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Transcriptional regulators (TRs) are master controllers of gene expression and
play a critical role in both normal tissue development and disease progression.
However, existing computational methods for identification of TRs regulating
specific biological processes have significant limitations, such as relying on
distance on a linear chromosome or binding motifs that have low specificity.
Many also use statistical tests in ways that lack interpretability and rigorous
confidence measures. We introduce BIT, a Bayesian hierarchical model for in-
silico TR identification. Leveraging a comprehensive library of TR ChIP-seq
data, BIT offers a fully integrated Bayesian approach to assess genome-wide
consistency between user-provided epigenomic profiling data and the TR
binding library, enabling the identification of critical TRs while quantifying
uncertainty. It avoids estimation and inference in a sequential manner or
numerous isolated statistical tests, thereby enhancing accuracy and inter-
pretability. BIT successfully identifies perturbed TRs in perturbation experi-
ments, functionally essential TRs in various cancer types, and cell-type-specific
TRs within heterogeneous cell populations, offering deeper biological insights
into transcriptional regulation.
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Transcriptional regulators (TRs), comprising transcription factors, TR
cofactors, chromatin modulators, and various regulatory molecules,
play a key role in regulating gene transcription'. TRs are essential in

identification, especially those
sequencing (NGS) data.
The in-silico identification of TRs regulating a specific biological

leveraging next-generation

diverse cellular processes, including growth, differentiation, morpho-
genesis, and apoptosis*™. Dysfunction of TRs can lead to various dis-
eases such as cancers’’, diabetes'®”, and heart diseases””. Thus,
gaining insights into the identity and function of TRs that regulate
specific biological processes is essential in a broad range of biological
and medical research, particularly in finding biomarkers and ther-
apeutic targets'*'°. Because traditional wet lab experiments to identify
TRs are labor-intensive and time-consuming, researchers are increas-
ingly turning to efficient statistical and machine learning methods for

process typically requires two key components. The first component is
input data that are often generated from cost-effective techniques,
such as a set of genes identified from transcriptomics techniques (e.g.,
microarray, RNA-seq) or a set of accessible chromatin regions derived
from epigenomic profiling techniques” (e.g., ATAC-seq). These input
data typically reflect the downstream effects of key TR activity or
provide epigenomic features closely associated with TR binding sites.
For example, differential gene expression between diseased and nor-
mal samples is often attributed to the change in key TR activity™*2°.
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In our recent comprehensive review?, we discussed the limita-
tions of using gene sets as input. This approach requires assigning each
gene a representative chromatin location, typically the transcription
start site (TSS). The association between a TR and a gene is then
assessed based on the linear distance between the binding sites of the
TR and the TSS of this gene, which often underestimates long-range
interactions, such as distant enhancers that locate thousands of base
pairs away from their target genes. In contrast, alternative input such
as chromatin accessibility profiling data directly correlate with TR
binding activity”*. As accessible chromatin is a prerequisite for TR
binding, functional TRs can be inferred as those with binding sites
enriched in the input accessible chromatin regions, thereby avoiding
the use of linear distance. In addition, epigenomic profiling techniques
such as ATAC-seq have gained increasing popularity over the past
decade. The abundance of such datasets has stimulated the develop-
ment of computational methods to uncover insights into transcrip-
tional regulation.

The second component of in-silico TR identification is a reference
library consisting of TR ChIP-seq data or TR binding motifs. TRs bind to
specific cis-regulatory elements to exert their regulatory function? and
thus, data that accurately capture TR binding sites serve as a valuable
reference. TR ChIP-seq provides an accurate representation of in vivo
TR binding profile?*. However, each ChlP-seq dataset can only decipher
one TR’s binding profile under a specific condition. It is not feasible to
conduct thousands of ChIP-seq experiments for one single condition
to measure every TR’s binding profile. Therefore, researchers often
rely on computational methods to infer functional TRs based on a
library of binding profiles collected from thousands of existing ChIP-
seq experiments that cover many known TRs. In addition, TR binding
sites can also be inferred by TR binding motifs, which are DNA
sequence patterns that reveal TR binding preference.

Despite tremendous successes in advancing biomedical research,
existing computational methods can suffer from various limitations,
regardless of the reference type. (i) For methods (e.g., WhichTF* and
HOMER?) that leverage TR binding motifs as reference, the highly
similar motifs shared among many TRs make accurate identification
challenging®. In addition, motifs alone cannot characterize any
context-specific binding pattern, and the lack of well-defined motifs
for some TRs further reduces the reliability of using motifs for TR
identification®*. (ii) For methods using TR ChIP-seq data (e.g., BART*
and ChlIP-Atlas*?), each TR’s binding profile can vary in different cell
types or environmental conditions. However, published methods have
no rigorous treatment of the within-TR heterogeneity when dealing
with multiple binding profiles from the same TR. Further, TRs with
more datasets can benefit from randomness and have a greater chance
of being ranked higher in the final output, leading to biased results™.
(iii) Most existing methods use frequentist approaches for measuring
TR statistical significance, lacking coherent probabilistic interpreta-
tion or uncertainty estimation. For example, ChIP-Atlas® ranks TRs
using p values from Fisher’s exact tests, which assess significance
under a fixed-parameter null hypothesis (e.g., odds ratio = 1) but fail to
capture epistemic uncertainty, especially when experiments cannot be
identically replicated. Given the dynamic nature of TR binding activity,
the ability to quantify uncertainty is not just beneficial but essential.

To address these limitations, we propose a Bayesian hierarchical
model for TR identification, named BIT (Bayesian Identification of
Transcriptional regulators from epigenomics-based query regions
sets). The input of BIT is a set of user-provided epigenomic regions
containing the chromosome numbers and coordinates of the regions,
typically referred to as peaks, often derived from genome-wide epi-
genomic profiling of specific biological processes. Compared to
existing methods, BIT offers the following advantages.

First, BIT leverages over 10,000 TR ChIP-seq datasets gathered
from previous studies covering a large collection of TRs. This approach
bypasses the need for computationally predicted motifs, which can

lead to unreliable TR predictions in motif-based methods?®***3*, In
addition, the context-specific binding patterns captured by TR ChIP-
seq will not be neglected.

Second, through a unique hierarchical model setup, BIT inte-
grates information across multiple TRs and across multiple ChIP-seq
datasets of the same TRs, appropriately accounting for both between-
and within-TR heterogeneity in binding profiles. This formal model-
based approach enables BIT to estimate the uncertainty associated
with varying context-specific binding patterns existing within different
ChIP-seq datasets for the same TR, leading to a more reliable and
robust prediction, as shown in the analysis results of this study. By
contrast, many existing methods need to conduct thousands of
separate ad-hoc statistical tests (e.g., BART* and ChIP-Atlas®®), which
often give higher rankings to TRs with more ChIP-seq datasets.

Third, BIT employs a Bayesian framework to handle its modeling
and computational needs. Besides information pooling for improved
prediction, a Bayesian approach is inherently attractive, due to the
following: (i) It enables straightforward quantification of estimation
uncertainty by deriving 95% credible intervals from posterior sam-
pling, representing the range within which the true value of an
unknown quantity (e.g., a parameter of interest or a function of para-
meters) likely falls. (ii) In situations when meaningful prior knowledge
is available, it enables researchers to formally incorporate such
knowledge through prior specification for improved results. In all
other situations, with the default non-informative prior setting, it
becomes a fully automated procedure that does not require any tuning
parameter. In contrast, none of the existing methods can offer all these
advantages altogether (Table 1). The R package of BIT is available on
GitHub (https://github.com/ZeyuL01/BIT) along with a detailed man-
ual. We also provide an easy-to-use online portal (http://43.135.174.109:
8080/).

