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Design of circularly polarized
phosphorescence materials guided by
transfer learning

Xu Liu1,3, Yihan Zhang2,3, Yifan Xie1,3, Ledu Wang1, Liyu Gan1, Jialei Li1, Jiahe Li1,
Hongli Zhang 1, Linjiang Chen 1, Weiwei Shang 2 , Jun Jiang 1 &
Gang Zou 1

It is highly desirable that artificial circularly polarized phosphorescent mate-
rials with high luminescence asymmetry factor (glum), narrowband emission
and tunable chiral phosphorescent performance can be constructed. Espe-
cially, precise control and simultaneous independent switching of circularly
polarized fluorescent and phosphorescent performance for the same mole-
cules remain a formidable challenge. Herein, we propose a strategy to custo-
mized design of circularly polarized phosphorescent materials based on large
language models and transfer learning methods, which not only enables effi-
cient identification of suitable synthesis precursors, but also provides valuable
guidance for experimental procedures. We demonstrate the significant
advantages of transfer learning with limited chemical data, and precisely fab-
ricate films with high glum (1.86), narrow full-width at half-maximum (49 nm)
and customized circularly polarized phosphorescent performance with tar-
geted spectral position. The inverse customization of materials with user-
specified circularly polarizedfluorescent/phosphorescent performance canbe
achieved, favoring their application in multicolor display and multi-
dimensional information encryption.

In recent years, circularly polarized phosphorescence (CPP) materials
have garnered significant interest due to their unique properties
including intrinsic chiroptical performance1, long lifetime, large Stokes
shift, and various potential applications in the field of 3D displays,
anticounterfeiting and soon2–6. To date, a variety of CPPmaterials such
as chiral inorganic materials7, organic small molecules8–11, self-
assembling and polymer systems12–14 have been developed and suc-
cessfully employed in various chiroptical applications including sen-
sing, displays, imaging and information encryption15–17. However, in
most cases, the luminescence asymmetry factor (glum) of the reported
CPPmaterials fallwithin the rangeof 10−3 to 10−2, limiting their practical
applications. To further amplify glum value, Prof. Deng et al.

successfully doped chiral fluorescent helical polymer with chiral
nematic liquid crystals to realize high glum of −1.8718. Similarly, Zhao
and his colleagues developed a long-lived room-temperature phos-
phorescent systemwith a high glum of 1.49 basedonpolymer-stabilized
cholesteric liquid crystals19. Extensive studies in this field are mainly
focused on combining dye components with synthesis of chiral crys-
tals or liquid crystal systems20,21, but few reports have been described
to achieve outstanding CPP performance in metal-free amorphous
films22. Compared with the well-established technique using chiral
molecules or assemblies23,24, twisted stacking of multiple achiral ani-
sotropic functional layers has become a popular method for fabricat-
ing chiral nanostructures with high glum values25–28,which offers more
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freedom to regulate the chiroptical activity. In the previous studies,
our group constructed a series of circularly polarized luminescence
materials, in which glum can reach up to 1.929,30. Different from fluor-
escent materials, phosphorescent molecules possess excellent pho-
tophysical behavior stemming from the transition from the triplet
excitons to the ground state31–33. Therefore, combining circularly
polarized fluorescent (CPL) and CPP properties into the samematerial
and realize simultaneous modulation of CPP and CPL (with same or
opposite handedness at targeted spectral position) is meaningful, as it
cannot only expand the freedomof chiral regulation but also integrate
new functionalities for applications. However, most reported phos-
phorescent materials exhibit broad full-width at half-maximum
(FWHM) and poor color purity. Additionally, due to the richness in
design space for such twist-stacking structures, traditional experi-
mental approaches based on trial-and-error are time-consuming and
inefficient. Even in the simplest case, all design parameters must be
simultaneously optimized, and the search-and-optimization process
has to be repeated from beginning to end for every target chiroptical
property (such as a certain glum value at a specific wavelength with a
suitable FWHM). Meanwhile, the discovery process of synthesis pre-
cursors relies on researchers gathering information from the litera-
ture, which significantly slows down the development efficiency of
new materials. Therefore, on-demand designing CPP materials with
high glum value (>1), narrowband emission and customized CPP per-
formance, especially from achiral amorphous films, remains a sig-
nificant challenge.

