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Machine learning-powered activatable NIR-II
fluorescent nanosensor for in vivo
monitoring of plant stress responses

Hong Hu1,2, Hao Yuan1,2, Shengchun Sun1,2, Jianxing Feng1,2, Ning Shi1,2,
Zexiang Wang3, Yan Liang 4, Yibin Ying1,2,5 & Yixian Wang 1,2,5

Real-time monitoring of plant stress signaling molecules is crucial for early
disease diagnosis and prevention. However, existing methods are often inva-
sive and lack sensitivity, rendering them inadequate for continuous monitor-
ing of subtle plant stress responses. In this study, wedevelop a non-destructive
near-infrared-II (NIR-II) fluorescent nanosensor for real-time detection of
stress-related H2O2 signaling in living plants. This nanosensor effectively
avoids interference from plant autofluorescence and specifically responds to
trace amounts of endogenousH2O2, therebyproviding a reliablemeans to real-
time report stress information. We validate that it is a species-independent
nanosensor by effectively monitoring the stress responses of different plant
species. Additionally, with the aid of a machine learning model, we demon-
strate that the nanosensor can accurately differentiate between four types of
stress with an accuracy of more than 96.67%. Our study enhances the under-
standing of plant stress signaling mechanisms and offers reliable optical tools
for precision agriculture.

Abiotic stresses, such as extreme temperatures, drought, salinity, and
flooding, alongwith biotic stresses caused by pathogens andpests, have
significantly reduced crop productivity and pose substantial challenges
to food security1–3. It is essential to obtain stress-related information by
monitoring stress-induced physiological signals and understanding the
mechanisms underlying the stress responses of plants4–6.

Detecting stress-induced signals in living plants presents sig-
nificant challenges due to their low concentrations and the frequent
coexistence of various other active substances7–10. Current methods
for sensing stress-induced signals primarily rely on histochemical
reagents following the isolation and purification of plant extracts11–13.
However, these methods are typically destructive and do not permit
real-time tracking of the endogenous dynamic signals. Furthermore,
genetically encoded molecular sensors for stress signaling, as a non-
destructive approach, predominantly focus on the stress-specific

signal transduction pathways triggered in the model plant Arabidopsis
thaliana,making them time-consuming for phenotypic expressionand
screening14–17. Given that most crops are non-model plants, studying
the stress signaling patterns of these crops places greater demands on
the existing detection techniques. Nanotechnology-based sensors are
species-independent and can detect stress responses in various wild-
type plants by monitoring plant health in real time through electronic
devices, eliminating the need for genetic engineering18–25. The latest
plant advancements in wearable sensors and electrochemical sensors
enable non-destructive and continuous acquisitionof phenotypicdata.
Wearable electronic devices monitor plant conditions by capturing
physical signals suchas growth, surface temperature, andhumidity26,27,
as well as chemical signals like volatile organic compounds21, and
bioelectrical potential signals28. From flexible sensorswrapped around
the stem to the epidermal electronics that can be seamlessly attached
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to leaves, most efforts have focused on acquiring physiological infor-
mation from the plant’s surface. Direct detection of tracemolecules in
the cytosol and intercellular spaces can provide deeper insights into
the signaling network involved in plant stress responses. In contrast to
lagging physiological indicators (such as strain, moisture, or leaf
temperature), stress-induced real-time signaling molecules (including
reactive oxygen species, phytohormones, and inorganic ions) reflect
early stress responses before the appearance of visible stress
symptoms.

In this work, we present a non-destructive sensor that employs
NIR-II fluorescence imaging technology for the real-time detection of
stress-induced H2O2 signals in living plants. H2O2 is a crucial signaling
molecule that plays a key role in sensing multiple stresses and rapidly
activating the plant’s stress response network29–36. Over the past dec-
ade, fluorescence imaging technology in the second near-infrared
(NIR-II, 1000–1700nm) region has enabled high-contrast and long-
term in vivo plant imaging and sensing by significantly reducing
interference frombackground signals originating from the chlorophyll
autofluorescence and increasing the depth of penetration22,37. The
aggregation-induced emission (AIE) fluorophore, recognized for its
stable luminescent properties38–40, serves as the signal reporter and is
co-assembled with polymetallic oxomolybdates (POMs) as a fluores-
cence quencher to create NIR-II fluorescence “turn-on” nanosensor.
Under stress conditions, H2O2-selective POMs undergo oxidation,
which diminishes their quenching effect and activates a bright NIR-II
fluorescence signal from the AIE fluorophore. In contrast to “always-
on” sensors, activatable “turn-on” sensors provide a visual repre-
sentation of plant stress information while effectively suppressing
non-target background signals41–45. The sensor’s sensitivity of 0.43μM
and response time of 1min surpass those of existing NIR-II sensors,
enabling rapid, real-time monitoring of trace levels of H2O2. We uti-
lized an NIR-II microscopy system and a macroscopic whole-plant
imaging system to elucidate the stress-induced H2O2 signals. The
versatility of the nanosensor enables the monitoring of H2O2 signaling
across various plant species, including Arabidopsis, lettuce, spinach,
pepper, and tobacco. Finally, by employing a machine learning (ML)
model that incorporates the dataset collected by the nanosensor, we
demonstrate that fluorescence signals obtained from the NIR-II ima-
ging system can be utilized to classify plant responses to stress with
high accuracy.

Results
Design, synthesis, and characterization of NIR-II nanosensor
The nanosensor consists of NIR-II fluorophore and POMs as compo-
nents. The NIR-II dye exhibiting AIE properties was selected as a
fluorescence reporter. Simultaneously, a series of fluorescent
quenchers, known as POMs, with varying NIR absorption character-
istics, were co-assembled with AIE nanoparticles (AIENPs). This
assembly led to a significant quenching of the NIR-II fluorescence
signal, achieving a “turn-off” state (Fig. 1a). The inherent oxygen
vacancies in POMs confer unique H2O2-responsive properties46–48.
Upon interaction with the H2O2 signaling molecule, the NIR absor-
bance of POMs decreased dramatically, resulting in the recovery of the
bright NIR-II signal of AIENPs (Fig. 1b).

The NIR-II fluorophore with AIE properties was chosen as a signal
reporter due to its enhanced fluorescence efficiency in aggregates and
photostability (Supplementary Fig. 1)49,50. This design features a strong
donor-acceptor-donor (D-A-D) molecular structure, incorporating
rotating units and π-conjugated bridges that introduce specific spatial
hindrance. The strong electron-withdrawing group benzo[1,2-c:4,5-c′]
bis[1,2,5]thiadiazole (BBTD) serves as the acceptor unit with a quinoi-
dal structure, which facilitates greater electron delocalization and
consequently reduces the bandgap51. The donor units trimethylamine
(TPA), act as molecular rotors in AIE1035, ensuring the intramolecular
rotation. TPA’s strong electron-donating capability and larger

molecular structure inhibit intermolecular interactions in the aggre-
gated state. The planar thiophene ring acts both as a secondary donor
group and a π-conjugated unit, facilitating the intramolecular charge
transfer (ICT) from TPA to BBTD. The branched carbon alkyl chains on
the thiophene provide tunable steric hindrance, preventing excessive
aggregation52. Subsequently, the NIR-II AIE dye was encapsulated into
polystyrene (PS) nanospheres using the organic solvent swelling
method (Supplementary Fig. 2).