Results

The integration of epigenomic profiling data has proven to be a fea-
sible approach for identifying TRs in biomedical research**>*, It is
well recognized that the binding sites of TRs critical to a specific bio-
logical process are primarily enriched in active regulatory regions of
downstream genes that drive the process®. These epigenomic regions
can be profiled by sequencing techniques” (e.g., ATAC-seq), which
offer a “snapshot” of genome-wide TR activity, akin to distinct “fin-
gerprints” at a crime scene, providing clues about individuals involved.
To link this TR fingerprints snapshot to specific TRs, we leverage TR
ChlIP-seq data. In humans and mice, there are ~-1600 known TRs reg-
ulating a wide variety of biological processes, and tens of thousands of
TR ChIP-seq experiments have been conducted, each creating a unique
reference fingerprint for an individual TR (under some specific con-
dition). To use this wealth of data, we pre-processed a substantial
collection of TR ChIP-seq datasets, creating a comprehensive library of
TR binding profiles (distinctive fingerprints for individual TRs) in
human and mouse genomes, respectively. We utilized 10,140 human
TR ChiP-seq datasets covering 988 TRs and 5681 mouse TR ChIP-seq
datasets covering 607 TRs. These datasets were sourced from GTRD*,
one of the most comprehensive databases in epigenomic research
(Supplementary Fig. 1). Each library serves as a powerful reference.
Users can compare their own snapshots of TR fingerprints (from
ATAC-seq, etc.) with those in the corresponding library to identify TRs
whose binding patterns show the highest consistency, indicating their
functional relevance in the biological context under study.

BIT operates based on two key biological principles: (1) If a TR is
truly involved in regulating a given biological process, its binding
pattern across the genome should align more closely with the user-
provided input (active regulatory regions) than a TR that is irrelevant.
A stronger correlation between TR binding sites and these input
regions suggests a greater likelihood that the TR regulates key genes,
thus significantly impacting the biological process under investigation.
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(2) Each TR possesses a distinct binding pattern, enabling its identifi-
cation even in the presence of some variation. This means that the
binding patterns of a specific TR will be more similar across different
conditions, compared to the binding patterns of other TRs (Supple-
mentary Fig. 2). This inherent specificity allows for accurate recogni-
tion and differentiation of TRs within complex biological systems.

These principles, also used in other bioinformatics tools*"*,
underscore that an active TR involved in a cellular process will exhibit
frequent DNA interactions, leading to captured epigenomic regions
near its binding sites. In addition, while variations exist in ChIP-seq
data for the same TR due to factors like measurement errors, data
quality, tissue specificity, and cell-type specificity, the overall con-
sistency stemming from TR binding preferences allows for unique
binding characteristics to emerge. This uniqueness, when compared to
input epigenomic data, enables the differentiation of functional TRs
from non-functional ones.

BIT only requires a set of epigenomic regions containing the
chromosome numbers and coordinates of the regions as input (e.g.,
Peaks called by MACS2 with the common format such as bed/nar-
rowPeak) and consists of two main steps: (i) data preprocessing and (ii)
Bayesian computation and posterior inference with a Gibbs sampler
(see “Methods” and Supplementary Note 1). First, BIT transforms the
coordinates of processed peak files to fixed-length binary vectors with
Os and 1s. Second, BIT formulates a Bayesian hierarchical model to
integrate user-provided information with TR binding information from
the reference library and then uses Markov Chain Monte Carlo
(MCMC) to sample from the joint posterior distribution. Finally, BIT
assigns each TR a BIT score based on posterior draws (Fig. 1). Based on
the assumptions stated above, the BIT score can be used as the overall
importance measure of the TR being functional. Alternatively, it can be
interpreted as the Jaccard index that quantifies the average similarity
between the binary vectors of the TR’s binding profiles and the binary
vector of the input epigenomic regions.

To verify BIT’s performance, we first conducted simulations to
examine the efficiency of its posterior estimation. As BIT is built on a
unique hierarchical model with meaningful parameters, we used a
naive method as the baseline for comparison, which estimates the
parameters based on straightforward summary statistics as described
in “Methods.” Second, we examined BIT’s performance with three
different applications: (i) We identified TRs using differentially acces-
sible regions (DARs) derived from TR perturbation experiments. Per-
turbed TRs should be responsible for the DARs, and therefore, these
DARs can serve as input with known ground truth. (ii) We tested BIT in
TR identification using cancer-type-specific accessible epigenomic
regions. The identified TRs were cross-validated by findings in pre-
vious publications and results derived from CRISPR/Cas9 loss-of-
function analysis. (iii) Given the rapid development of single-cell
techniques, cell-type-specific accessible regions can now be derived
from scATAC-seq data. We further applied BIT to two sets of cell-type-
specific accessible regions and validated the BIT predictions. We also
benchmarked results from BIT against other state-of-the-art methods
in the three applications.

BIT can estimate model parameters and TR rankings with high
accuracy

We explored the performance of BIT through extensive simulations.
As will be detailed in the “Methods” section, our BIT model separates
candidate TRs in the reference library into two distinct groups: (1)
TRs with binding profiles generated from multiple TR ChIP-seq
datasets and (2) TRs with only one binding profile generated from a
single TR ChIP-seq dataset. We use i and i’ to index TRs in the first and
second groups, respectively. To cover potential scenarios, we first
varied the global mean parameters g and variance 72 to control the
distribution of 8;. The 6; denotes the mean (logit-scale) proportion of
matching between the input binary vector representing the user-
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Fig. 1| Overview of BIT’s framework. a Transcription regulators (TRs), such as
transcription factors, cofactors, and chromatin modulators, mostly bind to acces-
sible chromatin regions to regulate gene transcription. NGS techniques such as TR
ChIP-seq and ATAC-seq can acquire information on TR binding sites and accessible
regions, respectively. Input regions and collected TR ChIP-seq peaks are trans-
formed into binary vectors, where the proportion of the matching cases among all

informative cases serves as the response variable. b BIT is a Bayesian hierarchical
model, combined with P6lya-Gamma data augmentation, to integrate information
from multiple TRs and multiple ChIP-seq datasets. ¢ A Gibbs sampler is used to
draw posterior samples and estimate key model parameters. d TR-level BIT scores
are generated and ranked to output a TR ranking list. This figure has elements
created in BioRender. Lu, Z. (2025) https://BioRender.com/4cshxif.

provided set of epigenomic regions and those representing binding
profiles of the ith TR in the reference library, measuring its impor-
tance relevant to the biological process under study. Thus, u repre-
sents the global mean (logit-scale) proportion of matching across all
TRs while 72 captures the between-TR variability. We also varied o3,
the common variance of 6;,; within the second TR group, where 6, is
the logit-scale proportion of matching between the input binary
vector and the reference vector representing the single binding
profile of the /'th TR. In our simulation, we examined the effect of one
such parameter at a time while keeping the other two fixed at their
default values (u= — 4, >=0.75, and 03 =1.5), determined based on
an exploratory data analysis of TR perturbation experiments in the
“Methods” Section. The range of the varied parameters was also
decided based on the exploratory analysis to cover various real
scenarios (u e {-5, —45,..., —25,r2{0.5,0.7,...,15}, and
03 €{1,12,...,2}). Other parameters were then generated from
Gaussian distributions with pre-determined global parameters
according to our BIT model. Finally, the number of input matching
and informative bins was generated from a binomial distribution
with logit™ transformed 6; (6;,). We repeated the above steps and
generated 100 replicate datasets for each combination of y, 7
and o3.

We further investigated the effect of adjusting the number of
candidate TRs (/) included in our analysis. Our human reference library
covers 988 TRs, and our mouse reference library covers 607 TRs. Both
libraries are expected to rapidly grow as more and more TR ChIP-seq
datasets are being generated. Thus, we considered / =500, 1000, 1500

’

in our simulation. In addition, the count of TR ChIP-seq datasets for the
i th TR was simulated randomly from a distribution fitted using the
actual counts within the first group in the human reference library.