Nowadays, data-driven machine learning (ML) techniques are
rapidly gaining significant attention as a powerful and flexible
approach to addressing the aforementioned issues. In previous stu-
dies, Professor Feng34 and our group29 demonstrated ML-based tech-
niques toguide the synthesisofCPLmaterialswith high glum values and
multiple chiral regulation strategies. Typically, an ML model requires
training on a substantial amount of data to effectively predict complex
structure-property relationships; however, in many instances, the
scarcity of high-quality data limits its application35–37. To tackle this
challenge, transfer learning receives growing emphasis38,39. By pre-

training models on similar tasks with larger datasets and subsequently
fine-tuning them for target tasks, transfer learning effectively decrea-
ses the need for extensive data40,41. Yamada et al. developed a pre-
trained model library that enables high-performance predictions of
chemical properties under conditions of limited data42. In addition, the
powerful text comprehension capabilities of generative language
models position them as promising tools for chemical text mining43.
With the availability of large-scale materials synthesis literature, large
language models (LLMs) can now be used to recommend synthesis
precursors for new target materials44,45. It is worth noting that com-
bining LLMs with transfer learning methods can provide valuable
guidance for the selection of suitable phosphorescent molecules and
the construction of the chiral layer. The on-demand inverse design of
CPP films with high glum values, narrowband emission and customized
CPP performance guided by this integrated approach with limited
chemical data, has not yet been described to date.

In this work, a strategy is utilized to guide the on-demand custo-
mization ofCPPfilms based on LLMsand transfer learning (as shown in
Fig. 1). Firstly, an LLM is used to search for phosphorescent molecules
for the preparation ofCPPmaterials (Fig. 1a).More than500 articles on
phosphorescent materials are processed by an embedding model to
build a vector database of literature texts, which is later referenced by
an LLM via the Retrieval Augmented Generation (RAG) method to
generate a summary of molecules and properties of each article using
prompt words, the LLM is used to summarize and screen the text to
generate a list of molecules that met the requirements. Here, three
phosphorescent molecules are selected manually from the list. Sec-
ondly, to build the relationship between structure and function of the
CPP materials, machine learning has been introduced (Fig. 1b). Given
the complexity of the twisted-stacking structure and the richness in
design space, constructing a relationship between structure/process
parameters and target CPP performance poses a challenge. Therefore,
transfer learning is utilized to construct the structure-function
relationship, which facilitates accurate forward prediction of CPP
performance from experimental phosphorescent spectra and struc-
ture/process parameters. Finally, inverse design and customized
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Fig. 1 | The on-demand customization of CPP films with target functionality
guided by LLMs and transfer learning. a Recommendation of target materials
with LLMs. b Construction of the structure-spectrum-function relationship based

on transfer learning. c Inverse design and customized manufacturing of CPP films
with target functionality.
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manufacturing of CPP films with target functionality can be achieved
(Fig. 1c). We demonstrate the significant advantages of transfer
learning with limited chemical data, which can guide the precise fab-
rication of chiral phosphorescent films with high glum up to 1.86, nar-
row FWHM of 49 nm and customized CPP performance with the
targeted spectral position across the full visible spectrum. Moreover,
the proposed inverse design enables flexible switching of phosphor-
escent color with high purity of 95% for multicolor display and cus-
tomization of both CPL and CPP performance (with the same or
opposite handedness at targeted spectral position) from the same
phosphorescent molecules, which provides a dimension for informa-
tion encryption. It is anticipated that these findings not only provide
the customization design of CPP materials but also are of great fun-
damental value for underscoring the promise of ML-driven design
approaches in the development of functional materials.

Results
LLMs for precursor selection and CPP performance regulation
In the preparation of CPP materials with high glum values, high quan-
tum efficiency and long lifetime, phosphorescent molecule selection
plays a crucial role in governing the preparation pathway. To extract
the complex anddiverse information embedded in chemical literature,
LLM was used to choose suitable phosphorescent molecules (Fig. 2a).
We collected over 500 documents on the design and discovery of
phosphorescent materials, downloaded them as PDF files and pro-
cessed them into vector databases using LangChain. Utilizing RAG
technology, we summarized the textual information and compiled
these summaries into a database. This approach processes scientific
articles in their entirety. It creates vector embeddings of textual con-
tent (paragraphs), then retrieves relevant information based on the
semantic similarity of the text, and augments the LLM’s generation
with this contextually relevant information. Furthermore, we enabled
Long Contextmode in LLMs tomaintain a detailed record of extended
textual content, thus facilitating the processing and generation of
complex data sets. Our system processes chemical information as it
naturally appears within scientific literature. The LLM processes this
information contextually, including any SMILES strings, chemical