Three fluorescence quenchers (Mo-POM, Mo/Fe-POM, and Mo/
Cu-POM)with different NIR absorption properties were synthesized to
modulate the NIR-II emission of AIENPs and to suppress the fluores-
cence (Supplementary Figs. 3–7). The absorption spectra indicated
that these POMs exhibited absorption peaks ranging from ultraviolet
(UV) to NIR-II with a characteristic absorption peak at around 750nm
(Fig. 1c). X-ray photoelectron spectroscopy (XPS) analysis revealed
that Mo in the POMs existed in amixed valence state ofMo5+ andMo6+

(Supplementary Figs. 8–11). According to the XPS peak area of Mo 3d,
the average oxidation states of Mo in Mo-POM, Mo/Fe-POM, and Mo/
Cu-POM were determined to be 5.38, 5.49, and 5.40, respectively
(Supplementary Table 1), indicating a mixed-valence state resulting
from the presence of oxygen vacancies53. The strong NIR absorption
band of POMs was attributed to the localized surface plasmon reso-
nance (LSPR) effect associated with the charge-transfer transition
between Mo5+ and Mo6+ via oxygen vacancies54. Upon reaction with
varying concentrations of H2O2, Mo5+ in the POMs was oxidized to
Mo6+, leading to a decrease in the intervalence charge transfer (IVCT)
between the mixed-valence Mo centers48, which is directly correlated
with the reduction in the NIR absorbance (Fig. 1b). Oxygen vacancies
introduce localized defect states that facilitate the adsorption and
activation of H2O2 molecules on the surface of POMs and promote
more efficient electron transfer55–57, thus expanding the redox trans-
formation from Mo5+ to Mo6+. Notably, the absorption profiles of Mo/
Cu-POM mixed with H2O2 solution exhibited significant changes, with
rapid decay effects observed at NIR-I (750 nm) and NIR-II (1100 nm),
indicating a more sensitive response to H2O2 property compared to
Mo-POM and Mo/Fe-POM (Fig. 1d and Supplementary Fig. 8). Subse-
quently, the three POMs were evaluated for their responses to various
endogenous molecules commonly found in plant tissues (Fig. 1e and
Supplementary Fig. 12) and for their stability across a range of pH
levels and under laser irradiation (Supplementary Fig. 13). These find-
ings suggest that the POMs are highly selective for H2O2 and are sui-
table for long-term optical imaging applications. Co-assembling the
AIE1035NPs with three POMs, we evaluated the quenching properties of
POMs. The assembly of Mo/Cu-POM exhibited a stronger fluorescence
“turn-off” effect, which was attributed to its enhanced NIR-II absorp-
tion properties and stronger electrostatic interactions (Fig. 1f and
Supplementary Fig. 14).

A variety of characterization techniqueswere employed to confirm
the successful synthesis of the nanosensor. TEM images and elemental
mapping showed that Mo/Cu-POM was uniformly assembled on the
surface of AIE1035NPs (Fig. 1g, h). The resulting hybrid nanosensors
displayed good dispersion, with a particle distribution index (PDI) of
0.078 and an approximate diameter of 230nm. The successful pre-
paration of AIE1035NPs@Mo/Cu-POM was further confirmed by X-ray
photoelectron spectroscopy (XPS) and zeta potential measurements
(Fig. 1i, j and Supplementary Fig. 15). Mo/Cu-POM and AIE1035NPs were
co-assembled to construct a series of nanosensors with mass ratios
ranging from 0 to 100, allowing for flexible modulation of NIR-II fluor-
escence performance (Fig. 1k–m). The NIR-II signals of the nanosensors
were gradually enhanced with increasing AIE dye doping. As the mass
ratio of Mo/Cu-POM increased, the fluorescence emission of the
nanosensors gradually decreased, indicating that Mo/Cu-POM effec-
tively modulated the fluorescence of the AIE molecule. The results of
dynamic light scattering (DLS) measurements lasting for 3 weeks indi-
cated that the assembly of Mo/Cu-POM did not significantly affect the
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hydrodynamic diameter and PDI of the nanoparticles (Supplementary
Fig. 16), thereby demonstrating the long-term stability of the nano-
sensor. Next, the responsiveness of AIE1035NPs@Mo/Cu-POM to H2O2

was evaluated. Upon the addition of H2O2, NIR-II fluorescence emission
rapidly recovered within 1min (Supplementary Fig. 17), ultimately
achieving a 7.7-fold enhancement, which provided a limit of detection
of 0.43μM, better or comparable to previously reported NIR-II sensors
(Fig. 1m, Supplementary Fig. 18, and Supplementary Table 2). Addi-
tionally, we investigated the sensing selectivity of the designed sensor

against interfering substances such as phytohormones, reducing
agents, metal ions, and other active compounds. The presence of these
substances had a negligible influence on fluorescence, confirming the
high specificity of AIE1035NPs@Mo/Cu-POM (Supplementary Fig. 19).

Superior NIR-II nanosensor improves imaging performance
To investigate the imaging performance of fluorescent molecules
with different emission bands in plants, we co-assembled five AIE
luminophores with varying excitation and emission wavelengths with

AIE1035NPs
Mo-POM
Mo/Fe-POM
Mo/Cu-POM

c d f

g h i j

k

HL

AIE1035 doped (μg)

0 0.1 0.25 0.5 1.0 1.5 2.0

M
o/

C
u-

PO
M

do
pe

d
( μ

g)

20
0

15
0

10
0

50
25

10
0

e

a b

l

Ab
so

rb
an

ce
(a

.u
.)

Fluorescence
(a.u .)

400 600 800 1,000 1,200
Wavelength (nm)

Visible NIR-I NIR-II

M
et

hy
lj

as
m

on
at

e

Sa
lic

yl
ic

ac
id

G
lu

co
se

C
a2+

Ta
nn

ic
ac

id

AT
P

As
co

rb
ic

ac
id

-100

-50

-20

-10

0

10

(A
-A

0)
/A

0
(%

)

H
2O

2

Mo6+ 3d3/2

Mo5+ 3d3/2

Mo5+ 3d5/2

Mo6+ 3d5/2

Mo/Cu-POM

AIE1035NPs@Mo/Cu-POM

240

In
te

ns
ity

(a
.u

.)

238 234 232 230
Binding energy (eV)

236

m

0.5

0.4

0.6

0.5

0.3

0.3

0.3

46.9

24.6

14.3

3.9

1.2

0.3

0.2

89.6

49.1

35.0

14.0

6.0

2.6

1.0

179.0

110.9

73.7

35.3

20.1

12.0

7.8

280.1

170.9

121.4

60.4

38.2

25.4

17.2

354.4

229.0

161.2

83.6

53.3

36.0

26.1

447.7

284.6

205.5

104.8

68.8

48.2

35.5

AIE1035 doped (μg)

M
o/

C
u-

PO
M

do
pe

d
(μ

g)

200

150

100

50

25

10

0

0 0.1 0.25 0.5 1.0 1.5 2.0

4500

Mo-POM
Mo/Fe-POM
Mo/Cu-POM

0

Ab
so

rb
an

ce
(a

.u
.)

0.0

0.2

0.4

0.6

2 4 6 8 10
H2O2 concentration (μM)

AIE1035NPs@Mo-POM
AIE1035NPs@Mo/Fe-POM
AIE1035NPs@Mo/Cu-POM

0

N
or

m
al

iz
ed

in
te

ns
ity

(a
.u

.)

0.0

0.2

0.4

0.6

5 10 15 20 25
POM/AIE1035 ratio

0.8

1.0

C O

Mo MoC O

Ze
ta

po
te

nt
ia

l(
m

V)

-60

-30

0

30

60

92% 7.7-fold

Mo/Cu-POM
- +

POM/AIE1035 ratio

0 25 50 75 100 0 15 30 45 60

H2O2 (μM)

N
or

m
al

iz
ed

in
te

ns
ity

(a
.u

.)

