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Exponentially-enhanced quantum sensing
with many-body phase transitions

Saubhik Sarkar 1,2, Abolfazl Bayat 1,2,3 , Sougato Bose4 &
Roopayan Ghosh 4

Quantum sensors based on critical many-body systems are known to exhibit
enhanced sensing capability. Such enhancements typically scale algebraically
with the probe size. Going beyond algebraic advantage and reaching expo-
nential scaling has remained elusive when all the resources, such as the pre-
paration time, are taken into account. In this work, we show that many-body
systems featuring first order quantum phase transitions can indeed achieve
exponential scaling of sensitivity, thanks to their exponential energy gap
closing. Remarkably, even after considering the preparation time using local
adiabatic driving, the exponential scaling is sustained. Our results are
demonstrated through comprehensive analysis of three paradigmatic models
exhibiting first order phase transitions, namely Grover, p-spin, and biclique
models.We show that this scaling survivesmoderate decoherenceduring state
preparation and also can be optimally measured in experimentally available
basis. Ourfindings complywith the fundamental bounds andwe show that one
can harness the exponential advantage through an adaptive strategy even
away from the phase transition point.

Quantum sensing is an important component of quantum technol-
ogies due to its potential for developing a new generation of probes,
capable of environmental monitoring with unprecedented precision
beyond classical sensors1. In this context, the sensitivity of a probe
can be quantified by Fisher information, inverse of which puts a
bound on the uncertainty of the estimation protocol2,3. In classical
sensors, Fisher information, at best, scales linearly with resources,
such as the system size L (standard limit). Quantum features may
result in super-linear scaling of Fisher information, known as quan-
tum enhanced sensitivity. This has been discovered in a series of
seminal works by Giovannetti et al., where they showed that a special
form of entangled states, known as the Greenberger-Horne-Zeilinger
(GHZ) states, can be used to estimate the phase imprinted by a uni-
tary operation with Fisher information scaling as L2 (Heisenberg
limit)4. In the presence of k-body interactions in the generator of the
unitary operation, the sensitivity can be further enhanced to5L2k. In a

fundamentally different approach, quantum enhanced sensitivity has
also been identified in many-body systems6 when they go through a
quantum phase transition. This includes, first-order7–9, second-
order10–16, Floquet17, time crystal18–20, Stark21 and quasi-periodic22

localization, and topological23,24 phase transitions. In all these critical
systems, where Fisher information scales algebraically as Lβ (with
β > 1), the many-body system goes through an algebraic energy gap
closing in its spectrum. This gives rise to the conjecture that energy
gap closing might be the reason behind quantum enhanced
sensitivity25, which is supported by a recent seminal work26 on
metrological limits. Non-equilibrium quench dynamics in many-body
systems have also been explored for achieving quantum-enhanced
sensitivity27 in which Fisher information also depends on evolution-
time t and typically scales as t2Lβ, following the scope of the gen-
eralized Heisenberg limit5,28. While in all these cases, Fisher infor-
mation, and thus the precision, scales algebraically, one may wonder
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whether quantum features can result in the possibility of even a
better quantum advantage, namely exponentially enhanced quan-
tum sensing.

Exponential enhancement has in fact been reported in ref. 29, for
the GHZ-based sensing protocols where the required entanglement in
the initial state demands exponentially large number of unitary gates,
making its implementation very challenging. In non-Hermitian systems
exponential sensitivity can be achieved in the eigenenergy spectrumat
exceptional points (parameter value where multiple eigenvalues and
eigenstates coalesce)30–34. However, it is debatedwhether the quantum
advantage would survive the quantum noise arising from the non-
orthogonality of the eigenstates35,36. Proposals based on tight-binding
non-Hermitian topological systems have also reported exponential
sensitivity37–39 for inferring the value of a perturbative boundary cou-
pling in the steady state. While these works show great potential for
quantum enhancement, the schemes are restrictive for several rea-
sons: (i) the preparation time for the steady state is typically long
whose consideration in resource analysis may destroy quantum
advantage; (ii) the schemes are limited to driven coupled resonators as
non-HermitianHamiltonians cannot faithfully describe anopen system
evolution beyond a short time; and (iii) the necessity for mea-
suring a perturbatively small coupling exclusively at the boundary
is also a big constraint. In fact, a fundamental constraint derived
in ref. 40 show that non-Hermitian sensors cannot perform better
than Hermitian counterparts. Therefore, finding a concrete pro-
tocol with Hermitian systems showing exponential scaling
advantage even when the resources are taken into account is
highly desirable.

In this work, we show that it is indeed possible to achieve the
exponential scaling for sensitivity by leveraging the first-order phase
transitions where the energy gap also closes exponentially in system
size.We then show that even if the preparation time of the critical state
is taken into account, the exponential sensitivity still prevails. This can
be intuitively understood from the aforementioned bound5,28 bearing
the quadratic scaling in time which itself grows exponentially with
system size. Our results are shown analytically for a paradigmatic
model, namelyGrovermodel, andnumerically forp-spin and abiclique
spin model that are prototypical systems from a quantum annealing
perspective. The results satisfy the fundamental bounds of quantum
sensing schemes, and the estimation process can be performed in
experimentally available measurement basis. We consider the issue of
decoherence during state preparation and show that the exponential
scaling is sustained up to certain dephasing strength. The local nature
of criticality-based sensors is also addressed and an adaptive estima-
tion strategy is sketched out to harness the full advantage of the
exponential scaling for arbitrary value of the parameter to be
estimated.

Results
Parameter estimation
In this work, we will be considering single parameter estimation, where
the value of an unknown parameter θ is estimated by performing
measurements on a quantum state ρ(θ) that encodes the parameter.
The quantum state is known as the probe state and the measurement
outcomes are fed into an estimator function to infer the value of the
parameter. In general, themeasurement canbedescribedbyacomplete
set of Positive Operator Valued Measurement (POVM) {Πn} where the
nth outcome occurs with probability pnðθÞ= Tr ρðθÞΠn

� �
. The uncer-

tainty of estimating the unknown parameter θ, quantified by standard
deviation δθ, is bounded throughCramér-Rao inequality δθ≥ 1=

ffiffiffiffiffiffiffiffiffiffiffi
M FC

p
.

