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Mapping grey and white matter activity in
the human brain with isotropic ADC-fMRI

Arthur P. C. Spencer 1 , Jasmine Nguyen-Duc1,2, Inès de Riedmatten 1,2,
Filip Szczepankiewicz3 & Ileana O. Jelescu 1,2

Functional MRI (fMRI) using the blood-oxygen level dependent (BOLD) signal
provides valuable insight into grey matter activity. However, uncertainty sur-
rounds the white matter BOLD signal. Apparent diffusion coefficient (ADC)
offers an alternative fMRI contrast sensitive to transient cellular deformations
during neural activity, facilitating detection of both grey and white matter
activity. Further, through minimising vascular contamination, ADC-fMRI has
the potential to overcome the limited temporal specificity of the BOLD signal.
However, the use of linear diffusion encoding introduces sensitivity to fibre
directionality, while averaging over multiple directions comes at great cost to
temporal resolution. In this study, we used spherical b-tensor encoding to
impart diffusion sensitisation in all directions per shot, providing an ADC-fMRI
contrast capable of detecting activity independently of fibre directionality.We
provide evidence from two task-based experiments on a clinical scanner that
isotropic ADC-fMRI is more temporally specific than BOLD-fMRI, and offers
more balanced mapping of grey and white matter activity. We further
demonstrate that isotropic ADC-fMRI detects white matter activity indepen-
dently of fibre direction, while linear ADC-fMRI preferentially detects activity
in voxels containing fibres perpendicular to the diffusion encoding direction.
Thus, isotropic ADC-fMRI opens avenues for investigation into whole-brain
grey and white matter functional connectivity.

Non-invasive and direct detection of neural activity in vivo remains a
significant challenge in neuroimaging.While functional MRI (fMRI) has
substantially advanced our understanding of brain function, it is most
commonly acquired using gradient-echo sequences yielding blood-
oxygen level dependent (BOLD) contrast via T *

2 weighting
1. This carries

a number of inherent limitations due to its reliance on neurovascular
coupling, including limited spatial and temporal specificity2,3. Addi-
tionally, due to the reduced vasculature, different energy require-
ments, and altered haemodynamic response in white matter, previous
fMRI studies commonly attributed the white matter BOLD signal to
noise, treating it as a nuisance regressor4. There is emerging evidence
of neural activity being represented in the white matter BOLD signal in
both resting state and task fMRI, howevermost studies of whitematter

BOLD signal have tailored analysis methods specifically to white mat-
ter activation, obscuring simultaneous detection of both grey and
white matter activity5–7 (note that here we refer to “neural activity” in
white matter, meaning the propagation of action potentials for the
transfer of information between grey matter regions carrying out
neural processing). Other functional neuroimagingmethods also have
limited scope for detection of white matter function. For example, the
sensitivity of electro- and magneto-encephalography decays rapidly
with distance from the scalp, precluding accurate mapping of white
matter activity8. Since white matter function holds considerable diag-
nostic value for neurological and psychiatric diseases9, the inability to
reliably map grey and white matter simultaneously represents a sub-
stantial limitation of current non-invasive functional methods.

Received: 1 October 2024

Accepted: 20 May 2025

Check for updates

1Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland. 2Faculty of Biology and Medicine, University of Lausanne (UNIL),
Lausanne, Switzerland. 3Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden. e-mail: arthur.spencer@chuv.ch

Nature Communications |         (2025) 16:5036 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7869-6261
http://orcid.org/0000-0001-7869-6261
http://orcid.org/0000-0001-7869-6261
http://orcid.org/0000-0001-7869-6261
http://orcid.org/0000-0001-7869-6261
http://orcid.org/0000-0003-0383-4046
http://orcid.org/0000-0003-0383-4046
http://orcid.org/0000-0003-0383-4046
http://orcid.org/0000-0003-0383-4046
http://orcid.org/0000-0003-0383-4046
http://orcid.org/0000-0002-3664-0195
http://orcid.org/0000-0002-3664-0195
http://orcid.org/0000-0002-3664-0195
http://orcid.org/0000-0002-3664-0195
http://orcid.org/0000-0002-3664-0195
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60357-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60357-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60357-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60357-5&domain=pdf
mailto:arthur.spencer@chuv.ch
www.nature.com/naturecommunications


Diffusion-weighted functional MRI (dfMRI) has the potential to
overcome these limitations by detecting alterations to the diffusion of
water molecules caused by morphological changes occurring during
neural activity10,11. These sub-micrometre scale neuromorphological
changes to neuronal cell bodies12,13, neurites13,14, synaptic boutons14,
astrocytic processes15 and axons16 occur on a timescale ofmilliseconds
but can last several seconds upon sustained firing, as observed with
optical microscopy. Measuring these changes with dfMRI allows
detectionof neural activity in vivowithbetter temporal specificity than
BOLD-fMRI, evidenced by an earlier response and faster return to
baseline in response to task stimuli17–19.

The diffusion-sensitised spin-echo MRI signal with echo time TE is
characterised in the Gaussian phase approximation by

Sðb, tÞ= S0e�
TE

T2 ðtÞe�bADC, ð1Þ

therefore a conventional dfMRI acquisition is sensitive to both
apparent diffusion coefficient (ADC) and T2 changes, capturing both
neuromorphological andneurovascular (BOLD)fluctuations. Although
several previous studies have used dfMRI acquisitions with high
b-values to increase sensitivity to ADC changes, it has been demon-
strated that this signal remains sensitive to BOLD effects20. More
recently, ADChasbeen used as a functional contrast inorder to further
eliminate vascular contributions to the diffusion signal, increasing
specificity of the contrast to neural activity21–25.

ADC-fMRI aims to eliminate the influence of the vasculature on
the functional contrast via the T2 weighting, by taking the ratio of two
volumes acquired at different b-values and assuming T2(t + δt) ≈ T2(t),
giving

ADC =
1

b1 � b2
ln

S2
S1

: ð2Þ

An additional source of vascular contributions to this signal can
arise from the blood water pool in each voxel, where the increase in
blood volume and flow during the haemodynamic response can
translate into a change in ADC21,22,25. However, this contribution can be
minimised by choosing both b-values ≥200 s mm−2, thus largely sup-
pressing the blood water signal in all the diffusion-weighted images
acquired26. This approach of avoiding the perfusion regime in the ADC
calculation has previously been described as ‘synthetic’ or ‘shifted’
ADC27,28. With this shifted ADC approach, an ADC-fMRI acquisition can
be designed to directly measures changes in the intra- and extra-
cellular water diffusion, which arise due to neuromorphological
changes, whilst minimising contamination with signals from vascular
sources22,23.