We evaluated BIT in three aspects: (i) the mean squared errors
(MSEs) for estimating global parameters u, 72, 03 and TR-level impor-
tance parameters (6;’s and 6;’s); (ii) the ability to recover the original
ranks of TRs according to their importance, measured by Spearman’s
rho. (iii) the robustness of BIT to the normality assumption of the BIT
model. Comparison was made with a baseline method based on naive
estimation, as detailed in the “Methods” section.

Overall, BIT estimates all global parameters with high efficiency
(Fig. 2a). First, it is noted that the MSEs of BIT for estimating y, 72, and
o3 are consistently lower than that of the baseline method and are
close to zero in all cases. Second, a lower number of candidate TRs (i.e.,
smaller /) can result in relatively higher MSE, but the difference is much
less obvious for BIT. Third, the MSE for the estimation of 72 tends to
increase as the value of 72 goes up. This is reasonable as the increased
variability would lead to greater estimation uncertainty. Nevertheless,
BIT still significantly outperforms the baseline method in estimat-
ing 2.

BIT offers improved performance in estimating TR-level impor-
tance parameters as well, as evidenced by much lower average MSEs
(averaged over the different TRs) in various settings (Fig. 2b). Accurate
estimation of these parameters is crucial for determining precise TR
rankings. We examined Spearman’s rho correlation, which is the
Pearson correlation between the rank values of the estimated and true
importance parameters of the candidate TRs. We find that for both
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Fig. 2 | Simulation results under different parameter settings. a Mean squared
errors for estimation of global parameters using 100 replicate datasets in each
simulation setting. b The average of MSEs for estimation of importance parameters
(averaged over different TRs) over 100 replicates. ¢ Box plots of Spearman’s rho
correlation over 100 replicates between ranks from BIT or the baseline method and
the true ranks of simulated TRs. Box plots show the median (center line), 25th and
75th percentiles (box edges), and whiskers extending to the largest or smallest
value that is within 1.5 times of the interquartile range, and points beyond this
range are plotted as outliers. d The distributions of simulated vs. real numbers of

ChlIP-seq datasets of individual TRs. e Data generated in our sensitivity analysis
from t and gamma distributions, to examine whether heavy-tailedness and skew-
ness would significantly affect the performance of BIT. f Box plots of Spearman
correlation over 100 replicates under ¢ and gamma distributions, with baseline
under normal distribution. As in (c), box plots show the median (center line), 25th
and 75th percentiles (box edges), and whiskers extending to the largest or smallest
value that is within 1.5 times of the interquartile range, and points beyond this
range are plotted as outliers. Source data are provided as a Source Data file.
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methods, larger 72 yields higher correlation while larger 03 does the
opposite (Fig. 2¢). As 12 controls the between-TR heterogeneity, larger
72 would make candidate TRs more easily distinguishable and so lead
to better ranking performance (i.e., higher Spearman’s p). On the
contrary, 03 controls the noise level (i.e., how 6;, differs from 6;) for
TRs in the second group. Thus, increasing o3 would make the esti-
mation of ; more difficult, reducing the ranking performance.

The number of datasets associated with each TR in the first group
was simulated using a lognormal distribution with right-skewness and
heavy-tailedness, right truncated at 1000, which closely mimics the
actual count distribution observed in the human reference library
(Fig. 2d). We also checked the robustness of BIT to the normality
assumption in the BIT model. We used two types of non-Gaussian
distributions, the Student’s ¢-distributions (with degrees of freedom 3,
5, and 10) and gamma distributions (shape parameter a =3, 5, 10, scale
parameter 8=1), to generate 8,’s and 8;’s. The overall shapes of these
generated distributions are different from Gaussian distributions
(Fig. 2e). The t-distributions with only a few degrees of freedom are
known for heavy-tailedness, and gamma distributions for skewness.
The simulated data are then shifted and scaled to recover the same
mean and variability for comparison while keeping the heavy-
tailedness or skewness. The ranking performance of both methods
appears to decline as the deviation from normality becomes larger.
Nevertheless, BIT is much less sensitive, and the advantages over the
baseline method persist (Fig. 2f).

In summary, through simulations in settings mimicking various
real scenarios, we showed BIT’s superior performance in accurately
estimating parameters and recovering original TR ranks. It consistently
outperformed the baseline method, demonstrating high efficiency and
robustness even when normality is violated.

BIT can identify perturbed TRs from differentially accessible
regions (DARs)

DARs derived from differential accessibility analysis between two
biological conditions are critical in understanding the activity of TRs.
Here, we leverage DARs from TR perturbation experiments to validate
BIT’s capacity to pinpoint key TRs. The targeted nature of these
experiments provides a ground truth, allowing us to assess BIT’s ability
to identify the perturbed TRs.

The first experiment is an acute depletion of CTCF in the MLL-
rearranged human B cell lymphoblastic leukemia (B-ALL) cell line
SEM*. The second is a ZBTB7A-knockout experiment in the HUDEP-2
cell line*. The third involves a FOXA2-knockout in the pancreatic
progenitors 1 differentiation stage of human pluripotent stem cells*’,
BIT has successfully identified each perturbed TR as one of the top-
ranked TRs in all three experiments, and it has also correctly identified
several other TRs that contribute to the biological process involved
(Fig. 3a and see Supplementary Data 1 for full lists).

Using DARs from the first experiment as the input regions, the
perturbed TR, CTCF, was ranked first. Other top-ranked TRs include
RAD21, SMC3, and SMCIA, which are all components of the cohesin
complex. SMC proteins and RAD21 are core proteins that form the
ring-shaped cohesin complex (cohesin ring)*>**, CTCF and the cohesin
ring can be crucial in forming chromatin loops and topologically
associating domains. These two structures are critical in regulating
gene transcription**°. Previous studies have confirmed that both
CTCF and the cohesin ring are essential for the maintenance of the two
structures when using acute depletion assays to handle proteins*’*,
which can explain why BIT also identified the other three TRs in this
study. The result was also validated by the protein-protein interactions
of CTCF retrieved from the STRING database*’, which shows strong
associations among CTCF, SMC3, SMCI1A, and RAD21 (Fig. 3b).

In the second experiment, in addition to the top-ranked ZBTB7A
(the perturbed TR), GATAI and KLF1 were also ranked in the top 10,
which have binding patterns consistent with the DARs derived from

the experiment (Fig. 3c). Early studies have revealed that erythroid
differentiation and mutation can be controlled by GATAl-dependent
transcription®®*, and that ZBTB7A is a cofactor of GATALI and plays an
essential  anti-apoptotic  role  during terminal erythroid
differentiation®”. This explains why GATA1 was also ranked at the top
after the knockout of ZBTB7A. In addition, KLF1 has a multifunctional
role in erythropoiesis and acts as one of the master regulators®.

In the third experiment, FOXA2 ranked third, but notably, other
known pancreatic regulators (PDX1, GATA6, FOXAL and GATA4) were
also identified. This is consistent with their established roles in pan-
creatic development and disease’* ™. For example, the pioneer factors
FOXA1/2 could initiate chromatin accessibility*®, allowing subsequent
binding and transcriptional regulation by PDX1, GATA6, and GATA4.

The results of these three experiments were also validated using
Gene Ontology (GO) enrichment analysis, where we used the top TRs
identified by BIT to examine enriched biological processes (Fig. 3d).
The count in this figure indicates the number of TRs associated with
each process, and the p value was calculated using hypergeometric
tests to evaluate whether the association of TRs with a biological
process is higher than expected by chance. We observed that the top
five enriched biological processes, ranked by p values, include those
involving sister chromatid cohesion formation for the first experiment,
erythrocyte differentiation and homeostasis for the second experi-
ment, and pancreas differentiation and development for the third
experiment. This further supports that BIT was able to identify TRs
from DARs.