formulas, or descriptive text aboutmolecular properties thatmight be
present in the retrieved passages. This approach allows for a more
natural and comprehensive handling of chemical information within
the framework of scientific knowledge (Supplementary Fig. 1). To
focus our study, we applied constraints such as room-temperature,
long lifetime, and high quantum efficiency, leading to a list of phos-
phorescent molecules generated by the LLM (Supplementary Table 1).
From this list, wemanually selected three molecules: 1-pyrenylboronic
acid (PA), 7H-dibenzo[c,g]-carbazole (DBCz), and 11,12-dihy-
droindolo[2,3-a]carbazole (ICz). These molecules all exhibited similar
blue fluorescence emissions, but different phosphorescence emis-
sions, including blue for ICz, green for DBCz and red for PA, when they
were compounded with polyvinyl alcohol (PVA), respectively (Fig. 2a
and Supplementary Figs. 2–4). All chiroptical films were prepared by
overlaying one transparent oriented PVA layer (as a phase retarder)
onto another highly oriented dyed PVA layer (as a polarizer with
selective absorption) in a twisted fashion to fabricate a twisted stack-
ing structure30. Large optical activities can be observed when the twist
angle is ±45° (Supplementary Fig. 5), in accordancewith the prediction
based on Jones Matrix mechanism46. There are several variable para-
meters, including the thickness and stretching degree of the trans-
parent oriented PVA layer, greyscale and dye molecules selection of
highly oriented dyed films as well as the twist angle, which greatly
affect their optical activities (Supplementary Figs. 6–9). Then, CPP
materials can be obtained by integrating isotropic phosphorescent
molecules/PVAhybridfilmswith above twisted stacking structurefilms
(Fig. 2b). Their CPL and CPP performance could be defined by asym-
metry factor glum (glum = 2(IL-IR)/(IL + IR)), where IL and IR were the
emissions of left-handed and right-handed circularly polarized light.
The generation of CPL andCPP could be understood based on aMuller
matrix for a combination of polarizer and phase retarder25. The linearly
polarized fluorescence (phosphorescence) would be produced after
passing through the highly oriented dyed PVA layer (as the polarizer),
and then CPP would be produced after passing through the transpar-
ent oriented PVA layer (as a phase retarder) in a twisted fashion
(Fig. 2b). In totalmore than 108 possible combinations are estimated to
achieve different CPP performance. Flexibly manipulating the CPP
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performance in a simple way always remains challenging15. By altering
the above variable structure/processing parameters and their combi-
nations, a continuous modulation of CPP performance including the
sign, magnitude, peak position as well as FWHM could be achieved
(Fig. 2c–e and Supplementary Figs. 10–12).

Transfer learning model for forward prediction
Due to the richness of design space, precise forward prediction of the
CPP performance of the hybrid films based on traditional trial-and-
error approaches seemed unlikely, since these variable parameters
often correlated with each other. In our previous work, we established
a quantitative structure-spectrum-function relationship between the
structural parameters, spectral features and circular dichroism (CD)
properties of the twisted stacking structure, and realized precise for-
ward prediction based on machine learning techniques29. Herein, the
CD dataset of the twisted-stacking structures in our previous work was
recruited to solve this problem. Predicting theCD spectrawas adapted
as a pre-training task for assisting the prediction of glum for CPP
materials. To further enhance the accuracy of the forward prediction
model, 135 combinations of parameters were employed to construct
CPP hybrid films, and their CPL as well as CPP performance was mea-
sured. The fluorescence spectrometer was used to measure the emis-
sion spectra of the composite film in the presence of left-handed and
right-handed circular polarizers. Then, according to the formula
CPL = IL − IR, the circular polarized luminescent properties of the
composite film were obtained. Furthermore, based on the formula
glum = 2(IL-IR)/(IL + IR), the spectrumof glum varyingwith thewavelength
was calculated, which was used as the data source for model training
(Supplementary Figs. 13–15). This dataset was used for both training
and validation of the forward predictionmodel. To efficiently simulate
the glum spectra properties of the CPP materials, a forward prediction
model based on transfer learning has been developed. Given the
spectroscopic properties of glum, the forward prediction neural net-
work was modeled as a multivariate regression problem. As shown in
Fig. 3a, the model input consisted of two components: one was the