Here,M is the total number of measurements and the basis-dependent
classical Fisher information (CFI) is3FC =

P
npnð∂θ logpnÞ2. In order to

have a measurement-independent quantity, one can maximize the CFI
with respect to all possible measurements to obtain Quantum Fisher
Information (QFI) FQ, namely FQ =maxfΠng F

C . As a result, the Cramér-

Rao inequality becomes

δθ≥
1ffiffiffiffiffiffiffiffiffiffiffi
M FC

p ≥
1ffiffiffiffiffiffiffiffiffiffiffi
M FQ

p , ð1Þ

where QFI gives the ultimate precision limit of the estimation. Inter-
estingly, for evaluating the QFI one can avoid the notorious optimiza-
tion over all possible measurement basis and instead consider the
symmetric logarithmicderivative (SLD) operatorL, implicitly defined as

∂ρðθÞ
∂θ

=
ρðθÞLθ +LθρðθÞ

2
ð2Þ

The QFI is then expressed as FQ = Tr ρðθÞL2
θ

h i
. For pure states

ρðθÞ= ∣ψðθÞ� ψðθÞ�
∣, the expressions are simplified to Lθ =2∂θρðθÞ, and

consequently3

FQðθÞ=4 ∂θψðθÞj∂θψðθÞ
� �� j ∂θψðθÞjψðθÞ

� �j2� �
: ð3Þ

As QFI quantifies the rate of change of the probe state, it is also
equivalent to the fidelity susceptibility. In the context of the ground
state of a Hamiltonian H(θ), this leads to another expression for QFI41

FQðθÞ=4
X

n≠0

j ψnðθÞj∂θHðθÞjψ0ðθÞ
� �j2

ðEnðθÞ � E0ðθÞÞ2
: ð4Þ

Here ∣ψn

�
and En are the n-th eigenvector and eigenvalue of H(θ). It is

worth emphasizing that to achieve the ultimate precision limit, given
by the QFI, one has to performmeasurement in the optimal basis. The
optimal measurement basis is not unique, although one choice is
always given by the projectors formed from the eigenvectors of the
SLD operator Lθ.

Fundamental QFI bounds in many-body probes
While in the Cramér-Rao inequality (Eq. (1)) the estimation precision,
quantifiedby standarddeviation, is boundedby 1=

ffiffiffiffiffiffi
FQ

p
, therehasbeen

an interest to find analytical bounds on the QFI. Such bounds are quite
insightful to give us a hint for thebestpossible scalingof theQFI. These
bounds have been established for various scenarios, including non-
equilibrium dynamics5, ground state of many-body Hamiltonians26,
and steady state sensing28. In particular, we are concerned with the
ground state probe, for which the upper bound of QFI has been
derived recently26 to concretely prove the connection with both the
energy gap and the spectral properties of the Hamiltonian. For
Hamiltonians in the formH(θ) =HC +Hθ, with a control termHC and the
parameter dependent term Hθ, the upper bound of QFI of the ground
state is given by26,

FQðθÞ≤ jj∂θHθjj2
Δ2 , ð5Þ

where the operator seminorm is the difference between themaximum
and minimum eigenvalues, jj∂θHθjj= λmax � λmin and Δ is the energy
gap between the ground state and the first excited state. Both these
terms typically display scaling behaviour in system size near critical
points, which controls the scaling of the upper bound. Thus, the ulti-
mate scaling of the QFI may be determined by the individual scaling
behaviour of these two terms.

On the other hand, when the probe state is prepared dynamically
by evolving a suitably chosen initial statewith aHamiltonian consisting
of a time-dependent control term in the form H(θ, t) = HC(t) + Hθ, the
upper bound of QFI is given by the generalized Heisenberg limit5,28

FQðθ, tÞ≤ t2jj∂θHθjj2: ð6Þ
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Note that Eq. (6) is valid for any dynamical scenario, including the
adiabatic state preparation. In such schemes, the time needed for
adiabatic preparation of the probe in the ground state of a complex
Hamiltonian can be made inversely proportional to the minimum
energy gap, namely ~ 1/Δ42. Hence, by replacing time twith 1/Δ in Eq. (6)
one can effectively see the connection with the bound given in Eq. (5).

It is worth emphasising that both the Eqs. (5) and (6) only impose
an upper bound on the QFI. In fact, while these bounds are very
insightful for capturing the scaling in many-body probes, they usually
overestimate the value of the QFI, which is the relevant quantity for
determining the achievable precision. Indeed, for the particular sys-
tems considered in this work, the QFI near criticality expectedly fol-
lows the bound but does not saturate it in general.

Models
Quantum many-body systems have been proven to be very useful to
serve as quantum sensors achieving quantum enhanced sensitivity in
both equilibrium and non-equilibrium scenarios25. In particular, the
ground state of many-body systems across various types of phase
transitions have been identified as effective quantum sensors. In such
systems the Hamiltonian, in general, has the form

HðθÞ=H1 +θH2, ð7Þ

where H1 and H2 are two competing terms and θ is the unknown para-
meter to be estimated. The H2 component therefore serves as the deri-
vative terms in Eqs. (4), (5), and (6). When the role of competing terms
become comparable, say at θ = θc, the system may go through a phase
transition where the ground state ∣GSðθÞ� changes dramatically. From
the spectral perspective, the ground state and the first excited state go
through an anti-crossing at θ = θc where the energy gap vanishes in the
thermodynamic limit. If the energy gap closes exponentially with the
system size, then the system goes through a first order phase transition
in which the order parameter discontinuously jumps across the
transition point. On the other hand, if the energy gap closes
algebraically, then the order parameter changes continuously and it is
the first derivative that becomes non-analytic at the phase transition.
While the capability of utilizing second order phase transitions as
effective quantum sensors has been fully characterized12, the first order
phase transitions have not been completely explored. As we shall see in
the following sections, first order phase transitions indeed allow for
estimating θ with exponential sensitivity, quantified by exponential
scaling of QFI with the system size. In the following we introduce three
paradigmatic models with first order phase transitions, namely Grover,
p-spin, and biclique spin systems.