0.0

0.2

0.4

0.6

0.8

1.0

H2O2
- +

H2O2
Laser Laser

NIR-II ONNIR-II OFF

e-e-

e-

Oi

Oe

Oe

Oe

[VI] [VI]

[V]
Mo

Mo Mo Oi

Oe

Oe

Oe

[VI] [VI]

[VI]
Mo

Mo Mo

PS nanoparticles AIENPs

AIE dye

Swelling

POM

=

AIENPs@POM

Modification

100 nm

100 1,000
0

10

20

30
d = 227.8 ± 6.7 nm
PDI = 0.076

In
te

ns
ity

 (%
)

Size (nm)

=N
S

N

N
S

N
SS

NN

Fig. 1 | Design and characterization of AIENPs@POMnanosensors. a Schematic
of the fabrication process for AIENPs@POM. b Schematic illustrating the respon-
sive mechanism of the nanosensors toward H2O2. c Overlap of the absorbance
spectrum of POMs and the fluorescence emission spectrum of AIE1035NPs. d Plots
for the absorption intensity of Mo-POM, Mo/Fe-POM, and Mo/Cu-POM at different
concentrations of H2O2. Data are presented asmean ± s.d. from three independent
experiments. e Absorbance response of Mo/Cu-POM to H2O2 and other molecules
commonly found in plant systems. Data are presented as mean ± s.d. from three
independent experiments. Each dot represents an individual data point. A0 and A
represent the absorption peak values of Mo/Cu-POM in water and interferences,
respectively. f Normalized fluorescence intensity of AIE1035NPs@Mo/POM at
1035 nm with varying POM/AIE1035 ratios from 0 to 25. g, h Transmission electron
microscopy image (g) and elemental mapping image (h) of AIE1035NPs@Mo/Cu-

POM. Scale bar: 100 nm. Insert: size distribution and particle distribution index of
the synthesizedAIE1035NPs@Mo/Cu-POM. iX-ray photoelectron spectroscopywith
deconvoluted 3d peaks of Mo. j Zeta potentials of AIE1035NPs (left), Mo/Cu-POM
(middle), and AIE1035NPs@Mo/Cu-POM (right). Data are presented as mean ± s.d.
from three independent measurements. k NIR images of a series of
AIE1035NPs@Mo/Cu-POM hybrid nanosensors. l Heat map summary of the NIR
signal of nanosensors doped with different amounts of AIE1035 and Mo/Cu-POM.
Laser excitation: 808 nm, 15mW. Filter: 900 nm long-pass filter. m Normalized
fluorescence intensity of AIE1035NPs@Mo/Cu-POM nanosensor as a function of Cu-
based POM/AIE1035 ratio (left) and H2O2 concentration (right), extracted from (I)
and (Supplementary Fig. 18). Left insert: NIR-II images of sensor doped with (+) or
without (−) Mo/Cu-POM. Right insert: NIR-II images of sensor reacting with (+) or
without (−) H2O2.
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Mo/Cu-POM (Fig. 2a–c). There was insufficient overlap between the
absorption spectrum of Mo/Cu-POM and the ultraviolet-visible
absorption and fluorescence emission spectra of AIE475 and AIE520
with a tetrastyrene structure (Supplementary Fig. 20). In contrast, the
spectra of AIE712 showed partial overlap with the characteristic
absorption peak of Mo/Cu-POM. Notably, the spectra of the NIR-II
fluorescent AIE955 and AIE1035 nearly coincided with the broad
absorption peak of Mo/Cu-POM. Due to these varying degrees of
spectral overlap, the extent of fluorescence quenching differed sig-
nificantly among the AIENPs (Fig. 2d). We employed the spectral

overlap integral and the fluorescence quenching constant (K) to
evaluate the ability of Mo/Cu-POM to modulate the fluorescence
emission of the nanoparticles (Supplementary Figs. 20, 21). The results
revealed that both the spectral overlap integral and the quenching
constant of Mo/Cu-POM were greater for NIR-II FL nanoparticles
compared to those that are visible and NIR-I fluorescent.
These findings suggest that the fluorescence quenching effect of Mo/
Cu-POM on AIENPs is critically determined by the spectral overlap and
can be further optimized by adjusting the concentration of Mo/
Cu-POM.
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Considering the strong autofluorescence background inter-
ference from chlorophyll in plant leaves and the weakening effect of
chloroplastic tissues on the fluorescence signal, we evaluated the
imaging performance of the AIENPs in vivo. In contrast to the other
detection windows, NIR-II images of the leaves were acquired using
long-pass filters and a laser excitation (at 808 nm), which is off-
resonance with photosynthetic pigments, resulting in no observable
autofluorescence signal from the leaves (Supplementary Fig. 22). Both
AIE520NPs and AIE712NPs injections produced significantly lower
fluorescence signals in the infiltrated region compared to the original
nanoparticles in the solution (Supplementary Fig. 23a, b). In contrast,
NIR-II AIE1035NPs showed excellent imaging performance by avoiding
the spectral bandwhere chloroplast autofluorescence is concentrated,
and they exhibited good penetration and low scattering loss despite
the presence of chloroplastic tissue barriers (Fig. 2e–g and Supple-
mentary Fig. 23c), suggesting that the NIR-II nanosensor is well-suited
for in vivo deep plant tissue imaging. Furthermore, under constant
laser beam irradiation, the signal intensity of AIE1035NPs exhibited

remarkable stability without significant attenuation, unlike indocya-
nine green (ICG), which is highly advantageous for the continuous
monitoring of biological information inplants (Fig. 2h). TheNIR signals
of AIE1035NPs were significantly stronger than those of aggregation-
induced quenching ICG under the same laser excitation and
were notably enhanced with increasing concentrations in the
2-Morpholinoethanesulphonic (MES) acid buffer (Fig. 2i, j). These
results indicate the potential of AIE1035NPs for in vivo imaging or
monitoring that surpasses that of the conventional NIR dye ICG.

Localization of nanosensor in plant leaves
As stress-induced signaling molecules are transiently generated, pre-
cise control of the nanosensors’ location is essential for detecting
plant signaling molecules18. To demonstrate the applicability of
AIE1035NPs@Mo/Cu-POM in living plants, we infiltrated the nano-
sensors into the leaves of lettuce, spinach, pepper, and tobacco (Fig. 3a
and Supplementary Figs. 24, 25). When AIE520 dye-swelled PS nano-
particles of 200nm in size were introduced into the plant leaves, the
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Fig. 3 | Localization of the nanosensor in living plants. a Schematic of the infil-
tration process for AIE1035NPs@Mo/Cu-POM. This schematic illustrates the infil-
tration of AIE1035NPs@Mo/Cu-POM through stomatal pores and its distribution
within the plant tissues. Created in BioRender. Hu, H. (2025) https://BioRender.
com/c2p1p6j. b Confocal fluorescence micrographs of AIE520 dye-swelled PS
nanoparticles (200nm in diameter, 0.1mgmL–1) in the lettuce leaf tissue. The
nanoparticles (green) were localized alongside the cell walls, intercellular spaces,
and stomatal pores. Chlorophyll autofluorescence is displayed in red. Confocal
fluorescence micrographs were obtained from three independent biological
replicates and were presented as representative images. c NIR fluorescence

