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Entropy-driven difference in interfacial water
reactivity between slab and nanodroplet

Shiwei Chen1, Jiabao Zhu1, Jifan Li1, Pan Guo2 , Jinrong Yang 1 &
Xiao He 1,3,4

Interfacial water activity plays a critical role in governing chemical reactivity
and catalytic efficiency, yet a quantitative understanding of how hydrogen-
bond (H-bond) network structure influences this reactivity remains limited.
Herein, we employ ab initio molecular metadynamics simulations to delineate
the relationship between the H-bond network and the reactivity of interfacial
water molecules at the slab and nanodroplet systems. Interfacial water at
nanodroplets, characterized by microscopic inhomogeneity, tends to adopt a
donor–acceptor dimer configuration, in contrast to the more homogeneous
H-bond network at the slab. This disparity in local structure, corroborated by
the quantified differences in solvation configurational entropy, results in a
reduction of the reaction free energy barrier by 1–2 kcal·mol⁻1 at the slab
interface, corresponding to an order-of-magnitude enhancement in reaction
rate. These results provide a fresh perspective to understand the interfacial
water reactivity and highlight the critical role of H-bond network in optimizing
catalytic performance.

The hydrogen-bond (H-bond) networks and orientation of water
molecules at interfacial environments have become a compelling topic
in the field of catalysis1–4. These networks with ordered O-H dangling
bonds pointing toward the vapor phase structures generate a strong
electric field capable of accelerating the reaction rate by orders of
magnitude ranging from one to six without the need for any chemical
reagent, compared to their reaction rates in bulk water solution5–8. For
example, Xie’s group demonstrated that the decrease barrier of aza-
Michael addition reaction between methylamine and acrylamide on
air-water surfaceof condensingmicrodroplet canbe attributed to such
interfacial electric field7, which has been estimated to be about 0.1 V/Å
based on the vibrational Stark effect of a nitrile-bearing fluorescent
probe8. Furthermore, recent studies reveal that the peculiar topologies
of H-bond networkmay promote interfacial charge transfer, providing
valuable insights for engineeringmore efficient catalyticmaterials. For

instance, Li et al. uncovered that the reduced hydrogen evolution
reaction kinetics on Pt in alkaline media is driven by the altered con-
nectivity of H-bond network within the electric double layer, offering
key insights into howelectricdouble layer structure can affect catalytic
performance9. Therefore, a deeper understanding of the mechanisms
by which H-bond network facilitate reaction will potentially enable to
fine-turn the interfacial microenvironment, which in turn leads to the
cost-effective production of innovative materials and the advance-
ment of green chemical synthesis processes.

Various experimental techniques, such as Fourier Transform
Infrared (FTIR) spectroscopy10–13, scanning tunneling microscopy14–16,
in situ Raman spectroscopy17–19, X-ray absorption spectroscopy20–24,
and sum-frequency generation (SFG) spectroscopy25–29 have been used
to investigate the structural and vibrational characteristics of water
structure at interfacial environments. For example, Wang et al.
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employed in situ Raman spectroscopy to elucidate the relationship
between interfacial water structure and the rate of the hydrogen
evolution reaction17. Their findings revealed a significant increase in
reaction kinetics, as evidenced by a reduction in the Tafel slope from
496 to 156mV·dec⁻¹. This change is attributed to the transition of
interfacial water structure from a disordered arrangement to a more
ordered structure, corroborated by the enhanced intensity of the band
observed at approximately 550 cm⁻¹. FTIR spectroscopy has also been
employed to study the influence of H-bond networks on photoactivity
in water-splitting. Verduci et al. reported a remarkable 5-fold increase
in photoactivity, which they attributed to alterations in the H-bond
network at the B-doped TiO2 surface

10. This surface displayed H-bond
motifs that were 20% to 90% richer in donor-acceptor (DA) popula-
tions than indouble donor-acceptor (DDAA) configurations, leading to
the formation of nearly linear H-bonded chains. Despite these insights,
a quantitative relationship between H-bond structure and reaction
activity remains challenging to define due to the interference from
bulk water and the inherent complexity of interfacial environments.

Water molecules at the air-water interface exhibit a heightened
heterogeneity and dynamic behavior compared to their bulk coun-
terparts, which significantly amplifies their chemical activity30,31. This
unique interfacial behavior has been the subject of various experi-
mental techniques aimed at unraveling the structural and dynamic
properties of these molecules. Hsieh et al.32 utilized sum-frequency
generation (SFG) spectroscopy todelineate the vibrational frequencies
at the air-water interface, identifying a broad negative peak above
3200 cm⁻¹ and a minor positive peak below 3200 cm⁻¹. Their results
indicated a substantial reduction in intermolecular coupling among
water molecules at the interface, in contrast to the homogeneous
coupling observed in bulk water. This suggests that the water mole-
cules at the interface are more loosely associated, which makes them
more susceptible to a variety of accelerated chemical reactions, par-
ticularly pertinent to atmospheric chemistry and on-water catalysis.
Thus, comprehending the mechanisms underlying the acceleration of
reactions at air-water interface is essential.

In both theoretical and experimental contexts, nanodroplets and
slab represent the primary systems utilized to investigate air-water
interface reactions33,34. Characteristics shared by both slab and
microdroplets include high surface-area-to-volume ratios and a high
degree of reagent confinement. Using paper spray and nano electro-
spray ionization combined with mass spectrometry, Cook’s group
revealed the significant role of interfacial processes in 15-fold accel-
eration of C-C bond-formation reaction at the slab and nanodroplets35.
Employing ab initio calculations with high precision, an electrostatic
potential of 3 to 4.5 V was measured on the air-water interface of slab
and droplets, which could be the driving force behind the observed
acceleration3,36. Additionally, both nanodroplets and slab have the
similar fast solvent evaporation, which could accelerate the reaction33.
However, significant differences exist in the H-bond networks of var-
ious sizes ofnanodroplets and slab. Forexample,Mizuseet al., through
infrared spectroscopy of H+(H2O)n and density functional calculations,
noted that the relative intensity of the free OH band decreases with
increasing nanodroplet size, suggesting an increasing coordination
number of watermolecules37.While significant strides have beenmade
in understanding the behavior of water at this interface, the com-
plexity of these interactions and their influence on reaction dynamics
in quantitative terms remain an area ripe for further exploration.