Grover model
We first consider a system consisting of L qubits which span a Hilbert
space of dimension N = 2L. Every qubit configuration can coherently
tunnel to another with equal probability, though one specific qubit
configuration ∣mi has a different energy from the rest. In this situation
one can write the Hamiltonian,

HGroverðθÞ= � ∣mi mh ∣� θ∣ψ
�
ψ
�

∣, ð8Þ

where

∣ψ
�
=

1ffiffiffiffi
N

p
XN

j = 1
∣ j
�
=

1ffiffiffiffi
N

p ∣mi+
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
N

r
∣m?�, ð9Þ

with

∣m?�= 1ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
X

j≠m
∣ j
�
: ð10Þ

One can easily show that the Hamiltonian in Eq. (8) can be effectively
be written as a two level system spanned by ∣mi and ∣m?� as,

HGroverðθÞ= �
θ
N + 1 θ

ffiffiffiffiffiffiffi
N�1

p
N

θ
ffiffiffiffiffiffiffi
N�1

p
N

θðN�1Þ
N

 !
: ð11Þ

This model is analytically tractable and will serve as a robust theore-
tical foundation for our conclusions. In this representation, the first-
order phase can be analytically shown to be occurring at θc = 142.

p-spin model
The second model we consider is based on p-spin model43,44, in a sys-
tem of L qubits, represented by,

Hp�spinðθÞ= �λL1�p
XL

j = 1
σz
j

	 
p
+ ð1� λÞ L1�k

XL

j = 1
σx
j

	 
k� �

� θ
XL

j = 1
σx
j

ð12Þ

where, p and k are integer numbers and 0 ≤ λ ≤ 1 is an external para-
meter that tune the system to feature eitherfirst or secondorder phase
transition. For λ = 1, one gets back the traditional p − spin model, in
which one has a first order phase transition for p ≥ 3. By choosing
increasing values of p ≥ 3 for λ = 1, it is possible to shift the critical point
from θc = 1.3 for p = 3 towards θc = 1 for p→∞which corresponds to the
Grover model45. For λ ≠ 1, we have an additional antiferromagnetic
fluctuation term46, i.e. themiddle term in Eq. (12),whichcanchange the
first order phase transition to a second order one. For instance by
choosing λ = 0.1, p = 5, k = 2 one observes a second order quantum
phase transition at θc = 1.847. Due to degeneracy issues with even p, we
shall only consider the odd cases in this work.

Biclique spin system
Finally, weconsider a biclique graph that canbe easily implementedon
existing quantum hardware and has been utilized in studies of max-
imumweighted independent set (MWIS) problems48,49. In such graphs,
the system is partitioned into two subsystems A and B with LA and LB
spins, respectively. We consider LA = LB + 1 which means the total
system size will be L = 2LA + 1. Every spin in the subsystem A interacts
with every spin in subsystemBwith antiferromagnetic Ising interaction
with strength J. In addition, the two subsystems are affected by two
different uniform magnetic fields hA and hB. To induce a competing
term the whole system is subjected to a uniform transverse magnetic
field. The Hamiltonian can be expressed as49

HBiclique = J
XLA

jA = 1

XLB
jB = 1

σz
jA
σz
jB
+hA

XLA
jA = 1

σz
jA
+hB

XLB
jB = 1

σz
jB

h i
+θ
XL

j = 1
σx
j :

ð13Þ

By tuning the longitudinal magnetic fields hA and hB one can engineer
the emergence of a first order phase transition at different values of θc.

Scaling analysis
Now we discuss the sensing capabilities of the three models intro-
duced in the previous section to estimate θ in the ground state due to
phase transition.We focus on the scalingof twoquantitieswith respect
to the system size. First, we consider the scaling of the energy gap
which is necessary to characterize the type of the phase transition.
Second, we analyze the scaling of the QFI as a figure of merit for the
sensing capability of our models.
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Sensing with Grover model
For the Grover model, one can obtain the eigenspectrum analytically
to compute the energy gap,

Δðθ,NÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ð1� θÞ2 + 4Nθ

q
N

:
ð14Þ

Note that N = 2L is the Hilbert space size. The energy gap Δ has a
minimum at θ = θc = 1 with Δc =Δðθc,NÞ=2=

ffiffiffiffi
N

p
=21�

L
2. For the ground

state of the system one can compute the QFI with respect to θ which
takes the form

FQðθÞ= 4ðN � 1Þ
½Nð1� θÞ2 + 4θ�2

: ð15Þ

The peak structure of QFI around the critical point is shown in Fig. 1a.
As the system approaches its critical point, the QFI becomes
FQ
c = FQðθcÞ= ðN � 1Þ=4 � 2L�2 in large L limit. This exponential scaling

of FQ
c is numerically verified in Fig. 1b which shows that the asymptotic

behavior is captured by finite number of qubits as well. We also

observe the critical exponent for the QFI growth is twice of that for the
gap decrease.

It is also informative to verify the bound on the QFI given by
Eq. (5). Interestingly, the QFI bound is almost saturated at the critical
point for large system sizes. Here, ∣∣H2∣∣ = 1, and the QFI can be shown
analytically to obey the bound (see theMethods section). In thismodel
the scaling of both the QFI and the bound ismerely determined by the
scaling of the energy gap.