Due to its sensitivity to neuromorphological coupling, ADC-fMRI
is theoretically capable of detecting both grey and white matter
activity; in a preclinical experiment, an ADC drop was reported in the
mouse optic nerve during visual stimulation only when the linear dif-
fusion encoding gradient direction was aligned perpendicular to optic
nerve fibres, and not when it was aligned parallel to them29,30. The
temporal resolution of the experiment (12.8minutes) only enabled the
estimation of one ADC value pre-, during and post-stimulus, preclud-
ing the analysis of a temporal response and possible habituation
effects. Linear ADC-fMRI acquisitions have since been introduced on
clinical scanners with reasonable temporal resolution for fMRI24,25.
However, as shown in ref. 29, with linear diffusion encoding, sensitivity
to activity within voxels containing organised white matter fibres
depends on the angle between the diffusion encoding direction and
the fibre direction, requiring acquisition of multiple diffusion direc-
tions to achieve directional independence21,22,31. In this study, we use
spherical b-tensor encoding32–35 to sensitise the signal to diffusivity in
all directions for every signal acquisition.With this isotropic ADC-fMRI
acquisition, we achieve more uniform sensitivity to activity-driven

microstructural fluctuations in grey and white matter, as well as suffi-
cient spatial and temporal resolution to enable a voxel-wise general
linear model analysis of ADC-fMRI timecourses in the human brain. In
particular, we aimed to detect activity throughout the optic radiation
and primary visual cortex in response to visual stimulation, and
throughout the corticospinal tract and the handportion of the primary
motor cortex in response to a motor task. We show that ADC-fMRI
provides better temporal specificity than BOLD-fMRI whilst over-
coming the dependence on white matter fibre direction exhibited by
linear ADC-fMRI36. Thus, we provide an isotropic ADC-fMRI contrast
sensitive to activity-related neuromophological changes in grey and
white matter, independent of tissue organisation and with sub-
stantially improved temporal resolution compared to averaging mul-
tiple linear diffusion encoding directions.

Results
Visual stimulation task
We acquired isotropic ADC-fMRI data with alternating b-values of 200
and 1000 smm−2, with spherical b-tensor encoding34, during a flashing
checkerboard visual stimulation task (n = 12 subjects). For comparison,
in a subset of subjects, we also acquired linear ADC-fMRI (n = 10) using
a twice-refocused spin-echo EPI sequence with bipolar linear encoding
gradients, and multi-echo gradient echo BOLD-fMRI (n = 7). Detailed
acquisition parameters are given in the Methods. For both linear
encoding and isotropic encoding, we analysed the ADC-fMRI time-
series calculated using Equation 2 in addition to analysing eachb-value
timeseries (b200-dfMRI and b1000-dfMRI) which are sensitive to both
ADC changes and T2 BOLD effects. Using a general linear model with
the task modelled as a boxcar function, we investigated task-
associated ADC decreases in ADC-fMRI and signal increases in b200-
dfMRI, b1000-dfMRI and BOLD-fMRI. Spatial maps showing group-
level activation during the visual stimulation task are shown in Fig. 1
and in Supplementary Figs. 1–4. Subject-specific spatial maps are
shown in Supplementary Figs. 5, 6. For completeness, BOLD-fMRI
group-level spatial maps are shown when convolving the task time-
series with the haemodynamic response function (Supplementary
Fig. 1), and ADC-fMRI group-level spatial maps are shown when con-
volving the task timeseries with the diffusion response function17

(Supplementary Fig. 2).
BOLD-fMRI spatial activation is localised to the visual cortex and

lateral geniculate nucleus, with few active voxels in the optic radiation.
Conversely, ADC-fMRI spatial maps for both linear and isotropic
encoding show activation clusters in the optic radiation as well as grey
matter in the visual cortex.However, activationwas notdetected along
the entire length of the optic radiation, likely due to signal-to-noise
ratio (SNR) limitations (see SNR maps in Supplementary Figs. 17, 18).
While the temporal SNR of BOLD-fMRI was >60 throughout the optic
radiation, that of isotropic ADC-fMRI ranged from 30 close to the
cortex to 15 near the thalamus, and was even lower for linear
ADC-fMRI.

The isotropic ADC-fMRI spatial map is more symmetrical than
linear ADC-fMRI, reflecting the independence of fibre direction of the
isotropic ADC-fMRI sequence. For both linear and isotropic encoding,
the b200-dfMRI spatial maps resemble those of BOLD-fMRI, with the
majority of active voxels in the visual cortex, while b1000-dfMRI cap-
tures a combination of the diffusivity changes seen in the ADC-fMRI
maps and the changes seen in the b200-dfMRI spatial maps due to the
T2 weighting of the dfMRI signal, thus displaying both grey and white
matter activation.

To compare sensitivity to activity in grey and white matter, we
measured the proportion of significant voxels from subject-level
cluster-corrected spatial maps (Supplementary Figs. 5, 6) in grey or
white matter, determined from the T1 image of each subject. In BOLD-
fMRI spatial maps, 12.4% of significant voxels were in white matter. In
linear ADC-fMRI spatial maps, 43.0% of significant voxels were in white
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matter, compared to 23.5% with linear b200-dfMRI and 23.6% with
linear b1000-dfMRI. In isotropic ADC-fMRI spatial maps, 46.0% of
significant voxels were in white matter, compared to 17.5% with iso-
tropic b200-dfMRI and 20.6% with isotropic b1000-dfMRI. Statistical
comparison at the subject level showed that ADC-fMRI detected a
significantly higher proportion of white matter voxels than BOLD-
fMRI, b200-dfMRI, and b1000-dfMRI, for both linear and isotropic
encoding (Supplementary Fig. 7, Supplementary Table 3).

In a supplementary experiment followingmethods proposed in
ref. 37, we found that the power spectrum of the mean BOLD-fMRI
timecourse within the optic radiation contained significant power at
the task frequency (see Supplementary Materials “Model-Free Fre-
quency Analysis”). Eroding the region of interest to only include the
core of the optic radiation revealed an altered BOLD response in
deep white matter. Despite finding significant power at the task
frequency in a region of interest, the optic radiation was not high-
lighted by voxel-wise general linear model analysis of BOLD-fMRI
timeseries.

