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Dimensional reduction in Cs2AgBiBr6
enables long-term stable Perovskite-based
gas sensing

Wen Ye1,2, Hong-Zhen Lin 3, Menglong Li1, Lihua Jiang1, Dongyun Chen 1 &
Jian-Mei Lu 1

Halide perovskite gas sensors have a low gas detection limit at room tem-
perature, surpassing the performance of traditional metal oxide chemir-
esistors. However, they are prone to structural decomposition and
performance loss due to the lack of coordination unsaturated surface metal
ions and sensitivity to environmental factors such as water, oxygen, heat, and
light. To address this issue, we present a general strategy: replacing the cation
Cs+ in inorganic perovskite Cs2AgBiBr6 with long-chain alkylamines. This
modification synthesizes perovskite sensor materials that effectively block
moisture and exhibit excellent stability under real-working conditions. The
chemiresistors show high sensitivity and stability to COgas, with (BA)4AgBiBr8
detecting CO at a limit of 20 ppb, maintaining performance after 270 days of
continuous exposure to ambient air. The exceptional performance of
(BA)4AgBiBr8 is elucidated through density functional theory calculations
combined with sum frequency generation spectroscopy, marking a significant
breakthrough in halide perovskite-based gas sensing by surpassing the stabi-
lity and sensitivity of traditional sensors.

Gas sensing technology, which converts gas components into light and
electrical signals, holds promise in environmental monitoring, safety
alert systems, and disease diagnosis, offering significant potential in
enhancing human safety and quality of life1–3. Despite their high sen-
sitivity, low cost, and fast response times, metal oxide semiconductor
gas sensors face challenges inminiaturization and performance due to
high energy consumption and detection limits4,5. Halide perovskites,
with their numerous active sites, high mobility, long diffusion lengths,
and excellent tunability, are ideal for preparing high-performance
chemical resistive gas sensors, offering significant improvements over
traditional materials like metal oxides in detecting low-concentration
gases6–8. Moreover, lead-free halide perovskites stand out for their
environmentally friendly characteristics compared to traditional lead-

based counterparts. By eliminating lead, these materials significantly
mitigate health and environmental risks, making them a sustainable
choice for advanced sensor applications.

Halide perovskites are widely recognized to have intrinsic defect
tolerance; however, moderate temperature, humidity, and sunlight
can degrade bonds and lead to perovskite crystal decomposition9–11.
Unsurprisingly, early perovskite gas sensors could only operate in air
for a few days12,13. Since then, significant progress has been made, with
some sensors demonstrating operational stability for 180days expo-
sure to the atmosphere and negligible loss of sensing performance14.
Despite these improvements, current perovskite gas sensors still do
not fullymeet the requirements for gas sensing applications. Lead-free
halide perovskites, by addressing the toxicity concerns associatedwith
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traditional perovskites, offer broader applicability, particularly in
environments where environmentally responsible solutions are
essential.

In this study, we prepared three lead-free two-dimensional hybrid
double perovskites (2D HDPs) with varying cation sizes, all of which
demonstrated remarkable environmental stability, remaining opera-
tional even after >270days of exposure to the atmosphere. The char-
acteristic feature of 2D HDPs is a large hydrophobic layer sandwiched
between the perovskite inorganic layers, which effectively prevents
water molecules from attacking the perovskite, thereby enhancing its
environmental stability (Fig. 1). However, this structural improvement
reduces the interaction between gas molecules and the perovskite
surface. Notably, (BA)4AgBiBr8 (BA =CH3(CH2)3NH3

+) can effectively
detect 20ppb CO while maintaining stability, marking a breakthrough
in the detection of ultra-low concentration CO. This finding highlights
the potential of 2D HDPs to overcome the limitations of traditional
halide perovskites in gas sensor technology, paving the way for the
practical application of halide perovskite-based gas sensors.