Sensing with p-spin model
The second model that we consider for sensing is the p − spin model,
introduced in Eq. (12). In this model, not only the critical point θc can be
tunedbycontrollingp,k, and λ, but also thenatureofphase transitioncan
becontrolled. For example, forp=5, k=2 and λ=0.1, thephase transition
is of second order type and happens at47θc = 1.8. To show this, in Fig. 2a,
we plot the energy gap as function of system size at criticality. As the
figure shows, the energy gap closes algebraically, i.e.Δc∝ Lα with α ≈ 1.46,
signaling the second order nature of the phase transition. The corre-
sponding QFI at the critical point is also plotted as a function of system
size L in Fig. 2b. Clearly, the QFI shows an algebraic scaling i.e. FQ

c / Lβ

with β ≈ 2.87 which is the conventional behavior at the second order
quantum phase transitions. Note that we again observe that β ~ 2α.

By tuning λ = 1 and p = 3 one can observe a first order phase
transition at45θc = 1.3. The energy gap in this case is known to close
exponentially with a multiplicative correction term, so that45Δc ~ Le−αL.
As shown by the numerical fit in Fig. 2c, α ~ 0.09. The corresponding
ground state QFI at the critical point exponentially grows with L, i.e.
FQ
c � eβL with β ≈ 0.18, as shown in Fig. 2d.

The relation β ~ 2α can be explained by the equivalence between
QFI and fidelity susceptibility in Eq. (4). At criticality, the dominant
contribution in the sum on the right hand side of the Eq. (4) comes
from the first term (with the first excited state) and the overlap in the
numerator were found to be linearly scaling with system size. This
cancels the linear multiplicative scaling factor of the gap in the
denominator and consequently β = 2α.

Onecanalsoverify thisby considering the scalingof thebound inEq.
(5). In this model, one can show that ∣∣H2∣∣ = 2L, which implies that this
term also contributes to the scaling of the bound and cancels the linear
scaling factor that appears in the energy gap as well at the critical point.
Consequently, both the bound and the QFI scales purely exponentially
with respect to the systemsize.Unlike theGrovermodel, thebound is not
saturated near criticality in p-spinmodel, despite having the same scaling
behaviour (see the Methods section). This arises due to different pre-
factors for the bound and the computed QFI.

Sensing with biclique spin model
Now we focus on the sensing capacity of the biclique spin model
described in Eq. (13). Following the recipe of refs. 48,49, we take
hA½B� = LB½A�J � 2

WA½B�
LA½B�

	 

, with J = 1, WA = 0.49J and WB = 0.5J. For these

choices of parameters, the first order quantum phase transition takes
place at θc ≈ 0.05. In Fig. 3a we plot the scaling of energy gap at the
critical point, namely Δc, with respect to system size L. We observe an
exponential falling off Δc ~ e−αL with exponent α ≈ 1.43. Consequently,
the corresponding ground state QFI at the critical point exponentially
grows with systems size as FQ

c � eβL with exponent β ≈ 2.94, as dis-
played in Fig. 3b. The observation of β ~ 2α applies here also.

In biclique spin model, the scaling analysis is limited to small
system sizes as large number of spins cannot be handled by exact
diagonlization method. Regarding the bound in Eq. (5), one can see
that ∣∣H2∣∣ = 2L. The scaling of the upper bound therefore consists of an
extra linear factor, alongwith the exponential size dependencecoming
from the energy gap, which is obtained through finite-size numerics.
Thus, the QFI is shown numerically to obey the bound predicted by
Eq. (5) (see the Methods section), although the bound is never
saturated.

Fig. 1 | Sensing with Grover model. a QFI around the critical point for different
system sizes. b QFI scaling at criticality (θc = 1). The dotted line shows the asymp-
totic QFI value.

Fig. 2 | Sensingwithp-spinmodel. a Energy gap scaling for p-spinmodel (Eq. (12))
for λ = 0.1, p = 5, k = 2 at criticality occurring near θ = 1.8. b Algebraic QFI scaling at
criticality. c Energy gap scaling for λ = 1, p = 3 at criticality occurring near θ = 1.3.
d Exponential QFI scaling at criticality for this case.

Fig. 3 | Sensing with biclique model. a Energy gap scaling for the biclique spin
system (Eq. (13)) at criticality occurring near θc = 0.05 with hA½B� = LB½A�J � 2

WA½B�
LA½B�

	 

with J = 1, WA = 0.49J and WB = 0.5J. b QFI scaling at criticality for this system.
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Resource analysis
So far, wehave considered systemsize as theonly resource for sensing.
However, since we focus on the ground state QFI, we need to first
prepare the ground state of the corresponding Hamiltonians. Typi-
cally, there are two ways to prepare a many-body system in its ground
state: (i) cooling to ground state; and (ii) adiabatic state preparation.
Since the energy gap closes exponentially, both of thesemethods face
severe challenges as cooling will be affected by critical slowing down
and adiabatic state preparation requires extremely long preparation
times. One may also consider the preparation time as a resource for
accomplishing the sensing task. In order to incorporate time into
resource analysis, one may consider the total time Ttot the is used for
collecting the data through probe preparation and measurement. If
the preparation of the probe takes time T, within the available total
time one can getM = Ttot/T number of measurement. By inserting this

into Eq. (1) one gets δθ≥ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T totF

Q=T
q

. This immediately suggests that

for incorporating the total time as a resource, one has to consider the
rescaled QFI, i.e. FQ/T, as the new figure of merit. The rescaled QFI has
long been used for resource analysis in various works50–54.