spectral embedding descriptor, which included various structural and
process parameters such as thickness, the stretching degree, grays-
cale, twist angle, and dye absorption. The composition of the spectral
embedding descriptor vector is detailed in Supplementary Table 2.
The other input is the emission spectrum of the phosphorescent
molecule, exhibiting a wavelength range spanning from 400 to
700 nmand adata interval set at0.2 nm. To illustrate the validity of the
selected structural and process parameters, we analyzed the correla-
tion among the four features using a correlation coefficient heatmap.
The four elements in Fig. 3b represent the types of polarization layer
dyes and phosphorescent molecules, the thickness of the phase delay
layer, and the stretching degree of the phase delay layer, respectively.
While the non-primary diagonal elements in the figure are close to 0,
indicating that there is no linear correlation between the variables A, B,
C, and D. The results indicated that these variables were completely
independent of each other, which further validated the balance and
effectiveness of the dataset (Fig. 3b). During the pre-training phase, an
encoder-decoder architectural framework was utilized to map the
structural and process parameters of the film into an embedding
space, subsequent to which the embedded information was decoded
for the generation of CD spectra. The latent representations in the
embedding spacewere extracted, implicitly containing information on
the absorption properties of chiral films, facilitating knowledge
transfer and supporting the subsequent integrated modeling of glum
spectra. In the fine-tuning phase, the model used the pre-trained
encoder to generate latent features. These latent features were con-
catenated with the phosphorescent molecular emission spectra and
fed into a Multi-Layer Perceptron (MLP), which output a reference
vector x of the same dimension as the glum spectrum. Considering the
differentmodulationmechanismsof process/structural parameters on
the glum spectrum, a parameter encoder was also designed to encode
the process/structural parameters into offset factor β and weight
factor α. The implementation details of the parameter encoder were
introduced in theMethod-Model Architecture section. Using these two
factors, the reference vector x was further adjusted to generate the
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final prediction result λ, as expressed in the following equation:

λ=α � ðx +βÞ ð1Þ

We established a model evaluation scheme with 10-fold cross-
validation and employed five evaluation metrics to assess the model
performance, includingmean square error (MSE), mean absolute error
(MAE), root mean square error (RMSE), coefficient of determination
(R2) and Pearson correlation coefficient (Pearson). For different
models, higher MSE, MAE, and RMSE values indicate worse model
performance, while higher R² and Pearson values reflect better
performance. We comparatively analyzed our model with several
other machine learning regression models including Random Forest
(RF), Support Vector Regression (SVR), and XGBoost algorithms. Our
model demonstrated the best predictive performance, with the lowest
MAE of 0.14 and the highest R² of 0.89. Furthermore, our model
exhibited a relatively lower standard deviation in the predicted results,
indicating its superior consistency and stability (Fig. 3c and Supple-
mentary Table 3). Figure 3d visualizes the glum predictions of a test
sample against experimental fittings, showcasing the model’s predic-
tion capability. The predicted curve closely aligns with the experi-
mental curve, achieving an excellent R² of 0.993. The points in the
scatter plot predominantly follow the line of y = x, suggesting a strong
consistency between the predicted and experimental values. Addi-
tionally, to evaluate the effectiveness of the parameter encoder and
transfer learning, ablation experiments were designed to compare
performance differences with the absence of various components.
Compared to models missing the offset factor, weight factor, or both,
theoriginal complete parameter encoding resulted in better predictive
performance, indicating that both encoding factors contribute to
more effective learning of the structure-spectrum-function relation-
ship (Fig. 3e and Supplementary Table 4). To demonstrate the
necessity of adopting transfer learning, we compared our model with
the model without transfer learning. The result showed our approach
significantly improved prediction accuracy. The MAE decreased from

0.24 to 0.14 (Fig. 3f and Supplementary Table 5), demonstrating that
the material latent representations extracted via transfer learning
effectively capture the absorption characteristics of the filmmaterials.
In order to further illustrate the predicted effect of our model and its
practical application value, we also explored the model’s zero-shot
regression capability. We prepared CPP materials in which methyl
orange was used for the dye layer in the chiral film and our model had
not been trainedon experimental data for thisdye. The robustness and
generalization potential of the method was demonstrated by compar-
ing the curves given by the model with the curves obtained from the
experiments (Fig. 3g). As a polarized dye present in a pre-trained
database, it is possible to predict the glum spectrumof theCPPmaterial
made from this dye, even if the model has not been trained on
related data.