In this work, we performed ab initio molecular metadynamic
simulation to characterize the interplay between the H-bond networks
and reactivity of interfacial water on slab and nanodroplet. Our find-
ings reveal that the interfacial water molecules in nanodroplets,
characterized by microscopic inhomogeneity, tend to become trap-
ped in donor-acceptor dimers. This entrapment significantly impairs
their ability to participate in interfacial reactions, in contrast to the
more homogeneous H-bond network type observed in slab. The free

energy barrier for interfacial water to participate in reactions on slab
system is reduced by approximately 1–2 kcal/mol compared to the
nanodroplet with a 10 Å radius, resulting in a reaction rate that is an
order ofmagnitude faster on slab system. This pronounced difference
in reactivity can be attributed to the quantified variation in solvation
configurational entropy between nanodroplets and slab surfaces at
ambient temperature. Furthermore, through machine learning
potential (MLP)38, interfacial water structures are analyzed based on
10 ns ab initio machine-learning-assisted simulations of nanodroplet
systems, including (H2O)19, (H2O)21, (H2O)30, (H2O)50, (H2O)100,
(H2O)200, (H2O)300, and (H2O)500, as well as bulk and slab systems. The
vibrational density of states (VDOS) reveals a linear relationship
between the free O-H stretching frequency and the inverse-square of
the nanodroplet size, and the variation in interfacial coordination
unsaturation as a function of nanodroplet size fall within the predic-
tion of Gibbs-Thomson equation. The restructuring of the H-bond
networks with decreased sizes makes the distinct rotational dynamics
of interfacialwatermolecules becoming faster, accompanyingwith the
faster translation of interfacial water through fluctuation-dissipation
mechanism. These results offer new insights into the reactivity of
interfacialwater, underscoring the pivotal role of theH-bond networks
in enhancing catalytic efficiency.

Results
Interfacial water reactivity
Theoretically, both nanodroplets and slab system, as the archetypal
model of microdroplet, have been instrumental in deciphering the
acceleration mechanism of various chemical reactions. However, the
subtle distinctions in their catalytic effects have not been rigorously
examined. We fill this gap by proposing a novel physicochemical pic-
ture to elucidate the anomalous reduction in reaction barrier on slab
compared to nanodroplet, as illustrated in Fig. 1a, which is intricately
linked to a general phenomenon involving the alteration in the H-bond
network as the potential descriptor for the interfacial water reactivity.
Specifically, the rearrangement configuration and distribution of
H-bonds are pivotal in reshaping the energy landscape. We denote the
H-bond donor as D and the acceptor as A. For example, the DA con-
figuration, featuring a single H-bond donor and a single H-bond
acceptor, give rise to one free O-H bond and one O-H bond engaged in
H-bond (H-bondedO-H bond). From a static structure perspective, the
length of O-H bond involved in H-bond usually adheres to the concept
of asymmetrical H-bond cooperativity and polarizability, causing a
reduction in the average length of free O-H bonds compared with
H-bonded O-H bonds39. At the air-water interface, H-bonded O-H
bonds exhibit an average length of 0.988Å, which is 0.013 Å longer
than free O-H bonds (0.975 Å). This structural difference induces an
energy disparity of 0.74 kcal/mol between H-bonded and non-H-
bonded water molecules at the single-point level of CCSD(T)/aug-
cc-pV5Z.

Based on the above results, Fig. 1b illustrates a new perspective
that the reduction in nanodroplet size leads to an increase in entropy
by liberating water molecules from hydrogen bonding constraints,
thus promoting a heterogeneous H-bond network topology and a
decrease of surface tension. The surface tension of slab system is
reported to be around 72 mN/m at 300K40, and Li et al.41 employed
molecular dynamics simulations to demonstrate that the surface ten-
sion of the droplets decreases from 66 to 19 mN/m as the radius of
nanodroplets changes from 24 to 6 nm. As a result, the dominant DA
configuration in nanodroplets suggests a higher density of free OH
bonds at the air-water interface. Conversely, the slab system displays
an almost equal distribution of the DA, DDA (double H-bond donors
and a single acceptor), DAA (single donor and double acceptors), and
DDAA (double donors and double acceptors) configurations, indicat-
ing amoreH-bondedO-Hbond. Increased hydrogen bondingweakens
the covalent OHbond inwater, whichmight help lower the free energy
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barrier for reactions in the slab geometry. Notably, the single point
energy of a water molecule with free OH bond is 0.74 kcal/mol lower
than that of a water molecule with H-bonded OH bonds, and nano-
droplet (H2O)100 have a greater number of the free O-H bond of
interfacial water relative to the slab system. This energy disparity
requires additional free energy to overcome the stabilization of the
free OH bonds, which in turn affects the interfacial reactivity. Our
findings indicate that the free energy required for reactions at the air-
water interface of nanodroplets is higher compared to slab system,
due to the need to break the original O-H bond length associated with
the solvation entropy. As such, the entropy plays a significant role in
the observed discrepancies in reaction free energy between nano-
droplets and slab system.

