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Multi-tissue expression and splicing data
prioritise anatomical subsite- and sex-
specific colorectal cancer
susceptibility genes
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Genome-wide association studies have suggested numerous colorectal cancer
(CRC) susceptibility genes, but their causality and therapeutic potential
remain unclear. To prioritise causal associations between gene expression/
splicing and CRC risk (52,775 cases; 45,940 controls), we perform a
transcriptome-wide association study (TWAS) across six tissues with Mende-
lian randomisation and colocalisation, integrating sex- and anatomical subsite-
specific analyses. Here we reveal 37 genes with robust causal links to CRC risk,
ten of which have not previously been reported by TWAS. Most likely causal
genes with evidence of cancer cell dependency show elevated expression
linked to risk, suggesting therapeutic potential. Notably, SEMA4D, encoding a
protein targeted by an investigational CRC therapy, emerges as a key risk gene.
We also identify a female-specific association with CRC risk for CCM2 expres-
sion and subsite-specific associations, including LAMC1with rectal cancer risk.
These findings offer valuable insights into CRC molecular mechanisms and
support promising therapeutic avenues.

Colorectal cancer (CRC) is the third most common cancer worldwide
and the fourthmost common causeof cancer-related death1. There are
several established risk factors for CRC, including obesity, alcohol
consumption and tobacco use2–9 and there is evidence of hetero-
geneity by sex and anatomical site2,10. However, the biological path-
ways that causally affect CRC development remain poorly understood,
which has limited the ability to design suitable therapeutic interven-
tions for prevention and treatment2,11,12. Indeed, understanding the

genetics underlying disease susceptibility has become an important
area of research; drugs with genetic support have been shown to be
twice as likely to be successful in clinical trials13,14.

Genome-wide association studies (GWAS) have identified com-
mon genetic risk variants at over 200 genetic loci associated with CRC
risk, including those associated with anatomical subsite-specific
CRC10,15,16. However, the mechanisms by which these genetic variants
affect disease development are generally unknown, hindering
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translation of these results into clinical applications.Most CRC genetic
variants are located outside of coding sequences and their effects are
assumed to be mediated through regulation of gene expression,
adding complexity to the process of linking variants to the target gene.
Given the potential to identify causal disease targets, establishing CRC
susceptibility genes fromGWASpresents an important opportunity for
the development of new therapeutic targets. Indeed, studies have
shown that genes or proteins identified through GWAS, or other
genetic studies, of clinical phenotypes aremore likely to be targetedby
drugs approved for corresponding indications, compared to targets
lacking such evidence13,14.

Transcriptome-wide association studies (TWAS) are a form of
post-GWAS analysis that establishes associations between gene
expression and traits. In brief, gene expression is imputed to GWAS of
traits of interest (here, CRC risk) using genetic variants which have
been previously identified as being associated with gene expression in
relevant tissues. Given the difficulty in accessing solid tissues for gene
expression analyses, TWAS using these tissues are often limited by
small sample sizes. S-MultiXcan and joint tissue imputation (JTI) are
two TWAS methods which address this issue by incorporating infor-
mation across multiple tissues to maximise statistical power17,18.
Including multiple tissues in a single analysis also allows for the iden-
tification of the relevant biological tissue for the gene identified—
which is important information for drug development. Notably, the
S-MultiXcan approach also facilitates analysis of trait associations with
alternative splicing events (i.e. processes producing distinct tran-
scripts from the same gene). Alternative splicing is an often neglected
mechanism in linking genes to traits despite evidence suggesting that
up to ~30% of GWAS signals may mediate their effects through
splicing19.

TWAS have successfully identified potential susceptibility genes
for many cancers, including breast20, endometrial21, and CRC15,22–25.
However, no CRC TWAS performed thus far has stratified by anato-
mical subsite or sex, which are important aspects of CRC
development8,10,26. Additionally, TWAS for CRC have often lacked a
causal framework analysis to account for bias from residual linkage
disequilibrium between genetic variants15,25. Consequently, it is likely
that some previously identified genes represent spurious associations.
Identifying genes that causally affect disease development is essential
for revealing novel and effective avenues for CRC therapy and
treatment.

In this study, we perform comprehensive multi-tissue expression
and splicing TWAS analyses (outlined in Supplementary Fig. 1) to
identify likely causal genes involved in CRC susceptibility, with a focus
on sex- and anatomical subsite-specific associations. Here, we identify
37 geneswith robust causal associationswithCRC risk through a causal
framework using Mendelian randomisation (MR) and genetic coloca-
lisation. We highlight subsite-specific effects, such as rectal cancer risk
linked to LAMC1, a clinically actionable drug target, and identify CCM2
expression as a female-specific CRC risk factor involved in progester-
one signalling. Our framework also prioritises SEMA4D, a previously
unreported CRC susceptibility gene encoding a protein targeted by
investigational cancer therapies. Additionally, we evaluate the impact
of established drug targets on CRC risk by applying the same frame-
work to 1163 genes encoding proteins targeted by approved or clini-
cally studied drugs27 and prioritise four such genes. Collectively, our
findings provide important insights into the molecular mechanisms
underlying CRC risk and reveal promising avenues for the develop-
ment of new therapeutic strategies.

Results
Multi-tissue TWAS analyses
To identify genes associated with CRC risk at both the expression and
splicing level, we used two multi-tissue TWAS methods: S-MultiXcan
and JTI. For S-MultiXcan, we imputed gene expression using

expression quantitative trait loci (eQTLs) and splicing events using
splicing quantitative trait loci (sQTLs). For JTI we imputed gene
expression only as predictive models are not currently available for
splicing events. For all TWAS approaches, gene expression or splicing
events were imputed using data from the GTEx Project (version 8)28.
We performed TWAS analyses using data from six tissues previously
linked to CRC (subcutaneous and visceral adipose, lymphocytes, and
whole blood) or directly relevant to CRC (sigmoid and transverse
colon). Associationswere testedwith risk of overall CRC, aswell as sex-
or subsite-specific disease. CRC anatomical subsites were defined as
per Huyghe et al.10 (see “Methods”). Briefly, proximal, distal and rectal
are mutually exclusive anatomical subsites designated by location of
tumour, whereas colon is comprised of proximal colon and distal
colon tumours, as well as colon cancer with unspecified location.

Across all three multi-tissue TWAS analyses, 112 unique genes
were associated with CRC risk after Bonferroni correction
(p < 3.91 × 10−7 in S-MultiXcan eQTL analysis; p < 5.49 × 10−7 in
S-MultiXcan sQTL analysis; p < 6.01 × 10−8 in JTI analysis; Supplemen-
tary Fig. 2 and Supplementary Data 1–3). Of these genes, 64 were
identified in the eQTL TWAS analyses, with 30 identified by both JTI
and S-MultiXcan approaches. The splicing S-MultiXcan analysis
revealed 144 unique splicing events associatedwith CRC risk, mapping
to 60 genes, 23 of whichwere also identified in at least one of the eQTL
TWAS analyses. None of the genes encoding proteins targeted by
clinically studied drugs (i.e. ‘druggable genes’) passed correction for
multiple testing in any of the TWAS analyses but 772 demonstrated
nominal associations (p < 0.05).