Inverse design of CPP materials
The established structure-spectrum-function relationship of CPP
materials based on transfer learning can be further exploited in an
inverse model for personalized customization of CPP materials with
target functionality. Utilizing a forward prediction model, a virtual
database was established, containing various predefined structural
parameter combinations and their corresponding glum spectra, gen-
erated by the forward model. Therefore, the predefined structural
parameter combinations expanded the existingdataset of 135 samples,
which includes all possible combinations of 41 different stretching
degrees (ranging from 80% to 120%) and other parameters within
original ranges, totaling 1,107 data points. Researchers can formulate
structural expert rules based on specific experimental scenarios and
retrieve data from the virtual database according to these rules. After
comparison and selection, the system will generate all possible struc-
tural parameter combinations that meet the required criteria, and the
inversedesign systemwasestablished, as outlined inFig. 4a. The target
CPP performance is user-defined and can take any form expressible
from theCPP spectral features, e.g., a certainglum value (1.5) at a certain
wavelength (450nm, 550 nm, and 650nm, respectively). Upon
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inputting the target glum value and corresponding wavelength into the
inverse design system, a set of structure/process parameters combi-
nations and phosphorescent molecule selections was generated, as
shown in Fig. 4b. There are typicallymany available answers for a given
target, since the hybrid filmswith different phosphorescentmolecules
and various structure/process parameters combinations would exhibit
the same glum value at a certain wavelength. To evaluate the accuracy
of the inverse design system, one of the possible parameters combi-
nations was chosen to experimentally construct the hybrid film. As
shown in Fig. 4c and 4d, the experimentally measured glum spectra
matchedwell with the predicted spectra andmost of the data points in
the scatter plot align closely with the y = x line, with an R² value of
0.997, indicating its excellent accuracy. Figure 4e contains a histogram
for the inversely designed and as-prepared films that can generate glum
valueof 1.5 at 450 nm, 550nm, and650nm, respectively. Theoutput of
the inverse design system always consistently satisfies the specified
design requirements (Supplementary Fig. 16), with errors maintained
below 10%.Moreover, when a series of glum values (0.5, 0.9, 1.3, 1.5, and
1.7) at a certain wavelength (e.g. around 550 nm) were needed, the
inverse design system can successfully report a set of possible selec-
tions of phosphorescent molecules and structure/process parameters
combinations. Compared with the predicted spectra, the experimen-
tally measured glum spectra exhibited excellent accuracy (Fig. 4f and
Supplementary Fig. 17), confirming the success of our inverse design
system for CPP films with target glum value at a certain wavelength.

Inverse design of multicolor display
The successful achievement of the inverse design system in precise
predictionof singleglum values at a singlewavelength forCPPmaterials
inspired us to extend our method to multiple glum values at multiple
wavelengths, to meet the demand of multicolor display. As illustrated
in Fig. 5a, the resultant CPP color depended not only on the selection
of phosphorescent molecules but also on the constitution of the
hybrid films. Taking DBCz as an example, in the absence of the chiral
layer, the DBCz/PVA hybrid films exhibited green broad bandwidth