The comparison in the free energy profiles of three interfacial
water participation reactions shows amarked preference for reactions
to proceed on slab system rather than nanodroplets. Utilizing the
coordination number of all hydrogen atoms surrounding the oxygen
atom as the collective variable (CV), we observe that the free energy
barrier forwater self-dissociation is lower in the slab systemcontaining
128 water molecules by ~1.9 kcal/mol, compared to a nanodroplet of
(H2O)100, as shown in Fig. 1c. According to the Arrhenius equation, the
difference in the free energy barrier of 1.9 kcal/mol for water self-
dissociation between slab and nanodroplet leads to a reaction rate
difference of approximately 25-fold at room temperature. This trend is
further substantiated by the free energy profile of SO2 hydrolysis
(Fig. 1d), which increases by approximately 1.8 kcal/mol when transi-
tioning from the slab system to the nanodroplet (H2O)100. Similarly,
the free energy profile associated with hydration reaction increases by
approximately 1.4 kcal/mol when moving from the slab system to the

nanodroplet (H2O)100, as depicted in Fig. 1e. Additionally, the free
energies of these reactions at the air-water interface are significantly
lower than that in the gas phase (Supplementary Fig. 7).

To elucidate the intricate dynamics of H-bond networks during
the water self-dissociation reaction, a comparative case study was
conducted between a slab system and a nanodroplet model. The slab
system exhibits the self-dissociation process initiated at 10 ps and
completed at 19 ps (Fig. 2a). O1 and O2 represent the oxygen atoms
that have lost and gained protons, respectively, while H1 denotes the
transferred proton. During the proton transfer event, the water
molecule acting as the proton donor adopts a DAA configuration, and
an adjacent water molecule accepting this proton assumes a DDA
configuration. As observed in Fig. 2b, the coordination number begins
to fluctuate around 10 ps and decreases to approximately 1.3 at 19 ps.
The distance of O1-H1 keeps at 1 Å and suddenly increases to 1.4 Å at
about 10 ps, while the distance of O2-H1 decreases from 2 to 1.4 Å,
indicating the initiation of proton transfer. Ultimately, at approxi-
mately 19 ps, the O2-H1 distance decreases to 1 Å, whereas the O1-H1
distance increases to 2 Å, indicating a significant rearrangement of
proton. The water self-dissociation within the nanodroplet com-
mences at 15 ps and concludes by approximately 22 ps (Fig. 2e).
Throughout the proton transfer process, both the proton donor and
acceptor of water molecules undergo the transformation from DA to
DDA configuration. Figure 2f shows that the coordination number
starts to fluctuating around 15 ps and drops to about 1.3 at 22 ps. The
distance of O1-H1 increases from 1 Å to 1.5 Å at 22 ps, while the distance
of O2-H1 decreases to 1 Å, signifying the completion of the water self-
dissociation process. As shown in Fig. 2c, d the H-bond types of the
dissociating water molecules on the slab remain relatively stable

Fig. 1 | Discrepancybetween the reaction energy profiles at the slab systemand
nanodroplet (H2O)100. a Schematic illustration of reactants at the air-water interface
of nanodroplet (H2O)100 and slab system, where H-bond network of water molecules
near the surface are represented. This physicochemical picture was created using
Adobe Illustrator. b The quantitative interplay between entropy and H-bond type
determines the reaction free energy profile at the air-water interface. Free energy

profiles for (c) water self-dissociation, d the hydrolysis of SO2 and (e) hydration
reaction of furanone at air-water interface of the slab system (blue) and (H2O)100 (red),
respectively. The collective variables (CV) for (c) water self-dissociation, d the
hydrolysis of SO2 and e hydration reaction of furanone are the coordination number,
the distance between S and O, and the distance between C and O, respectively. The
shaded areas represent the standard deviation from three independent simulations.
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throughout the process. However, as shown in Fig. 2g, the dissociating
water molecules on the nanodroplet initially exhibit a predominance
of DA type H-bonds, which undergoes significant changes just prior to
the onset of dissociation. This shift from DA to DDA in H-bond type
necessitates additional energy to overcome, further contributing to
the disparity in free energy barriers between the two systems. More-
over, an analysis of H-bond type distribution reveals that the slab
system is dominated byDDA type, where the ratio of DDAA,DDA,DAA,

DA, and Free types are 2%, 75%, 6.6%, 16%, and 0.4%, respectively.
Whereas in the nanodroplet (Fig. 2h), the ratio of DDAA, DDA, DAA, DA
and Free types are 1.4%, 20%, 0.3%, 76%, and 2.3%, respectively. The
prevalence of DA type in the early stage for the nanodroplet, followed
by a transition to DDA type during the dissociation, suggests that the
reorganization of H-bonds plays a pivotal role in modulating the
reaction kinetics, particularly in systems with distinct dimensionality
such as two-dimensional slabs and zero-dimensional nanodroplets.

Fig. 2 | Reaction process of water self-dissociation at the slab system and
nanodroplet (H2O)100. Snapshot structures taken from the metadynamics-biased
ab initio molecular dynamics (AIMD) simulations of the water self-dissociation on
(a) the slab system and (e) nanodroplet (H2O)100. The time evolution of coordi-
nation number and distance of O-H for (b) the slab system and (f) nanodroplet

(H2O)100. The time evolution ofH-bond type involved in the reaction process for (c)
the slab system and (g) nanodroplet (H2O)100. The ratio of the H-bond type for the
react water molecule on (d) the slab system and (h) nanodroplet (H2O)100 without
further adjustment or correction for bias.
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These findings underscore the critical influence of H-bond networks
reorganization on the reaction kinetics, highlighting the need for a
nuanced understanding of these dynamics to predict and control
chemical reactions at the air-water interface. The detailed hydration
reaction of furanone and the hydrolysis of SO2 are illustrated in Sup-
plementary Fig. 8 and Supplementary Fig. 9, respectively.