MR analyses
To evaluate the causal effect of gene expression on CRC risk, we per-
formed MR, which uses germline genetic variants as instrumental
variables to provide causal estimates (subject to certain assumptions,
seeMethods)29,30. Of the 112 genes identifiedbyTWAS, 46 hadavailable
cis-genetic variants to proxy gene expression in at least one of the a
priori selected tissues (minimum F-statistic: 30, median: 67). All genes
had a single genetic instrument other than two genes (MICA andMICB),
both of which had two genetic instruments. Among the genes with
suitable genetic instruments, 29passedmultiple testing inMRanalyses
(Supplementary Data 4 and Supplementary Fig. 3). Of the 144 splicing
events identified in the S-MultiXcan analysis, 37 had available genetic
instruments to proxy the splicing event for MR analyses (minimum F
statistic: 30, median: 63), with 27 passing the Bonferroni threshold,
corresponding to 17 genes (Supplementary Data 5 and Supplementary
Fig. 4). We also included the druggable genes in our causal framework
analyses that were nominally associated with CRC risk from TWAS
analysis, of which 380 had genetic instruments available according to
our thresholds outlined in Methods (minimum F-statistic: 30, median:
60). The expression of seven of these genes passed multiple testing in
MR analyses (Supplementary Data 6 and Supplementary Fig. 5).

Colocalisation analyses
Genetic colocalisation analysis can help assess the evidence for causal
associations between traits by evaluating whether the same or distinct
variant(s) underlie the association between two traits31. Colocalisation
analyseswereperformedbasedon the tissues identified in theTWAS: if
a gene was identified in all six tissues in the TWAS, colocalisation
analysis was performed for all six tissues. Conversely, if a gene was
identified in only one tissue in the TWAS, colocalisation was restricted
to that single tissue, and so on. Of the 112 genes identified by TWAS,
there was evidence for a shared causal variant between gene expres-
sion for 29 of these genes and CRC risk (H4, posterior probability of a
shared causal variant between the traits, >0.80; Supplementary
Data 7), and for 19 splicing events that mapped to 12 genes (H4 > 0.80;
Supplementary Data 8). Of the 29 genes prioritised byMR analyses, 20
had been prioritised by the colocalisation analysis; and of the
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27 splicing events prioritised byMRanalyses, 12wereprioritised by the
colocalisation analysis (corresponding to eight genes). Six druggable
genes had evidence for a shared causal variant in colocalisation ana-
lyses (H4 > 0.80) (Supplementary Data 9).

In order to avoid deprioritisation of CRC susceptibility genes or
splicing events due to violations of the single causal variant assump-
tion, we performed an additional colocalisation analysis using Pairwise
Conditional Colocalisation (PWCoCo; described in “Methods”)32. In
brief, we applied PWCoCo to any gene or splicing event that met the
multiple testing threshold in the MR analysis but had a H4 posterior
probability ≤0.80 in the standard colocalisation analyses. This resulted
in the inclusion of an additional one gene based on expression (TCF19;
Supplementary Data 10) and one splicing event (mapping to the gene
LRRFIP2; Supplementary Data 11).

Likely causal associations with colorectal cancer risk
To identify likely causal gene associations with CRC risk, we used a
stringent framework to prioritise genes: (1) passing Bonferroni cor-
rection in at least one TWAS analysis; (2) H4 > 0.80 in genetic coloca-
lisation analysis; and (3) passing Bonferroni correction in MR analysis
or having no suitable genetic instruments available (Fig. 1a). Using this
framework, we identified 37 genes with a likely causal association
(Fig. 1b, Supplementary Fig. 6 and Table 1). Twenty likely causal sus-
ceptibility genes were identified solely through associations with
expression and nine through associations with splicing alone. The
largest magnitude of effect was observed for POU5F1B in the expres-
sion TWAS (Z-score in JTI = −13) and for COLCA1 in the splicing TWAS
(Z-score in S-MultiXcan with sQTLs = 10). We performed functional
enrichment analysis of the likely causal genes using g:Profiler33 and
found significant enrichment (padj < 0.05) for genes involved in POU
domain binding and the mitochondrial complex IV assembly (Sup-
plementary Data 12).

Since we used two different methods for the expression TWAS
(i.e. S-MultiXcan and JTI), we evaluated whether genes identified by

both methods were more likely to be prioritised by our framework
(Fig. 1c and Supplementary Fig. 2). Of the 37 genes identified by both
methods, 10 were prioritised (27%). In contrast, of the 19 gene
expression associations identified by JTI alone, 12 were prioritised
(63%), whereas only 2 of the 26 (8%) gene expression associations
identified by S-MultiXcan were prioritised. These results suggest that
JTI outperforms S-MultiXcan in prioritising genes with likely causal
associations with CRC.

The likely causal genes included a previously unreported col-
orectal cancer susceptibility gene, SEMA4D, neither located at known
colorectal cancer GWAS risk loci nor previously identified by color-
ectal cancer TWAS. A further ten genes were located at known col-
orectal cancer GWAS risk loci but had not been previously identified
by colorectal cancer TWAS. Our analysis also revealed context-
specific associations. Of the 37 likely causal genes, 23 showed tissue-
specific associations (i.e. associations unique to expression or spli-
cing in one tissue): five genes were found through analysis of sub-
cutaneous adipose, one through visceral adipose, two through
sigmoid colon, nine through transverse colon, three through lym-
phocytes and three through whole blood. Regarding anatomical
subsites, two genes were exclusively associated with colon cancer
risk (AAMP and ARPC2), three genes with both colon and proximal
colon cancer risk (EPM2AIP1,MLH1 and RP11-129K12.1), one with distal
colon cancer risk (ABCC2), one with proximal colon cancer risk
(LRRFIP2) and three with rectal cancer (COLCA1, LAMC1 and
GPATCH1) risk. For all but AAMP, differences in TWAS effect sizes for
these genes were observed between subtypes (Figs. 2, 3). Lastly, one
gene (CCM2) was specifically associated with female colorectal can-
cer risk (Fig. 2N).