While both cooling and adiabatic state preparation are affectedby
closing of the energy gap, for sake of simplicity we shall only focus on
adiabatic state preparation in this work. The adiabatic theorem states
that to prepare the ground state of a many-body system one can start
with an easily preparable ground state of a simple Hamiltonian and
slowly change the Hamiltonian into the desired one. If the evolution is
slow enough, taking place over a long time T, then quantum state of
the system follows the ground state of the instantaneous Hamiltonian
and thus reach the desired ground state at the end of the evolution.
The original formulation of the adiabatic theorem requires that
T � 1=Δ2

min where Δmin is the minimum energy gap of the Hamiltonian
throughout the evolution55. However, there has been a lot of effort to
speed up the state preparation42,56–58. In fact, it has been demonstrated
that one can reach the ground state with high fidelity even if the
evolution time only scales as T � 1=Δmin

42.
In order to analyze preparation time in our schemes, we re-

parameterize the Hamiltonian in Eq. (7) into the following time-
dependent form

HðsðtÞÞ= sðtÞH1 + ð1� sðtÞÞH2, ð16Þ

where the parameter θ is now equivalent to (1 − s(t))/s(t). The para-
meter s evolves from 0, where the probe is initialized in the ground
state of H2, to a value corresponding to the desired θ. The minimum
energy gap happens at θ = θc. Therefore, it is plausible to make the
preparation time scale as T ~ 1/Δc. As we have shown already, the QFI
typically scales as FQ

c � eβL and the energy gap closes as Δc ~ e−αL.
Consequently, our new figure of merit FQ

c =T � eðβ�αÞL. Remarkably, as
demonstrated in all examples, we universally observe β ~ 2α which
results in FQ

c =T � eβL=2, signaling exponential advantage even when
the preparation time is included in our resource analysis.

To verify the above statement, wenumerically prepare the ground
state of eachof the threemodels describedbefore using local adiabatic
driving42, which results in T ~ 1/Δc. We start with s = 0, i.e. the ground
state ofH2, and then evolve swith timeover a long time intervalTusing
a particular schedules(t). This choice of time-dependent s(t) for local
adiabatic driving needs to be fast when the system is far fromcriticality
and slow near the critical point. To get the quantum state at each time
one has to solve the Schrodinger equation

i_
∂∣ψðtÞ�

∂t
=H sðtÞð Þ∣ψðtÞ�, ð17Þ

with the initial state ∣ψð0Þ� being the ground state of H2.

For the Grover model, it can be analytically shown
that42sðtÞ=N ðtan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
ð2s � 1Þ+ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
Þ = ð2ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
Þ. This

results in T = π/2ϵΔc where the fidelity between the state of the probe
and the instantaneous ground state, namely F ðtÞ= jhGSðtÞjψðtÞij2, is
lower bounded as F ðtÞ≥ ð1� ϵ2Þ. We have numerically verified this in
Fig. 4a, wherewe plot the fidelityF versus θ for a system of size L = 20.
As the figure shows, one can achieve a fidelity of 0.99 at the critical
point. Furthermore, we compare the variation of FQ across θc for the
exact ground state ∣GSðsðtÞÞ� in Fig. 4b and the prepared state ∣ψðsðtÞÞ�
in Fig. 4c. We observe that for that the small loss of fidelity has very
little effect on QFI, which indicates that the exponentially effective
quantum sensing at the first order critical point in the Grover model
survives under local adiabatic state preparation. For the other two
models the schedule s(t) was derived numerically using local adiabatic
driving and the total preparation time was expectantly found to be
bounded by 1/Δc (see theMethods section). The corresponding results
for the p-spin model are shown in Fig. 4d–f, where we observe results
similar to theprevious case. For thebicliquemodel, as shown in Fig. 4g,
the local adiabatic evolution results in the fidelity going below 0.98
near the critical point θc out of the three systems. Correspondingly, we
observe that there is an increase in FQ for the ground state prepared by
local adiabatic evolution compared to the exact ground state. It turns
out that for small system sizes, the minuscule excitations above the
true instantaneous ground state caused by the time evolution results
favourably for the QFI.

Having established the fact that the critical QFI scales exponen-
tially even after taking the adiabatic preparation time into account, we
now give a concrete framework to create the probe state of for an
unknown θ, which is the realistic sensing scenario. Without loss of
generality, we assume that the sensing apparatus is designed to detect
a non-negative θ, and consequently, its dynamics is governed by
Eq. (7). As we knowH1 andH2, we can determine the critical parameter
θc, while θ still remains unknown. We then apply a time-dependent
control field s(t)/(1 − s(t)) to the H1 component and a critical field θc to
the H2 component, so that the total Hamiltonian becomes

Hðθ, tÞ= sðtÞ
ð1� sðtÞÞH1 + ðθ+θcÞH2: ð18Þ

Comparing with Eq. (7), the gap closing for this Hamiltonian occurs at
sc = (θ + θc)/(θ + 2θc), which is ≥1/2. At t = 0, s is taken to be 0 as before
and the initial state is the ground state of H2, which can be easily
prepared. Using the same adiabatic evolution as before to keep the
system in the instantaneous ground state, s is then increased until the
value s = 1/2 is reached. As the gap closing point is not explicitly
crossed, the system always stays on one side of the criticality. This
prevents the unwanted creation of excitations that would result in
fidelity reduction. At s = 1/2, theHamiltonian given by Eq. (18) takes the
form of Eq. (7), and the created probe state is used to estimate (θ + θc).
To obtain the unknownparameter θ, one needs to subtract θc from the
estimated value. Numerical confirmationof this procedure isdisplayed
in Fig. 5 with the Grover model on a 20-qubit system near the critical
point θc = 1. As Fig. 5a shows, the fidelity of the prepared state with the
actual ground state stays very close to unity. Consequently theQFI and
the CFI calculated with the true ground state and the prepared state
also match, as shown in Fig. 5b and c, respectively.

We also note that such a time-dependent preparation scheme
follows the QFI bound in Eq. (6) (see the Methods section). Addition-
ally, using Eq. (5) we cannow find a bound for the rescaledQFI as a new
figure of merit. Since the time needed to prepare the ground state is
T ~ 1/Δc ≥ 1/Δ, one can easily show that the rescaled QFI is bounded as
FQ=T ≤ jj∂θHθ jj2

Δ . This indicates that even when time is incorporated in
our resource analysis, the rescaled QFI still benefits from the scaling of
both the energy gap as well as the ∣∣∂θHθ∣∣2. In all the above examples,
the exponential advantage comes from the energy gap. Indeed, the
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dependence of the bound of the rescaled QFI on the energy gap
indicates the exponential advantage even after considering time as a
resource.