micrographs and brightfield merged images of a lettuce leaf infiltrated with
AIE1035NPs (0.1mgmL–1) at ×20 and ×50 magnifications. All the NIR fluorescence
micrographs were obtained with an 808 nm laser at 2mW. NIR images are repre-
sentative of at least three independent experiments. d NIR fluorescence micro-
graphs and three-dimensional surface plots of the AIE1035NPs-embedded lettuce
leaf over 120min. Filter: 900nm long-pass filter. Scale bar: 200μm. e NIR fluor-
escence localization of AIE1035NPs in a living plant for 6 h. NIR fluorescence images
were obtainedwith an 808 nm laser at 15mWusing a shutter. Scale bar: 5mm. fNIR
fluorescence intensity profiles along the white dashed line in (e) over 6 h and
normalized signal intensity change of AIE1035NPs in the lettuce leaf (red dots).
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fluorescent signals were observed around the stomatal pores and in
the intercellular spaces of the epidermis using confocal microscopy
(Fig. 3b and Supplementary Fig. 26). We employed a home-built NIR-II
microscope to further confirm the localization of AIE1035NPs (Fig. 3c
and Supplementary Fig. 27), which aligns with the model of nano-
particle uptake in plant systems, where particles with diameters larger
than 100nm are typically found around the stomatal pores and in the
intercellular space58,59. Furthermore, we tracked the movement of
AIE1035NPswithin the lettuce leaf over a periodof 120min (Fig. 3d). The
nanoparticles exhibited slight diffusion within the leaf tissue during
the first 60min post-infiltration but did not migrate to other regions
due to the barrier posed by the leaf veins. Macroscopic imaging of the
movement of fluorescent particles in leaves over 6 h was consistent
with observations made through microscopy. Although the nano-
sensors in leaf tissues displayed small-scale, slow diffusion over time at
the microscopic level, this resulted in negligible signal changes during
the measurements (Fig. 3e, f and Supplementary Fig. 28).

WhenAIE1035NPs@Mo/Cu-POM isutilized forplant applications, it
is crucial to ensure the biocompatibility of the nanosensor.
AIE1035NPs@Mo/Cu-POM and its two components were infiltrated into
plant leaves, and no significant changes in FV/FM (a critical indicator of
a plant’s photosynthetic performance60–62) were observed, suggesting
that thenanosensor exhibitedno toxicity to theplants (Supplementary
Figs. 29, 30). Furthermore, the propidium iodide assay indicated that
thenanosensor did not cause appreciable cell death or negative effects
on the cells (Supplementary Figs. 31, 32). Considering that various
environmental factors, such as soil moisture and light conditions, can
influence plant physiology, the compatibility of the nanosensor under
different stress conditions was further evaluated (Supplementary
Figs. 30, 32). In long-term assessments, nanomaterial treatments did
not adversely affect the overall growth and chlorophyll content of
Arabidopsis and peppers, nor did they impact the physical and che-
mical properties of the soil (Supplementary Fig. 33 and Supplementary
Table 3).

Visualization of exogenous and endogenous H2O2

Motivated by the in vitro sensing performance and high stability of the
nanosensor, we further investigated its capability to detect H2O2 in
living plants. H2O2 solutions with concentrations ranging from 0 to
20μM, along with mechanically induced damage, were utilized as
sources of exogenous H2O2 and stress-induced endogenous H2O2,
respectively (Fig. 4a, b). The addition of exogenous H2O2 resulted in a
continuous recovery of NIR-II signal intensity, as observed through
NIR-II microscopy, allowing for the detection of H2O2 concentrations
as low as 5μM (Fig. 4c–e and Supplementary Fig. 34). This observation
was consistent with the trend of fluorescence changes in the nano-
sensor due to exogenous H2O2, as seen from a macroscopic perspec-
tive (Supplementary Fig. 35). The detection range of the proposed
nanosensor, which includes physiologically relevant H2O2 concentra-
tions ranging from nanomolar to micromolar levels32,63, demonstrates
the capability of AIE1035NPs@Mo/Cu-POM to identify abnormal fluc-
tuations of H2O2 in living plants.

By inflicting mechanical damage to the leaf to simulate abiotic
stress, the fluorescence changes induced by endogenous H2O2 in the
model were observed. After incubating with AIE1035NPs@Mo/Cu-POM
for 1 h, the damagewas inflicted on an intact lettuce leaf, resulting in an
activated NIR-II signal that was approximately 4.35-fold greater than
that of theMES group (Fig. 4f, g). Following pretreatmentwith catalase
as a reactive oxygen species (ROS) scavenger, the NIR-II fluorescence
signals in plant tissues exhibited negligible changes compared to
the MES group. This finding indicates the effectiveness of the fluor-
escence “turn-on” strategy in visualizing endogenous H2O2. In addi-
tion, the nanosensors were utilized to image the wound-induced H2O2

wave signals in both Arabidopsis wild-type (WT) and mutant defective
in H2O2 generation. Previous studies have shown that the ROS

signaling pathway during abiotic and biotic stress in Arabidopsis pri-
marily relies on the activation of the respiratory burst oxidase homo-
log D (RbohD), a nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase located on the plasma membrane16. We compared
the fluorescence intensity between theWT (Col-0) and rbohDmutants
after the infiltration of the nanosensors. Following injury, WT plants
exhibited an approximately 1.5-fold increase in the normalized fluor-
escence intensity of the nanosensor, while the rbohD mutants dis-
played a negligible sensor response (Fig. 4h, i). These results indicate
that the nanosensor can effectively visualize both exogenously and
endogenously produced H2O2 in real-time through a fluorescence
“turn-on” mechanism.

Real-time monitoring of H2O2 production in plants under stress
The applicability of the NIR-II fluorescence “turn-on” mode-based nano-
sensorwas demonstrated for detectingmechanical damage responses in
living plants (Fig. 5a–c). AIE1035NPs and AIE1035NPs@Mo/Cu-POM were
infiltrated into two adjacent areas of a lettuce leaf, separated by the
midrib.No signal responsewas triggeredbyeither touching the leaf or by
inserting the sensor into the leaf. The fluorescence intensity of
AIE1035NPs@Mo/Cu-POM increased rapidly within minutes after injury,
reaching a steady state within 20–30min (Fig. 5d, e and Supplementary
Fig. 36). In contrast, the fluorescence intensity of AIE1035NPs remained
unaffected and constant throughout the experiment, serving as a refer-
ence sensor. When mechanical damage was inflicted multiple times at
different locations on the leaf, the nanosensor exhibited characteristic
time responses after each treatment, demonstrating the feasibility of the
fluorescent probe for practical applications (Fig. 5f, g). In addition, the
nanosensor can effectively monitor the stress status of plants under
varying air humidity, soil moisture, and fertilization conditions, demon-
strating its applicability to diverse greenhouse management strategies
(Supplementary Figs. 37, 38).

Next, we demonstrated that a nanosensor based on NIR-II fluor-
escence “turn-on” mode can also be utilized to monitor changes in
endogenous H2O2 levels in plants subjected to various stresses. Com-
pared to the non-stress control, the NIR emission intensity of
AIE1035NPs@Mo/Cu-POM in the leaves significantly increased under
high heat stress and the flg22 treatment (a model for studying
microbial pathogen-induced responses64,65), exhibiting distinct H2O2

waveforms compared to those caused by mechanical damage (Fig. 5h
and Supplementary Fig. 39). Three parameters, amplitude, lag time,
and average velocity were defined to characterize the response of the
nanosensor (Supplementary Fig. 40). To verify whether the wound-
induced H2O2 signaling pathway in lettuce depends on the activation
of RbohD and its relationship with the Ca2+ signaling pathway, lettuce
leaves were treated with four different inhibitors and scavengers
(Supplementary Fig. 41). The application of the NADPH oxidase inhi-
bitor diphenyleneiodonium (DPI) and LaCl3 (a Ca2+ channel blocker)
reduced the amplitude and averagewave speed of the sensor response
while increasing the lag time. These results indicate that the propa-
gation of wound-induced H2O2 signals in lettuce requires the activa-
tion of NADPH oxidase and Ca2+ signaling, consistent with previous
findings in Arabidopsis16,66.