For the analysis of the druggable genes, we conducted an
exploratory analysis by focussing on genes that were nominally sig-
nificant in at least one TWAS analysis. To prioritise genes for causality,
we selected those passing H4 >0.80 in genetic colocalisation analysis
and Bonferroni-correction inMR analysis. This approach revealed four
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Fig. 1 | Overview of multi-tissue TWAS, colocalization, and MR-based gene
prioritisation for colorectal cancer risk. a Flowchart showing analysis overview
and number of genes/splicing events identified at each stage. “Genes with robust
evidence” includes those that had H4 above 0.8 in colocalisation analyses, and
which either passed Bonferroni correction in the relevant MR analysis
(p < 4.38 × 10−5; 0.05/N*G where N is the number of gene-tissue pairs (161) and G is
the number of CRC GWAS (7) for genes identified in TWAS analyses or
p < 1.32 × 10−4; 0.05/number of druggable genes with suitable genetic instruments
available (380) for genes identified as part of the druggable genome) or which did
not have suitable instruments available to be included in the MR analysis. MR

Mendelian randomisation.bManhattan plot showing results of S-MultiXcan and JTI
TWAS analyses of colorectal cancer risk, for all anatomical subsites combined.
Where genes were identified in multiple TWAS analyses, the one with the lowest
p value was retained. Genes labelled are those prioritised following subsequent
analyses. All statistical tests were two-sided with the unadjusted p values from
S-MultiXcan or JTI plotted. c Venn diagram showing overlap of final prioritised 37
genes identified by each TWAS analysis. JTI joint tissue imputation, eQTLs
expression quantitative trait loci, sQTLs splice quantitative trait loci. Source data
are provided as a Source Data file.
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Table 1 | Summary table of prioritised genes

Loci Gene Ensembl ID Direction Tissue(s) Subtype(s) Analysis Previous GWAS
reference

Previous TWAS
reference

2q35 AAMP ENSG00000127837 Increased AS, AV, CS C eJTI 16 15

10q24.2 ABCC2 ENSG00000023839 Increased WB D eMX 16 15

17p13.3 AC087392.1 ENSG00000262003 Decreased AS, AV, CT Overall, D, R eJTI 15,16 None

17q25.3 AC144831.1 ENSG00000261888 Decreased AS Overall, R eJTI, eMX 16 None

20q13.33 AL121832.3 ENSG00000275437 Decreased CT Overall, R, M eJTI 16 22,23

2q35 ARPC2 ENSG00000163466 Increased AS, AV C sMX 16 15,22

12q13.12 ATF1 ENSG00000123268 Increased AS, AV,
CS, CT

All analyses eJTI, eMX, sMX 16 15,22

7p13 CCM2 ENSG00000136280 Decreased WB F eJTI 16 15

19q13.43 CENPBD2P ENSG00000213753 Unknown AS Overall sMX 16 None

11q23.1 COLCA1 ENSG00000196167 Decreased CT R eJTI 16 15,22,23

12q13.12 COX14 ENSG00000178449 Increased AS Overall eJTI 16 15,22

10q24.2 COX15 ENSG00000014919 Unknown CT, L Overall, D sMX 16 15

14q23.1 DACT1 ENSG00000165617 Decreased CT C, P, M eJTI, eMX 16 15,22,23

3p22.2 EPM2AIP1 ENSG00000178567 Increased AV, WB C, P eJTI, sMX 10 None

11q12.2 FADS1 ENSG00000149485 Increased AS, CS Overall, C, D eJTI, eMX, sMX 16 15

11q12.2 FEN1 ENSG00000168496 Increased AS Overall eMX 16 15

19q13.11 GPATCH1 ENSG00000076650 Unknown L R sMX 16 15,22

2q35 GPBAR1 ENSG00000179921 Increased WB Overall Druggable
genome

16 15

13q22.1 KLF5 ENSG00000102554 Unknown CT Overall sMX 86 15

1q25.3 LAMC1 ENSG00000135862 Increased WB R eJTI 16 15,22

1q25.3 LAMC1-AS1 ENSG00000224468 Increased L Overall, R eJTI 16 None

12q13.12 LIMA1 ENSG00000050405 Decreased CT Overall, C, D eJTI, eMX 16 15

3p22.2 LRRFIP2 ENSG00000093167 Unknown AV P sMX 10 None

12p13.31 LTBR ENSG00000111321 Increased AV, CS, CT P Druggable
genome

16 22

17q25.3 METRNL ENSG00000176845 Increased AV, WB Overall, R, M eJTI, sMX 16 22

3p22.2 MLH1 ENSG00000076242 Increased AS, AV,
L, WB

C, P eJTI, eMX, sMX 10 None

19q13.43 MZF1 ENSG00000099326 Unknown CS Overall sMX 16 15,22

19q13.43 MZF1-AS1 ENSG00000267858 Decreased CS Overall sMX (MR
expression)

16 None

2q37.3 PDCD1 ENSG00000188389 Increased WB R Druggable
genome

None None

12p13.31 PLEKHG6 ENSG00000008323 Unknown CT Overall sMX 16 15

2q35 PNKD ENSG00000127838 Increased AV, WB Overall, C eJTI, eMX 16 15,22

11q23.1 POU2AF2 ENSG00000150750 Decreased CT Overall, C, R, D,
M, F

eJTI, eMX 16,88 15,22,23,88

11q23.1 POU2AF3 ENSG00000214290 Decreased CS, CT Overall, C, R, D,
M, F

eJTI, eMX, sMX 16,88 15,22,23

8q24.21 POU5F1B ENSG00000212993 Decreased CT Overall, C, P, F eJTI, eMX 16,88 15,23,88

1p31.1 PTGER3 ENSG00000050628 Increased AV C, P Druggable
genome

10 None

20q13.33 RBBP8NL ENSG00000130701 Decreased CT C, F, M eJTI, eMX 16 22,23

3p22.2 RP11-129K12.1 ENSG00000272334 Increased AS, CT C, P eJTI, eMX 10 None

20q13.33 RPS21-DT ENSG00000273619 Increased All tissues C, F, M eJTI 16 15

9q22.2 SEMA4D ENSG00000187764 Unknown L Overall, P sMX None None

6p21.33 TCF19 ENSG00000137310 Increased AS Overall eJTI, eMX None 15

2q35 TMBIM1 ENSG00000135926 Increased AS, AV, CS Overall C eJTI 16 15,22,23

Directionwhether the genewas associatedwith an increased or decreased risk ofCRC, Tissue(s) the tissue(s) in which the genewas associatedwith CRC risk, Subtype(s) the CRC subtypeswhich the
genewas associatedwith, Analysis the analysis (or analyses) in which the gene was identified, though note that for genes identified in the SplicingMultiXcan analysis theMR analysis, where carried
out, evaluated evidence for a causal role of expression (not alternative splicing) of the gene in colorectal cancer risk, Previous GWAS any previously publishedCRCGWASwhere this locus has been
identified, Previous TWAS any previouslypublishedCRCGWASwhere this locushasbeen identified. Tissue abbreviations:AS adipose subcutaneous,AV adiposevisceral,CScolon sigmoid,CTcolon
traverse, L EBV-transformed lymphocytes, WB whole blood. Subtype abbreviations: Overall all CRC cases, C colon, R rectal, P proximal, D distal, M male, F female. Analysis abbreviations: eJTI
expression JTI, eMX expression MultiXscan, sMX splicing MultiXcan.
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genes (GPBAR1, LTBR, PDCD1 and PTGER3) (Fig. 1a, Supplementary
Fig. 4 and Table 1).