phosphorescent emission, as depicted in Fig. 5b and 5c. Overlaying a
transparent oriented PVA layer (the stretching degree of 90% as a
phase retarder) onto another highly oriented Congo Red dyed PVA
layer (as a polarizer) was utilized to fabricate a twisted stacking chiral
layer. It should be noted here that the formed chiral layer exhibited
giant optical activity and frequency selective transmission, which can
be exploited as a circular polarization-based filter (CPF) for multiplex
color switching. As expected, two different phosphorescent spectra
could be obtained through L- or R-CPF, respectively (Fig. 5b). Thus, a
green-cyan color switching in phosphorescent emission could be
observed when viewed through L-CPF. Similarly, green-reddish orange
color switching in phosphorescent emission could be observed when
viewed through R-CPF (Fig. 5c, chiral layer 1). As mentioned above, the
effective phosphorescent color switching greatly depended on their
giant optical activity and frequency selective absorption properties of
the chiral layer. Interestingly, by only varying the stretching degree of
the transparent PVA layer (e.g. 120%), the chiral layer exhibited cor-
responding red shift in CD characterizations (Supplementary Fig. 18).
Therefore, different color switching in phosphorescent emission could
be observed when viewed through L- or R-CPF, respectively (Fig. 5c
chiral layer 2, and Supplementary Fig. 19). Notably, only increasing the
stretching degree of the PVA layer induces an overall red shift in the
glum spectrum (Fig. 5d and Supplementary Fig. 20), greatly enhancing
its effective color switching range in phosphorescent emission. Eachof
the three different constitutions of the hybrid films (including ICz,
DBCz and PA) could work as a phosphorescent emission switch among
three prime colors. Together, these three systems constitute a circular
polarization-based full-color phosphorescent display. Any colorwithin
the enclosed area in the CIE1931 chromaticity diagram could be
achieved and further switched based on above inverse design model
for selecting suitable phosphorescent molecules and structure/pro-
cess parameters combinations. This color space covers ~145% of a
typical sRGB color gamut found in commercial color displays (Fig. 5e).
For comparison, the color gamut of our previous system without the
help of inverse design only reached 67% of the sRGB. Furthermore, our
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method effectively narrows the full-width at half maximum (FWHM) of
the emission spectra of the phosphorescent materials, which can be
utilized to enhance the emission color purity. For instance, for DBCz/
PVA, by selecting a chiral layer with Congo Red dye, thickness of 80
μm, and stretching degree of 110%, the color purity was increased to
about 95%, with the corresponding CIE coordinates being (0.480,
0.503) (Supplementary Fig. 21).

Inverse design of 4D encrypting information
It would be highly desirable to design and controllably synthesize CPP
materials with programmable CPL and CPP performance, e.g. with the
same or opposite handedness, which could serve as unique photonic
components in chiral optoelectronics and nanophotonics. However,
the customized manufacturing of CPP materials with tailorable CPL
and CPP properties would be very difficult based on traditional tech-
niques such as the utilization of chiral dopants or chiral liquid crystals.
But the success of inverse design for the chiral layer with multiple gabs
values at multiple wavelengths allows us to easily customize pro-
grammable CPL and CPP performance from the same phosphorescent
layer. As shown in Fig. 6a, the target function was user defined (CPL
and CPP performance with the same or opposite handedness) and was
input into the computational brain, which could be processed with the
inverse design model and a set of structure/processing parameters
that approaches the target function were reported. For example, we
defined left-handed blue CPL but right-handed green CPP as the target
function, which was input into the inverse design model, and the sui-
table structure/processing parameters were given (Supplementary
Fig. 22). As expected, only blue CPL “中” image could be viewed
through L-CPF,while greenCPP “中” image could be viewed throughR-
CPF, indicating that the produced sample exhibited the customized
CPL and CPP performance with opposite handedness (Fig. 6b). Inter-
estingly, wedefined right-handed blueCPL and greenCPP as the target
function, and the sample could be successfully fabricated with right-
handed blue CPL and green CPP performance based on the inverse
design model. Similarly, the target function with same handed blue
CPL and CPP or opposite handed blue CPL and red CPP performance
could be realized successfully (Supplementary Figs. 23 and 24),
experimentally demonstrating the excellent accuracy of our inverse

designmodel. All above results indicated the successful customization
of programmable CPL and CPP performance at multiple predesigned
wavelengths.