We further categorized the DARs into two groups based on
whether these regions showed increased (gained) or decreased (lost)
accessibility after the perturbation of TRs. We separately applied BIT to
the two groups and noticed that the perturbed TRs were ranked dif-
ferently according to their BIT scores (Fig. 3e). For example, CTCF and
FOXA2 were ranked higher in the group of gained accessibility regions,
while ZBTB7A was ranked higher in the group of lost accessibility
regions. This provides insights into how the perturbation of these TRs
affects chromatin accessibility and demonstrates that BIT can offer
additional understanding of the functional role of TRs from the DAR
analysis.

We also applied BIT to two more datasets derived from TR
knockout in mouse thymocytes to study its performance on data from
animal models*® and validated the results with GO enrichment analysis
(Supplementary Fig. 3). BIT not only ranks the perturbed TRs in top
positions (no. 3 and no. 2, respectively) but also identifies other
experimentally validated TRs strongly associated with perturbed TRs
or biological processes involved.

In addition to bulk TR perturbation data, we leveraged a single-cell
TR perturbation dataset® for validation, which screened 40 TRs with
the CRISPR technique in K562 (a well-known leukemia cell line). Among
them, GATAI knockdown exhibited the strongest target perturbation,
consistent with the finding from the original study®’. In contrast, the
perturbation effects of the remaining TRs were weaker and difficult to
distinguish from each other using UMAP projection (Supplementary
Fig. 4a). This may partly result from the essential role of GATAL in
erythrocyte differentiation and development®. As anticipated, BIT
accurately ranked GATAL as the top TR when provided with DARs
generated by comparing GATAI knockdown cells with negative
control-treated cells (Supplementary Fig. 4b). In addition, GO enrich-
ment analysis of the top-ranked TRs identified by BIT in GATAI
knockdown cells also reveals significant enrichment for terms related
to leukemia (Supplementary Fig. 4c).

Finally, to compare BIT with other state-of-the-art methods
(BART, ChIP-Atlas, i-cisTarget, WhichTF, and HOMER), we calculated
the mean reciprocal rank (MRR) for each method using five perturbed
TRs in bulk datasets (Fig. 3f) and 40 TRs in the single-cell perturbation
dataset (Supplementary Fig. 4d). MRR is a commonly used metric to
evaluate a method’s ability to rank relevant terms at top positions®.
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Fig. 3 | BIT can identify transcriptional regulators (TRs) from differentially gene ontology enrichment analysis of top TRs in the output list of three cases. The
accessible regions (DARs). a The top 10 TRs identified by BIT using DARs from enrichment analysis uses one-sided Fisher’s exact tests. GO terms are ranked by

each of the three TR perturbation experiments. Posterior estimates of BIT scores Benjamini-Hochberg adjusted p values. e The scatterplot of TRs by using BIT
are reported with error bars indicating the upper and lower bounds of 95% credible scores from gain accessible regions versus loss accessible regions. Each dot

intervals. b Protein-protein interaction of CTCF derived from STRING. ¢ BIT- represents a TR. fMean reciprocal rank (MRR) using five perturbed TRs to compare
identified TRs have binding patterns consistent with the differentially accessible BIT and five state-of-the-art methods (BART, ChIP-Atlas, i-cisTarget, WhichTF, and
regions observed in TR perturbation experiments. d The top 5 terms ranked by HOMER). Source data are provided as a Source Data file.

Among the six methods, BIT achieved the highest MRR for both bulk  BIT can identify cancer-type-specific TRs

and single-cell perturbation data. Additionally, BIT identified the most  To further validate BIT’s efficacy, we leveraged cancer-type-specific
perturbed TRs within the top 10 and top 50 lists from the single-cell accessible regions obtained from The Cancer Genome Atlas (TCGA)
perturbations (Supplementary Fig. 4e). database®>. TRs are well-established drivers of crucial cellular
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processes in various cancers. However, a significant portion of
accessible regions recur across multiple cancer types. Including
possible non-specific regions can hinder the identification of critical
TRs specific to one cancer type. Therefore, employing cancer-type-
specific accessible regions offered a more focused approach. We
used regions specific to cancers originating from nine tissue types to
validate BIT’s performance: breast, bladder, colon, lung, liver,
mesothelium, prostate, squamous cell, and testis. More specifically,
the ATAC-seq samples used to generate these regions encompassed
a broad range of carcinomas, including breast invasive carcinoma
(BRCA), bladder urothelial carcinoma (BLCA), and others (see Sup-
plementary Note 2 for an extended discussion). The identified TRs
were cross-validated through existing publications and CRISPR/
Cas9 screening data from The Cancer Dependency Map Consortium
(DepMap)®*, which evaluates cancer cell viability after gene
knockout.

First of all, many of BIT’s top-ranked TRs are well-known reg-
ulators of normal cell processes such as differentiation and prolifera-
tion, and have also been implicated in tumor development. A total of
32 TRs (listed by cancer type in Fig. 4a) were cross-validated with
existing literature (Supplementary Data 2), with some already serving
as biomarkers or therapeutic targets in cancer treatment®°. For
instance, top-ranked TRs in breast cancer included FOXAI1, ESR1, and
PGR, while prostate cancer revealed PIAS], AR, and HOXB13, and tes-
ticular cancer revealed NANOG, SOX17, and POUS5F1 (see Supplemen-
tary Data 3 for full lists). Beyond TR identification using estimated BIT
scores, BIT also gauges estimation uncertainty. For example, PIAS1 and
SOX13 were identified in multiple cancer types, but with higher
uncertainty in their BIT score compared to other TRs in the same
cancer (Fig. 4b). This suggests their potential roles as pan-cancer
regulators.

Second, we investigated the specificity of BIT-identified TRs
across different cancer types. The low Jaccard similarity coefficients
(0.004-0.150) of the input binary vectors indicated minimal overlap
between cancer types (Fig. 4c, lower triangle), confirming that
retrieved accessible regions are generally specific to their corre-
sponding cancer type. Furthermore, the top-ranked TRs identified by
BIT varied significantly across cancer types (Fig. 4b), consistent with
the generally low Jaccard similarity (Fig. 4c, lower triangle). This
highlights BIT’s ability to identify key TRs specific to each cancer type.

Third, it is noted that several top-ranked TRs, such as NCOA3 and
TET2 in breast cancer, lack known motifs”. This absence means these
TRs cannot be detected using motif-based methods, despite solid
experimental evidence supporting their significant roles in tumor
development® S, In contrast, BIT uses TR ChIP-seq data to prioritize
these TRs, irrespective of motif information. This highlights BIT’s
advantage over traditional motif-based methods, especially when
known motifs are ambiguous or absent.

Fourth, given the critical roles of many TRs in cellular
viability”**’°, we hypothesized a significant overlap between BIT’s top-
ranked TRs and functionally essential TRs (i.e., TRs strongly correlated
with cancer cell viability) identified in corresponding cancer types via
CRISPR/Cas9 knockout screenings. Indeed, approximately half of the
BIT-identified TRs were functionally essential TRs (Fig. 4d): 52 out of
90 top 10 TRs and 232 out of 450 top 50 TRs across various cancer
types. Here, functionally essential TRs were defined as those with a
minimum Chronos (minC) score®*”* (across all cell lines) less than -0.4;
a more negative minC indicates greater relevance. Furthermore, we
computed Pearson correlation coefficients between Chronos and BIT
scores of the top 50 TRs identified by BIT in 209 cell lines across the
nine cancer types. Box plots showed in seven out of nine cases, the two
scores of most cell lines are negatively correlated, which indicates that
higher-ranked TRs generally exhibited lower Chronos scores, thus
having a greater impact on cancer cell viability after gene knock-
out (Fig. 4e).