Splicing event annotation
To provide further support for likely causal splicing associations,
we explored underlying splicing mechanisms. Using a bioinfor-
matic splicing pipeline to analyse CRC GWAS risk variants
for effects on the likely causal splicing events, we found that
a single splicing event met the predetermined conditions indi-
cative of a high-confidence splicing mechanism (see “Methods”
for more information). This event, related to PLEKHG6
(intron_12_6317696_6317899; Supplementary Data 13), could be
explained by rs1468603 (chr12:6317886C > T). Specifically, the T
allele was predicted to activate an exonic cryptic acceptor,
enhancing the inclusion of a truncated exon 10 (45 bp in-frame
deletion) in PLEKHG6 (NM_001384598.1), corresponding to the
intron_12_6317696_6317899 splicing event.

Evaluating drug targeting opportunities provided by likely
causal susceptibility genes
In addition to specifically analysing druggable targets, we investigated
the druggability of proteins encoded by the likely causal susceptibility
genes using the Pharos34 andOpenTargets35 platforms to identify drug
repurposing opportunities for preclinical or clinical investigation.
Thesedatabases identified proteins encoded by LAMC1 and SEMA4D as
targets of clinically studied drugs. Laminin subunit gamma 1, encoded
by LAMC1, is degraded by ocriplasmin, a recombinant proteinase drug
used to treat vitreomacular adhesion. SEMA4D encodes semaphorin
4D which is inhibited by pepinemab, an antibody that has been clini-
cally studied for treatment of several cancer types, including a phase I
trial of CRC (Clinicaltrials.gov: NCT03373188). We also identified five
genes (ABCC2, ATF1, FADS1, FEN1 and KLF5) whose protein products
bind to small molecules, supporting their potential druggability.

We evaluated the potential for efficacy in therapeutic targeting of
likely causal susceptibility genes by assessing if their expression is

Fig. 2 | Forest plots of JTI effect sizes across colorectal cancer anatomical
subsites and sex for anatomical subsite- and sex-specific genes identifiedby JTI
TWAS analysis. Relevant tissue-specific estimates from JTI for risk of each anato-
mical subsite are plotted with 95% confident intervals. (sample sizes were 52,775
cases, 45,940 controls for overall; for all anatomical subsites there were 43,099
controls; colon, 28,736 cases; proximal colon, 14,416 cases; distal colon, 12,879
cases; and rectal, 14,150 cases; female, 24,594 cases, 23,936 controls; male, 28,271
cases, 22,351 controls). Solid points indicate the Bonferroni p value threshold of
p < 6.01 × 10−8 was met in the JTI analysis. Errors bars may be hidden by the point
estimate where the standard deviation is small relative to effect estimates. A AAMP

expression in adipose subcutaneous tissue; B AAMP expression in adipose visceral
tissue; C AAMP expression in colon sigmoid tissue; D COLCA1 expression in colon
transverse tissue; E EPM2AIP1 expression in adipose visceral tissue; F EPM2AIP1
expression inwholeblood;G LAMC1expression inwhole blood;HMLH1 expression
in adipose subcutaneous tissue; IMLH1 expression inadiposevisceral tissue; JMLH1
expression in whole blood; K MLH1 expression in lymphocytes; L RP11-129K12.1
expression in adipose subcutaneous expression; M RP11-129K12.1 expression in
colon transverse tissue; N CCM2 expression in whole blood. Source data are pro-
vided as a Source Data file.
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required forCRCcell line viability. Using the BioGRIDOpenRepository
on CRISPR Screens36, we found CRC cell lines were dependent on 16 of
the likely causal susceptibility genes, with nine genes demonstrating
dependency in at least 15% of studies with available data (Supple-
mentary Data 14). Among these 16 genes, 11 were identified through
expression TWAS approaches (Table 1). Consistent with the depen-
dency findings, increased expression of eight genes, including AAMP
and FEN1, associated with CRC risk. AAMP showed particularly con-
sistent findings, with CRC cell lines demonstrating dependency for
AAMP expression in 80% of the studies in which it was tested. CRC cell
lines also showed frequent dependency for expression of FEN1 (48% of
studies), which encodes a potentially druggable protein.

Shared causal pathways with known CRC risk factors
To investigate whether the likely causal susceptibility genesmay relate
to known CRC risk factors, we performed genetic colocalisation. We
evaluated evidence for a shared causal variant between the expression
of 28 likely causal susceptibility genes (i.e. those that passed both the
colocalisation and MR thresholds, not including the seven genes that
had robust evidence for splicing only) and each of four established
CRC risk factors—BMI, WHR, alcohol consumption, and smoking
initiation. Among these genes, we found evidence of colocalisation
(posterior probability of H4 > 0.80) for two genes (AAMP and TMBIM1)
with WHR (Supplementary Data 15).

Discussion
Our analysis combined two multi-tissue TWAS methods with a causal
framework to identify CRC susceptibility genes. Through this frame-
work, we prioritised 37 genes with strong evidence for a causal role in

colorectal cancer risk, with associations extending to specific disease
subtypes and expression in distinct tissues, implicating the involve-
ment of tissues outside the colon or rectum in CRC development. In
addition, our analysis of the druggable genome revealed four genes
with suggestive evidence for a causal role in colorectal cancer risk. The
subsequent drug target analyses allowed us to highlight candidates for
future investigation.

While previous TWAS for CRC have been conducted, these ana-
lyses have not been stratified by anatomical subsite or sex, which are
important aspects of CRC aetiology. The importance of stratified
analysis is demonstrated by our findings for a causal role of CCM2 in
female-specific colorectal cancer. Cerebral cavernous malformation 2
(CCM2) is a component of the CCM signalling complex, which has a
role in regulating several signalling cascades, including progesterone
signalling37,38. Notably, multiple studies have demonstrated a protec-
tive role for progesterone in CRC development (reviewed in Wenxuan
et al.39). Our findings of decreased CCM2 expression associating with
increased CRC risk are consistent with this, supporting a potential sex-
specific role for CCM237,38.