Considering the species-independent design of the proposed
nanosensor, we validated its applicability for stress detection in
diverse plant species. In addition to lettuce and Arabidopsis, we
demonstrated the utility of the nanosensor in monitoring wound-
induced H2O2 signaling profiles in three other plants: spinach, pepper,
and tobacco. Within minutes of wounding, the nanosensor in each
species activated the “turn-on” mode, reflecting changes in NIR-II
fluorescence intensity due to stress (Supplementary Fig. 42). The
amount of H2O2 produced as a result of mechanical damage also
exhibited different trends across the four species (Supplementary
Fig. 43). The heterogeneity of the three previously defined parameters
reflects the distinct conduction of H2O2 waves in different species,
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which may be related to their physiological structures or ecological
adaptations. Plant immune signaling networks have evolved in
response to their growth environments, explaining the differences in
signal transmission mechanisms among species67,68.

Machine learning for stress identification and species
differentiation
To evaluate the effectiveness of AIE1035NPs@Mo/Cu-POM in monitor-
ing stress responses, controlled experiments were conducted on let-
tuce plants using four experimental conditions: no stress, flg22
treatment, heat stress, and mechanical wounding. Additionally,
mechanical damage treatment was applied to different plants,
including tobacco, lettuce, spinach, and pepper. The site of probe
injection in each plant served as a fixed location for signal extraction,
and the NIR-II signal was continuously recorded and automatically
extracted for 1 h to generate the raw time series data. All signals were
calibrated and normalized to ensure that the features extracted after

data preprocessing were applicable to the overall dataset (Fig. 6a).
Cellular homeostasis is characterized by a baseline level of ROS, which
can be disrupted by various biotic and abiotic stresses, leading to ROS
accumulation in different cellular compartments32. For each stress
condition, the NIR-II signals of the nanosensors exhibited significant
variation in response to each stressor (Fig. 6b). In the control experi-
ment without stress, the fluorescence signal of the nanosensor
remained relatively stableover the course of 1 h, asH2O2waspresent at
a lower concentration and was scavenged by a range of enzymatic and
non-enzymatic antioxidants69. During the wounding experiments, the
disruption of leaf tissue triggered a rapid accumulation of H2O2,
leading topronounced changes in theNIR-IIfluorescence signal.Under
heat stress, when membrane complexes involved in various electron
transfer chains are compromised, H2O2 is produced in mitochondria
and chloroplasts, subsequently accumulating in the cytoplasm and
nucleus70. The signal changes observed in the nanosensor were con-
sistent with immediate physiological responses of the plants. In the

Fig. 4 | Visualization of exogenous and endogenous H2O2 in plants using
AIE1035NPs@Mo/Cu-POM nanosensor. a Schematic of exogenous and endogen-
ous H2O2 generation inplants.b, c Experimental protocol (b) and illustrationof NIR
microscope settings (c) for exogenous (1) and endogenous (2) H2O2 visualization.
The illustrations of (a–c) were created in BioRender. Hu, H. (2025) https://
BioRender.com/0g60kqh. d NIR fluorescence micrographs and surface plots of
lettuce leaves treated with the nanosensor and different concentrations of H2O2.
e NIR-II signal intensity of the lettuce leaves in (d) was illustrated using a boxplot
(five independent plants). f NIR fluorescence micrographs, surface plots, and
integrated fluorescence intensity profiles along the white arrow of the lettuce
leaves with various treatments as indicated. g NIR-II signal intensity of the lettuce
leaves in (f) was illustrated by a boxplot (four independent plants). The bars of the
boxplot in (e) and (g) represent theminimum, the lower (25th) quartile, themedian,
the upper (75th) quartile, and the maximum values from bottom to top. Asterisks

indicate values that are significantly different between the two groups being
compared (ns > 0.05, *P <0.05, **P <0.01, ***P <0.001,****P <0.0001). Statistically
significant differences were determined using a one-way ANOVA test with Tukey’s
HSD test. h NIR fluorescence images of AIE1035NPs@Mo/Cu-POM nanosensor
response towards H2O2 induced by wounding in WT Arabidopsis thaliana and
rbohD mutant of Arabidopsis thaliana. Time denotes time points after wounding.
The yellow dashed line and red dashed line represent the site of wounding and
sensor infiltration, respectively. iTimeprofilesof normalizedfluorescence intensity
for AIE1035NPs@Mo/Cu-POM throughout the experiment. The black arrow indi-
cates the time of wounding. The red and black line plots represent the WT and
mutant of Arabidopsis thaliana, with the center line denoting the mean value and
the shaded regions indicating the standard deviation from three independent
measurements.
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flg22-simulated pathogen stress experiments, H2O2 is primarily pro-
duced in the apoplast due to the activation of specific oxidases such as
RBOHs, as well as in chloroplasts due to the disruption and imbalance
of metabolic pathways71,72, which leads to an increase in the signal of
the NIR-II nanosensor. During the wounding experiments across dif-
ferent plant species, each species showed distinct characteristic H2O2

signaling responses, which aligns with the heterogeneity of the char-
acteristic parameters of the H2O2 signaling waves observed in the four
species previously studied (Supplementary Fig. 42), indicating the
diversity of the signaling networks utilized by these plant species.
These results indicate that the proposedNIR-II fluorescent nanosensor
can effectively monitor stress-induced H2O2 signaling in real time.

The amount and rate of H2O2 production in plants vary under dif-
ferent stress conditions, yet data derived frommanual processing often
contain inaccuracies. Employing ML methods may offer a solution to
this limitation, enabling more accurate monitoring of plant stress
responses73,74. We developed a supervised ML model for NIR-II nano-
sensors to extract features and interpret H2O2 signaling in relation to

stress type and plant species, thereby accelerating plant phenotyping.
While ML techniques have been previously used for electrochemical75

and multimodal wearable sensors21 to monitor plant physiological
information, there has yet to be amodeling approach that supportsNIR-
II fluorescent sensor for real-time monitoring of stress signals in plants.
The stress data collected by the NIR-II imaging system are complex,
consisting of continuously captured NIR-II images, which render tradi-
tional statistical methods inadequate. However, ML algorithms excel in
such situations. They can model complex nonlinear relationships and
interactions among variables, thereby enhancing the identification and
understandingof potential associations betweenH2O2 signals and stress
responses or plant species. Initially, the multidimensional feature space
was projected into a two-dimensional space using the t-distributed
stochastic neighbor embedding (t-SNE) visualization method, resulting
in a scatter plot of the data features (Fig. 6c and Supplementary Fig. 44).
t-SNE maps the high-dimensional data into a low-dimensional space
while preserving the local similarities between data points, which can
reveal the clustering structure of the data and facilitate the