Last but not least, we benchmarked BIT against state-of-the-art
methods (e.g., BART, ChIP-Atlas, i-cisTarget, WhichTF, and HOMER) by
comparing their top-ranked TRs with functionally essential TRs from
CRISPR/Cas9 knockout data. We observed that BIT identified the
highest total number of functionally essential TRs, which was verified
by DepMap in the top 10 and top 50 TRs separately, by summing the
results from nine cancer types (Fig. 4f). While cellular viability is not the
sole determinant of TR functionality in cancer, BIT’s robust perfor-
mance highlights its efficacy in identifying crucial TRs from cancer-
type-specific accessible regions, even amidst the multifaceted nature
of TR functionality.

In addition to the cross-validation with CRISPR/Cas9 knockout
analysis, we conducted several more analyses using various resources:
(1) GO enrichment analysis using BIT’s top TRs identified from breast
cancer-specific accessible regions revealed enriched GO terms
strongly associated with breast cancer (Fig. 4g). (2) We retrieved super-
enhancer-targeted genes from Cistrome” for six available cancer
types, which rank genes based on adjacent super-enhancer activities.
We noticed many BIT-identified TRs are also highly ranked by Cistrome
(Supplementary Fig. 5a). (3) Kaplan-Meier plotter”, a public analysis
tool that has collected data from over 30,000 cancer samples, is used
to investigate the correlation between gene expression levels and
patient survival time. It is observed that multiple BIT-identified TRs
show a strong correlation with patient survival time (Supplemen-
tary Fig. 5b).

BIT can identify cell-type-specific TRs

The rise of single-cell omics technologies has created a need for
computational tools capable of analyzing transcriptional regulation at
the individual cell level. scATAC-seq, a powerful technique for profiling
chromatin accessibility in single cells, often involves clustering cells
and annotating them to specific cell types to overcome the challenge
of sparse data. An important task in downstream analyses of scATAC-
seq data is to identify key TRs associated with accessible regulatory
regions in specific cell types.

In this study, we investigated the application of BIT for identifying
crucial TRs using cell-type-specific accessible regions derived from
scATAC-seq data. Two datasets, including 10K peripheral blood
mononuclear cells (PBMCs) and primary liver cancer samples, were
used, where the cell types were previously annotated based on the
dimension reduction results and marker genes. UMAP projections
show a clear separation of different cell types in each dataset (Fig. 5a).
SnapATAC2* was applied to generate cell-type-specific accessible
regions. We then applied BIT to accessible regions from various cell
types in the PBMC and liver cancer datasets and compared the results
(Supplementary Data 4) with those from SnapATAC2"*, ArchR”, and
scBasset’®. These tools integrate multiple steps for processing and
analyzing scATAC-seq data, with motif enrichment analysis being a
common approach for inferring TR activity in each annotated cell type.
Since these tools are widely used with scATAC-seq analysis, we speci-
fically evaluated BIT’s performance in comparison to its motif enrich-
ment analysis functions from a practical perspective. The results were
thoroughly validated by multiple approaches, as described below.

First, we evaluated the credibility of the top 20 TRs identified by
BIT in the two investigated cell types (PBMC B cells and liver malignant
cells; Fig. 5b) based on existing publications and by examining whether
each identified TR has a significantly elevated protein expression in the
Human Protein Atlas (HPA) for the respective cell type (see Supple-
mentary Data 5 for details). Notably, BIT successfully captured several
TRs critical for B cell development. These include PAXS, EBFI1, SPIB,
IRF4, IKZF1, and BCL11A, which were previously reported for their roles
in maintaining B cell identity and verified by HPA as lineage-specific
TRs. In addition, POU2AF1, MEF2B, BCL6, BACH2, POU2F2, BATF,
IKZF3, REL, and PBX1, though not present in the HPA-verified list, serve
as pivotal regulators in B cell proliferation, differentiation, the
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Fig. 4 | BIT can identify transcriptional regulators from cancer-type-specific
accessible regions. a Thirty-two TRs identified by BIT from TCGA cancer-type-
specific accessible regions validated by existing literature. b BIT scores of top 10 TRs.
Posterior estimates of BIT scores are reported with error bars indicating upper and
lower bounds of 95% credible intervals. The center is estimated BIT score. ¢ Jaccard
index compares cancer-specific accessible regions between any two cancer types
(lower triangle) and the sets of top TRs identified by BIT between any two cancer
types (upper triangle). d Cumulative number of BIT-identified top 10 and top 50 TRs
with minimum Chronos scores of <-2 to >0. e Box plots for the Pearson correlation
coefficients between Chronos scores and BIT scores for the top 50 TRs identified by
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germinal center transcriptional program, and immune response, as
supported by the literature (Supplementary Data 5).

For liver cancer malignant cells, six of the top 20 TRs (HNF4A,
FOXA2, NR2F6, HNF1A, HLF, and AR) were verified as tissue-specific
by HPA and reported in the literature. Furthermore, the top TRs
identified from scATAC-seq (Fig. 5b) showed strong consistency with
those from bulk ATAC-seq (Fig. 4b). Seven of the top 10 TRs identi-
fied from bulk data (SOX13, HNF4A, NFIL3, NR2F6, HNF4G, HLF, and
NFIA) also appeared in the list from single-cell data. While bulk
analysis used accessible regions from all cells, the current study
leveraged single-cell data specific to malignant cells. This consistency
supports the robustness of BIT in identifying critical TRs across
data types.

Second, gene activity plots were generated to demonstrate the
high specificity of the identified TRs in both PBMC B cells and liver
malignant cells (Fig. 5c; left panel for B cells and right panel for
malignant cells). Gene activity was assessed based on the number of
Tn5 insertions within the gene’s regulatory regions, a standard
approach in scATAC-seq analysis’*””. Multiple BIT-identified top TRs
exhibited significantly higher gene activity in the studied cell types
than other cell types, including PAXS, EBF1, and POU2F1 in PBMC B cells
and HNF4A, HNF4G, and FOXA2 in liver cancer malignant cells.

Third, for PBMC B cells and liver malignant cells, we compared the
top 20 TRs identified by BIT with those from motif enrichment analysis
in ArchR, scBasset, and SnapATAC2. The four sets showed little to no
overlap (Fig. 5d). A similar pattern was observed across all HPA-
available cell types in the PBMC dataset (Supplementary Fig. 6a). As
mentioned in the introduction, the similarity of binding motifs can
hinder the differentiation between TRs from the same protein family.
This is evident in the top-ranked TRs identified using ArchR and Sna-
pATAC2, where results of PBMC B cells include the POU and IRF
families, and results of liver cancer malignant cells exhibit enrichment
exclusively for the FOX and ZNF families. It is important to note that
not all members within these families hold equal importance. Their
inclusion in the top rankings solely reflects the inability of motif
enrichment analysis to identify which specific TR within the family
directly interacts with the motif site in the accessible chromatin
regions. In contrast, BIT’s ability to pinpoint specific TRs, even within
families with similar binding motifs, offers a distinct advantage in
understanding the precise regulatory mechanisms at play in different
cell types. We further compared the number of HPA-verified TRs
among the top 20 for the six HPA-available cell types from PBMCs
using these four approaches. BIT identified the most HPA-verified TRs
in four cell types and had the highest total count overall (Supple-
mentary Fig. 6b).

Fourth, we performed GO enrichment analysis for the top TRs in
PBMC B cells identified by BIT and by motif enrichment, separately.
The results revealed strong enrichment for biological processes rele-
vant to B cells or mononuclear cells in the BIT-identified TRs. Con-
versely, the motif-enrichment-identified TRs displayed enrichment for
less specific biological processes (Fig. 5e).