Further, we attempted to combine their programmable CPL and
CPP characteristics to achieve 4D information encryption. As shown in
Fig. 6c, the color of the phosphorescence emission is used as the first
dimensional code (1stD code). The blue phosphorescent emission
represents ‘0’, while others represent ‘1’. The handedness of the CPP
could be used as the second dimensional code. The left-handed CPP
represents ‘0’, while right-handed CPP represents ‘1’. As mentioned
above, different color switching in phosphorescent emission could be
observed through L- or R-CPF, respectively. By varying only the
stretching degree of the PVA layer, different color switching range in
phosphorescent emission could be achieved even from the same
phosphorescent layer. Similarly, programmable CPL and CPP proper-
ties with same or opposite handedness could also be achieved from
the same phosphorescent layer. Consequently, the effective color
switching in phosphorescence emission and programmable CPL and
CPP properties could be used as two other dimensions of encryption
(Fig. 6c). Such a 4D bar code is much more complex than the other
traditional system using only color, lifetime and chirality as the
dimensions of encryption. Taking advantage of the above multi-mode
characteristics of our 4D information encryption system, the infor-
mation capacity and security would be greatly enhanced, holding
significant potential applications for safeguarding valuable and
authentic information.

Discussion
In summary, we demonstrated a workflow for the on-demand custo-
mization of functional materials with programmable CPL and CPP
performance based on LLMs and transfer learning methods. The
relationship between the structure of functional materials and their
CPL and CPP performance has been built, allowing us to not only
facilitate accurate forward prediction of CPP performance from
experimental structure/process parameters, but also provide valuable
guidance for personalized customization of CPP materials with target
functionality. We demonstrate the significant advantages of transfer
learning with limited chemical data, and facilitate the precise
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fabrication of CPP films with high glum up to 1.86, narrow full-width at
half-maximum (FWHM, 49 nm) and customize CPP performance with
targeted spectral position across the full visible spectrum. As a result,
the on-demand customized CPP materials were exploited to fabricate
programmable chiroptical components towards multiple practical
applications including multicolor display and 4D multi-mode infor-
mation encryption.

It is anticipated that these findings will not only shed light on the
inverse design of chiroptical materials and devices with target func-
tionalities, but also is of great fundamental value for discovering and
optimizing functionalmaterials for cutting-edge applications based on
ML-driven method.

Methods
Materials and instruments
All chemicals were used without further purification. PVA
(Mw:445000 g/mol), Direct Blue 71, Direct Yellow, and Congo Red
dyes were purchased fromAladdin. The PVA films (30 μm, 48 μm, 80
μm) were purchased from New Blue Sky Materials Industry Co., Ltd.
7H-dibenzo[c,g]-carbazole (DBCz), 11,12-dihydroindolo[2,3-a]carba-
zole (ICz) and 1-pyrenylboronic acid (PA) were purchased from
Aladdin, respectively. The DBCz/PVA, ICz/PVA and PA /PVA hybrid
phosphorescent films were separately prepared upon drop casting
method47–49. Chiral films with twisted-stacking structure were con-
structed by a modified method in analogy to the previous
procedure29. The top transparent highly stretched PVA layer acts as a
phase retarder, while the bottom stretched dyed PVA layer (with
Direct Blue 71, Congo Red and Direct Yellow, respectively) serves as
a polarizer. The stretching degree γ of PVA layer was characterized
as the ratio between the increased length and the original length
upon stretching. The bottom dyed PVA layer was rotated in either a
clockwise or counter-clockwise fashion with respect to the top layer
to generate chiroptical performance. Then the combination of
above phosphorescent film and chiral films could generate both CPL
and CPP performance.

Characterization
UV-vis absorption spectraweremeasuredbya ShimadzuUV-2700. The
fluorescence spectrum was obtained by a fluorescence spectrometer
(SHIMADZU RF-6000), while phosphorescence luminescence spec-
trum was obtained by other fluorescence spectrometer (Hitachi F-
4700). The asymmetry factor of luminescencewas calculated based on
glum = 2×(IL-IR)/(IL + IR) (the detail was described in Supplementary
Fig. 25). In order to verify the correctness of the method, circular
polarized photoluminescence was directly measured using a JASCO
CPL-300 spectrometer. CD characterization was performed by a
commercial CD spectrometer (JASCO-1500). Photographs were cap-
tured using a Redmi K50 smartphone under UV lamp illumination at
room temperature.

Dataset
The dataset used for pre-training contains 1,493 samples, all of which
were collected by our group in previous work29. Each sample includes
four structural/process parameters, the selective absorption of dye
molecules, and the corresponding CD spectra of the material.