Results
Preparation and structural characterization of the two-
dimensional hybrid double perovskite sensors
The 3D A2B

IBIIIX6 (X = halogen) double perovskite lattice consists of
corner-sharing octahedrons, with small ions (Cs+ and MA+) occupying
the cuboctahedral cavities at the A-site15,16. However, if larger organic
cations replace the ions at the A-site, the 3D structure is transformed
into a 2D HDP lattice of A4B

IBIIIX8. This lattice comprises single sheets
of corner-sharing B −X octahedra, which are templated by ordered
arrays of organic cations17,18. To enhance the environmental stability of
halide double perovskites, we employed structural modifications
by reducing the dimensions of double perovskites. Specifically, we
synthesized three 2D HDPs, namely (BA)4AgBiBr8 (BA =CH3

(CH2)3NH3
+), (HA)4AgBiBr8 (HA =CH3(CH2)5NH3

+), and (OA)4AgBiBr8
(OA =CH3(CH2)7NH3

+), by utilizing cations of different sizes (Fig. 2a).

First, BA/HA/OA, AgBr, and BiBr3 were dissolved in a heated
hydrobromic acid solution using the proper stoichiometry. The solu-
tionwas then slowly cooled to facilitate the formation of (BA)4AgBiBr8,
(HA)4AgBiBr8, and (OA)4AgBiBr8 crystals. Their morphologies, crystal
phases, and elemental compositions were characterized by scanning
electron microscopy (SEM) and transmission electron microscopy
(TEM). SEM imaging showed that the three 2D HDPs exhibited flake-
shaped structures with smooth surfaces and uniform thickness
(Fig. 2b–d). High-resolution TEM (HRTEM) analysis revealed an inter-
plane spacing of 3.2 Å in two vertical directions for (BA)4AgBiBr8,
corresponding to the (200) plane of (BA)4AgBiBr8 (Supplementary
Fig. 7). The presence of clear diffraction spots in the electron diffrac-
tion pattern further confirmed the high crystallinity of the three per-
ovskites (Fig. 2e–g). Furthermore, energy-dispersive X-ray
spectroscopy demonstrated the uniform distribution of Ag, Bi, and Br
elements within the perovskite structures (Supplementary Figs. 8–10).

Next, we synthesized three different perovskite powders using a
rapid cooling method and conducted a comprehensive analysis of
their structure, thermal properties, and optical properties. To verify
the phase and purity of the powder samples, we performed powder
X-ray diffraction (PXRD) measurements. For the layered compounds,
we observed the first prominent 2θ peaks corresponding to (001) at
6.5°, 5.0°, and 4.3° for (BA)4AgBiBr8, (HA)4AgBiBr8 and (OA)4AgBiBr8,
respectively. This shift in the position of the (001) diffraction peak
toward smaller angles is attributed to the increase in spacing between
octahedral sheets as the length of the carbon chain increases. The
materials were further characterized by attenuated total reflection
Fourier transform infrared (ATR-FTIR) spectroscopy and Raman
spectroscopy. ATR-FTIR analysis revealed changes in the characteristic
peaks of (BA)4AgBiBr8 compared with pure n-butylamine. The N-H δ
peak shifted from 1571–1575 cm−1, and the CH2 δ peak shifted from
1463–1472 cm−1, indicating a clear interaction between the butylamine
ligands within the perovskite and the metal halide (Fig. 2l). Similar
shifts in characteristic peaks were observed for (HA)4AgBiBr8 and
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(OA)4AgBiBr8 (Fig. 2m, n). Raman spectroscopy results for Cs2AgBiBr6
exhibited three well-defined peaks at 177.9, 135.2, and 77.4 cm−1, cor-
responding to the A1g, Eg, and T2g vibrational modes, respectively
(Fig. 2i)19. When introducing the organic layer, the A1g peak associated
with the stretching of [AgBr6]

5- and [BiBr6]
3- octahedra shifted to lower

energy, the Eg peak shifted to higher energy, and the T2g peak became
weaker. These alterations are attributed to the distortion and separa-
tion of the octahedral sheets, leading to a softening of the phonon
modes19–21. Thermogravimetric analysis results indicated that
Cs2AgBiBr6 remained stable up to 410 °C, retaining over 99% of its
initial weight (Supplementary Fig. 11). Two distinct weight loss steps
were observed after exceeding 400 °C, with complete material
decomposition occurring at 900 °C. The onset of thermal degradation
for the 2Dhybrid perovskite occurred around 200 °C, regardless of the
length of the organic chain. The reduced thermal stability is attributed
to the decomposition of the organic portion19.