Fifth, we explored the potential of BIT-identified TRs from liver
malignant cells as prognostic biomarkers. Kaplan-Meier survival
analysis revealed statistically significant associations between their
expression levels and patient survival (Fig. 5f). While some TRs cor-
related with worse prognosis, others were linked to improved sur-
vival, suggesting diverse roles in tumor progression and
differentiation. TRs correlated with better prognosis may reflect
transcriptional programs that constrain malignant potential or pro-
mote tumor differentiation, while those linked to worse prognosis
may drive tumor progression and survival under selective pressures.
These findings highlight the functional relevance of BIT-identified
TRs in shaping tumor behavior and their prognostic value in liver
cancer. In addition, CRISPR/Cas9 knockout experiments in liver
cancer cell lines revealed that BIT identified more functionally

essential TRs compared to TRs identified by ArchR, SnapATAC2, and
scBasset, respectively (Fig. 5g).

For an unbiased analysis, we present results for the eight
remaining PBMC cell types (Supplementary Fig. 7) and six remaining
primary liver cancer cell types (Supplementary Fig. 8) besides those for
PBMC B cells and liver malignant cells. These results align with
observations from Fig. 5. For example, GO enrichment analysis of BIT-
identified TRs across PBMC cell types (Supplementary Fig. 7) revealed
significant enrichment of biological processes directly linked to their
core functions (e.g., T cell differentiation, myeloid cell differentiation).
In the liver cancer dataset, we identified additional context-specific
pathways (Supplementary Fig. 8c), such as positive regulation of
defense response in TAMs and lymphocyte activation in immune
response in B cells. These findings highlight the tumor microenviron-
ment’s influence on TR activity, where proximity to malignant cells
may perturb canonical regulatory programs through microenviron-
mental crosstalk or oncogenic signaling. In addition, gene activity
plots (Supplementary Figs. 7b and 8b) demonstrate that top-ranked
TRs exhibit cell-type-specific activity patterns consistent with their
functional roles. Collectively, our findings demonstrate the feasibility
of using BIT for the downstream analysis of cell-type-specific acces-
sible regions in scATAC-seq data. Beyond feasibility, BIT offers valu-
able insights into potential regulatory mechanisms. This makes it a
compelling alternative to the current dominant motif-based enrich-
ment methods used in scATAC-seq analysis.

Discussion

We proposed a Bayesian hierarchical approach, called BIT, to identify
TRs using user-provided epigenomic regions (peaks), often derived
from genome-wide epigenomic profiling data. Using various simula-
tion and application studies, we demonstrated the effectiveness of BIT
and its advantages over existing state-of-the-art methods.

Though BIT demonstrated superior performance consistently in
various applications, BIT can suffer from the biological complexities of
TR regulation, which can reduce the method’s performance. TR
binding is inherently dynamic, changing across cell types and time in
response to diverse signals and environmental factors’®. Chromatin
structure and epigenetic modification can further complicate this by
affecting the binding affinity and specificity®”°. In addition, coopera-
tive binding can also change binding patterns as TRs frequently
cooperate to regulate gene expression®. A large number of interac-
tions between TRs, DNA, and other cellular components challenge
accurate prediction and functional interpretation, while the currently
gathered context-specific binding profiles from ChIP-seq experiments
only represent a very tiny part of all possible experiments.

Similar to other NGS-based computational methods, data quality
is a critical issue that can affect BIT’s performance. Multiple types of
sequencing biases, such as GC content bias or PCR amplification bias,
can potentially reduce the reliability of the input epigenomic region
set and binding profiles generated by NGS experiments®. For instance,
the Illlumina platform is known for a strong GC bias, wherein epige-
nomic regions with high or low GC content may be over- or under-
represented in the sequencing data®. Preferential amplification of
certain sequences can also lead to the overrepresentation of specific
genomic regions®. Therefore, the performance of BIT can depend on
the quality of the NGS data used.

In the manuscript, we primarily used ATAC-seq datasets that
profile chromatin accessibility as input data. However, other techni-
ques, such as DNase-seq, can also profile the chromatin accessibility
and serve as input. In addition, alternative epigenomic profiling tech-
niques are available that also correlate with TR binding activity. For
example, H3K27ac ChIP-seq data can mark active promoters and
enhancers®, which are potential TR binding sites. Therefore, these
datasets can also be employed to identify TRs regulating the biological
processes of interest.

Nature Communications | (2025)16:4966


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-60269-4

To assess the similarity of top-ranked TRs across methods, we
computed Jaccard similarity indices of the top 10, 50, and 100 TRs
identified by BIT, BART2, ChIP-Atlas, i-cisTarget, HOMER, and WhichTF
in our studies of TR perturbation-derived DARs and cancer-type-
specific accessible regions. Overall, Jaccard similarity among these
approaches is generally low (Supplementary Fig. 9). However, ChIP-
seq-based methods (BIT, BART2, and ChIP-Atlas) exhibit relatively
higher similarity compared to motif-based methods, likely due to their
reliance on overlapping reference databases derived from publicly
available TR ChIP-seq datasets. Since TR ChIP-seq provides the most
accurate information for TR binding, this shared foundation con-
tributes to the observed similarities. It is worth mentioning that the
highest similarity indices often occur between BIT and another
approach, suggesting BIT’s strong ability to capture true signals.

BIT implements a Gibbs sampling scheme to draw posterior
samples for thousands of parameters defined within the model. As
shown in Supplementary Fig. 10a, its computational efficiency
depends on two main factors: (1) the number of parameters and (2) the
length of the MCMC chain. The number of parameters is determined
by the available TRs and associated datasets in each reference library.

We compared the computational efficiency of BIT with the other
methods using bulk TR perturbation data. For BIT, we measured the
time to convergence (Supplementary Fig. 10b), while for other meth-
ods, we recorded the time to obtain results. BIT’s speed is slightly
slower than BART but significantly faster than the other four methods
(Supplementary Fig. 10c).

With the growing availability of ChIP-seq experiments, the num-
ber of parameters for BIT to infer is expected to increase significantly.
In addition, it is common for researchers to generate dozens or even
hundreds of epigenomic profiling datasets in a single project. Ana-
lyzing these datasets using the Gibbs sampler can become increasingly
time-consuming. Therefore, alternative approaches such as variational
inference®®* may be considered for improving computational
efficiency.

In summary, BIT offers valuable insights into transcriptional reg-
ulation by providing accurate TR identification through a rigorous
Bayesian hierarchical model. This approach leverages the wealth of
accumulated TR ChIP-seq data, representing the most accurate in vivo
context-specific binding patterns. With the increasing popularity of
epigenomic profiling techniques, particularly bulk and single-cell
ATAC-seq, BIT addresses a critical need for effective tools to analyze
this rapidly increasing omics data.

Methods

Preprocessing epigenomic NGS data

Bulk data. In the TR perturbation-derived DAR analysis, raw ATAC-seq
sequence reads were first cleaned using Trim-galore (v0.6.10). Read
quality was checked by FastQC (v0.12.1). Paired-end reads were map-
ped to the human genome (hg38) or mouse genome (mml0) using
bowtie2 (v2.5.2) applying parameters: bowtie2 --very-sensitive -X
2000. SAMtools (v1.16.1) was used for the following steps: (i) convert
SAM files to BAM files, (ii) remove unmapped reads and duplicates, (iii)
generate index files for BAM files. Peaks were called using MACS2
(v2.2.9.1). BAM files, index files, and peak files were used for DAR
analysis using DiffBind (v3.10.1). Reference TR ChIP-seq datasets were
retrieved from GTRD (v21.12), datasets with too low number peaks
(<500) and individual peaks with a low g-value (<10) were removed.
Cancer-type-specific accessible regions were directly retrieved
from TCGA.

