then, it repeats this pro-
cess for the number of veterinarypractices to allocate to the remaining
candidates. In contrast, the steps of the SEA differ from the ones of the
REA for the number of veterinary practices allocated at the same time.
Specifically, the SEA adds batches of veterinary practices in each
possible combination of the candidates available to find the batch
minimizing IA. Hence, depending on the number of veterinary prac-
tices to allocate, the SEA re-calculates the coldspots map for as many
combinations (C(k,n)) as described by Eq. (3):

Cðk, nÞ =
k
n

� �
=

k!
n! � k � nð Þ! ð3Þ

Where k is the number of candidates and n is the number of veterinary
practices. In contrast, the REA recomputes the coldspots
only k � n times.

We compared the results of the REA and SEA by defining a cold-
spots map of approximately 1000 km2 to reduce the computational
time to complete both approaches. Next, we selected a random
number of 50 candidates and batches of 2, 3, 4, and 5 veterinary
practices and allocated them first recursively and then simultaneously
to find the candidates minimizing IA. For each batch, we recorded the
indices of pixels selected for the allocation, the IA decrease, and the
time to complete both approaches. According to our comparison, the
computational time to complete the REA was always the lowest
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(Supplementary Fig. 26). More specifically, even a slight increase from
4 to 5 veterinary practices to allocate through the SEA resulted in a
10,000-fold increase in the computational time required by the REA.
Therefore, we selected the REA as the fastest exhaustive approach to
quantify the maximum reachable decrease of IA per country.

In step (2), we selected nine small-sized countries (Kenya,
Panama, Ecuador, Liberia, Eritrea, Honduras, Nicaragua, Costa
Rica, and Cambodia) to compute the number of IA brought within
1 h of motorized travel time from a veterinary practice through
the REA and record the decrease of IA for each veterinary practice
allocated. Then, we developed a geographically targeted
approach to allocate the same 5% of veterinary practices in less
time than the REA. The aim was to reach a comparable number of
IA brought within 1 h of motorized travel time from a veterinary
practice obtained through an exhaustive approach. Specifically,
this approach was defined by sampling properties in the proxi-
mity area around each candidate. These properties can vary
across countries since they depend on i) the density of IA, ii) the
distribution of veterinary practices predicted, and iii) local values
of the friction surface, due to the characteristics of the territory
and traveling speed limits. These properties were used as a guide
in the contiguity approach to choose the candidates where the
supplementary 5% of veterinary practices could cover a similar
animal population covered by the REA. The steps to perform the
contiguity approach are reported below.

In step (2.1) we randomly selected 100 candidates and allocated
the 1st veterinary practice in one of them, re-computed the coldspots
map, and compared it with the initial one to extract the catchment
area122,123, i.e., where TTMdecreased to <1 h due to the presence of a new
veterinary practice (Supplementary Fig. 27a).

In step (2.2) we calculated the average catchment area radius
basedon thedistanceof the allocated veterinarypractice, starting from
each point of the catchment area perimeter (Supplementary Fig. 27a).

In step (2.3) we repeated step (2.2) independently for all the ran-
domly selected candidates to calculate an average radius of the
catchment areas specific to each country.

In step (2.4), for the 1st veterinary practice to permanently allocate
in the country, we defined a circle around every candidate available
based on the average radius calculated in step (2.3).

In step (2.5), within this circle, we sampled a) IA, calculated
intersecting maps of food animals’ density with the coldspot map; we
used absolute numbers of food animals since they can better inform
intervention priorities to reduce coldspots compared to proportions
of food animals, which could be similar among countries (Supple-
mentary Fig. 28), b)NC, c) theminimumdistanceof the candidate from
other veterinary practices already predicted in the country, and d) the
average TTM. Property (a) allows prioritizing candidates catchment
area where IA is the highest. Property (b) and (c) identify candidates
that are still far fromother veterinary practices and hence where a new
allocation doesn’t create clusters of veterinary practices. Property (d)
allows the identification of candidates where the TTM in their catch-
ment areas is the lowest; this permits a newly allocated veterinary
practice to travel farther and reach more IF.