Electrostatic potential and configuration entropy
The reaction acceleration at microdroplet is primarily driven by the
interfacial electric field42. Emerging evidence from both experimental
and theoretical researches has indicated that the topmost water layer
of the air-water interface is predominantly characterized by O-H dan-
gling bonds pointing toward the vapor phase6,8. Beneath this layer, a
two-dimensional H-bond network oriented parallel to the dynamic
surface supports the configuration of free O-H groups. These struc-
tural and dynamic features of the air-water interface, which extend
approximately two water layers deep, produce electric field signatures
distinct from those of the bulk-like interior of the droplet. The theo-
retical electrostatic potentialφ is calculated as the difference between
the average plateau values of the bulk liquid and vacuum regions in
�φðrÞ, as described by the equation:

�φ rð Þ=
Z Z

dxdyV x, y, zð Þ
A

� �
ð1Þ

where V x, y, zð Þ represents the calculated electrostatic potential at the
grid point, and A is the sphere area of nanodroplet at radius of r.

To visualize the spatial distribution of electrostatic potential,
Fig. 3a presents the isocontour maps of the electrostatic potential for
the slab system and the (H2O)100 nanodroplet, covering a potential

range from –13.61 to +13.61 V. The negative potential regions primarily
reflect areas of high electron density. In contrast, as the potential
increases to positive values, the contours progressively enclose the
atomic nuclei, corresponding to the position of protons. To isolate the
external electrostatic potential contributions, Kathmann et al.43 pro-
posed a density-based masking approach for computing the surface
potential. This method partitions the spatial grid according to the
electron density and includes only regions below a defined threshold,
thereby excluding high-density zones near nuclei. The masked
potential is defined as:

eφ rð Þ= �φ rð ÞΘ ρcutof f
elec � ρelec rð Þ

h i
ð2Þ

where Θ denotes the Heaviside function (Θ xð Þ= 1 when x > 0; Θ xð Þ = 0
when x < 0). A predefined electron density threshold, ρcutof f

elec , is used to
exclude regions with higher electron density from contributing to the
surface potential evaluation. This method enables us to examine the
relevant phenomena based on the premise that the electron density is
lower in the regions between water molecules. We randomly selected
5 snapshot structures from the 10 ns trajectory frommachine-learning-
assisted simulations to obtain the mean electrostatic potential of slab
system and nanodroplet (H2O)100, as shown in Fig. 3b,c. The direction
of interfacial electric field is normal to the surface for both
nanodroplets and slab system. The surface potential determined with
MLP is positive like AIMD36,43, which is qualitatively different
from classical force fields yielding a negative surface potential6.
Figure 3b presents the variation of the electrostatic potential along the
z-direction, calculated by progressively including mesh points asso-
ciated with lower electron density thresholds (in e/bohr³). The case
labeled with an infinite cutoff represents the scenario where all mesh

Fig. 3 | Electrostatic potential profiles of the slab system and nanodroplet
(H2O)100. a Isocontourmaps of the electrostatic potential for the slab (upperpanel)
and (H2O)100 nanodroplet (lower panel) based on quantum mechanical calcula-
tions, spanning a potential range of –13.61 to +13.61 V. Regions of negative poten-
tials represent electron-richdomains, while positive potentials are localized around
the protonic sites within atomic nuclei. b Electrostatic potential profile of the slab

system plotted along the z-axis for a series of electron density isocontours (in e/
bohr³). The curve labeled as “infinite” includes the contribution from all mesh
points used in the potential calculation. c The variations of electrostatic potential
by radial regions in the nanodroplet (H2O)100. The shaded areas represent the
standard deviation from five snapshot structures.
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points are considered. It is evident that the distribution of electrostatic
potential strongly depends on the choice of electron density contours.
As the electron density threshold decreases from 1 to 0.01 e/bohr³, the
value of the electrostatic potential declines markedly, from approxi-
mately +4 V to nearly 0 V. While for the nanodroplet (H2O)100, the
electrostatic potential is the same as slab system at 1 e/bohr³, but it is
2 V higher than in the slab system when the electron density is 0.1 and
0.01 e/bohr³, eventually decreasing to 0V until 0.0001 e/bohr³, as
shown in Fig. 3c. A similar trend is observed for nanodroplets of other
sizes, as presented in Supplementary Fig. 10. These results demon-
strate that the computed surfacepotentials for the slab systemarevery
sensitive to the electron density contour level, whereas the nanodro-
plets are less sensitive to the contour level.

Both computational and experimental results suggest that such
interfacial electric field could accelerate the reaction on air-water
interface. Song et al.7 quantitatively calculated a reduction of
approximately ~2 kcal/mol in the free barrier for the aza-Michael
addition reaction between methylamine and acrylamide, caused by an
interfacial electric field of 0.1 V/Å. Zhang’s group attributed the fast
sulfate production inmicrodroplets to the ultra-strong electric field at
the air-water interface of microdroplet5. However, the interfacial
electric field of the slab system, as represented in Fig. 3b, is lower than
that of nanodroplet, implying that the higher reactivity on slab system
may not be strongly correlated with the interfacial electric field.