Nearly one third (11 of 37) of the susceptibility genes exhibited
location-specific associations, highlighting the genetic heterogeneity
of CRC. This subsite-level dissection provides a more nuanced
understanding of this complex disease and underscores the impor-
tance of considering tumour location in genetic studies, with impli-
cations for developingmore tailored treatment strategies. In addition,
our findings are consistent with evidence from GWAS that genes at
locus 3p22.2 (including MLH1 and EPM2AIP1) have proximal colon
cancer-specific effects10,40,41. Though loss of functionMLH1 variants are
known to be associated with proximal colon cancer, we found that

Fig. 3 | Forest plots of mean Z-score estimates from S-MultiXcan across color-
ectal cancer anatomical subsites for anatomical subsite-specific genes identi-
fied by S-MultiXcan (expression or splicing) TWAS analysis. Relevant estimates
for risk of each anatomical subsite are plotted with 95% confident intervals (sample
sizeswere 52,775 cases, 45,940controls for overall; for all anatomical subsites there
were 43,099 controls; colon, 28,736 cases; proximal colon, 14,416 cases; distal
colon, 12,879 cases; and rectal, 14,150 cases; female, 24,594 cases, 23,936 controls;

male, 28,271 cases, 22,351 controls). Solid points indicate the Bonferroni p value
threshold of p < 3.91 × 10−7 was met in S-MultiXcan eQTL analysis or p < 5.49× 10−7

was met in S-MultiXcan sQTL analysis. Errors bars may be hidden by the point
estimate where the standard deviation is small relative to Z-score scale. A ABCC2
expression; B MLH1 expression; C RP11-129K12.1 expression; D ARPC2 splicing;
E GPATCH1 splicing. Source data are provided as a Source Data file.
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increasedMLH1 expression was associated with increased cancer risk.
A similar, albeit nominally significant TWAS finding was previously
reported22. Supporting these observations, it has been reported that
MLH1 may have context-specific effects. For example, MLH1 has been
found to be upregulated in mismatch repair proficient CRC tumours
and shown to have oncogenic effects in some contexts42. Nevertheless,
further research is thus required to understand the direction of effect
of MLH1 expression on proximal colon cancer risk.

Among the likely causal genes, SEMA4D emerged as a CRC sus-
ceptibility gene that is neither located at known CRC GWAS risk loci
nor previously identified by CRC TWAS. SEMA4D was identified
through association of its alternative splicing with colorectal cancer
risk, highlighting the importance of studying this mechanism using
TWAS approaches. SEMA4D encodes a protein with immunoregulatory
activity43, consistentwith its associationwith CRC risk through splicing
effects in lymphocytes, also highlighting a potential causal cell type.
Moreover, in a preclinical mouse colon cancer model, antibody
blockade of SEMA4D has been shown to enhance the infiltration of
immune cells into tumours, thereby promoting anti-tumour immune
responses44. Importantly, our findings provide evidence to prioritise
the clinical targeting of SEMA4D, currently being performed using an
antibody treatment.

A further ten genes, located at known CRCGWAS risk loci had not
been previously identified by CRC TWAS. These findings may possibly
be due to the lack of anatomical subsite-stratified analyses in previous
TWAS or our inclusion of alternative splicing events. Indeed, four of
these genes (including SEMA4D) were exclusively identified through
splicing associations. Further supporting the relevance of our splicing
analysis, we demonstrated a potential mechanism for PLEKHG6 spli-
cing in CRC risk that involves the effect of a CRC GWAS SNP. These
findings highlight the importance of incorporating splicing events in
TWAS analyses, as they may reveal genes and mechanisms of genetic
susceptibility that are not captured by gene expression alone.

LAMC1 emerged as another likely causal susceptibility gene
encoding a target of a clinically studied drug (ocriplasmin). LAMC1 has
previously been identified as a CRC susceptibility gene through GWAS
and other approaches15,45. The laminin family of proteins are key
components of the basal membrane and have been implicated in CRC
progression46,47. We found genetically predicted increased expression
of LAMC1 was associated with increased rectal cancer risk, providing
support for therapeutic inhibition of LAMC1. Ocriplasmin, a synthetic
form of plasmin which targets laminin, is currently used to treat eye-
related diseases and is also in phase II trials for several other condi-
tions, including stroke and deep vein thrombosis48–50. While prior
research has suggested ocriplasmin as a candidate drug for CRC
treatment51, further drug development would be required due to the
current need for its direct injection and its moderate stability52.

Evidence frompublicly availabledata supports a role for severalof
the likely causal susceptibility genes in CRC, including CCM2 and
SEMA4D as discussed. Furthermore, mechanistic studies at the 11q23.1
CRC GWAS locus have linked risk variation to POU2AF2 and demon-
strated that this gene protects tuft cells in the colon while suppressing
colonic tumourigenesis in a mouse model53. This observation is con-
sistent with our TWAS finding that decreased POU2AF2 expression is
associated with increased CRC risk. Moreover, we have found that
most likely causal susceptibility genes showing a dependency in CRC
cell lines align with TWAS findings where increased expression was
associated with increased CRC risk (e.g. AAMP and FEN1). This align-
ment underscores their relevance as candidate therapeutic targets.
Themost consistentfindings ofCRCdependencywere forAAMPwhich
encodes angio-associatedmigratory cell protein (AAMP), with a role in
angiogenesis, cell migration54, and CRC metastasis55. We also found
evidence for colocalisation of AAMP expression with WHR suggesting
that AAMP may also impact CRC risk through effects on adipose dis-
tribution, or vice versa. Although there are no current inhibitors of

AAMP, Open Targets indicates there is potential for inhibition through
antibody or protein targeting chimera approaches. FEN1 also demon-
strated consistent CRC dependency. The metallonuclease encoded by
FEN1 has a role in DNA replication and double-strand break repair56.
Promisingly, FEN1 small molecule inhibitors have been developed that
show anti-cancer effects in experimental models57. These findings
support the identification of druggable targets for CRC treatment,
including corresponding candidate therapies or modalities, and pro-
vide valuable startingpoints for experimental validation and treatment
development.

We also performed a comprehensive analysis of the “druggable
genome”27. We focussed on genes that were nominally significant in at
least one TWAS analysis and prioritised genes with evidence of genetic
colocalisation (H4 >0.80) with CRC risk andwhichmet the Bonferroni-
correction in an MR analysis. This revealed suggestive evidence for a
causal effect of expression of four genes (PDCD1,GPBAR1, PTGER3 and
LTBR) on CRC risk. Among these, there were two tissue-specific asso-
ciations observed in whole blood (GPBAR1 and PTGER3). Additionally,
we found associations with unique anatomical subsite cancers: LTBR
with risk of proximal colon cancer and PDCD1with riskof rectal cancer.
PDCD1 encodes programmed cell death 1 (PDCD-1 or PD-1) protein,
which is targeted by inhibitors used to treat microsatellite instability-
high or mismatch repair-deficient metastatic CRC58–60. Our TWAS and
MR analyses suggested that increased (rather than decreased, repli-
cating the use of an inhibitor) expression of PDCD1 reduced risk of
rectal cancer. This conflicts with evidence that PDCD-1 suppresses the
immune system’s ability to destroy cancer cells, as one would assume
that in this case increased PDCD1 expression would increase (not
decrease) cancer risk61. However, we note that we only see strong
evidence for a causal role of PDCD1 expression in blood (not colon
tissue) on cancer risk—suggesting that the mechanism linking PDCD1
expression and colorectal cancer risk may be more complex than the
presumed local effects within colorectal tissue. PTGER3 encodes a
receptor for prostaglandin E2 that is targeted by misoprostol, an
approved drug for gastric ulcers and reflux disease and which has
shown efficacy in colon cancer xenograft models62. We replicated
previous GWAS evidence that PTGER3 may have a role in proximal
colon cancer andmay be less relevant to rectal cancer10. LTBR encodes
the tumour necrosis factor receptor lymphotoxin beta receptor
(LTBR) which is targeted by an antibody agonist63. However, an anti-
body antagonist is likely to be required for effective treatment given
increased LTBR expression in several tissueswas associatedwith riskof
proximal colon cancer.