The Fine-tuning dataset contains two sets of samples, each con-
sisting of 135 samples. The input information for each sample includes
the phosphorescent and fluorescence luminescence spectra of phos-
phorescent molecules (corresponding to the two groups of samples),
the selective absorption of dye molecules, and four structural para-
meters. Specifically, three luminescentmolecules, three dyemolecules
(Direct Blue 71, Direct Yellow, Congo Red), three film thicknesses (30
μm, 48 μm, 80 μm), five stretching degrees (80%, 90%, 100%, 110%,
120%), one grayscale, and one twist angle were selected. Each
set of samples was fully sampled for all possible combinations.

Correspondingly, theoutput of each sample is the glum spectrumof the
CPPmaterial fabricated under the given input parameter combination.

Model architecture
Forward prediction model includes two key components: pre-training
task and parameter-encoder. In the pre-training task, the encoder
employs a 5-layer MLP, while the decoder utilizes a 1-layer MLP.

The parameter encoder selectively encodes input features, to
generate the offset factor (β) and the weight factor (α). These factors
are implemented using MLPs and trainable embeddings. In particular,
the offset-related features, which include thickness, dye species, and
stretching properties, are first processed through a 3-layer MLP. The
output is then modulated via element-wise multiplication with a
learnable parameterized embedding to obtain the offset factor. Simi-
larly, the weight-related feature, which is thickness, is processed
through a dedicated 2-layer MLP to generate the weight factor. This
factor is further constrained within the range [−1.5,1.5] to prevent
excessive scaling effects. Since thickness and dye species are discrete
variables, one-hot encoding is applied before processing.

All models were constructed and trained using the PyTorch fra-
mework. The forward predictionmodel consists of 5.56M parameters,
while the pre-trained autoencoder contains 0.41M parameters. To
expand the training dataset, Gaussian noise with a standard deviation
of 1 × 10−7 was added to absorption properties of the dye before
training, so that the dataset was extended tenfold.

Ablation study
The ablation study focuses on two key modules: transfer learning and
the parameter encoder. Firstly, to verify the necessity and effective-
ness of transfer learning, we examined the model’s performance
without the pre-training task. Specifically, the spectral embedding
descriptors were concatenated with the emission spectra of phos-
phorescent molecules and directly fed into the MLP, bypassing the
encoder-decoder structure. Additionally, in order to analyze the
effectiveness and influence of the two factors from the parameter
encoder, threemodel variants were designed: (1) excluding the weight
factor α, (2) excluding the offset factor β, and (3) excluding both.
These three cases are where α equals [1], β equals [0], and both α
equals [1] and β equals [0] together.

Hyperparameters setting
The hyperparameter batch_size is set to 128, the initial learning rate is
5× 10−5, and the attenuation rate is 0.7. The optimization algorithm
used in the model is Adam, with training over 300 epochs. All training
hyperparameters and model configuration details are provided in
Supplementary Table 6. In addition, in order to make the most of the
dataset and evaluate the overall performance of the model, 10-fold
cross-validation was employed. As a result, all reported predictions are
basedon the entire dataset, without relying on single data split. Finally,
five independent repeated experiments were set up and showed
similar results.

Hardware setup and software environments
The experiments were conducted on a computing system equipped
with an NVIDIA RTX 2080 Ti GPU (11GB VRAM) and a 12 vCPU Intel
Xeon Platinum 8255C CPU @ 2.50GHz, supported by 40GB system
memory. The software stack included CUDA 11.8 for GPU acceleration,
Python 3.8 as the primary programming language, and Ubuntu 20.04
LTS as the operating system. The deep learning framework PyTorch
2.0.0 was utilized for model implementation and training, ensuring
compatibility with the specified hardware configuration. A complete
forward prediction cycle (training and validation) required approxi-
mately 9.5min on this setup. All experiments were performed under
this environment to maintain consistency in computational perfor-
mance and reproducibility.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its Supplementary Information. Source data are provided
with this paper. And the data are also available at https://doi.org/10.
5281/zenodo.1526172150. Source data are provided with this paper.

Code availability
The code supporting this study are available at GitHub https://github.
com/Zhangyh1432/CPP_Customize_Transfer_Learning/tree/main and
Zenodo https://doi.org/10.5281/zenodo.1520829351, which includes all
experimental steps, model implementations, and a detailed runtime
guide to ensure reproducibility.
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