Beyond the influence of the interfacial electric field, the entropy is
calculated to elucidate the difference between nanodroplet and slab
system. We calculated absolute entropy by the Schlitter’s Formula44:

S=
R
2
ln det 1 +

kTe2

_
Mσ

� �
ð3Þ

where k is Boltzmann’s constant, R is the molar gas constant, T is the
temperature, e is Euler’s number, _ is Planck’s constant divided by 2π,
M is themassmatrix with themasses of the atoms on the diagonal and
all off-diagonal elements equal to zero, 1 is the unit matrix, and σ is the
covariance matrix of the 3N Cartesian coordinates where N is the
number of atoms in the consideredmolecule ormolecules. To execute
the method, the DoSPT45 implementation was used. The entropy
values of both thewhole system (Supplementary Table 4) and air-water
interface region (Supplementary Table 5) for the nanodroplet (H2O)100
and slab system are calculated in different temporal scale. As shown in
Fig. 4a, the translation (Strans), rotation (Srot), vibration (Svib) and total
(Stotal) entropy of nanodroplet are higher than those of slab system,
revealing distinct thermodynamic signatures between nanodroplet
and slab systems. Specifically, the total entropy of nanodroplet
(H2O)100 is approximately (6.1 ± 0.25) × 10−4 eV/mol/K, exceeding that
of the slab system (4.8 ± 0.05) × 10−4 eV/mol/K. Strikingly, interfacial

entropy values in Fig. 4b show near equivalence between systems
(6.7 ± 0.3) ×10−4 vs. (5.1 ± 0.2) × 10−4 eV/mol/K, suggesting that the
disorder of interfacial water dominates the thermodynamics of
nanodroplet.

Size dependent on interfacial water structure
To further reveal the structure difference nanodroplets as a function
of size, we present a schematic of the setup used to generate aqu-
eous nanodroplets by spraying a bulk solution with dry inert neb-
ulizing gas, as illustrated in Fig. 5a. Eight nanodroplets system with
(H2O)n (n = 19, 21, 30, 50, 100, 200, 300, 500), and slab system are
used in our simulation. The corresponded radiuses of these nano-
droplets are 4.3, 4.6, 5.8, 7.1, 8.9, 11.2, 12.9, and 15.3 Å, respectively.
Up to now, the primary challenge lies in characterizing nanodroplets
with sizes below the diffraction limit, which exhibit extremely short
lifetimes for rapid evaporation, these factors collectively impede
investigation in this regime and render the problem difficult to
address using conventional characterization techniques46. Therefore,
it is necessary to conduct a theoretical exploration on the accelera-
tion effect.

To elucidate the vibrational characteristics of water, we con-
ducted the VDOS analysis for a series of water nanodroplets (H2O)n
(n = 19 ~ 500), as well as bulkwater by employing the Fourier transform
of velocity autocorrelation functions. The VDOS calculation formula
for the water is provided in Supplementary Note 3. As shown in Fig. 5b,
the low frequency region around 1000 cm−1 is attributed to the libra-
tional motions of water molecules, predominantly associated with the
rotational mode of water. The simulated librational frequency for bulk
water is recorded at 608 cm−1, which closely aligns with the experi-
mentally measured bulk liquid water infrared spectrum at 600 cm−147.
For nanodroplets in the size range of (H2O)19 to (H2O)300, the libra-
tional frequency peaks exhibit a gradual redshift from480 to 605 cm−1.
When the size of nanodroplet increases to n ≥ 300, the librational
frequency peaks keep at 605 cm−1. The high-frequency region of VDOS
is indicative of the stretch vibration of O-H bond. The peak for the O-H
stretchband of bulk liquidwater is observed at 3375 cm−1, approaching
to experimental value of bulk liquid water ( ~ 3400 cm−1)48. As the
nanodroplet size increases from (H2O)19 to (H2O)300, the O-H stretch
band undergo a blueshift from 3470 to 3375 cm-1. For nanodroplets
with n ≥ 300, the O-H band peaks also remain consistent at 3375 cm−1.
The observed change of O-H stretch band peak as a function of
nanodroplet size is consistent with the experimental trends of
H+(H2O)n

37, suggesting that the nanodroplet as the increase size
experiences from gas-liquid-like, disordered structures at smaller sizes
(n < 300), to at least partially liquid-like structures at larger sizes (n ≥
300). The VDOS for different radial region is provided in Supplemen-
tary Fig. 11.

Fig. 4 | Absolute entropy of the slab systemandnanodroplet (H2O)100.Absolute
entropy of slab system and nanodroplet (H2O)100 composed by the contributions
of translation, rotation, and vibration for (a) the whole system and (b) the

corresponding air-water interfacial region. Error bars represent the standard
deviation from four trajectories of 20, 50, 100, and 200ps.
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Particularly, a shoulder peak in the O-H stretch band for water
nanodroplet is identified at around 3700 cm−1 due to the presence of
free OH groups residing at the air-water interface49. Figure 5c shows
that the calculated free OH stretch frequency based on the machine
learning potentials (MLPs) are linearly proportional to the n-2/3 or 1/r2,
where n is the number of water molecules in the nanodroplet, and r
represents the nanodroplet effective radius. The free OH stretch
frequency as the change of number of water molecules in nano-
droplet increases linearly from 3697 to 3710 cm−1. Extrapolations of
the infrared photodissociation (IRPD) data50 to infinite cluster size
yields a free OH stretch frequency centered on ∼3698 cm−1 and the
MLP data is centered on ∼3697 cm−1. This trend using MLPs is also
well consistent with the experiment measured by IRPD, while the
OPLS-2005 model50 demonstrates a close agreement with the
experimental frequencies, with an average deviation of approxi-
mately 14 cm−1, and the ReaxFF/CGeM model6 even deviates by an
average of approximately 180 cm−1.

The asymmetric stretching frequencies generated by the free O-H
of the water molecules at the surface are acutely sensitive to H-bond
networks. To delve deeper into this relationship, we further analyze
the variations coordination unsaturation (CU) across the region of air-
water interface of nanodroplets as a function of the radius of water
nanodroplets, where the CU is defined by the below equation:

CU=
The reduced number of hydrogen bonds at interface

The total number of hydrogen bonds
ð4Þ

where the “reduced number of hydrogen bonds” is the difference
between the maximum possible number of H-bonds that a molecule
could form in a fully coordinated environment (4 H-bonds) and the
actual number of H-bonds formed by the surface molecules. As
depicted in Fig. 5d, the CU of nanodroplets exhibits a pronounced size
dependence within the nanometer scale, suggesting an approximate
inverse proportionality to the droplet size. When the nanodroplet size
reaches to 1.5 nm, the CU approaches about 13%, which is already very
close to the absence of one coordination per water molecule. This
phenomenoncan be attributed to the elevated surface-to-volume ratio
in nanodroplets, leading to a higher proportion of surface molecules
that do not participate in H-bond network.