The optical properties were determined by examining the
ultraviolet–visible absorption spectrum. Cs2AgBiBr6 demonstrated
absorption around 600nm, and the absorption peaks of all 2D hybrid
perovskites were blue-shifted (Fig. 2j). The corresponding band gaps
increased from 1.93 eV for Cs2AgBiBr6 to over 2.1 eV (Fig. 2k). This shift

in absorption and increase in band gap is ascribed to the differences in
confinement effects and interactions between the constituent atoms
of the crystal structures22. The introduction of organic cations
increased the band gap by indirectly contributing to the asymmetry in
the octahedral sheets, leading to intra- and inter-octahedral distor-
tions. Such distortions are expected to affect the overlap of partici-
pating orbitals, consequently increasing the band gap19.

To gain deeper insights into the structural changes occurring in
the perovskite after dimensionality reduction, we employed density
functional theory (DFT) calculations to simulate the crystal structure,
energy band structure, and projected density of states (PDOS) for
Cs2AgBiBr6 and (BA)4AgBiBr8, based on their crystallographic infor-
mation files. The n-butylamine cation was used to transform the 3D
parent structure of Cs2AgBiBr6 into a Ruddlesden–Popper-type
layered perovskite, denoted as (BA)4AgBiBr8 (Fig. 3a, b). A noticeable
difference was observed in the bond lengths between the two struc-
tures. In Cs2AgBiBr6, the Ag-Br bond length remains uniform at 2.80 Å
throughout the 3D structure (Fig. 3c). However, in (BA)4AgBiBr8, sig-
nificant bond length deviations were observed (Fig. 3d). The inorganic
layer within (BA)4AgBiBr8 undergoes substantial distortion, particu-
larly at the Ag site. In this structure, the Ag-Br octahedron undergoes
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Fig. 2 | Structure and characterization of two-dimensional hybrid double per-
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scanning electron microscopy (SEM) images of (BA)4AgBiBr8, (HA)4AgBiBr8, and
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morphological features. e–g High-resolution transmission electron microscopy
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tetragonal distortion, with an unusually short bond length between Ag
and the axial terminal bromine (Ag-Brax = 2.68 Å), whereas the bond
length between Ag and the bridging equatorial bromides is longer (Ag-
Breq = 3.00Å; Fig. 3d). This distortion is primarily attributed to the
mixing of filled transitionmetalndorbitals with empty (n + 1)s orbitals,
which stabilizes the linear coordination geometry of Ag. In Cs2AgBiBr6,
the Br-4p, Ag-4d, and Bi-6s orbitals contribute to the valence band
maximum (VBM), and the conduction band minimum (CBM) is pri-
marily generated by Bi-6p orbitals (Fig. 3g)17,23–25. In this case, the
orbitals of the A-site cation do not contribute to the VBM or CBM.
However, upon introducing organic cations, a significant increase in
the band gap is observed (Fig. 3h), resulting from the distortion of
octahedral structures and changes in the overlap of participating
orbitals19.

Gas sensing of the two-dimensional hybrid double perovskite-
based sensors
Perovskites possess advantageous properties in various chemical
applications owing to the active sites exposed by point defects and the
ionic nature of the crystal lattice. To investigate this further, three 2D
HDPswere employed as chemiresistive gas-sensingmaterials, and their
performance was evaluated using carbon monoxide (CO) as the ana-
lyte. Figure 4a–c illustrate that the conductance of the three 2D hybrid
perovskites increased rapidly upon exposure to CO and quickly
recovered when air was reintroduced. A detailed comparison of
response times, recovery times, and detection limits revealed that the
incorporation of alkylamines significantly enhanced the performance
of the Cs2AgBiBr6 sensor (Fig. 4d, Supplementary Figs. 12–17). Among
the tested sensors, (BA)4AgBiBr8 exhibited the best overall perfor-
mance, with a positive linear response to CO across concentrations
ranging from 10 ppb to 400ppb, achieving a detection limit as low as
20ppb (Fig. 4d and Supplementary Fig. 17b). Using the root mean
square deviation (RMSD)method26,27, the theoretical detection limit of