Optimal basis
As shown in Fig. 4, it is possible to determine a set of measurement
basis relevant for experimental realization, that seem to be optimal.
For the Grover model, f∣mi, ∣m?�g is an optimal basis. For the p-spin
model, the total magnetization is one optimal basis. For the biclique
spin system, the imbalance between the total magnetization in the two
subsystems is given by the operator I =

PLA
jA = 1

σz
jA
�PLB

jB = 1
σz
jB
. The

eigenbasis of this operator serves as an optimal basis.

Decoherence
Dephasing is a common source of decoherence in spin system
dynamics. To quantify the robustness against dephasing during adia-
batic evolution, we employ the master equation formalism for the

system density operator ρ,

_ρ= � i
_
½H,ρ�+ γ

2

X
n

ð2cnρcyn � cyncnρ� ρcyncnÞ, ð19Þ

where γ is the effective rate of decoherence and cn is the Lindblad
operator. For the Grover model, H = HGrover and there is only one
Lindbladoperator σzbetween the states ∣mi and ∣m?�. Our calculations
show that even up to a strong decoherence strength γ = 0.1, the sig-
natures of first order phase transition remain intact along with the
exponential growth of critical QFI (see Fig. 6a). Moreover, FQ

c shows an
algebraic decay with increasing decoherence strength (see Fig. 6b for
30 qubits with exponent ≈ 0.93).

For p-spin model, H = Hp−spin and the Lindblad operators are σz
j .

Our calculations show that the exponential growth of FQ
c is retained in

this case aswell, although up to a lower decoherence strength γ = 0.01J

Fig. 4 | Adiabatic state preparation. (Top row) Grover model. a Fidelity F of the
adiabatically evolved state with the instantaneous ground state. b QFI and CFI of
the instantaneous ground state. c QFI and CFI of the adiabatically evolved state.
(Middle row) p-spin model. d Fidelity F of the adiabatically evolved state with the
instantaneous ground state. e QFI and CFI of the instantaneous ground state. fQFI
and CFI of the adiabatically evolved state. (Bottom row) biclique spin system.

g Fidelity F of the adiabatically evolved state with the instantaneous ground state.
h QFI and CFI of the instantaneous ground state. i QFI and CFI of the adiabatically
evolved state. 20-qubit system was used for the Grover model, 30 qubits for the p-
spin model, and a 5-qubit system with J = 1, WA = 4J andWB = 3.5J was used for the
biclique system.

Fig. 5 | Probe state preparationwith unknownparameter. a Fidelity of the adiabatically prepared state with actual ground state. QFI and CFI of (b) the ground state and
(c) the adiabatically prepared state. The results are shown for the Grover model with 20-qubits.
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(see Fig. 6c). For the algebraic decay of FQ
c with increasing deco-

herence strength for 10 qubits, the exponent was ≈ 0.58 (see Fig. 6d).
For the biclique systemwith same local Lindblad operators σz

j , we
also found that the exponential growth of FQ

c is retained up to a lower
decoherence strength γ = 0.01J (see Fig. 6e). Up to this strength we see
the effect of decoherence is quite weak on the critical QFI values. For
the algebraic decay of FQ

c with increasing decoherence strength for 11
qubits, the exponent was ≈ 0.15 (see Fig. 6f).

Implementation
Realizing the Grover model requires all-to-all connectivity that can be
provided by strongly coupled cavity modes59–61. Such connectivity
would also be useful for p-spin models. However, another connection
between p-spin model and ultra-cold bosons bouncing on an oscillat-
ing atom mirror was established in ref. 62. The dynamics can be
described effectively by a two-mode Bose-Hubbard model when the
driving frequency of the mirror is twice of the natural frequency
of the bosons falling onto the mirror under gravity63. Mapping
between the bosonic operators and spin operators leads to the reali-
zation of p-spin models with p = 2 for two-body contact interaction.
Higher order interactions are speculated to give rise to higher p-spin
models that are considered in this work.

Thebiclique systemcan inprinciple be implemented in theD-Wave
Pegasus or Zephyr architecture. Although, due to limited coherence
time, schedule control, and constrained measurement processes, the
merit of the near-term experiments might be limited. Specifically, the

Pegasus graph of the D-Wave Advantage system5.4 device hosts 5614-
qubits amongwhich one can find the correct embedding of the biclique
graph in the setup by using the D-Wave Ocean python package. The
architecture already contains 8-qubit Chimera cells with complete
bipartite connectivity64, that can be further coupled by external cou-
plers to achieve a maximum connectivity of 1 qubit to 15 qubits. Thus,
themaximumsystemsize of thebicliquemodel that canbe simulated in
D-Wave architecture is L = 29. One has to then initialize the system by
settingup the localfieldshA andhB in thepositionsof the real qubits and
the couplings J. Finally, using the standard quantum annealing proto-
cols to tune θ, one may observe the exponentially enhanced sensitivity
near the critical points described in this work.

Adaptive estimation strategy
In criticality-based sensing strategies, the quantum advantage is dom-
inantly available in the vicinity of the critical point. Therefore, one
needs to tune the probe, e.g. by applying an external control field, to
operate near criticality and achieve the best performance. Away from
criticality, the scaling advantage is typically available up to a finite
system size. In Fig. 7a, the QFI FQ(θ) for the Grover model is plotted
against system size L for different distances δ from criticality. This
shows how the optimal length increases with decreasing δ and the
maximumQFI value achievable increases exponentially. The results are
qualitatively same for the p-spin model, as shown in Fig. 7b. Although
the biclique system shows similar trends, due to the limitation of small
system sizes we do not include it in this report. Based on the behaviour
of the optimal lengths, an adaptive strategy is needed to obtain and
update prior information iteratively about the unknownparameter65–68.