As the radius of nanodroplet increases, the relative influence of
surfacemolecules diminishes, resulting in aH-bond network thatmore
closely resembles that of the bulk. It is worth note that the CU is
proportional to the Gibbs-Thompson equation:

CU / exp 2γVm
rRT

� �
ð5Þ

Here, r is the effective radius of the nanodroplet, γ is the specific
surface tension, Vm is the molar volume of the material, R is the gas
constant, and T is the absolute temperature. In the Gibbs−Thompson
Eq. (5), the theoretical treatments presented in this section are based
on the assumption that all surface atoms experience the same amount
of surface tension, regardless of their position or the size and shape of
the nanodroplet51. This assumption is equivalent to assuming the sur-
face tension value of slab system (72mN/m)40. This equation highlights
the relationship between the surface energy and size of the nano-
droplet with a nonlinear effect. The Gibbs-Thomson effect articulates
the interplay between the size of the nanodroplet and its phase
transition temperatures, with smaller nanodroplets demonstrating
reducedmeltingpoints relative tobulkmaterialsdue to their increased
surface-to-volume ratio. In the field of chemical reactions, nanodro-
plets act as highly reactive sites due to their large surface area and
unique surface properties. The Gibbs-Thomson effect helps under-
standing the reactivity patterns of these nanodroplets, thereby
enabling the design of efficient catalysts for various chemical
processes. Moreover, by extrapolation from the Gibbs-Thompson

equation, the CU becomes negligible, less than 10%, when the
nanodroplet size exceeds approximately 10 nm.

The change of CU reflects distinct reorientation dynamics of
water molecules. These orientational dynamics, intricately linked to
relaxation timescales, are largely dependent on the local environ-
ment. The H-bond rearrangements, known as jumps, also contribute
to this process. We quantified the average timescale associated with
the critical dynamics of restructuring the H-bond network of water
via the dipole autocorrelation function, as represented in Fig. 6a.
The dipole of water is approximately defined using the classical SPC/
E model52, where the dipole moment is calculated based on the
positions and charges of the individual atoms in the water molecule,
as shown in Supplementary Fig. 17. The dipole autocorrelation
function is provided in Supplementary Note 2. The rotational
dynamics are slowest in the bulk system, which is consistent with
Chen et al.’s calculation53. The mechanism for rotational relaxation
of the O-H bond vector is associated with breaking an H-bond. In
order to build our intuition on the vary of rotation, Fig. 6b highlights
a specific event of slab system and representative nanodroplet
(H2O)100, illustrating a close-up of several of these molecules dis-
tributed on bulk and air-water interface of slab system and nano-
droplet. Shown in the background are all the other water molecules
in close vicinity to this event. The black arcs are the smallest and
outline the rotation of water molecules in bulk liquid water, where
H-bonds are too strong, significantly hindering this pathway. The
rotational motion of water of slab system at the air-water interface
decays faster than that of the bulk system due to the relax H-bonds
network at the air-water interface, corresponding to that the blue
arcs is bigger than black arcs. The rotational motion of water at the
air-water interface of nanodroplets shows a faster decay with
decreasing nanodroplet size. The rotation motion of the whole
nanodroplet exhibits a similar trend (Supplementary Fig. 12). As the
size of nanodroplets decreases, the surface-to-volume ratio increa-
ses, resulting in a greater proportion of water molecules being
influenced by surface effects. This enhances the rotation dynamics,
as surface water molecules experience fewer H-bonds and are more
mobile compared to those in the bulk. The high curvature causes a
distortion in the H-bond network, which can further accelerate the
rotation dynamics. The red arcs represent the fast rotation of
water molecule at the air-water interface of nanodroplets (H2O)100.
Figure 6c shows the mean square displacement (MSD) for water
molecules in various sized water droplets. The diffusion of water
molecules in the smaller nanodroplet is higher than that in the larger
nanodroplet. Thus, water molecules in the smaller nanodroplet have
more rotate energy and transfer energy. The increase in both rota-
tional and translational energy indicates that the energy is dis-
sipated between these modes, rather than being transferred into the
reaction itself.

To further analysis the H-bond networks, we calculate the H-bond
typedistribution at air-water interface of (H2O)n (n = 19, 21, 30, 50, 100,
200, 300, 500) and slab system, as plotted in Fig. 6d, the ratio refers to
the fraction/percentage population. A common definition of a water
H-bond is onewhereDOO < 3.5 Å and θ < 30°. Each bulk watermolecule
possesses an average of ~3.47 H-bond in a homogeneous solvent
environment, which is close to the theoretical calculation value of 3.58
reported by Lin et al.54. At the air-water interface, DA is the dominant
component of the H-bond networks for nanodroplets, while in the slab
system, the DDAA, DDA, DAA, and DA configurations are evenly dis-
tributed. The uniformity of the nanodroplet structure indicates amore
ordered H-bond network configuration in the droplet. With n
increasing from 19 to 500, the ratio of DA decreases from0.65 to 0.34,
and the ratio ofDDAA increases from0.008 to0.13. However, theDAA,
DDA, and Free H-bonds do not have a stable vary trend, fluctuating
within 0.1 ~ 0.25 due to unstable H-bond structure with the fast rotate
water molecules. The H-bond type distribution of the whole system
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could be found in Supplementary Fig. 13. Water molecules exhibit a
dangling O-H bond with a reduced average number of H-bond. From a
static structural perspective, the O∙∙∙O distance and the O-H bond
length between two water molecules involved in H-bond generally
adhere to the principles of asymmetrical H-bond cooperativity and
polarizability. From the nanodroplet interface to interior, the O∙∙∙O
distance decreases while the O-H distance increases due to the
enhanced H-bonds (Supplementary Fig. 14 and Supplementary
Table 2). These variations highlight the significant influence of size and
surface effects on the H-bond network and reorientation dynamics of
water molecules.