Our analysis aimed to robustly prioritise genes for CRC suscept-
ibility by using multiple tissues alongside a causal framework. We
combined two genetic epidemiological approaches to assess genes
spuriously identified due to linkage disequilibrium (i.e. showing evi-
dence for a causal role in MR but not colocalisation) and to identify
possible non-causal biomarkers of disease or risk factors (i.e. those
that colocalise but show null results in MR analyses). However, the
sample sizes for available data for TWAS analyses are still relatively
small compared to the CRC GWAS, which potentially impacts our
ability to genetically predict gene expression and detect associations
with CRC risk. In addition, our analyses were limited to genes with
expression that can be predicted using available TWAS models,
meaning some potentially casual genes may not be captured in our
analyses. Additionally, many of our MR analyses were restricted to a
single SNP, meaning we were unable to employ various “pleiotropy-
robust” models to evaluate exclusion restriction assumptions. We did
not exclude HLA in the MR analyses, which is a possible limitation due
to the region’s high polymorphism and potential pleiotropic effects,
which complicate causal interpretation. Linkage disequilibrium with
other variants and unmeasured confounding factors further limit the
ability to draw definitive conclusions. Furthermore, we did not evalu-
ate the sensitivity of our colocalisation analyses to alternative window
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sizes or prior probabilities, which are important aspects of colocali-
sation analyses64. Our study also presents further limitations that could
be addressed in future research: (1) our analysed were restricted to
individuals of predominantly European ancestries, which limits the
generalisability of our findings to other populations and contexts; (2)
the MR analyses performed here assume linearity between gene
expression and CRC risk, which may not capture more complex
interactions and non-linear relationships; (3) the use of available
summary data limited our ability to perform analyses with sex-specific
gene expression data that could provide insights into differential CRC
risk; and (4) similarly, because we used summary-level data, we were
unable to evaluate interactions between sex and CRC subtype.

Given the increase in CRC worldwide, understanding the biolo-
gical mechanisms leading to carcinogenesis is becoming increasingly
important1. Additionally, asmore screening programmes are rolled out
globally, opportunities to prevent CRC development in high-risk
individuals are also increasing. Therefore, the identification of new
pharmaceutical targets for the prevention and treatment of this dis-
ease remains a priority. Our analyses have identified genes with robust
evidence for a potential causal role in CRC development, offering
insights into its aetiology andpresenting tangible opportunities for the
exploration and development of new therapeutic strategies.

Methods
CRC GWAS
Supplementary Data 16 shows the GWAS used in all analyses. Summary
genetic association data for CRC risk (52,775 cases, 45,940 controls)
were obtained fromameta-analysis of the Colorectal Transdisciplinary
Study (CORECT), the Colon Cancer Family Registry (CCFR), and the
Genetics and Epidemiology of CRC (GECCO) consortium10,16. Summary
genetic association data were obtained stratified by site (colon, 28,736
cases; proximal colon, 14,416 cases; distal colon, 12,879 cases; and
rectal, 14,150 cases; 43,099 controls) and sex (female, 24,594 cases,
23,936 controls; male, 28,271 cases, 22,351 controls). Sex was defined
based on sex chromosomes and samples with discrepancies between
reported and genotypic sex based on X chromosome heterozygosity
were excluded10,16. Colon cancer included proximal colon (any primary
tumour arising in the caecum, ascending colon, hepatic flexure, or
transverse colon), distal colon (any primary tumour arising in the
splenic flexure, descending colon or sigmoid colon), and colon cases
with unspecified site. Rectal cancer included any primary tumour
arising in the rectum or rectosigmoid junction. CRC was classified
using ICD-10 codes andmost cases were incident CRC. All participants
in the anatomical subsite-specific CRC analyses were of European
ancestries, and approximately 92% of participants in the overall CRC
GWAS were European (~8% were East Asian). Imputation of GWAS
summary statistics was performed using the Michigan imputation
server andHRC r1.0 reference panel. Regressionmodels were adjusted
for age, sex, genotyping platform, and genomic principal components
as described previously16. All participants included in the CRC GWAS
provided informed consent and ethics were approved by respective
institutional review boards10,16.

Multi-tissue TWAS analyses
To identify genes with expression or splicing events associated with
CRC risk, we utilised two multi-tissue TWAS methods. First, we per-
formed S-MultiXcan17, which is an extension of S-PrediXcan65. Briefly,
S-PrediXcan identifies geneswith expressionor splicing events that are
associated with a phenotype of interest using linear predictionmodels
to impute gene expression and splicing events to the trait GWAS. We
performed S-PrediXcan using precomputed gene expression or alter-
native splicing prediction models and linkage disequilibrium (LD)
reference datasets of European ancestry, downloaded from the Pre-
dictDB data repository (http://predictdb.org/). S-MultiXcan extends
this approach by incorporating gene expression prediction across

multiple tissues using multivariate regression. Effect sizes were cal-
culated using multivariate adaptive shrinkage66, which is a flexible
statistical approach that leverages information on the similarity
between variables to improve effect estimation. This approach was
applied to variants identified by fine-mapping using deterministic
approximation of posteriors67,68, which performs joint enrichment
analysis of GWAS and quantitative trait loci data to annotate genetic
variants. Given that these models often rely on variants that may be
absent frommost trait GWAS, we performed additional harmonisation
and imputation of the CRC GWAS prior to these analyses, as recom-
mended by the S-MultiXcan authors. We performed the S-PrediXcan
and S-MultiXcan analyses for both eQTLs and sQTLs. For the
S-MultiXcan splicing analysis, splice events were mapped to relevant
genes using the GTEx splicing mapping file (downloaded from www.
gtexportal.org/home/datasets).

Second, weperformed JTI as anothermeans to identify geneswith
expression associated with CRC18. Thismethod is another extension of
S-PrediXcan and again imputes gene expression to trait GWAS by
incorporating information across multiple tissues to improve predic-
tion quality. We performed JTI using precomputed models for gene
expression imputation which exploit measures of similarity between
tissues based on expression data and cell-specific regulatory elements.
Thepretrained JTImodelsweredownloaded fromZenodo (https://doi.
org/10.5281/zenodo.3842289).