the (BA)4AgBiBr8 sensor was calculated as 29.74 ppb, aligning closely
with the experimental findings (See Supplementary Information for
detailed calculation process). Additionally, (HA)4AgBiBr8 and
(OA)4AgBiBr8 were tested under identical conditions. The
(HA)4AgBiBr8 sensor achieved an experimental detection limit of
80ppb and a theoretical detection limit of 103.59 ppb, while the
(OA)4AgBiBr8 sensor exhibited an experimental detection limit of
120 ppb and a theoretical detection limit of 140.37 ppb (Supplemen-
tary Table 5). Real-time sensing curve cycling experiments for CO
concentrations of 0.02, 0.2, 4, and 10 ppmwere conducted to evaluate
the stability and reproducibility of (BA)4AgBiBr8, (HA)4AgBiBr8, and
(OA)4AgBiBr8 (Supplementary Figs. 18–20). All three sensors demon-
strated similar initial response values across three consecutive assays,
highlighting their stability and reproducibility. Importantly, replacing
Cs+ with alkyl chains significantly enhanced the environmental stabi-
lity. The three perovskite-based sensors remained stable for over
270days (Fig. 4f), marking a new record for perovskite-based sensors.
As shown in Fig. 4g, this comparison is made using stability data
compiled from previously published literature12–14,28–59. The complete
list of sources is also provided in Supplementary Table 4. The low
standard deviation in sensor responses further demonstrates the
reliability of all three sensors (Supplementary Figs. 21–23).

To evaluate the effects of O2 and H2O concentrations on sensor
performance, we adjusted the carrier gas composition and tested
responses under varying oxygen (N2, 20%, 60%, 100% O2) and relative
humidity (RH). The sensor’s response decreased at 20% O2 due to O2

molecule occupation of exposed metal sites but improved at higher
concentrations due to the formation of reactive oxygen species
(Supplementary Figs. 24–26)60. Under low humidity, water adsorption
hindered CO access to metal sites, reducing response, while high
humidity enhanced the response of (BA)4AgBiBr8 (Supplementary
Fig. 27), possibly due to material decomposition or denaturation,
unlike (HA)4AgBiBr8 and (OA)4AgBiBr8 (Supplementary
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Figs. 28 and 29), which were protected by longer alkyl chains. XRD
analysis confirmed structural changes in (BA)4AgBiBr8 with atmo-
spheric exposure (Supplementary Fig. 30), while no significant chan-
ges were observed for (HA)4AgBiBr8 and (OA)4AgBiBr8
(Supplementary Figs. 31 and 32).

Mechanistic inferences
The sensing response of perovskite can be attributed to its semi-
conductor properties and the interactions between COmolecules and
exposed active sites. The ionic lattice of perovskite facilitates CO

adsorption at point defects through acid-base interactions, resulting in
electron extraction and transfer fromCO to (BA)4AgBiBr8, which alters
the material’s resistivity (Fig. 5a). To identify the optimal adsorption
sites for COmolecules,we calculated the system’s energy followingCO
adsorption, with the optimal adsorption configuration depicted in
Supplementary Fig. 33. Charge difference density maps reveal distinct
charge redistributions between CO and adsorption sites on
(BA)4AgBiBr8 (Fig. 5a), indicating specific interactions. When CO
adsorbs at exposed Bi sites, formed due to the absence of Br ions, a
thicker electron accumulation layer is generated, leading to changes in
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three two-dimensional hybrid double perovskites (2D HDPs) is presented, with
detailed measurements of response time, recovery time, and lower limit of

detection provided in Supplementary Figs. 13–17. e Schematic diagram of the
perovskite sensing structure. f Comparison of long-term sensing stability among
the four perovskites. g Long-term time stability of CO sensors based on various
perovskite materials. Reference numbers next to the data points correspond to
sources listed in themain text reference list12–14,28–59. The compiled data are detailed
in Supplementary Table 4, which uses a separate reference list. Source data are
provided as a Source Data file.
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carrier concentration. This phenomenon was further confirmed by
sum frequency generation (SFG) spectroscopy (Fig. 5b), where the SFG
signal intensity of (BA)4AgBiBr8 increases significantly after CO treat-
ment, suggesting charge transfer. Additionally, the presence of CO
characteristic peaks in the SFG spectra indicates that CO molecules
exhibit high orientation uniformity on the surface of (BA)4AgBiBr8 at
room temperature.