Fig. 5 | Real-time sensing of the stress-induced H2O2 signal in lettuce.
a Schematic of in vivo visualization of stress-induced H2O2 by AIE1035NPs@Mo/Cu-
POM nanosensor. b Schematic of the response of the nanosensor to various
stresses in vivo. c Schematic of the experimental setup for in vivo detection. The
illustrations of (a–c) were created in BioRender. Hu, H. (2025) https://BioRender.
com/h4u7ond. d Brightfield image and false-colored NIR images of lettuce leaf in
the intact plant infiltrated with AIE1035NPs and AIE1035NPs@Mo/Cu-POM. White
arrows and the red dashed line indicate the location of AIE1035NPs and
AIE1035NPs@Cu-POM, respectively. The yellow dashed line represents the location
of touching and wounding. Time denotes the time points after wounding. Laser
excitation: 808nm, 15mW. Filter: 900 nm long-pass filter. e Average time response
of normalized AIE1035NPs@Mo/Cu-POM fluorescence intensity in the lettuce leaf.
The black arrow represents the time point (10min) of touching and wounding.
Shaded regions represent standard error across five independent measurements.
f Brightfield image and NIR images of lettuce leaf infiltrated with AIE1035NPs@Mo/

Cu-POM after multiple woundings. The yellow dashed lines represent wounding
locations, and the numbers represent the order of the wounding process. The red
dashed lines indicate the location of AIE1035NPs@Mo/Cu-POM. Time denotes the
time points after the first wounding. Damage caused every 30min. g Average time
response of normalized AIE1035NPs@Mo/Cu-POM fluorescence intensity during
multiple woundings. Black, red, and blue arrows represent the time points of the
first (10min), second (40min), and third (70min) injuries, respectively. Shaded
regions represent standard error across three independent measurements. h NIR
fluorescence intensity changes of AIE1035NPs@Mo/Cu-POM in the leaf upon the
stress of pathogen-associated peptide stress (flg22). Inset: NIR fluorescence images
of the leaf from the representative period. Red and blue dots indicate the flg22-
treated and no-stress groups, respectively, with the center dotted line representing
the mean value and the shaded regions indicating the standard deviation of five
independent measurements.
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understanding of natural groupings within the dataset76,77. The data of
unstressed and stressed conditions naturally formed different clusters,
demonstrating the discriminative power of the features. Data from dif-
ferent species under stress formed partially overlapping clusters, sug-
gesting that they may exhibit similar physiological response
mechanisms when facing stress (Fig. 6d).

The eXtreme Gradient Boosting (XGBoost) algorithm was
employed to develop three independent ML models: no stress/stress
(2 ranges) model, categorization of biotic stress and abiotic stress
(3 ranges)model, and identification of specific stress species (4 ranges)
model. We trained and tested themodels on lettuce plants across four
experimental conditions: no stress, flg22, heat, and wound. The dif-
ferent MLmodels were evaluated using the F1 score, a metric of model
accuracy that combines precision and recall, where a score of “1”
represents perfect classification. The trained XGBoost model out-
performed traditional ML models, including linear and radial basis

function support vector machines (SVMs), logistic and ridge regres-
sion, and conventional decision trees (Fig. 6e, f and Supplementary
Fig. 45a). Our XGBoost ML model achieves high accuracy, with an
accuracy of 98.89% for stress detection, an accuracymore than 96.67%
for categorization of biotic stress and abiotic stress, and an accuracy
more than 96.67% for identification of specific stress species (Fig. 6g
and Supplementary Figs. 45b, 46). We also collected a dataset of
fluorescence signals from different plant species, including tobacco,
lettuce, spinach, and pepper, subjected to mechanical damage, which
was used for machine learning to differentiate H2O2 signal waves
across the various species. The XGBoost ML model achieved over
93.33% recognition accuracy among these plant species (Fig. 6g). This
ML analysis facilitates the rapid processing of real-time sensor data, is
well-suited for large-scale screening efforts, and does not depend on
subjective reporting, thereby providing a robust assessment tool for
detecting plant health.

Fig. 6 | ML-powered plant stress status monitoring. a Schematic of the ML
architecture for signal preprocessing, feature extraction, supervised learning,
stress identification, and species differentiation. b Heat maps of fluorescence
changes in nanosensorsmonitoring different stress types and plant species over an
hour. The intensity levels represent the changes in F/Fo of nanosensors in lettuce
leaves under different stress conditions, including no stress, wound, heat, and flg22
treatment (toppanel), aswell as in response tomechanical damage across different
plant species, including tobacco, lettuce, spinach, and pepper leaves (bottom
panel). a Created or b partially created in BioRender. Hu, H. (2025) https://
BioRender.com/jtldpq7. c, d t-distributed stochastic neighbor embedding plots for

the no stress and stress datasets (c) and different species stress datasets (d). Visual
clustering results showed the feature separation in two-dimensional space. e F1
scores (ametric of accuracy combiningprecision and recall) of differentMLmodels
for stress classification. f F1 scores of different ML models across an increasing
number of ranges categorized by stress identification. The ranges of stress classi-
fication include 2 ranges (no stress/stress), 3 ranges (no stress/biotic stress/abiotic
stress), and 4 ranges (no stress/flg22/wound/heat). g Confusion matrices of an
XGBoost model displaying the classification accuracy for predicting each type of
stress and different plant species.

Article https://doi.org/10.1038/s41467-025-60182-w

Nature Communications |         (2025) 16:5114 9

https://BioRender.com/jtldpq7
https://BioRender.com/jtldpq7
www.nature.com/naturecommunications


Discussion
This study represents an exploratory attempt to integrate an NIR-II
fluorescent plant sensor with ML, yielding promising preliminary
results in sensing performance and stress identification.Wedeveloped
aNIR-II nanosensor based on the fluorescence “turn-on”mode for real-
time, non-destructive monitoring of an important endogenous plant
signaling molecule, H2O2, and demonstrated its application in both
model and non-model plants. Compared to visible and NIR-I nano-
sensors, the designed NIR-II nanosensor effectively bypasses the
strong fluorescent background signals emitted by plant leaves. This
advancement allows for the direct monitoring of micromolar endo-
genous H2O2 in plant tissues from both microscopic and macroscopic
perspectiveswithout interference frombackground signals. The utility
of this method was initially validated in leaves of Arabidopsis (Col-0)
and the rbohD mutant. Subsequent studies were conducted on non-
model plants, including lettuce, spinach, and pepper, as well as model
plants such as tobacco, to demonstrate the universality of the fluor-
escence “turn-on”mode nanosensor. We showed that the NIR-II signal
from the nanosensor encodes unique information regarding the
intensity and velocity of plant signal waves. This information can be
utilized to elucidate inter-species differences in signal wave propaga-
tion, thereby facilitating physiological studies of plant species that
were previously inaccessible through transgenic approaches.

In addition, an XGBoost-based ML analysis framework was devel-
oped for stress detection and classification of multiple stressors. In
recent years, the integration of ML with biosensors for plant disease
detection, stress phenotyping, and predictive analysis has yielded sig-
nificant results, owing to its remarkable advantages in data analysis and
noise reduction. In this study, we employed three independent ML
analyses: stress detection, categorization of biotic stress and abiotic
stress, and identificationof specific stressors.Wedemonstrated that the
key physiological signals of plants in response to stress can be recog-
nized through NIR-II imaging combined with ML models, achieving a
classification accuracy of more than 96.67%. In addition, due to the
variations in stress responses among species, we can also achieve effi-
cient species classification through ML-powered NIR-II fluorescent
sensing. This sensor platform, which does not rely on subjective
reports, offers a highly robust sensing tool for various applications
related to plant health monitoring and crop loss prevention.