Both TWAS methods incorporate information about gene
expression or splicing events across multiple biological tissues to
maximise statistical power. As the architecture of eQTLs and
sQTLs can differ substantially across tissues28, previous evidence
has suggested that using only those from tissues which are
mechanistically related to the GWAS trait can avoid spurious
findings69. Thus, for both TWAS methods, we used data (from
GTEx Project version 828) from six biologically relevant tissues for
CRC: two adipose tissue types (subcutaneous adipose (n = 581)
and visceral (omentum) adipose (n = 469)), which may capture
important adiposity-related CRC pathways2; two colon tissue
types (transverse colon (n = 368) and sigmoid colon (n = 318)),
which may capture locally important oncogenic processes; one
immune tissue type (Epstein-Barr virus-transformed lymphocytes
(n = 187)), given recent links between circulating white blood cells
and CRC risk70; and whole blood (n = 670), which may capture a
range of clinically important circulating factors. We removed
variants with a minor allele frequency (MAF) < 1% from the CRC
GWAS summary statistics prior to TWAS analyses.

Given our aim of identifying genes which should be prioritised in
future CRC research, for all TWAS analyses we applied a Bonferroni-
correction to identify genes associated with CRC risk (0.05/(N*G*T),
where N is the number of genes or splice events included in the ana-
lysis, G is the number of CRC GWAS tested (overall, female, male,
colon, distal, proximal, rectal), and T is specific to the JTI analyses and
is the number of tissues included in the analysis (of subcutaneous
adipose tissue, visceral adipose tissue, transverse colon, sigmoid
colon, lymphocytes, and whole blood). Any genes passing this Bon-
ferroni threshold in at least one of the analyses (p < 3.91 × 10−7 in
S-MultiXcan eQTL analysis; p < 5.49 × 10−7 in S-MultiXcan sQTL analy-
sis; p < 6.01 × 10−8 in JTI analysis) were taken forward to the MR
analyses.

S-MultiXcan aggregates expression predictions across multiple
tissues to identify genes associated with CRC risk by leveraging shared
genetic effects across tissues, which can increase statistical power. In
contrast, JTI models gene expression across tissues while specifically
accounting for tissue-specific effects, making it more sensitive to
genes with distinct roles in particular tissues. Hence, S-MultiXcan and
JTI may prioritise overlapping but distinct gene sets, with genes
identified by both methods being more likely to represent robust
associations.
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Full S-PrediXcan results are available for download from Zenodo
(https://doi.org/10.5281/zenodo.12805739).

MR analyses
MR is a genetic epidemiological approach which, under certain
assumptions, can estimate causal effects between phenotypes in
observational settings29,30. MR uses germline genetic variants as
instrumental variables for exposures. Since these variants are ran-
domly assorted atmeiosis andfixed at conception,MRanalyses should
be less prone to confounding by environmental factors and reverse
causation bias than conventional observational studies. The three core
assumptions ofMR state that: (1) the genetic variant(s) are strongly and
robustly associated with the exposure; (2) there is no confounding of
the genetic variant(s)-outcome relationship (e.g., population stratifi-
cation); (3) the genetic variant(s) only affect the outcome through their
effect on the exposure.

We performed MR to evaluate evidence for a causal effect of
tissue-specific gene expression for all genes identified in the TWAS
analyses on the relevant CRC outcome (46 out of 112 genes were
instrumentable). Summary genetic data for gene expression (i.e.
eQTLs) were obtained from GTEx (version 8)28. We identified genetic
instruments as genetic variants which are cis-acting (i.e. within 100 kb
of the gene coding region), strongly associated with gene expression
(p < 5 × 10−8), independent (r2 < 0.001), and had an F-statistic >10.
Steiger filtering was performed prior to MR analyses, with any genetic
instruments explaining more variance in the outcome than the expo-
sure excluded. See Supplementary Fig. 7 for anoverviewof our genetic
instrument construction process. Where only a single genetic variant
was available, we calculated the Wald ratio to generate effect esti-
mates; where multiple genetic variants were available, an inverse
variable weighted (IVW) multiplicative random effects model was
used. A Bonferroni-correction was applied to account for multiple
testing (p < 4.38 × 10−5; 0.05/N*G where N is the number of gene-tissue
pairs (161) and G is the number of CRC GWAS (overall, male, female,
colon, distal, proximal, rectal)). We additionally performed MR using
sQTLs for splicing events, in order to assess their potential causal
relationship with CRC outcomes, using the same thresholds for
instrument construction and a Bonferroni-correction of p < 1.19 × 10−3

(0.05/42, the number of unique splicing event-tissue-subtype trios
with suitable instruments for MR analyses).

In addition to genes identified through the TWAS analysis, given
our focus on identifying genes which hold high therapeutic potential
for CRC prevention, we also explored evidence for a causal role in CRC
development of previously identified known druggable targets27. We
limited genes included to those with nominal significance in at least
oneTWAS analysis, andwewere able to identify genetic instruments to
proxy the expression of 380 (out of 1163) of these genes for MR ana-
lyses. We used the same genetic instrument identification process as
with the prior MR analysis and applied a Bonferroni correction to the
results to account for multiple testing (p < 1.32 × 10−4; 0.05/number of
druggable genes with suitable genetic instruments available (380)).

All genetic variants used in MR analyses are available in Supple-
mentary Data 17. A completed STROBE-MR71 checklist is available in as
Supplementary Information (downloaded from: https://www.strobe-
mr.org/).

Colocalisation analyses
Genetic colocalisation uses a Bayesian framework to determine whe-
ther the causal variant(s)within a locus relating tomultiple phenotypes
is shared between the traits31. This shared causal variant is necessary
(but not sufficient in the absence of other evidence) for a causal rela-
tionship. We performed genetic colocalisation under the single causal
variant assumption72 of (1) gene expression (eQTL) and CRC for all
genes which were identified by any of the TWAS analyses and the
relevant CRC anatomical subsite; (2) gene expression (eQTL) and CRC

for all genes from the aforementioned “druggable genome” for which
data were available and all CRC anatomical subsites; and (3) gene
splicing (sQTL) and CRC for all genes identified in the S-MultiXcan
splicing analysis and the relevant CRC anatomical subsite. Colocalisa-
tion was performed using the priors p1 = 1 × 10−4, p2 = 1 × 10−4, and
p12 = 1 × 10−5, with all genetic variants within 100 kb of the relevant
gene coding region72,73. A posterior probability of >0.80 for H4 was
used to indicate strong evidence for a shared causal variant, and thus
evidence for a causal relationship, between the traits.

In caseswhere the single causal variant assumption is violated and
multiple variants at a given locus influence the trait, standard genetic
colocalisation methods may produce false negatives. In our analyses,
this could lead to the failure to prioritise a causal CRC susceptibility
gene, particularly when strong evidence supports its role in CRC from
TWAS and MR analyses but not genetic colocalisation. To assess
whether our results were affected by violations of the single causal
variant assumption, we performed an additional colocalisation analy-
sis using Pairwise Conditional Colocalisation (PWCoCo)32. PWCoCo
addresses the single causal variant assumption by performing iterative
conditional colocalisation analysis. It first identifies the most strongly
associated SNP at a locus. The association statistics for the remaining
SNPs are then re-estimated while conditioning for the most strongly
associated SNP, and the process is repeated iteratively until no further
conditionally independent genome-wide significant (p value < 5 × 10−8)
signals remain. This approach therefore allows for the evaluation of
multiple distinct causal variants for colocalisation between traits,
rather than requiring that there is a single causal variant only. We
applied PWCoCo to any gene or splicing event that met the multiple
testing threshold in the MR analysis but had an H4 posterior prob-
ability ≤0.80 in the standard colocalisation analyses. PWCoCo was
performed using all SNPs within ±100 kb of the gene coding region,
with prior probabilities set at p1 = p2 = 5 × 10−5 and p12 = 1 × 10−6,
selected based on the online calculator available at https://
chr1swallace.shinyapps.io/coloc-priors/ (accessed 01/02/25).