To further clarify the interaction between CO and
(BA)4AgBiBr8, we analyzed the density of states (DOS) before and
after CO adsorption. Figure 5e shows negligible changes in the total
density of states (TDOS) near the Fermi level of (BA)4AgBiBr8 after
CO adsorption, suggesting weak orbital interactions. The projected
density of states (PDOS) indicates that these weak interactions
primarily originate from the p orbital of CO and the 6p orbital of Bi
(Fig. 5f, g). Electron Localization Function (ELF) analysis further
supports this conclusion, showing discontinuous electron dis-
tributions between CO and (BA)4AgBiBr8 (Fig. 5c), which is char-
acteristic of physical adsorption. Additionally, Crystal Orbital
Hamilton Population (COHP) analysis confirms weak orbital cou-
pling (Fig. 5d), as evidenced by minimal antibonding characteristics
(few positive COHP values) and a low Integrated Crystal Orbital
Hamilton Population (ICOHP) value (-0.53 eV). Although these

results indicate that CO molecules undergo physical adsorption on
the surface of (BA)4AgBiBr8, the observed significant charge trans-
fer and excellent sensing performance may arise from the strong
localized charge redistribution around adsorption sites, which
facilitates rapid response and recovery (Fig. 4a).

Discussion
This study advances the field of gas sensing by addressing the limita-
tions of halide perovskite sensors through innovative material mod-
ifications. By replacing the cation Cs+ in Cs2AgBiBr6 with long-chain
alkylamines, we have developed perovskite materials that effectively
mitigate structural decomposition and performance degradation
induced by environmental factors. The resultant sensor, (BA)4AgBiBr8,
demonstrates exceptional performance with a CO detection limit of
20 ppb and maintains its stability after 270 days of continuous expo-
sure to ambient air. The sensing performance was excellent compared
to all other reported electric CO sensors as summarized in Supple-
mentary Table 5. This achievement marks a significant improvement
over perovskite sensors and highlights the effectiveness of using two-
dimensional hybrid double perovskites to enhance sensor durability
and sensitivity. This breakthrough paves the way for practical appli-
cations in environmental monitoring, safety systems, and disease
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Fig. 5 | Characterization of the sensing mechanism. a The charge difference
density of adsorption of CO on BA4AgBiBr8 (200) surface. The electron accumu-
lation and depletion are represented with yellow and cyan contours, with iso-
surfaces being 0.003 e/Å3. The black, white, purple, yellow, green, and pink balls
refer to C, H, N, Bi, Ag, and Br atoms, respectively. Corresponding atomic coordi-
nates are available in Supplementary Data 1. b Sum frequency generation (SFG)
spectra of (BA)4AgBiBr8 film before and after CO adsorption. c The Electron
Localization Function (ELF) diagram for adsorption of CO on BA4AgBiBr8 surface.
The black, white, purple, yellow, green, and pink balls refer to C,H, N, Bi, Ag, and Br
atoms, respectively. Corresponding atomic coordinates are available in Supple-
mentary Data 2. d The Crystal Orbital Hamilton Population (COHP) and the

corresponding Integrated Crystal Orbital Hamilton Population (ICOHP) value for
C-Bi bond in the configuration of CO absorbed on BA4AgBiBr8 (200). The Fermi
level (Ef) was set to 0.00eV. e Total density of states (TDOS) of BA4AgBiBr8 (200)
surface, and BA4AgBiBr8 (200) surface with CO molecule. The Ef is set to 0.00eV.
f Projected density of states (PDOS) of 6p orbitals of Bi in the BA4AgBiBr8 (200)
surface with a COmolecule absorbed and Bi in the clean BA4AgBiBr8 (200) surface.
The Ef is set to 0.00eV. g PDOS of p orbitals of a CO molecule on the BA4AgBiBr8
(200) surface and an isolated CO molecule. The Ef is set to 0.00eV. The insets are
the partial charge densities with isosurface level set to 0.02 e/Å. The electron
accumulation is represented with yellow contour. Source data are provided as a
Source Data file.
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diagnosis, thereby significantly advancing the potential of halide
perovskite-based gas sensing technology.

Methods
Synthesis of (BA)4AgBiBr8
In the synthesis of the product, 0.9mmol of AgBr, 0.9mmol of BiBr3,
and 3.6mmol of n-butylamine solution were added to a 5mL round
bottom flask. Then, 2.6mL of 48% HBr was added to the flask. The
mixture was stirred at 100 °C until all the reactants were completely
dissolved. The resulting solution was allowed to cool to room tem-
perature naturally, and the product was obtained. Subsequently, the
product was washedmultiple times with diethyl ether and dried under
vacuum at 60 °C for 10 h.