Figure 2 shows the average ADC and signal responses to the visual
task. Peak response amplitudes are shown in Supplementary Table 1,
and the time to reach 50% activation from task onset or offset are
shown inSupplementaryTable 2. The time from taskonset to 50%peak
activation was quicker for both linear ADC-fMRI (1.3 s on the average
response) and isotropic ADC-fMRI (1.5 s) than BOLD-fMRI (4.1 s). The
rise time of b200-dfMRI (1.4 s linear, 2.6 s isotropic) and b1000-dfMRI
(1.6 s linear, 2.1 s isotropic)was alsoquicker than BOLD-fMRI.However,
both linear and isotropic b200-dfMRI and b1000-dfMRI had a slow
decline from task offset to 50% activation (4.2–4.7 s) approaching that
of BOLD-fMRI (5.7 s). The return to 50% activation was slightly slower
for isotropic ADC-fMRI (1.8 s) than linear ADC-fMRI (1.1 s), possibly
reflecting some vascular contamination of the signal in the former due
to the lack of compensation for cross-terms between diffusion-
weighting gradients and susceptibility-induced background gradient
fields (see Discussion). Comparison of rise and fall times at the subject
level showed that these differences between contrasts were significant
(Supplementary Fig. 8, Supplementary Table 4). When measuring the

Fig. 1 | Visual task group-level spatial maps. Colour bars show z-scores (mixed
effects, cluster-corrected, z ≥ 1.5, p <0.05) for ADC-fMRI, b200-dfMRI and b1000-
dfMRI with linear encoding (A, B, and C, respectively; n = 10) and isotropic
encoding (D, E, and F, respectively; n = 12), in addition to BOLD-fMRI (G; n = 7). For

anatomical reference, Juelich atlas regions defining the visual cortex and optic
radiation are overlaid on the MNI152 standard template. ADC Apparent
Diffusion Coefficient, BOLD blood-oxygen level dependent, dfMRI diffusion
functional MRI.
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response averaged over significant voxels within subject-specific grey
and white matter tissues maps, the amplitude of the average BOLD
response was lower in white matter (1.2%; Fig. 2I) than grey matter
(2.7%; Fig. 2F), reflecting the differences between the vascularisation of
each tissue. The amplitude of the average linear ADC-fMRI response
was similar in grey and white matter (-1.3%; Fig. 2D, G). With isotropic
encoding, this response was only slightly smaller in white matter
(-1.0%; Fig. 2H) compared to grey matter (-1.2%; Fig. 2E). In white
matter, the average response with isotropic ADC-fMRI was slightly
lower in amplitude than linear ADC-fMRI (-1.0% vs -1.3%). This could be
due to isotropic encoding measuring average ADC changes over all
spatial directions (therefore including the smaller changes in diffusion
parallel to fibres), in contrast with linear encoding measurements
which may be significant only when maximally sensitive to fibres per-
pendicular to the diffusion encoding direction.

Directionality
We then aimed to determine the sensitivity of ADC-fMRI acquisitions
to white matter fibre organisation. To measure the directionality of
white matter fibres, we acquired multi-shell diffusion-weighted ima-
ging data in each subject and performed constrained spherical
deconvolution to obtain the fibre orientation distribution (FOD) in
each voxel (see Methods). We defined the fibre direction as the
direction of the largest FOD peak, then measured the angle between
the fibre direction and the diffusion encoding direction from the linear

ADC-fMRI acquisition (which was also used as the reference direction
for the spherical b-tensor encoding waveform).

In voxels active during visual stimulation, the distribution of fibre
angles differed between isotropic and linear ADC-fMRI (p <0.0001,
two-sample Kolmogorov-Smirnov test), with linear ADC-fMRI display-
ing a preference for detecting activity in voxels containing fibres more
perpendicular to the diffusion encoding direction (Fig. 3A). Addition-
ally, while the percentage ADC change measured in each significant
voxel with isotropic ADC-fMRI was consistent across fibre angles, lin-
ear ADC-fMRI yielded larger magnitude ADC changes at higher angles
(Fig. 3B). This exemplifies the increased sensitivity of linear ADC-fMRI
in voxels containing fibres perpendicular to the diffusion encoding
direction.

In silico experiments. To assess the effect of fibre angle on the ADC
changes measured by linear and isotropic ADC-fMRI, we carried out in
silico diffusion MRI experiments using the Monte Carlo Diffusion
Simulator38 on numerical white matter phantoms of densely-packed
realistic axons generated by the CATERPillar tool39. Axons were swol-
len (by 0.25%, 0.5%, 0.75%, and 1% of their original volume) and ADC
was measured as a percentage change from baseline. In linear ADC-
fMRI simulations using a pulsed gradient pair, there was a strong
dependence of ADC change on the angle between the fibre population
and the diffusion encoding direction (Fig. 3C), with the trend becom-
ing steeper with larger amounts of swelling. In isotropic ADC-fMRI

Fig. 2 | Visual task response in active voxels from subject-level spatial maps.
Plots show the average timecourse, with bars indicating the standard error of the
mean across subjects (linear n = 10; isotropic n = 12; BOLD n = 7). Subject-specific
timecourses were averaged across epochs and across voxels in subject-level spatial
maps (general linear model, cluster-corrected, z ≥ 2.3, p <0.05). Time is given in

reference to the task onset, with the task stimulation duration indicated by the
shaded area. This is shown for all significant voxels (A–C) and for significant voxels
within subject-specific maps of grey (D–F) and white matter (G–I). ADC Apparent
Diffusion Coefficient, BOLD blood-oxygen level dependent.
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simulations, the ADC change was consistent across fibre angles
(Fig. 3D). Supplementary Fig. 10 shows the simulated intracellular and
extracellular ADC changes as a function of axonal volume swelling and
angle, separately for each compartment, which showcases thatmostof
the “combined” ADC change is driven by a change in the extracellular
water with swelling, the latter also showing a more marked depen-
dence on fibre angle. Supplementary Fig. 11 shows the intracellular,
extracellular and combined baseline ADC values (i.e. with no cell
swelling) measured at different fibre angles, and the intracellular
volume fraction at each swelling percentage. This demonstrates that
the combined ADC drop is also, to a smaller extent, influenced by an
increase in the intracellular water fraction (which has comparatively
lower diffusivity than the extracellular water). Additionally, this shows
that the measured ADC difference between intracellular and extra-
cellular water is greater at higher linear encoding angles to the fibre.
Therefore, a given increase in intracellular volume fraction would
result in a larger ADC change at a higher angle to the fibre. Thus, both
of these mechanisms whereby the cell swelling influences the mea-
sured ADC change (the changes to extracellular diffusivity, and the
increase in intracellular contributions to the signal) are dependent on
fibre angle.