Single-cell data. The single-cell TR perturbation dataset was retrieved
from the GEO archive. We obtained DARs for 40 perturbed TRs using
the pipeline provided by the data authors (https://github.com/
GreenleafLab/SpearATAC_MS_2021), by comparing cells treated with
single guide RNA (sgRNA) targeting one specific TR against control

cells treated with non-targeting single guide RNA (sgNT). 10K PBMCs
and primary liver cancer scATAC-seq fragment files were retrieved
from the 10XGenomics and GEO archive. The cell-type-specific acces-
sible regions were generated from each dataset using SnapATAC2
(v2.6.0). When applicable, the cell type annotations were also retrieved
and applied. For comparative benchmarking with established single-
cell data analysis methods, in addition to SnapATAC2, we used ArchR
(v1.0.2) and scBasset (https://github.com/calico/scBasset).

Region mapping. BIT only requires user-provided epigenomic profil-
ing data as input, while leveraging a comprehensive reference library
of TR binding profiles from a large collection of TR ChIP-seq datasets.
All binding sites (peaks) from a single dataset are mapped to disjoint,
consecutive, pre-defined bins of 1000 bps over the entire genome.
Each bin is assigned either O or 1 according to whether the summit of
the peak falls into the bin (in case that the summit information of a
peak is missing, the middle point is used instead). Such mapping is also
done to the user-provided epigenomic regions. Thus, all data (input
and references) are transformed into binary vectors of the same
length. We then compare the binary vector from the input with that
from each of the TR ChIP-seq datasets, where we define three condi-
tions for any given bin: (i) matching if (1,1); (2) mismatching if (1,0) or
(0,1); and (3) non-informative if (0,0). In all input vs. reference com-
parisons, the first two cases (informative bins) are much fewer than the
third case (non-informative bins), and we drop the third case to miti-
gate the sparsity while not losing much useful information. Note that
the proportion of matching bins among all informative bins is the
Jaccard Index, a measure of similarity between two binary vectors. To
assess the impact of bin width on BIT’s performance, we analyzed bulk
TR perturbation datasets using bin widths of 200 and 500 bps. The
results indicate that our default 1000 bps setting performed well, with
no significant effect observed from varying bin width (Supplemen-
tary Fig. 11).

The data model of BIT

BIT is the first model-based method that formally distinguishes TRs
with multiple datasets (or binding profiles) from those with only a
single dataset (or binding profile) in the reference database, to
account for both within-TR and between-TR heterogeneity and allow
for information borrowing across different TRs and datasets via a
hierarchical setup. Our modeling choices are made according to the
principle of parsimony in statistics. Thus, BIT strikes a balance
between clarity and effectiveness in addressing complex biological
questions. It aims to reduce the risk of overfitting while preserving
the key insights needed for accurate predictions. An exploratory
analysis using the three human TR perturbation datasets reveals the
following: (1) When grouped by the same TR, the distribution of the
log odds (for matching among informative bins) often exhibits a
roughly bell shape, with different groups (TRs) showing different
centers and spreads. (2) When calculating the (average) log odds for
each TR and categorizing these quantities based on whether the TRs
have single or multiple ChIP-seq datasets, the distributions of the
two categories exhibit similar centers but different variabilities
(Fig. 6). It is worth mentioning that we also examined how factors,
including the number of reference datasets available for a TR and
number of peaks in a reference dataset, affect the within-TR varia-
bility of the log odds. No significant patterns were observed (Sup-
plementary Fig. 12).

We index TRs with multiple reference datasets by i,i=1,2, ..., M,
each withj=1,2, ..., /; datasets. TRs with a single reference dataset are
indexed by i'=1,2,.., M, all with j =1 dataset. Let x; (x;;) be the
number of matching bins out of n; (n;,) informative bins by com-
paring the vectors between the user input and the j th reference
dataset of the ith TR (or the only dataset of the i'th TR). The probability
of a bin being matching given it is informative is denoted by p; (Pin)
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Fig. 6 | Exploratory analysis using ATAC-seq data from three TR perturbation
experiments. a The distributions of log odds of matching bins among informative
bins for the 30 TRs with the highest numbers of TR ChIP-seq datasets available in

the reference database. b The distributions of the (average) log odds for all TRs,
where TRs are categorized into two groups based on whether each TR has single or
multiple TR ChIP-seq datasets. Source data are provided as a Source Data file.

such that x; ~ Binom(n;, p;) and x;; ~ Binom(n;y,p;;). Let 6; =
logit(p;)(6;, = logit(p;;)) be the log odds of matching among infor-
mative bins, which can be interpreted as the Jaccard similarity index
(or simply, the importance score) at the dataset level. We further
model  6;(6;,) by 6;~N(6,0?), 6;~N(6;,03), and all
0,0, ~ N(u, %), where u and 72 represent the global mean and
variability of TR-level importance scores. In this way, for each TR with
multiple datasets, we model its importance scores by a normal dis-
tribution with distinctive mean 6; and variance o7, reflecting its overall
importance and within-TR heterogeneity, respectively (Fig. 6a); all TRs
with only one dataset share a common variance o3 for information
pooling; and all TRs, no matter which group they are in, share a
common mean u (Fig. 6b).

We emphasize that 2 controls the between-TR heterogeneity,
while each o7 governs the noise levels of the datasets associated with
the same TR. Additionally, 3 accounts for the noise levels for TRs with
only a single dataset. These parameters are critical as they balance the
estimates between TR-specific data and global population mean,
reducing overfitting through regularization.

It turns out that the entire hierarchical model (Fig. 1b) is simple yet
effective, as shown in our simulation and applications:

X; ~ Binom (nij,pij>,xir1 ~ Binom(n;y, p;;) )
6, = logit (py> , 6, = logit(p;y) 2

6, ~ N(6;,07),6;, ~ N(6;,03) 3)

6,,0; ~ N(u, %) “4)

Unlike many existing algorithms®>*, BIT inherently integrates
information from reference datasets of different TRs to assign one final
rank of each TR based on the TR-level importance score 6;(6;) rather
than conducting thousands of separate ad-hoc statistical tests.

The (hyper)parameters of our BIT model are collectively denoted

c M M.J; c

by 0=(,1%,03,{6,}}L, {6 11", {07} 10 {6y}, ()"} and
M.J;

observed data are X={{xy}_ L 1,{x,-/1}?,";1}. Then the joint dis-
i=1,j=

tribution of (X, ©) can be written as
pX,0)=(TT L, IT- P (%4165, )P (6,16, 07 ) )

x (H?/I:lp(xi’lwi’l'ni’l)p(ei’lloi’r0(2J)>
< (1 p (6 )p (@) [T P (6:11. ) ) pwp () p(03)

®)
where
0 (x| et
p(Xy| ,-j,n,»j)— nij (:[Tgy)n‘/' (6)
X X0
p(xp116;1, 1) = <n'i> W' @
i i'l

Prior specification

The global location parameter g and all variance parameters, including
12, 03, and {0,.2}?11 are assumed a priori independent. For u, we con-
sider the non-informative flat prior g ~ uniform(L,, U,). The default
values are L, = — 10 and U, =10, which correspond to a proportion of
matching cases among informative cases between 0.00005 and
0.99995, providing a sufficiently wide coverage for all plausible values
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of u suggested by the data. Detailed discussion about how to set up the
upper and lower bounds can be found in Jia et al.¥’. For each variance
parameter involved, we specify an inverse gamma prior distribution
IG(a, b), where a and b are tiny positive values to make prior very vague
and diffuse (e.g., a=b=0.01).