Synthesis of (HA)4AgBiBr8
In the synthesis of the product, 0.9mmol of AgBr, 0.9mmol of BiBr3,
and 3.6mmol of n-hexylamine solution were added to a 5mL round
bottom flask. Then, 2.6mL of 48% HBr was added to the flask. The
mixture was stirred at 130 °C until all the reactants were completely
dissolved. The resulting solution was allowed to cool to room tem-
perature naturally, and the product was obtained. Subsequently, the
product was washedmultiple times with diethyl ether and dried under
vacuum at 60 °C for 10 h.

Synthesis of (OA)4AgBiBr8
In the synthesis of the product, 0.9mmol of AgBr, 0.9mmol of BiBr3,
and 3.6mmol of n-octylamine solution were added to a 5mL round
bottom flask. Then, 2.6mL of 48% HBr was added to the flask. The
mixture was stirred at 140 °C until all the reactants were completely
dissolved. The resulting solution was allowed to cool to room tem-
perature naturally, and the product was obtained. Subsequently, the
product was washedmultiple times with diethyl ether and dried under
vacuum at 60 °C for 10 h.

Fabrication of the sensors
Ultrasonically disperse 20mg of (BA)4AgBiBr8 in 1mL of chlor-
obenzene. Then, apply 20μL of the dispersion onto an Al2O3 substrate
that has been printed with Ag-Pd interdigitated electrodes. The chan-
nel width of the electrodes is 200 μm (MJ-10, Beijing Elite Technology
Co. Ltd, China). Subsequently, dry the coating for 5min under an
infrared drying lamp.

Gas sensing measurements
The performance of the (BA)4AgBiBr8 sensor was assessed by mea-
suring the current under varying concentrations of CO/Air gas flow at
25 °C. A sealed chamber with gas input, gas exit, and electrical feed,
having a capacity of 1200 cm3, was utilized to power the sensor. To
monitor the current, DC current-time (I-T) measurements were con-
ducted using a Keithley 4200-SCS instrument. Each I-T measurement
lasted for 4min to ensure accurate and precise experimental data.
Prior to introducing the target gas, the chamber was purged with dry
air until the sensor’s current stabilized. During the experiments, the
airflow ratewasmaintained at 100mL/min tominimize its influence on
the measurements.

Material characterization and spectroscopic investigation
Scanning electron microscopy (SEM) and energy-dispersive X-ray
spectroscopy (EDS) spectra were acquired using a HITACHI Regulus
8230 cold field emission SEM at an acceleration voltage of 15 kV. High-
resolution transmission electron microscopy (HRTEM), and selected
area electron diffraction (SAED) were performed on a Talos F200X G2
electron microscope (Thermo Scientific) at 200 kV. The structural
properties of the perovskite were analyzed using X-ray diffraction
(XRD) with a Bruker D8 Advance and Fourier-transform infrared

spectroscopy (FTIR) with an IRTracer-100. Sensor performance was
evaluated using a Keithley 4200-SCS instrument. The sum frequency
generation (SFG) spectrometer laser system was configured by
EKSPLA.

Theoretical calculation
All of the structural relaxation and electronic structure calculations
were performed using the density functional theory (DFT), as imple-
mented in the Vienna Ab initio Simulation Package (VASP)29,30,61,62. The
exchange-functional was treated within the generalized gradient
approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE)
functional63–65. The core and valence electronic interactions were
described using the frozen-core projector augmented-wave (PAW)
potentials66. The (BA)4AgBiBr8 (200) surface model was constructed
for theoretical calculations. The convergence criteria of the force and
energy change were 0.01 eVÅ–1 and 1 × 10−4 eV per atom in the geo-
metry optimization. The cut-off energy of the plane-wave basis was set
as 400 eV to optimize the calculations for atoms and cell optimization.
The k-point sampling was modeled from the Gamma scheme with a
3 × 1 × 1 mesh. To avoid interactions between periodic slabs, lattice
parameters in the direction perpendicular to the surface were set as
25 Å. The DFT-D3method was used to evaluate the long-range van der
Waals (vdW) contributions67.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Supplementary
Information and Source Data file. Source data are provided with this
paper. The atomic coordinates of the DFT-optimized structures shown
in Fig. 5a and c, and Supplementary Fig. 33 are provided as Supple-
mentary Data 1–3 in plain-text format. Source data are provided with
this paper.
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