Motor task
To confirm that these results are not specific to the visual system, we
also acquired isotropic ADC-fMRI and BOLD-fMRI during a bilateral
finger-tapping motor task (n = 11 subjects). Isotropic ADC-fMRI spatial
maps show a group-level activation cluster overlapping with the left
primary motor cortex and left primary somatosensory cortex (Fig. 4A
and Supplementary Fig. 14). Observing the overlaid subject-level spa-
tialmaps following subject-level cluster correction (Fig. 4B) shows that
bilateral activation was detected across individuals. Spatial maps from
b200-dfMRI, b1000-dfMRI and BOLD-fMRI showed group-level wide-
spread bilateral activation of the motor cortices, and BOLD-fMRI also
detected activation in the basal ganglia (Fig. 4C and Supplementary
Fig. 12). There was also some activation in the temporal lobe, which
may reflect activation of brain areas involved in interpreting the task
instructions40. For completeness, BOLD-fMRI group-level spatial maps
are shown when convolving the task timeseries with the haemody-
namic response function (Supplementary Fig. 12), and ADC-fMRI
group-level spatial maps are shown when convolving the task
timeseries with the diffusion response function17 (Supplemen-
tary Fig. 13).

Spatial maps from b200-dfMRI, b1000-dfMRI and BOLD-fMRI
were spread across Brodmann Areas (BA) delineating primary soma-
tosensory cortex (BA1, BA2, BA3a, BA3b) and the posterior part of the
the primary motor cortex (BA4p). ADC-fMRI activation was
more spatially specific to the anterior and posterior parts of the

primary motor cortex (BA4a, BA4p), and surrounding somatosensory
regions BA1 and BA3b, around the area associated with hand
movements41–43.

Similar to the visual response, ADC-fMRI detected a larger pro-
portion of active voxels in white matter than dfMRI and BOLD-fMRI. In
subject-level cluster-corrected spatial maps from the motor task, iso-
tropic ADC-fMRI detected 41.7% of voxels inwhitematter compared to
24.0% with b200-dfMRI, 23.1% with b1000-dfMRI, and 23.1% with
BOLD-fMRI. Comparison of these proportions at the subject
level confirmed significant differences between contrasts (p < 0.05;
Supplementary Fig. 7, Supplementary Table 3).

Fig. 3 | Comparison of the dependence of linear vs isotropicADC-fMRIonwhite
matter fibre angle. The diffusion encoding direction from the linear dfMRI
sequence was used as a reference to measure the angle to the largest FOD peak in
each active voxel in subject-level spatial maps (general linear model, cluster-cor-
rected, z ≥ 2.3, p <0.05), shown as a density distribution of significant voxels as a

functionof angle (A) and as thepercentage change inADCduring visual stimulation
for each voxel, as a function of angle (B). Simulated ADC changes when in silico
axons swell to 0–1% of their original volume are plotted as a function of angle for
linear ADC-fMRI (C) and isotropic ADC-fMRI (D). ADC Apparent Diffusion
Coefficient.
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Fig. 4 | Motor task spatialmaps.Group-level spatial maps are shown for isotropic
ADC-fMRI (mixed effects, cluster-corrected, z ≥ 1.5, p <0.05) with a zoomed-in
panel showing Brodmann Areas (BA) defining the primary somatosensory cortex
(BA1, 2, 3a, 3b) and primarymotor cortex (BA4a, 4p), delineated by the Juelich atlas
(A). Subject-level activation maps (general linear model, cluster correction at z ≥
2.3, p <0.05; shown in Supplementary Fig. 15) are aggregated for isotropic ADC-
fMRI (B), with the colourbar indicating the number of subjects (among n = 11) for
which each voxel was detected as active. Group-level spatial maps (mixed effects,
cluster corrected, z ≥ 1.5, p <0.05) are also shown for b200-dfMRI, b1000-dfMRI
and BOLD-fMRI (C). For anatomical reference, BA1-4 are displayed on an inflated
brain surface (D)90. ADC Apparent Diffusion Coefficient, BOLD blood-oxygen level
dependent, dfMRI diffusion functional MRI.
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The temporal characteristics of themotor response (Fig. 5) reflect
those observed in the visual response, with ADC-fMRI exhibiting sharp
onset and return to baseline (Supplementary Table 2). BOLD-fMRI also
had similar rise and fall times (4.4 and 6.0 s) to those in the visual task.
However, b200-dfMRI andb1000-dfMRI hadaquicker decay from task
offset to 50% activation in the motor task (2.6 and 1.3 s respectively)
than in the visual task. This appears to be due to an initial steep drop
upon ending the task, followed by a longer tail (below 50% activation)
resembling the BOLDdelay. Comparison at the subject level confirmed
that these differences between contrasts were significant (Supple-
mentary Fig. 8, Supplementary Table 4). The peak amplitude (Sup-
plementary Table 1) of the BOLD-fMRI response to the motor task was
much smaller than for visual stimulation (1.1% vs 2.5%), whereas the
ADC-fMRI response was similar in both tasks (-1.3% vs -1.1%).

Discussion
In this study, we introduced a spherical b-tensor encoding ADC-fMRI
acquisition for detection of neural activity in grey and white matter,
independent of underlying tissue organisation. To achieve the same
directional independencewith linear diffusion encodingwould require
acquisition of at least three orthogonal directions, thus we provide a
three-fold improvement in temporal resolution. To suppress vascular
contributions to the signal, we used a shifted ADC approach calculated
with b-values of 200 and 1000 s mm−2 23,25,27,28. We demonstrated that
isotropic ADC-fMRI detects neural activity at the group level during
separate visual and motor tasks, with higher temporal specificity than
dfMRI and BOLD-fMRI. In white matter, isotropic ADC-fMRI overcame
the sensitivity to fibre direction exhibited by linear ADC-fMRI and the
limited sensitivity exhibited by BOLD-fMRI. Thus, isotropic ADC-fMRI
provides amethod for detection of neural activity which is unbiased in
terms of: (i) brain tissue type; and (ii) axonal/dendritic organisation at
the voxel-level.