Numerous experimental and theoretical studies have demon-
strated that reaction rates are highly sensitive to variations in

the H-bond networks. This study found that changes in
nanodroplet size significantly alter the coordination unsaturation at
the interface, triggering pronounced structural shifts within the
H-bond network type. However, the associated rotational and trans-
lational energy changes do not appear to influence the reaction
directly. Instead, it is the variation in the configuration entropy of the
H-bondnetwork that plays a pivotal role in regulating the reaction rate.
When the nanodroplet radius increases to around 15 Å, the distribution
of H-bond types becomes remarkably similar to that observed in slab
systems, suggesting that their interfacial catalytic effects are likewise
comparable. This discovery provides new insights into catalytic reac-
tions at air-water interfaces and opens avenues for optimizing the
design of nanoreactors to enhance catalytic efficiency.

Fig. 5 | Schematic illustrations of the nanodroplets of different size with the
structural feature. a Schematic diagram of a conventional device for generating
droplets and water nanodroplet model for simulation in different size (H2O)n
(n = 19, 21, 30, 50, 100, 200, 300, 500), as well as slab system with 512 water
molecules. Aqueous nanodroplets were generated by spraying bulk solution using
dry inert nebulizing gas without applying an external voltage to the spray source.
On the air-water interface of nanodroplets, H-bonded water molecules with dif-
ferent donor (D) and acceptor (A) H-bonds are represented. This picture was cre-
ated using Adobe Illustrator.bTheVDOSof hydrogen atoms in the nanodroplets of
various sizes, including (H2O)19, (H2O)21, (H2O)30, (H2O)50, (H2O)100, (H2O)200,

(H2O)300, (H2O)500, slab system, and bulk liquidwater. cHerewe compared freeOH
bands from experiments and theory for (H2O)n as a function of n−2/3, which is
proportional to 1/r2 where r is the droplet radius. The red dash line represents the
experimental results, the circle dots represent the result fromMLPand the triangles
are the result using the ReaxFF/CGeM force field6, as well as the square represents
the result using the OPLS-2005 force field50. d The variations in surface CU by the
radius of water nanodroplets. The red points with arrow bar and black line repre-
sent the surface CU for (H2O)n (n = 19, 21, 30, 50, 100, 200, 300, 500), and the
Gibbs-Thompson equationof water, respectively. Error bars represent the standard
deviation from 100000 snapshot structures.
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Discussion
In this study, we quantitatively demonstrated the critical influence of
the H-bond network on the reactivity of interfacial water at the air-
water interface, particularly in contrasting slab and nanodroplets. Our
ab initio molecular metadynamics simulations revealed that the
H-bond network type in nanodroplets gets stuck in the formation of
donor-acceptor dimers, which significantly hinders the adaptability of
interfacial water for chemical reactions. In contrast, the more homo-
geneous H-bond motif in slab facilitates a 1–2 kcal/mol lower free
energy barrier, resulting in an order of magnitude faster reaction rate.
This difference in reactivity arises from the measured variation in
solvation configurational entropy between the nanodroplet and the
slab surface under ambient conditions. Furthermore, the VDOS
demonstrates a linear correlation between the free O-H stretching
frequency and the inverse square of the nanodroplet size, with the
variation in interfacial coordination unsaturation aligning with pre-
dictions from the Gibbs-Thomson equation. As the nanodroplet size
decreases, the restructuring of the H-bond network leads to faster
rotational dynamics and translation of interfacial water molecules.
However, while the increased energy is not directly transferred to the
reaction, it may be dissipated between rotational and translational
modes. These findings underscore the crucial role of H-bond network
structure in tuning catalytic performance at the air-water interfaces,
offering a potential pathway for optimizing catalytic systems in both
scientific and industrial applications.

Methods
Database
The primary database collection was achieved through AIMD simula-
tions. Density functional theory (DFT) was employed within the CP2K/
Quickstep framework55, utilizing a hybrid Gaussian plane wave (GPW)

scheme. Wave function optimization was performed using matrix
diagonalization, and self-consistent field (SCF) convergence was
achieved at an electronic temperature of 298.15 Kwith the aid of Fermi
smearing. The core electrons were represented by Goedecker-Teter-
Hutter (GTH)56 pseudopotentials and DZVP-MOLOPT-SR-GTH basis
sets, and the energy cutoff for the plane wave expansion was set to
400Ry. The exchange-correlation effects were described using the
Perdew-Burke-Ernzerhof (PBE) functionals57, and dispersion correc-
tions were applied using the Grimme D3 method58 in all calculations.
(H2O)19, (H2O)21, (H2O)30, (H2O)50, and (H2O)100, as well as bulk and
slab systemswere run for 30ps, and (H2O)200 systemwas run for 10 ps.
(H2O)300 and (H2O)500 were run for 3 ps due to their huge amount of
computation. The dimensions of the simulation boxes are provided in
Supplementary Table 1. A Langevin thermostat was employed to
maintain a temperature of 298.15 K with a time step of 0.5 fs. The
training set could be found in Supplementary Fig. 1.