CRC dependency
To determine the dependency of CRC cell lines on likely causal sus-
ceptibility genes, we interrogated the BioGRID Open Repository of
CRISPR Screens (https://orcs.thebiogrid.org/) and identified genes
whose knockout impacts cell viability, using the study authors’ defined
threshold for evidence of gene dependency36.

Open Targets database
We used the Open Targets (https://www.targetvalidation.org)35 and
Pharos (https://pharos.nih.gov/)34 platforms to evaluate drug target
tractability and to identify drugs which may target the products of
genes identified in our analysis.

Splicing event annotation
We employed the SpliceAI-10k calculator to investigate downstream
consequences of splice events, which has been described previously74.
SpliceAI is a neural network trained on GENCODE-annotated pre-
mRNA sequences andGTExRNA-seqdata to assess splicing variants for
their likely splicing effects (i.e. loss or gain of acceptor or donor splice
sites)75. The SpliceAI-10k calculator builds on this approach by using
SpliceAI scores to systematically predict splicing aberrations (pseu-
doexonization, partial intron retention, partial exon deletion, exon
skipping, and whole intron retention), altered transcript sizes, and
consequent amino acid sequences74. In order to identify genetic var-
iants to input to the SpliceAI-10k calculator, we performed fine-
mapping using SuSiE76 for all splicing events identified in the TWAS
analysis using the relevant GTEx tissue splicing data with a window of
±100 kb around each splicing event. Genetic variants within credible
sets were then filtered for those which werewithin 100:1 log likelihood
of alsobeing aCRC risk variant (i.e. genetic variantp value iswithin two
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orders of magnitude from the top genetic variant in the CRC GWAS).
For splicing events for which no credible sets were identified, all
genetic variants within 100:1 log likelihood of being a CRC risk variant
were used. We then used the SpliceAI-10k calculator as previously
described77, to evaluate all resulting genetic variants for a high-
confidence splicing mechanism based on whether they met three
conditions: (1) they were predicted by the SpliceAI-10k calculator to
impact splicing; (2) the predicted alternative exon matched with an
Ensembl-annotated exon/transcript; and (3) this alternative transcript
was the same as the alternative transcript identified in the original
sQTL analysis in GTEx.

Shared causal pathways with known CRC risk factors
To investigate shared causal pathways between our prioritised
genes and known CRC risk factors, we performed genetic colo-
calisation as in our prior analysis. For each of the four previously
identified CRC risk factors (BMI, WHR, alcohol consumption, and
tobacco use), we performed colocalisation for expression of all
genes with robust evidence (i.e. p < Bonferroni threshold in rele-
vant MR analysis and H4 > 0.8 in colocalisation analysis) for a
causal effect of expression on CRC risk, and the risk factor. We
again applied a posterior probability threshold of H4 > 0.8 as
evidence for a shared causal variant between traits. In such cases,
this suggests that there may be a shared causal pathway between
expression of the gene and the risk factor. This could be indica-
tive of a mediating role of expression of that gene in the effect of
risk factors on CRC risk (e.g. increased BMI may increase
expression of the gene which may increase risk of CRC). Alter-
natively, it may be that expression of the gene influences liability
to the risk factor, which then increases risk of CRC through fur-
ther biological pathways (e.g. if increased expression of the gene
increases BMI, which then causes CRC through alternative path-
ways). We repeated analyses with sex-specific GWAS where data
were available as a sensitivity analysis (i.e. for BMI and WHR; see
Supplementary Data 16 for the sex-specific data sources).

Statistical analyses
Units of gene expression betas, as outlined by the GTEx consortium,
are the result of a normalisation procedure consisting of normalisation
between samples using the trimmed mean of M values method78, fol-
lowed by normalisation across samples by inverse normal transfor-
mation, and as such the normalised expression units have no direct
biological interpretation (see https://gtexportal.org/home/methods
for more information)28. All analyses were performed using R version
4.0.2 or Python version 3.9.13 (other than theGWAS imputation stepof
the TWAS analysis which was performed using version 3.5.0). The
following R packages were used: for colocalisation analyses, coloc72

(version 5.1.0.1); for MR analyses TwoSampleMR79,80 (version 0.5.5),
gwasglue81 (version 0.0.0.9000); for compiling LD reference panels,
plinkbinr82 (version 0.0.0.9000), ieugwasr83 (version 0.1.5); for acces-
sing Ensembl databases, biomaRt84,85 (version 2.46.3); for finemapping,
susieR76,86 (version 0.12.35).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study can be found within the manuscript
and supporting information, or the online repository on the Zenodo
database under accession code 12805739. The CRC GWAS summary
data used in this analysis are from GECCO (gecco@fredhutch.org;
https://research.fredhutch.org/peters/en/genetics-and-epidemiology-
of-colorectal-cancer-consortium.html). The CRC GWAS publicly avail-
able data underlying the summary statistics used in this study are

available in the dbGaP database under accession codes
phs001415.v1.p1, phs001315.v1.p1, phs001078.v1.p1, phs001903.v1.p1,
phs001856.v1.p1 and phs001045.v1.p1 (https://www.ncbi.nlm.nih.gov/
gap/). Access to these restricteddata canbe requested throughdbGaP.
Other publicly available GWAS summary statistics used in this study
are available in the GWAS Catalog under accession codes
GCST006900 (bodymass index), GCST002783 (bodymass index—sex
stratified), GCST008996 (waist:hip ratio), GCST008997 (waist:hip
ratio—female), GCST008999 (waist:hip ratio—male), GCST007461
(alcohol consumption) and GCST007458 (smoking initiation) (https://
www.ebi.ac.uk/gwas/home). The precomputed PrediXcan models
were downloaded from http://predictdb.org and pretrained JTI model
publicly available data used in this study are available from the Zenodo
database under accession code 3842289. GTEx eQTL and sQTL sum-
mary data were downloaded from the GTEx website (https://www.
gtexportal.org/home/downloads/adult-gtex/qtl). Source data are pro-
vided with this paper.

Code availability
No custom code was generated for this study. All code is publicly
available on GitHub at: https://github.com/EmmaHazelwood/CRC-
TWAS-code and archived on Zenodo: (https://doi.org/10.5281/
zenodo.12805738)87.
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