There is continued controversy surrounding the white matter
BOLD signal, with many earlier studies simply disregarding it as a
nuisance regressor due to a lack of clear evidence supporting neural
origins of the signal4. More recent work suggests that the BOLD signal
in white matter does reflect neural activity, however the reduced vas-
culature and altered haemodynamic response require distinct analysis
methods to detect white matter activation5–7, with task-dependent
activation often only becoming apparent when averaging the BOLD
signal within a region of interest. Additionally, the shape of the

haemodynamic response function has been shown to vary with white
matter depth7, obstructing the use of voxel-wise general linear model
analysiswithBOLD-fMRI. This is apparent in our results fromvisual and
motor tasks; BOLD-fMRI spatial maps showed primarily grey matter
activation, despite using a multi-echo acquisition to estimate T *

2 in
each voxel44, making the BOLD acquisition robust to the different T2 of
grey and white matter5. The BOLD-fMRI response in white matter was
primarily subcortical and had lower amplitude than in grey matter,
possibly indicating partial volume effects with grey matter. Thus, even
though it may be possible to detect white matter activity6,7,37,45,46,
BOLD-fMRI still expresses a strong preference for detection of grey
matter activity. Results of our model-free frequency analysis of BOLD-
fMRI data, following methods in ref. 37, exemplify these limitations;
while BOLD-fMRI is able to detect activity in white matter at the task
frequency, this activity has a different response in different brain
regions due to the heterogeneity of the haemodynamic response7. The
white matter BOLD response is slower than that of grey matter (which
is already delayed with respect to the underlying neuronal activity),
which obscures simultaneous detection of grey and white matter
activity, as demonstrated by the low sensitivity to white matter acti-
vation in voxel-wise general linear model analysis. This also obstructs
analyses which assume covarying BOLD activity arises from simulta-
neous neural activity, such as resting-state functional connectivity24.

While BOLD-fMRI has a varying response function as well as lower
sensitivity in white matter, ADC-fMRI appears to have similar sensi-
tivity in grey andwhitematter. This could bedue to both a comparable
effect size andmore similar response functions, although this remains
to be firmly established. The microscopic neuromorphological
alterations which are assumed to cause measurable changes to ADC
occur in myelinated axons16 in addition to cell bodies12,13, neurites13,14,
synaptic boutons14 and astrocytic processes15. This may explain why
ADC-fMRI expressed no clear preference for detecting activity in grey
or whitematter voxels. In line with previous findings of activity-related
changes to diffusivity47, we found comparable magnitude of ADC
changes in visual and motor regions, as well as in both grey and white
matter. Thus, while the heterogeneity of the BOLD response obstructs
simultaneous mapping of activity in grey and white matter, ADC-fMRI
provides brain-wide mapping of activity, lending it to whole-brain
functional connectivity studies including white matter regions (e.g.
resting-state ADC-fMRI24). In whitematter, ADC changes in a voxelmay
be influenced by both the number and synchrony of action potentials.
It may be possible that there is some coherence of action potentials
along the length of the tract, theoretically allowing the direction of
information propagation to be traced. However, this would occur on a
timescale much smaller than that of our TR. Therefore, the measured
morphological changes at the spatial and temporal scale in this study
most likely represent an overall increase in the number of action
potentials underlying block-design sustained visual or motor activity.

Due to the directional organisationofwhitematter fibres, activity-
inducedmicrostructural changes result in larger percentage change in
water diffusivity perpendicular to fibres, compared to parallel, as
demonstrated in vivo in themouse optic nerve29. Whenmeasuredwith
linear diffusion encoding gradients, the measured ADC change is
therefore dependent on the angle between the whitematter fibres and
the diffusion encoding direction, as demonstrated by our in silico
experiments. Previous studies have overcome this directional depen-
dence by averaging over multiple volumes with different diffusion
encoding directions21,22,31, however this greatly reduces the temporal
resolution. Spherical b-tensor encoding provides a method of mea-
suring average ADC over all directions per signal acquisition. This has
previously been used in a preclinical dfMRI study of somatosensory
activation in mice48. Their analysis focused on the comparison of grey
matter activation between isotropic dfMRI and BOLD-fMRI, and as
such did not assess directional dependence in white matter, or com-
pare with linear encoding. Furthermore, ref. 48 analysed isotropic

Fig. 5 | Motor task response in active voxels from subject-level spatial maps.
Plots show the average timecourse, with bars indicating the standard error across
subjects (n = 11). Subject-specific timecourses were averaged across epochs and
across voxels in subject-level spatial maps (general linearmodel, cluster corrected,
z ≥ 2.3, p <0.05). Time is given in reference to the task onset, with the task stimu-
lation duration indicated by the shaded area. Responses in grey and white matter
voxels are shown in Supplementary Fig. 16. ADC Apparent Diffusion Coefficient,
BOLD blood-oxygen level dependent.
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diffusion-weighted timecourses rather than ADC timecourses, retain-
ing T2-weighting and thus BOLD contributions. In our study, we used
isotropic ADC-fMRI on a clinical scanner, showing that we overcome
the dependence on directionality observed with linear encoding, and
the dependence on BOLD contributions. By measuring the underlying
fibre orientation in whitematter, we demonstrated that themagnitude
of ADC change was independent of the angle between the fibre
direction and the reference direction for b-tensor encoding. There-
fore, in addition to providing unbiasedmapping of activity across grey
and white matter, ADC-fMRI also provides unbiased mapping of
activity across all white matter areas, independent of fibre organisa-
tion. We note for completeness that the spherical diffusion encoding
effectively weights the signal by the trace of the diffusion tensor in the
case when diffusion displays no time-dependence. In case of diffusion
time-dependence, the estimated ADCmay exhibit both an overall bias
(which is not problematic for fMRI where we examine relative changes
between baseline and task) and some orientation-dependence49.
However, this effect was estimated to be relatively small (up to 5%)49

and further minimal in the case of clinical diffusion times (50–80 ms),
as diffusion time-dependence has been demonstrated in brain tissue
in vivo either for short times (<40 ms)50–52 or very long times
(>100 ms)53. Based on our waveform we estimated the diffusion times
of this sequence to be from 30 ms up to a limit imposed by the
encoding duration (<80 ms).