Polya-Gamma data augmentation and Gibbs sampler

BIT uses a Gibbs sampler, an efficient Monte Carlo Markov chain
(MCMC) algorithm to generate posterior samples from the joint
probability distribution p(©|X) that is proportional to p(X, ©). We
proceed to derive the full conditionals to set up the Gibbs sampler
efficiently. The full conditional posterior distribution of each para-
meter can be written as p(6|X, © \ 6), where O\ 6 denotes the set of
parameters after removing 6 from O. For y, 72,03, and 02, the condi-
tional posterior distributions are known distributions which can be
directly sampled, given below:

M Me
M 0.+ 0. '[2
Z'-IMM%-l ’,M+Mc>l{LﬂsysUﬂ} 8)

p(mX,O\ﬂ)ocN<

c M _ 2 M‘ L 2
p(IX, 0\ %) o<IG(a+MJ;M by 2 O S (0 k) ) ©)

c o p?
p(031X, 0\ a3) o<IG<a+ MT’I” M) (10)
2
YY) (6, -6
p(0}X,0\ 0}) « IG a+jz‘,b+fl<2'j'> a1
I’lalg_‘— Ej'[:ley"[z 1
i|X, . N j )
p(6i1X, 0\ 6;) x ( o2 )12 rll+£_[? 12)
poy+ 6,7 1
PO 0160 O(N(H' i1 1)
g3 T

However, it is difficult to sample from the conditional posteriors
of p<0y|X, 0\ 6,~j> and p(6;,,1X,0\ 8;,) as these are intractable. We
employ a data augmentation strategy based on Pélya-Gamma (PG)
latent variables®®. Specifically, we define auxiliary variables Aj and A,
which follow the PG distribution.

p </1ij

e,y.,x) ~ Pc(n,.j, 0,.].) (14)

P(A1]6:1,X) ~ PG(nyy, ;1) 15

Then the conditionals given the defined auxiliary parameters can
be easily written in the form of a known distribution.

p(051X.01\6;,4;) o< N(Vy,my) (16)
where
-1
V.= + 1 17)
i i g2

6;
my =V K+ Pl (18)

i

X, — i (19)

K U_z

=

Similarly, we can derive the conditional posterior of 8,;. Given
that all conditionals are now known distributions, we can design an
efficient Gibbs sampler in which all quantities are drawn sequentially
and generated readily without using any built-in sampling algorithms
(such as Metropolis-Hastings or Acceptance/Rejection sampling) that
can greatly slow down the computation.

Bayesian inference and TR rankings

Inference about TR-level importance parameters can be made by
marginalizing over posterior samples generated from the Gibbs sam-
pler. Let 6" and 6" be the posterior draw of 6; and 6 in the tth
iteration of MCMC after the burn-in period, where t=1, ..., T. Then 6;

and 6, are estimated by 6,=5/_,6\"/T and 6, =3"]_,6"/T. Then,

~\M ~ M,
these logit-transformed probabilities {Gi}. . and {9{}‘,  can be used
i= i=

to produce a final ranked TR list or to be further transformed back to
the O-1scale. To gauge prediction uncertainty, credible intervals of any
parameter of interest can be easily obtained from percentiles of draws
or as highest posterior density intervals.

The naive method as a baseline for comparison in simulation
To compare the performance of BIT in estimating model parameters,
we used a naive method as the baseline, where u is estimated by

i it (X0
M 1 logit <"ij

Lo i von(z)

2= T, (20)
= M+M° ’
72 is estimated by
Mo (ogit (%) — 1)+ S (logit () — i)’
St S (login () —a) + S, (logie(32) —&) oy,
St Me -1
03 is estimated by
1 ¥ X; \2
2 (X _ o).
00= 17e 1 1; <I0glt (n“> /1) : (22)
and 6; and 0; are estimated by
Y logit() .
f,= 7\ ; ("”),Bif:logit<;(fi> (23)
L L

In the unlikely case that j% =0 or ’,%: =0, we add a tiny positive
value 0.0001 to the zeros.

BIT validation analyses

Computation of MRR. Let the rank of the perturbed TR in the ith
output list generated by a method be denoted as R;, the MRR of the five
perturbed TRs (CTCF, ZBTB7A, FOXA2, RUNX1, BCL11B) was computed
as:

MRR = 125:1 (24)
SR
We computed the metric separately for the six methods (BIT,

BART, ChiIP-Atlas, i-cisTarget, WhichTF, and HOMER). We similarly
computed the metric in a single-cell Perturbation study.
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Cross-validation with CRISPR/Cas9 screening data. Data regarding
TR knockout effects on the viability of cell lines were retrieved from
DepMap. TRs not found in the BIT database or DepMap data were
filtered out. Cell lines of the same lineage were grouped to find TRs
with a Chronos score lower than —0.4, classifying them as functionally
essential TRs. We then examined top-ranked TRs to determine how
many were functionally essential in each cancer type.

To compare BIT with state-of-the-art methods, the original
implementations of BART (v2.0), HOMER (v4.11.1), and WhichTF (v0.2)
were retrieved from https://github.com/zanglab/bart2, http://homer.
ucsd.edu/homer/, and https://bitbucket.org/bejerano/whichtf. For
ChlIP-Atlas and i-cisTarget, we used online portals. The same epige-
nomic profiling datasets given to BIT were used as input.

Gene ontology enrichment analysis. We used the R package clus-
terProfiler (v4.14.4) to conduct GO enrichment analysis. The top-
ranked TRs in the output list of BIT were first converted to their
ensemble IDs, next by contrasting them to the universe of all available
genes. We computed the significance of the enrichment of the top TRs
in the GO terms. The top 10 TRs in TR perturbation experiments, and
the top 20 TRs in the remaining cases were used. We used a g-value
cutoff of 0.05 and listed the top 5 or 10 terms in the final outputs.

Statistics and reproducibility

Analyses were mainly performed in R (4.3.0 and 4.4.1) and Python
(3.10). The GO enrichment analysis used one-sided Fisher exact tests
with p values adjusted by the Benjamini-Hochberg Procedure to
control for false discovery rate. Correlation between ranked lists was
quantified using Spearman’s rho, while Pearson’s correlation was used
for paired numeric data. For rank-based evaluations, rank 1 indicates
the highest TR importance, and overall method performance in iden-
tifying correct TRs was evaluated using the MRR.

As this was not a clinical trial, no statistical method was used to
predetermine sample size. The experiments were not randomized, and
the investigators were not blinded to allocation during experiments
and outcome assessment. All eligible ChIP-seq datasets from the GTRD
database were used, following the removal of datasets with insufficient
peaks and low-quality peaks as detailed in the “Methods” section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Only public datasets were used in this study. The reference ChIP-seq
datasets are available at GTRD (v21.12) [http://gtrd.biouml.org:8888/
downloads/current/]. HPA-verified TRs lists are available at Human Pro-
tein Atlas (v24.0) [https://www.proteinatlas.org/]. The TR perturbation
experiment data are available at GEO under the accession codes
GSE153237% [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE153237], GSE173416* [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE173416], GSE114102** [https;//www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114102], GSE234331% [https://www.ncbi.nim.nih.
gov/geo/query/acc.cgi?acc=GSE234331], and GSE168851%° [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168851]. Cancer-type spe-
cific accessible regions are available at TCGA®* (GDC 2019 v18.0) [https://
gdc.cancer.gov/about-data/publications/ATACseq-AWG]. CRISPR/Cas9
knockout screening data are available at DepMap®* [https://depmap.org/
portal/]l. PBMCs scATAC-seq data are available at 10XGenomics [https://
support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/
pbmc _granulocyte_sorted_10k]. Liver cancer scATAC-seq data are avail-
able at GEO under accession code GSE227265% [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE227265]. Processed data are avail-
able at Zenodo [https://zenodo.org/records/14231098]. Source data are
provided with this paper.

Code availability

BIT?° software is available at GitHub [https://github.com/ZeyuL01/BIT]
with a GPL-3.0 license. BIT is also available as a web portal for online
analysis [http://43.135.174.109:8080/1.
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