Training of machine learning potential
We selected a dataset comprising 3000 structures from (H2O)19,
(H2O)21, (H2O)30, (H2O)50, (H2O)100, bulk, and slab systems trajectories
of the aforementioned AIMD simulations. Additionally, we included
1000 structures from (H2O)200 trajectories and 300 structures from
(H2O)300 and (H2O)500 trajectories to serve as the initial dataset.
Machine learning potential was fitted with deep potential smooth
edition (DeePMD-SE) kit59,60. In accordance with the provided dataset,
fourMLPswere trainedusing deep neural networksduring the training
process, each with different initial parameters. Subsequently, during
the exploration phase, one of the four MLPs was employed to drive
machine learningmolecular dynamics, andmaximum force deviations

(σmax
f = max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj f i � f i

	 
jj2D Er
) among four MLPs were calculated

Fig. 6 | Asymmetrical dynamic and H-bond structural analysis of various water
nanodroplets. a Dipolar rotational autocorrelation curves of water molecules at
the air-water interface of the (H2O)n (n = 50, 100, 200, 300, 500) and the slab
system, compared with bulk water. b Schematic of rotation of water molecules.
Close-ups of 15 of these molecules are presented in slab system and (H2O)100. The
colored arcs outline the angular motion carried by the dipole vectors in the
direction of the dashed arrow. The black stands for the watermolecules in the bulk,

as well as the blue and red represent the water molecules at the air-water interface
of slab system and (H2O)100. This picture was created using Visual Molecular
Dynamics. c The MSD profiles for nanodroplet (H2O)n (n = 19, 21, 30, 50, 100, 200,
300, 500), slab system, and bulk liquid water. d The ratio of H-bond type of
nanodroplet (H2O)n (n = 19, 21, 30, 50, 100, 200, 300, 500) and slab system at air-
water interface. Error bars represent the standard deviation from 10000 snapshot
structures.
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along the trajectories. For each nanodroplet, 100 structures with

σmax
f 2 ðσlow, σhigh� were randomly selected and computed using DFT,

then added to the datasets for the subsequent iteration. σlow and σhigh

were set to 0.1 and 0.25, respectively. The iterative training would

finish when σmax
f of all structures in trajectories are less than σlow. To

validate the accuracy of MLP, we demonstrate an excellent agreement
between the RDF of water obtained from the MLP model (solid line in
Supplementary Fig. 2) and the results from AIMD simulations (dotted
line in Supplementary Fig. 2). This concurrence demonstrates that the
trained potential energy surface effectively captures the structural
characteristics. The AIMD simulations of the nanodroplets, bulk, and
slab systems are directly correlated with the force and energy profiles
of the MLPs, as illustrated in Supplementary Fig. 3 and Supplementary
Fig. 4. To quantify the agreement between the predicted and reference
values, the root mean square error (RMSE) calculations for force and
energy are calculated by equation:

FRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3M
i = 1 FAIMD

i � FMLP
i

� �2

3M

vuut ð6Þ

where FRMSE represents the RMSE of the force, i = 1 to 3 M represents
the component forces in the three directions of x, y, and z. FAIMD

represents the force obtained by AIMD, and FMLP represents the force
obtained by the trained potential energy surface. The RMSE of energy
is calculated in the same way as the RMSE of force.

MD simulations
Finally, we used the trained potential energy surface to perform MD
simulations using the large-scale atomic/molecular massively parallel
simulator (LAMMPS) code61. We employed the canonical ensemble
(NVT) with a target temperature of 300K and a time step of 0.5 fs. The
simulations were run for 10 ns to obtain the desired sampling. Other
settings remained similar to the initial AIMD setup. Density distribu-
tion (Supplementary Fig. 5), triplet angular distribution (Supplemen-
tary Fig. 6), electrostatic potential, VDOS and H-bond analysis on
machine learning MD trajectories are then applied to reveal the
nanodroplet size-property relation. The general workflow is presented
in Supplementary Fig. 1.

Metadynamics-biased AIMD simulation details
We chose (H2O)100 as a representative nanodroplet to compare three
reactionswith the slab systemcontaining 128watermolecules. A single
sulfur dioxide (SO2)molecule and a five-membered ringwere added to
both the nanodroplet and slab surface systems to investigate their
reaction with water molecules. Both energy minimization and pre-
equilibrium were performed using the cp2k software package55. For
pre-equilibrium, the Becke-Lee-Yang-Parr (BLYP) functionals57, with
Grimme’s58 dispersion corrections andBecke-Johnson62 damping term,
and the double-ζ plus polarization (DZVP) basis set were used. An
energy cutoff of 300Ry was set for the plane-wave basis set and 40Ry
cutoff was used for the Gaussian basis set. The core electrons were
modeled using Goedecker-Teter-Hutter63 (GTH) norm-conserving
pseudopotentials. The AIMD simulations were performed in the
canonical (NVT) ensemble, with a temperature of 298.15 K controlled
using canonical sampling through velocity rescaling thermostat64

(CSVR). The time step for was set for 1.0 fs. Three independent meta-
dynamics simulations with randomly selected initial structures were
performed to determine the reaction free profiles. The water self-dis-
sociation, the hydrolysis of SO2 and the hydration reaction of furanone
take 45 ps, 350 ps, and 250ps, respectively. The error bars were cal-
culated based on the standard deviation from three independent
simulations. Further details regarding the metadynamics-biased AIMD
simulation are provided in the Supplementary Methods.

Data availability
The metadynamics input file, the deep potential models generated in
this study, the initial and final coordinates of electronic structure cal-
culations trajectories and source data are available at https://zenodo.
org/records/15208621.

Code availability
The metadynamics simulations were performed by CP2K. Deep
potential molecular dynamics simulations were conducted using the
DeePMD-kit package (https://github.com/deepmodeling/deepmd-kit)
in conjunction with LAMMPS. The code used to generate the plots
shown in the main text is available from the corresponding author
upon request.
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