The primary motivation for developing an alternative functional
contrast to BOLD is to overcome the reliance on neurovascular cou-
pling. Many prior studies have used diffusion-weighted spin-echo
timecourses to remove signal contributions from intravascular fre-
quency shift and extravascular static dephasing54, detecting changes in
diffusivity with earlier onset than BOLD-fMRI11,17–20,55,56. Preclinical
results have shown, using neurovascular coupling inhibition, that the
dfMRI signal is dependent on neural activity via mechanisms other
than neurovascular coupling57,58. However, hyperoxia and hypercapnia
experiments, which aim to trigger a vascular response in the absence
of neural activity, showed that the BOLD response was attenuated in
diffusion-weighted timecourses but not completely eliminated20,57.
The dfMRI signal remains sensitive to T2 changes in the extravascular
tissues associated with deoxyhaemoglobin concentration (mainly
around capillaries, therefore not refocused by spin-echo sequences),
causing delayed return to baseline17,20. This is evident in our results
from b200-dfMRI and b1000-dfMRI which exhibit earlier onset than
BOLD-fMRI (via diffusion-weighting) but slow return to baseline (via
T2-weighting) (Figs. 2 and 5). Using ADC-fMRI, these contributions to
the signal are eliminated by taking the ratio between signals at dif-
ferent b-values to calculate ADC19,21,22,31,48. In contrast with many pre-
vious ADC-fMRI studies19,21,48, we also minimise direct contribution to
the contrast frombloodwater by adopting a shifted ADC approach27,28,
calculating the ADC from b-values ≥200 s mm−2 22,23,25.

Interactions between diffusion-weighting gradients and the
susceptibility-induced background field gradients, which vary around
vessels during the haemodynamic response, introduce another
potential link between the measured ADC signal and the vascular
response59. In our linear ADC-fMRI acquisition, the twice-refocused
spin-echo sequence minimises this modulation of effective diffusion-
weighting. However, the isotropic ADC-fMRI sequence is not com-
pensated for cross-terms, meaning there may be some contamination
of the isotropic ADC-fMRI signal with the vascular response. This may
explain the slightly delayed return to baseline in the visual task
response with isotropic ADC-fMRI in comparisonwith linear ADC-fMRI
(Fig. 2). In the response to the motor task, where the signal from the
vasculature is much smaller (as shown by the lower amplitude BOLD
response) this delayed return to baseline is no longer visible. It is
possible that this delayed return to baseline is partially due to a
delayed astrocytic response15,27,60. However, this delay is not seen in the
linear ADC-fMRI response, and is much less apparent in the isotropic

ADC-fMRI response to the motor task, where the BOLD response is
much lower in magnitude, suggesting it is more likely due to the
residual BOLD contamination of the isotropic ADC-fMRI sequence. In
future, the waveform used in the isotropic encoding sequence can be
designed to compensate for cross-terms in order to further eliminate
vascular contamination61.

In the ADC-fMRI acquisitions, it is difficult to separate the effects
of reduced sensitivity due to lower contrast to noise ratio and
increased spatial specificity. The group-level isotropic ADC-fMRI spa-
tial map from the motor task shows unilateral activation of the left
primarymotor and somatosensory cortices (Fig. 4A), corresponding to
areas associated with hand movement41–43 in the hemisphere con-
tralateral to the participants’ dominant hand. This was consistent with
the peak z-score of the BOLD-fMRI spatial map being in the left
hemisphere. While isotropic ADC-fMRI detected bilateral activation at
the individual level (Fig. 4B), the increased specificity (illustrated by
the spatial overlap with the hand movement areas) but also poorer
sensitivity as compared to BOLD-fMRI resulted in low overlap between
spatial maps of individuals62. Therefore, with our sample size, only
unilateral activation survived group-level cluster correction for the
motor task. Conversely, the widespread vascular response detected by
b200-dfMRI, b1000-dfMRI and BOLD-fMRI gives more spatial overlap
between subjects but also covers motor areas that are not specific to
the hand. Although we cannot determine whether the smaller spatial
extent of activation with ADC-fMRI is primarily due to increased spe-
cificity or decreased sensitivity, Fig. 1 shows that ADC-fMRI was able to
detect areas of activation in the optic radiation in response to visual
stimulation, which were not detected by BOLD-fMRI. Thus, even
despite the reduced sensitivity of ADC-fMRI, we have shown that it can
detect activation in the white matter that is otherwise not mapped by
BOLD-fMRI.

The activity detected in the optic radiation appears to be isolated
to the posterior regions of the tract, rather than distributed along its
entire length. Similarly, activity detected in the corticospinal tract was
limited to areas close to the cortex. This could be due to micro-
structural variations along the tract, such as a distribution in axon
diameters, which may induce a difference in both the coherence of
action potentials and the relative intra- and extra-cellular volume
change resulting from a given deformation during action potential
firing, ultimately inducing different magnitude ADC changes. Alter-
natively, this may simply be due to the lower SNR deeper in the brain
obscuring detection of activity (in isotropic ADC-fMRI data for the
visual task, temporal SNR was around 15 near the thalamus, compared
to around 30near the cortex). Theoretically, the use of higher b-values
would increase sensitivity to diffusion changes17, possibly allowing
detection of activation along the full optic radiation. However, the
even lower SNRassociatedwith higher b-valuesmakes thempractically
less favourable for ADC-fMRI (we measured a temporal SNR of <15
throughout theoptic radiation in linearADC-fMRI datawith b-values of
[1000, 2000] s mm-2 and did not find any activation clusters in these
data - see SupplementaryMaterials “High b-value Acquisition and SNR
Comparison”). Although isolated to the higher-SNR areas, ADC-fMRI
was better able to detect activity in white matter tracts than BOLD-
fMRI, which primarily detected grey matter regions. Thus, with future
developments to hardware, acquisition or post-processing denoising
to improve sensitivity deeper in the brain, isotropic ADC-fMRI may
provide amethod of comprehensive whole-brainmapping of grey and
white matter activity.

Isotropic ADC-fMRI and linear ADC-fMRI both detected a higher
proportion of white matter voxels than BOLD-fMRI, which pre-
dominantly detected greymatter activity. Interestingly, isotropic ADC-
fMRI and linear ADC-fMRI detected similar proportions of grey and
white matter voxels in response to the visual task, despite the direc-
tional independence of isotropic ADC-fMRI which would intuitively
result in an increase in detection of white matter voxels. This could

Article https://doi.org/10.1038/s41467-025-60357-5

Nature Communications |         (2025) 16:5036 7

www.nature.com/naturecommunications


reflect a corresponding increase in the detection of greymatter voxels
with isotropic ADC-fMRI due to some residual BOLD contamination of
the signal (as described above), which would likely be stronger in grey
matter due to the increased vasculature. An alternative explanation
could be related to some orientation dependence of linear ADC-fMRI
not only in white but also in grey matter due to alignment of cortical
columns63–65.