We now exemplify this adaptive strategy with the Grover model
for which analytical results are available. From the expression of QFI in
Eq. (15), it is easy to see that for any δ departure from criticality, i.e.
θ = θc ± δ, QFImaximizes for a system size Lδ, see Fig. 7a. Using a probe
with size Lδ one can reach a precision which, at the worst case, is
determined by the minimum QFI attained in the range [θc − δ, θc + δ].
This helps us to track the maximum uncertainty. It is easy to see that
this quantity is FQ

min = F
QðLδ , θc + δÞ= 1

δ2ð2 + δÞ2, with the corresponding
optimal system size

Lδ = log2
2δðδ +2Þ+4

δ2


 �
: ð20Þ

The adaptive strategy can now be summarized in terms of a two-step
process within each iteration:

• At the n-th step, we assume that we have a prior knowledge about
the unknown parameter as θðn�1Þ

est ± δðn�1Þ, where δ(n−1) is the
uncertainty of our knowledge. Then, based on this prior knowl-
edge, a control field θðnÞ

ctl is applied such that the total effective
parameter is θðn�1Þ

est + θðnÞctl =θc. For the given uncertainty δ(n−1), one
can select a probe for this step with optimal size LðnÞ = Lδðn�1Þ , see
Eq. (20). For this probe size, a single use of the probe takes time
T(n) ~ 1/Δ(n), where Δ(n) is the energy gap of the probe of size L(n).

• With this probe we perform M measurements, which requires the
time resource ofMT(n) at this iteration, to update the estimation of
the effective parameter to θðnÞ

eff with a better precision δ(n). By
deducting the control field, the new prior information for the next
step is obtained as θðnÞest ± δ

ðnÞ. It is worth emphasizing that the
uncertainty δ(n) will be used for choosing the probe size in the next
iteration. Note that as the precision is improved, the optimal probe
size gets larger which in turn further improves the precision.

These steps are repeated until the desired precision is achieved.
Now we show explicitly how the uncertainty δ(n) is improved

iteratively. Assuming that our sample size M is large enough and the
estimator is optimal, one can saturate the Cramér-Rao bound. As we
want to ensure that even the maximum possible error is improved

Fig. 6 | Dephasing dynamics. (Top row) Grover model with: (a) scaling of critical
QFI FQ

c for various decoherence strength γ; and (b) FQ
c as a function of γ at a fixed

system size L = 30. (Middle row) p-spin model with: (c) scaling of FQ
c for various γ;

and (d) FQ
c as a function of γ at L = 10. (Bottom row) biclique spin system (J = 1,

WA = 4J, andWB = 3.5J) with: (e) scaling of FQ
c for various γ; and (f) FQ

c as a function of
γ at L = 11.

Fig. 7 | QFI away from criticality. a Grover model. b p-spin model. The maximum
size L to sustain exponential sensitivity increases with decreasing distance from
criticality. Our adaptive sensing strategy utilizes this feature.
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iteratively, we consider the worst scenario at each step where the true
parameter value is the farthest from the critical point. Here, the

uncertainty becomes δðnÞ ’ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MFQ ðnÞ

min

q
= 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MFQðLðnÞ,θc + δ

ðn�1ÞÞ
q

. To

evaluate the performance of the probe after n iterations, while incor-
porating the total time as the resource, one has to consider the figure

ofmerit as FQ ðnÞ
min =T ðnÞ

tot, where T ðnÞ
tot =M

P
k ≤nT

ðkÞ is the total time spent to
reach this stage. Now,by inverting Eq. (20) to get δ(n) in termsof L(n) and

incorporating it in Eq. (15) we get, FQ ðnÞ
min � 2L

ðnÞ
and

T ðnÞ
tot ≤MnT ðnÞ � Mn=ΔðnÞ. As Δ(n) is lower bounded by its critical value

ΔðnÞ
c , we recall the scaling relations for the Grover model from Eqs.

(14)–(15), and write

FQ ðnÞ
min

T ðnÞ
tot

≥
FQ ðnÞ
min

Mn=ΔðnÞ
c

� 2L
ðnÞ=2

Mn
: ð21Þ

This clearly shows that the adaptive rescaled QFI scales exponentially
with the probe size L(n). Nonetheless, we still numerically investigate
the scalingof FQ ðnÞ

min =T ðnÞ
tot with respect tobothn and L(n). In Fig. 8a,we see

that FQ ðnÞ
min =T ðnÞ

tot falls off exponentially with step number n, which signals
that the adaptive strategy is very efficient even with few iterative steps
and verymodest number ofmeasurementsM. In Fig. 8b and c,we show
that the exponential scaling of FQ ðnÞ

min =T ðnÞ
tot is indeed retained as was

predicted above. Therefore we conclude that even with the con-
sideration of the largest uncertainty at each step with finite M mea-
surements, while accounting for all the resources, the exponential
scaling advantage is retained in this adaptive strategy.

The above analysis assumes that the Cramér-Rao bound is
achievable at all the iterations using M measurements. Now, we show
that this is indeed possible by performing a Bayesian estimation69,70,
while keepingM to be a modest value. As discussed before, at the n-th
step of the iterative procedure, we apply a control field θðnÞ

ctl , based on
our previous estimation θðn�1Þ

est ± δðn�1Þ, to make sure that the probe
operates around the critical point. We prepare the probe in its ground
state ∣GSi corresponding to the total effective parameter. We choose
the measurement basis {Πk} as the one specified in the ‘Optimal basis’

section. We then simulate generating M number of experimental data
by randomly sampling from the probability distribution of the ground
state in this basis. If the k-th outcome is obtained nk times, thenPd

k = 1 nk =M and d is the total number of possible outcomes. For the
Grover model that we consider here, d = 2. This measured probability
distribution {nk/M} is then compared with the model probability dis-
tribution fpk = GSjΠk jGS

� �
θðnÞ g. This is done with the aid of the ‘like-

lihood’ function, given by the multinomial distribution
PðfnkgjθÞ= M!Q

k
nk !