In addition to the AIE fluorophores discussed in this study, several
other remarkable luminophores, including lanthanide-doped
nanocrystals57,78, near-infrared quantum dots79, and semiconducting
polymers80,81, could also serve as potential candidates for in vivo
fluorescence imaging of plants in the NIR-II window. To develop more
advanced plant nanobionic sensors, it is essential to design compo-
nents that are sensitive to plant signaling molecules. Creating hybrid
nanosensors that respond to various endogenous signaling molecules
in plants (e.g., phytohormones, reactive oxygen species, reactive sulfur
species, inorganic ions, etc.) may be an effective strategy for under-
standing how plants respond to adverse environmental conditions. In
addition to blade-based sensing, microneedle patches designed for
stem applications provide direct access to vascular signals82,83, while
nanosensors capable of root uptake facilitate stress detection in both
hydroponic and soil environments84,85. These complementary
approaches broaden the scope of plant stress sensing beyond leaf
tissues, offering an integrated perspective on stress responses across
different plant organs (Supplementary Table 4).

Considering that the NIR-II fluorescent nanosensor combined
with the ML model enables rapid and accurate identification of plant
stress, it presents new opportunities for agricultural and environ-
mentalmonitoring.ML-based automated analysismethods can rapidly
extract signals, analyze trends, and classify stress from large volumes
of continuously captured images (tens of thousands), which far
exceeds the capabilities of manual processing. Plants embedded with
nanosensors serve as sentinels, facilitating the early, asymptomatic

detection of biotic and abiotic stressors within a short timeframe (a
few hours), thereby promoting targeted pest and disease manage-
ment, as well as early stress response strategies to minimize crop
losses. Furthermore, integrating nanosensor technology with envir-
onmental monitoring systems may facilitate the assessment of eco-
system health and the early detection of environmental degradation.
For practical field applications, it is advisable to utilize portable and
cost-effective electronic devices, such as Raspberry Pi, connected to
small infrared cameras for imaging. However, ML models trained on
datasets obtained under laboratory conditions may not be directly
applicable to fluorescence signals collected by portable imaging
devices, which typically exhibit lower sensitivity. Therefore, it is
essential to train separate models on datasets sampled outdoor to
enhanceaccuracy. UpdatedMLmodelsmust incorporate robust noise-
filtering techniques to effectively distinguish stress signals from
environmental noise. To facilitate field deployment, a conceptual
workflowhasbeenoutlined to illustrate the transition from laboratory-
based validation to real-world application (Supplementary Fig. 47).
The relatively small number of experiments in the dataset for this
study limits the scalability of the ML models and increases the
potential for distortion due to outliers. Future research should focus
on expanding the training dataset, extending sensor monitoring to
encompass various stress conditions, and improving its applicability
across a broader range of plant species. Given the potential feasibility
of the approach demonstrated in this work, we envision that such ML-
powered fluorescence “turn-on” mode nanosensors could be utilized
to elucidate the complex signaling networks of plants under environ-
mental stress and contribute to sustainable agriculture by enhancing
plant phenotyping and improving management practices.

Methods
Synthesis of Mo-POM, Mo/Fe-POM, and Mo/Cu-POM
Mo-POM was prepared through a one-pot oxidation reaction. 0.2 g of
Mo2Cwasdispersed in 1.5mLof ultrapurewater. Subsequently, 400μL
of H2O2 (30wt.%) was added dropwise under vigorous stirring, and the
reaction was allowed to proceed overnight. The Mo2C residue was
removed by centrifugation at 2800×g. The supernatant was lyophi-
lized to obtain Mo-POM powder. For the preparation of Mo/Fe-POM,
0.8032 g of (NH4)6Mo7O24·4H2O was dissolved in 10mL of ultrapure
water. Subsequently, 10μL of FeCl3 (17.5mgmL−1) was added under
continuous stirring, while 2mL of L-ascorbic acid solution
(100mgmL−1) was added into the above solution under vigorous stir-
ring and the reaction was continued for 2 h. The reactants were cen-
trifuged at 2800×g for 10min to remove the precipitate. Mo/Fe-POM
clusters were precipitated by adding 20mL of ethanol, followed by
collection through centrifugation. The clusters were washed three
times with water and ethanol, and then dried in a lyophilizer. For the
Mo/Cu-POM, 1.2 g of (NH4)6Mo7O24·4H2O and 0.05 g of CuCl2·2H2O
were dissolved in 20mL of ultrapure water. Under continuous stirring,
2mL of L-ascorbic acid solution (100mgmL−1) was added, stirring at
room temperature for 2 h. The Mo/Cu-POM clusters were precipitated
by adding 20mL of ethanol, collected by centrifugation, and washed
three timeswithwater and ethanol. Finally, the samples were dried in a
lyophilizer.

Fabrication of AIENPs@POM
AIENPs were obtained by embedding AIE dyes into the PS nano-
particles using the swelling method. A solution containing 2mg of
AIE475/AIE520/AIE712/AIE955/AIE1035, 50mg of PS nanoparticles, and
15mL of 1-methoxy-2-propanol was added to 5mL of ultrapure water.
The mixture was stirred at room temperature for 2 h and then washed
three times with ultrapure water. Following the electrostatic adsorp-
tionmethod, the positively charged polyethyleneimine branched (PEI)
polymer layers and the negatively charged POM were sequentially
adsorbed onto the surface of the negatively charged AIENPs. 50mg of
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AIENPs were dispersed in 10mL of PEI aqueous solution (2mgmL−1)
under sonication for 30min. The resulting product was washed three
times with ultrapure water to remove uncoated PEI. Subsequently,
1mg of PEI-coated AIENPs was mixed with 10mL of Mo-POM, Mo/Fe-
POMorMo/Cu-POM solution (10mgmL−1) for electrostatic coating for
12 h. Finally, the obtained AIENPs@POM solution was washed three
times with ultrapure water and stored at 4 °C for later use.

Performance of AIE1035NPs@Mo/Cu-POM in response to H2O2

100 µL of AIE1035NPs@Mo/Cu-POM (0.5mgmL−1) was added to 900 µL
of different concentrations of H2O2 and incubated for 10min. A four-
sided quartz cuvette containing 1mL of the reaction solution was
placed in a holder and excited at a wavelength of 808 nm, with the
laser power focused on the sample set at 15mW. NIR fluorescence
spectra were collected in the wavelength range of 850–1500 nm.

Selectivity of AIE1035NPs@Mo/Cu-POM in response to plant
hormones and reactive oxygen species (ROS)
For the selectivity test of the nanosensor against the plant hormone
analytes and molecules commonly found in plants, a 1mM solution of
each analyte was prepared in MES buffer (10mM MES, 10mM MgCl2,
pH 5.7). 100 µL of AIE1035NPs@Mo/Cu-POM (0.5mgmL−1) was reacted
with 900 µL of the following solutions: methyl jasmonate (100 µM),
salicylic acid (100 µM), glucose (100 µM), Ca2+ (100 µM), tannic acid
(100 µM), adenosine 5′-triphosphate (100 µM), ascorbic acid (100 µM),
and H2O2 (100 µM). After reacting for 10min, the NIR fluorescence
spectra of the mixture were recorded. For ROS screening, the same
experimental setup was used. Hydroxyl radicals (•OH) were generated
in situ by adding a 100 µM FeCl2 solution to 100 µMH2O2 through the
Fenton reaction. Singlet oxygen (1O2) was generated in situ by the
addition of 100 µM CuCl2 solution into 100 µM H2O2. Superoxide
anions (O2

•−) were produced by dissolving solid KO2 in dimethyl sulf-
oxide (DMSO). ROS solution was infiltrated into a lettuce leaf
approximately 1 cm away from the nanosensor for the in vivo
selectivity test.