Across all angles, the spread of activation amplitudes was lower in
magnitudewith isotropic encoding thanwith linear encoding (Fig. 3B).
This trend can also be seen in the response (Fig. 2), which shows a
lower amplitude with isotropic encoding than with linear encoding.
This reflects the fact that isotropic encoding weights the signal by the
trace of the diffusion tensor, simultaneously capturing the large
changes perpendicular to fibres and the relatively small changes par-
allel to fibres29. This reduction in sensitivity, in addition to the current
SNR constraints, is a possible limitation of isotropic ADC-fMRI.

In summary, isotropic ADC-fMRI provides a method of mapping
activity in the human brain. The dependence of BOLD-fMRI on hae-
modynamic coupling imposes limitations when mapping activity
across white matter due to the heterogeneity of the haemodynamic
response. By exploiting neuromorphological coupling, ADC-fMRI is
able to detect activation in grey andwhitematter. Therefore, isotropic
ADC-fMRI opens avenues for unbiased investigation of brain-wide
functional activation, such as monitoring functional recovery of white
matter areas following damage (for example following a stroke), neu-
rosurgical planning based on white matter functional activation maps
combined with tractography, or resting-state functional connectivity
within and between grey and white matter, which remains an ongoing
challenge for functional neuroimaging24,46,66.

Methods
This study was approved by the ethics committee of the canton of
Vaud, Switzerland (CER-VD). All participants provided written
informed consent. In the visual task, 13 healthy adults were included
(age 21–37 years, median 27; 7 female). In the motor task, 11 healthy
adults were included (age 21–29 years, median 23; 4 female; 1 left-
handed). Participants were compensated for taking part in the study.

MRI Acquisition
MRI data were acquired using a 3T SiemensMagnetom Prismawith 80
mT/m gradients and 200 T/m/s slew rate, and a 64-channel head coil.

Whole-brain T1-weighted anatomical images were acquired, for
anatomical reference and parcellation, using 3D Magnetization Pre-
pared 2 Rapid Acquisition Gradient Echoes (MP2RAGE)67 with the fol-
lowing parameters: 1mm3 isotropic voxels; 256 × 256mm2

field of
view; 176 slices; repetition time (TR) 5000ms; echo time (TE) 2.98ms;
inversion times (TI) 700, 2500 ms; flip angles 4°, 5°; in-plane accelera-
tion factor 3 using Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA)68.

Multi-shell diffusion-weighted imaging (DWI) data were acquired
for estimation of fibre orientation, using a 2D multi-slice spin-echo
echo planar imaging (EPI) sequence with the following parameters: (2
mm)3 isotropic voxels; 232 × 232mm2

field of view; 60 slices; TR 5000
ms; TE 80 ms; in-plane acceleration factor 2; multiband factor 269,70;
anterior-posterior phase encoding. Three b-values were acquired:
b = 1000, 2000, and 3000 s mm−2 with 20, 30, and 48 directions
respectively. Diffusion encoding directions on each b-value shell were
equally distributed according to electrostatic repulsion. Four inter-
spersed b = 0 volumes were acquired. Two additional b = 0 volumes
were acquired with reverse EPI phase encoding direction (posterior-
anterior) for correction of B0 field inhomogeneity distortions.

Isotropic dfMRI data were acquired with a spherical b-tensor
encoding sequence34, and linear dfMRI with a twice-refocused spin-
echo EPI sequence with bipolar linear encoding gradients. The sphe-
rical b-tensor encoding waveform was numerically optimised and

compensated for concomitant gradients. DfMRI acquisitions used the
following parameters: (2.5mm)3 isotropic voxels; 50% slice gap;
232 × 232mm2

field of view; 16 slices; TR 1000ms; TE 82 ms (isotropic
dfMRI, visual task), 84 ms (isotropic dfMRI, motor task), 72 ms (linear
dfMRI); flip angle 90o; in-plane acceleration factor 2; partial Fourier
factor 6/8; multiband factor 2. During dfMRI acquisitions, two b = 0
volumes were acquired before the start of the task, followed by alter-
nating volumes atb = 200and 1000 smm−2 for thedurationof the task.
The low b-value (200 s mm–2) was selected to maximise signal whilst
minimising contributions from the blood water signal (see Introduc-
tion). The high b-value (1000 s mm−2) was selected to maintain rea-
sonable SNR. For linear dfMRI, a single diffusion encoding direction
was chosen for all volumes. This was defined as equal x, y, z weighting.

To enable a short TR = 1 s, the imaging volume gave partial brain
coverage. For the visual task, this slab was aligned in axial plane to
encompass the visual cortex and optic radiation. For the motor task,
the slab was aligned in the coronal plane to encompass the motor
cortex and corticospinal tract. Anterior-posterior phase encoding was
used for the visual task and left-right phase encoding used for the
motor task. For each acquisition, two additional (b = 0) volumes were
acquired with reverse phase encoding for correction of B0 field inho-
mogeneity distortions.

Multi-echo BOLD-fMRI data71 were acquired with a gradient echo
sequence with four echoes (TE 12.60, 33.22, 53.84, 74.46 ms) with flip
angle 62o. All resolution, brain coverage and acceleration parameters
werematched to the dfMRI acquisitions. Two additional volumes were
acquired with reverse phase encoding for correction of B0 field inho-
mogeneity distortions.

Task paradigm
Visual stimuli/cues for the visual andmotor taskswere generated using
PsychoPy72. The visual task consisted of a block design, alternating
between stimulus periods displaying an 8 Hz flashing radial checker-
board, and rest periods displaying a fixation cross. Stimulus blocks
were 12 s, and were separated by 18 s rest blocks. One full visual sti-
mulus paradigm consisted of 16 stimulus epochs with four inter-
spersed 30 s baseline blocks, for a scan duration of 10min. The motor
task consisted of 20 s self-paced finger-tapping blocks, cued by
instructions on the screen, separated by 20 s rest blocks displaying a
fixation cross, repeated 15 times for a scan duration of 10 minutes.
During finger-tapping blocks, participants were instructed to sequen-
tially tap each finger against their thumb, from the first finger to the
little finger and back again, with both hands.