Q
kp

nk
k . If no information is available other than the

rangeofθ(n) betweenθmin andθmax, then the initial ‘prior’ is the uniform
distribution PðθÞ= 1

θmax�θmin
. Using Bayes’ theorem, we now write the

‘posterior’ distribution P(θ∣{ni}) = P({ni}∣θ) P(θ), and normalize it. In this
work, at each iteration n, we take the prior to be a flat distribution in

the range ½θðn�1Þ
est � 5δðn�1Þ, θðn�1Þ

est + 5δðn�1Þ�. Note that one can also use
the posterior of the (n − 1)-th iteration as the prior, however, this can
cause large fluctuations that would demand large M to converge. For
large enough M, the final posterior distribution is Gaussian, the mean

and standard deviation of which serve as the θðnÞ
est and δ(n), respectively.

AlthoughM is typically a few thousands in experiments, hereM = 50 or
M = 100was sufficient. As shown in Fig. 8d, the uncertainty at each step
δ(n) falls off exponentially with n and the exponents grow inmagnitude
asM is increased. For the purpose of resource analysis, we then look at

1=MδðnÞ2T ðnÞ
tot, which is an analogue of the ratio of QFI and total pre-

paration time thatwas consideredbefore. As shown in Fig. 8e and f, not
only does this quantity show the desired exponential scaling, it is also
quantitatively similar to the case of optimal estimators shown in Fig. 8b
and c. This empirical analysis based on Bayesian estimation clearly
demonstrates that the adaptive strategy is very effective to harness the
exponential advantage even if the unknown parameter of interest is
away from the critical point.

Discussion
To utilize quantum features for enhancing sensing precision several
strategies have been put forward which resulted in sensors based on
GHZ-like entangled states, criticality and non-equilibriumdynamics. In

Fig. 8 | Resource analysis of the adaptive strategy. (Top row) Maximum uncer-
tainty with optimal estimator with initial uncertainty 0.1. The ratio of QFI and
cumulative preparation time at each iteration vs. (a) iteration step, and vs. system
size at each step withmeasurement numbers (b)M = 50, (c)M = 100. (Bottom row)

Uncertainty with Bayesian estimator with true parameter 0.9 and initial range
[0.8, 1.1].d Iterative uncertainty at each step. Iterative figure ofmerit vs. systemsize
at each step with (e) M = 50, (f) M = 100.
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most of these methods, the QFI scales algebraically with respect to
system size, i.e. FQ ~ Lβ. Surpassing algebraic advantage and reaching
exponential scaling has remained elusive when all the resources, such
as the preparation time, are taken into account. Here, we have shown
that a class of systems with first order quantum phase transitions with
exponential energy gapclosing can indeed achieve exponential scaling
for the QFI. Remarkably, the exponential scaling nature is preserved
even if the state preparation time, through local adiabatic driving, is
accounted for. We have illustrated our results by considering three
distinct models, namely Grover, p-spin, and biclique spin systems,
featuring first order phase transition. The results comply with the
fundamental bounds that have been established for quantum probes.
In addition, they are robust against moderate decoherence and the
optimal bases are also experimentally realizable. While criticality-
based sensing is inherently local in nature, we have shown, with an
adaptive estimation strategy, that it is always possible to harness the
exponential scaling for sensing arbitrary parameters to unprecedented
precision. Our results can in principle be verified with D-Wave quan-
tum devices in which the biclique spin system may be implemented.
This work paves the way for a concrete precision sensing strategy with
applications in estimating fundamental physical constants, which
require ultra-accurate local probes.

Methods
QFI bounds
We first show that the ground state QFI for theGrovermodel in Eq. (15)
is upper bounded according to Eq. (5) by ∣∣H2∣∣2/Δ2 =N2/(N2(1−θ)2 + 4Nθ).
To see this, we start with

ðNðθ� 1Þ+ 2Þ2 ≥0
) N2ð1� θÞ2 + 4Nθ≥4ðN � 1Þ

) N ≥
4ðN � 1Þ

½Nð1� θÞ2 + 4θ�

) N2

½N2ð1� θÞ2 + 4Nθ�
≥

4ðN � 1Þ
½Nð1� θÞ2 + 4θ�2

,

ð22Þ

which proves the desired relation as the LHS is the upper bound and
the RHS is the QFI. We also notice that at criticality (θ = 1), the QFI
almost saturates the upper bound for large system sizes. Additionally,
for the ground state preparation scheme presented in the main text
according to the evolution under the Hamiltonian in Eq. (18), the
relevant bound for the time-dependentQFI is given by Eq. (6). In Fig. 9a
we show that this bound is satisfied during state preparation both at
criticality and away from it. The upper bounds and the QFI of the
ground states for the p-spin and biclique models near criticality are
shown in Fig. 9b and c, respectively.

Preparation time
For the adiabatic state preparation based on the Eq. (17), the condition
for thefidelity of the evolved statewith the instantaneous ground state

to be large, namely, F ðtÞ= jhGSðtÞjψðtÞij2 ≥ 1� ϵ2, is

j ψ1ðtÞj d
dt HðtÞjGS ðtÞ� �j
ΔðtÞ2

≤ ϵ, ð23Þ

with ∣ψ1ðtÞ
�
as the instantaneous first excited state. Transferring the

time-dependence on s(t), we can write

dt
ds

≥
j ψ1ðsÞj d

ds HðsÞjGS ðsÞ� �j
ϵΔðsÞ2

: ð24Þ

For the p-spin model, we numerically observe that
j ψ1ðsÞj d

ds HðsÞjGS ðsÞ� �j<L. Therefore we take the preparation time for
the ground state at s,

TðsÞ=
Z s

0

L

ϵΔðsÞ2
ds: ð25Þ

The resulting timewas found to scale as ~e0.055L forp= 3 and λ= 1, which
is advantageous as this exponent as even smaller than that of 1/Δc.
Similar results were found for the biclique system as well.

Data availability
The datasets generated during and/or analysed during the current
study are available in the Github repository https://github.com/
SaubhikSarkar/QFI_First_Order_Phase_Transition.

Code availability
The codeused in this study is available at theGithub repository https://
github.com/SaubhikSarkar/QFI_First_Order_Phase_Transition.
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