Plant growth conditions
Arabidopsis thaliana, spinach, pepper, and tobacco seeds were culti-
vated in a 65 × 65mm seeding tray. Once the first two leaves of the
seedlings fully expanded, they were transplanted into pots containing
the same soil mix. Lettuce seedlings were grown hydroponically using
a 25% Hoagland nutrient solution. The plants were maintained in an
artificial climate chamber under controlled conditions: a light intensity
of 200μmol m−2 s−1, a 12 h-light/12 h-dark photoperiod, temperature
cycles of 22/18 °C (day/night), and 60% relative humidity.

Introduction of nanoparticles to plant leaves
Nanoparticles were diluted to a concentration of 0.1mgmL−1 in MES
buffer and infiltrated into plant leaves using a needleless 1mL syringe.
Gentle pressure was applied to the leaf during infiltration to prevent
any mechanical damage. Infiltration continued until the periphery of
the site was thoroughly saturated with the nanoparticle solution.
Subsequently, any remaining nanoparticles on the surface of the leaf
blade were washed away with water. The infiltrated leaves were then
allowed to stand for 1 h before conducting in vivo measurements.

NIR-II fluorescence micro-imaging in vivo
For the localization of nanoparticles in plant leaves, AIE1035NPs were
diluted in MES buffer and infiltrated into lettuce leaves. NIR mea-
surements were conducted using an 808 nm laser to minimize the
backgroundfluorescence signal fromchlorophyll. The data acquisition
was performed using ×20 and ×50 objectives, with a laser power of
2mW incident on the sample and an exposure time of 500ms per
point. A simple schematic diagram of the micro-imaging system is
depicted in Fig. 4c.

The migration and diffusion of nanoparticles within live plant
leaves were observed from a wider angle of view using a ×5 objective.
AIE1035NPswerediluted inMES buffer and subsequently infiltrated into
the lettuce leaf. Following infiltration, the lettuce was placed in a
conicalflask containing 300mLof Hoagland nutrient solution, and the
localization of nanoparticles in the plant wasmonitored for 6 h using a
home-built NIR microscope.

For the visualization of exogenous H2O2, AIE1035NPs@ Mo/Cu-
POM and H2O2 solutions with final concentrations of 5μM, 10μM, and
20μM were diluted in MES buffer and infiltrated into the lettuce leaf.
The leaf surface was subsequently washed with ultrapure water to
remove any excess nanoparticles. Following a 30-min incubation, the
leaves were gently washed with ultrapure water and then observed
using an NIR microscope.

To visualize endogenous H2O2, AIE1035NPs@Mo/Cu-POM were
diluted in MES buffer and infiltrated into a healthy lettuce leaf. The
plant was then placed in a growth chamber for 30min. Subsequently,
the leafwaswounded 1 cmaway from the infiltrationpoint near the leaf
tip. The production of endogenous H2O2 in the leaf was immediately
observedusing anNIRmicroscope. In another groupof leaves, catalase
(200 unitsmL−1) was pre-treated for 1 h before the wound treatment to
inhibit the production of endogenous H2O2 in the cells.

NIR-II fluorescence macro imaging in vivo
After infiltration, the leaf was subjected to in vivo NIR-II fluorescence
imaging under the excitation of an 808 nm laser. The NIR-II signals
emitted by AIE1035NPs@Mo/Cu-POM within the leaf were collected
through a NIR antireflection fixed-focus lens equipped with optical
filters (FEL0900) and then subsequently detected by a liquid nitrogen-
cooled 2D InGaAs camera (640× 512 pixels). Fluorescence imageswere
acquired using LightField imaging software and quantitatively ana-
lyzed with Image J software. Data analysis was conducted using Ori-
ginPro 2018 and GraphPad Prism 9.5.

Real-time monitoring of wound-induced H2O2 in plants
A plant infiltrated with AIE1035NPs@Mo/Cu-POM was placed 0.5m in
front of the camera. A 900 nm long-pass opticalfilterwaspositioned in
front of the InGaAs detector. Entire living plants were selected for
monitoring wound-induced H2O2 signals, with one plant used for each
wounding experiment. NIR-II fluorescence signals from the nano-
sensors were monitored under 808 nm laser excitation (15mW) with
an exposure time of 500ms. A mechanical wound was created on the
leaf tip, 1 cm away from the nanosensor, using tweezers. To conduct
multiple wounding experiments, wounds were made above, below,
and to the left of the sensor point, as illustrated in Fig. 5f. Each
wounding process was completed within 5 s.

Detection of H2O2 in plants under heat stress and elicitor
application
Heat stress was induced by placing metal rods preheated in a water
bath at 60 °C in contact with the tips of the lettuce leaves for 30 s. To
simulatemicrobial pathogen stress, the flg22peptide was used. 100μL
of flg22 peptide solution (10μM) was applied to the surface of the
lettuce leaves. The solution was allowed to diffuse into the leaves by
creating small holes in the AIE1035NPs@Mo/Cu-POM penetration area
using an ultrafine needle tip.

Machine learning-powered plant stress status assessment
For the signal preprocessing and feature extraction, the monitoring
and data collection process was completed within 1 h. However, plants
under stress conditions produce H2O2 rapidly, resulting in significant
changes in the NIR-II signal. Images were continuously acquired using
the NIR-II imaging system at a sampling frequency of T = 20 s. The site
of probe injection in the plant served as the fixed signal extraction
location, and the NIR-II signal was extracted for 1 h to create the raw
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time series data. Feature extraction was validated before ML analysis
by projecting the multidimensional feature space into 2D space by
means of t-distributed stochastic neighbor embedding (t-SNE). To
obtain the time series segments, all raw data were averaged in batches
and summarized for input into the plant stress identification model.
The features of each sample were normalized prior to the machine
learning (ML) pipeline to enhance the model’s generalizability. After
data collection and analysis, the training and testing datasets were
shuffled and divided in a 7:3 ratio, respectively.

Model selection for stress classification
All training models were constructed using Python (v.3.9) and were
based on data collected from 120 lettuce samples subjected to four
different stress treatments, as well as 120 samples of scratched
tobacco, lettuce, spinach, and pepper, with 240 sets of 3600 s of NIR-II
signal recordings. Several ML models were evaluated using F1 scores
and confusion matrices, including linear and radial basis function
support vector machines (SVMs), logistic regression, ridge regression,
conventional decision trees, and trained boosting decision treemodel,
Extreme Gradient Boosting (XGBoost). The trained XGBoost model
outperformed traditional ML models in both stress detection and
stress type classification.

Statistics and reproducibility
The experiments performed in this study were independently repe-
ated at least three times, yielding consistent results. Statistical analyses
were performed using GraphPad Prism 9.5, and the data were pre-
sented as themean± s.d. (standarddeviation).Microscope images and
NIR-II images were obtained from three or more independent biolo-
gical replicates and were presented as representative images in this
work. Differences between the two groups were analyzed using an
unpaired two-sided Student’s t-test. Multiple comparisons were con-
ducted using a one-way analysis of variance (ANOVA) followed by
Tukey’s test for post hoc analysis. No statistical method was used to
predetermine sample size. No data were excluded from the analyses.
The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the
article and its supplementary files. Any additional requests for infor-
mation can be directed to and will be fulfilled by the corresponding
authors. Source data are provided with this paper.
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