In step (2.6), for each candidate, we categorized the values of
property (a) to (c) in five different groups by building an ordinal vari-
able based on numerical ranges of equal width.

In step (2.7), we assembled each variable in a database and sorted
its rows starting with the groups of property (a), i.e., prioritizing allo-
cation in candidates with a high IA124. Then, the sorting of the rows
corresponding to candidates surrounded by the highest IA continued
based on the groups of the highest NC values. The group of rows
corresponding to candidates with high values of IA and NC was then
sorted based on their highest minimum distance from predicted
veterinary practices (Supplementary Fig. 27a). Finally, among the sor-
ted rows corresponding to the candidates with the highest IA, NC, and

farthest from existing veterinary practices, we selected for the allo-
cation the one whose catchment area presented the minimum aver-
age TTM.

In step (2.8), we allocated an additional veterinary practice to this
candidate, excluded it from the batch of candidates, and re-computed
the coldspots maps. Then, we recorded the updated IA.

In step (2.9), we repeated steps (2.4) to (2.8) for all the remaining
veterinary practices to allocate in the country by using each time the
updated version of the coldspots map.

Finally, in step (3), we compared the different allocation
approaches in the same country selected in step (2). Specifically, we
compared the REA and the contiguity approach, which recalculate
coldspots iteratively, with two additional approaches that allocate all
veterinary practices at once. We based the first approach on the
administrative division of a country, prioritizing the allocation in
regions with the highest number of IA (“administrative approach”).
The second approach assigned veterinary practices randomly within
a country (“random approach”). For the random approach, we
repeated the allocation for 100 Monte Carlo simulations to avoid
selecting the candidates minimizing IA by chance. For each
approach, including the 100 Monte Carlo allocations of the random
approach, we calculated its performance in terms of isolated animals’
coverage (IAC) as Eq. (4):

IAC %ð Þ= IA� IAApproach

IA� IAREA
� 100 ð4Þ

Where IAREA is the number of isolated animals living in
coldspots after allocating veterinary practices through the REA,
while IAApproach is the number of isolated animals living in cold-
spots after allocating veterinary practices through the contiguity,
the administrative, or the random approach. Through Eq. (4), the
comparison between IAC calculated for each approach was per-
formed between each of the nine countries selected (Supple-
mentary Fig. 9). Then, we inspected the results of each approach
through 10 × 10 km2 resolution KDE maps125 computed from the
geographic coordinates of the supplementary veterinarians
(Supplementary Fig. 10). Since the contiguity approach was faster
than the REA while returning comparable results in each of the
nine countries selected (Supplementary Table 4), we applied it at
the global scale for coldspots of cattle, chickens, and pigs, allo-
cating an additional 5% of the veterinary practices predicted in
each country with coldspots. Furthermore, for each species, all
the allocations performed at the national level were merged in a
unique database and the coordinates of the top 1,000 veterinary
practices that removed the highest number of food animals from
coldspots were extracted. Then, we mapped the geographic pat-
tern of these supplementary veterinary practices to identify the
regions where to prioritize the increase of veterinary capacities.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Shapefiles used in this study were downloaded from the Database of
Global Administrative Areas (GADM). The global map of the distribu-
tion of veterinary practices predicted at the 10 × 10 km2, databases of
national estimates of veterinary practices, locations of veterinary
schools, the URLs of online platforms listing addresses of veterinary
practices, and estimates of the Food and Agriculture global statistical
database (FAOSTAT) of food animals per country are publicly available
at Zenodo126. The exact locations of each individual veterinary practice
areprotecteddue todata privacy laws in place in someof the countries
included in the analysis. However, the addresses of these veterinary
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practices can be retrieved from the listing of veterinary practices
provided in our Zenodo repository126 for each country.

Code availability
The code used to produce the results of this study is available at
Zenodo126.
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