Preprocessing
DfMRI. Magnitude image denoising was applied separately to the b =
200 s mm–2 timeseries and the b = 1000 s mm−2 timeseries using
NORDIC73, with a kernel size 7 × 7 × 7 and step size 1 for both g-factor
estimation and PCA denoising. Following Gibbs unringing of all
volumes with MRtrix374,75, FSL Topup was used to estimate the sus-
ceptibility bias field from b = 0 volumes, which was then used to cor-
rect susceptibility-induced distortions in all volumes76,77. ANTsmotion
correction was applied to each b-value timeseries separately, which
were then registered to the initial b =0 volume78. Amask of brain tissue
was created by applying Synthstrip to the Topup-corrected b = 0
volumes79 and used to remove non-brain voxels from the full
timeseries.

BOLD-fMRI. ANTs motion correction was calculated on the timeseries
of the first echo of the multi-echo BOLD data, then these transforma-
tions were used to correct the timeseries for all echoes. Tedana was
used to calculate an optimally combined signal from a weighted
average of echoes (including denoising with TEDPCA and TEDICA)44.
The susceptibility bias field was calculated from the first echo using
FSL Topup, then used to correct distortions in the optimally combined
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data. A brain mask was created using Synthstrip to remove non-brain
voxels.

DWI. MP-PCA denoising was applied to DWI data80–82, with patch size
5 × 5 × 5, followed by Gibbs unringing and FSL Topup. Normalised fibre
orientation distribution (FOD) images were obtained usingMRtrix3 by
deconvolving the estimated response function83 from the data using
multi-tissue constrained spherical deconvolution84.

T1 images. T1 images were denoised using spatially adaptive non-local
means filtering with ANTs85, then skull-stripped with Synthstrip79 and
segmented into tissue maps using FSL Fast86. Grey and white matter
masks were transformed to the image space of each functional
acquisition (dfMRI and BOLD-fMRI) using rigid-body registration with
ANTs in order to assess the activation in grey and white matter. Free-
surfer was used to create subject-specific masks of the ventricles87 to
allow the ventricle signal to be included as a covariate in task analysis
(see below). For group-level analysis, T1 images were nonlinearly
registered to MNI standard space using ANTs.

Task activation
We investigated task-based activation in BOLD-fMRI, and both linear
and isotropic ADC-fMRI, b200-dfMRI and b1000-dfMRI timeseries
using FSL FEAT (FMRI expert analysis tool) version 6.0088. Following
highpass temporal filtering to correct for signal drift (100 s cutoff), a
general linear model was used to measure association between the
timeseries and the task, with the average ventricle signal included as a
covariate. To avoid any assumptions about the shape of the response
function, wemodelled the task as a boxcar function for all contrasts. A
dfMRI response function had been previously derived which aims to
distinguish thediffusion response from the haemodynamic response17,
however thiswas calculated fromdfMRI data, not ADC-fMRI, therefore
somehaemodynamic contribution to the diffusion response cannot be
entirely ruled out. For completeness, supplementary results are pre-
sented for ADC-fMRI with the task modelled as a boxcar function
convolved with the diffusion response function17. Additionally, sup-
plementary results are presented for BOLD-fMRI with the task mod-
elled as a boxcar function convolved with the canonical
haemodynamic response function. We investigated negative associa-
tion with ADC-fMRI and positive association with all other timeseries.
Subject-level spatial maps were cluster-corrected at z ≥ 2.3, p <0.05.
Group-level analysis was carried out using FLAME (FMRIB’s Local
Analysis of Mixed Effects) stage 1 and 289, with cluster correction at
z ≥ 1.5, p < 0.05.

Response
To plot the task response of each contrast, the functional timeseries
was averaged across voxels in the subject-level cluster-corrected spa-
tial map. Each epoch was then normalised to its baseline, and this was
averaged across epochs. To characterise the response timings of each
contrast, the response was averaged across subjects and linearly
interpolated to a timestep of 0.1 s. For b200-dfMRI acquisitions, where
the acquisition timings did not fall exactly on the start and end times of
the task, it was assumed that the signal at these time points was equal
to the previously acquired volume. The time to reach 50% of peak
activation amplitude was then measured from the interpolated
timeseries.

Sensitivity to fibre direction
Fibre direction was defined as the direction of the largest FOD peak,
and wasmeasured in each white matter voxel from the FOD image for
each subject. This was transformed to the image space of each func-
tional acquisition in order to measure the angle between the fibre
direction and the diffusion encoding direction for linear ADC-fMRI, or
spherical b-tensor encoding reference direction for isotropic ADC-

fMRI. This angle was measured in each active voxel in subject-level
cluster-corrected spatial maps, and the distribution of fibre angles was
compared between linear and isotropic ADC-fMRI using a two-sample
Kolmogorov-Smirnov test. To plot the fibre angle against activation
magnitude, the activation of each voxel was measured as the percen-
tage change in ADC during task compared to baseline, averaged over
epochs. If the activation of a voxel was more than three standard
deviations higher than the mean activation across all subjects, this
voxel was deemed an outlier and rejected from this analysis.

In silico experiments. Numerical phantoms were generated using the
CATERPillar tool39, designed to simulate white matter substrates.
These phantoms featured parallel axons, with diameters drawn from a
Gamma distribution with mean of 1μm, and exhibiting both beading
and tortuosity, in a voxel size of (100μm)3. The axonal beading
occurred periodically, with an amplitude equal to 0.3 times the aver-
age axon radius. The tortuosity, defined as the ratio of the total axon
length to the straight-line distance between its starting and ending
points, had an average value of 1.2 (Supplementary Fig. 9). A baseline
phantom was generated with an intracellular volume fraction of 50%.
To simulate the conditions of axons during neural activity, axons were
subjected to degrees of swelling at 0.25%, 0.5%, 0.75%, and 1% of their
original volume.

We measured ADC at each degree of swelling, as a percentage
change from baseline, using the Monte Carlo Diffusion Simulator38.
Diffusion simulations comprised 1 million random walkers diffusing
over 40,000 steps, each with a duration of Δt = 2 × 10−3 ms and a step
length Δs = 0.15 μm, based on a free diffusion coefficient D0 = 2μm2

ms−1. To generate synthetic signals analogous to those obtained from
linear ADC-fMRI, we used a pulse gradient sequence with a time
between pulses (Δ) of 50 ms and a gradient pulse width (δ) of 16.5ms.
Additionally, we simulated isotropic ADC-fMRI using the same sphe-
rical b-tensor encodingwaveformasused in the in vivo acquisition. For
both linear and isotropic simulations, ADC was calculated from
b-values of 200 and 1000 smm–2, and TEwas set to 67ms.T2 decaywas
not accounted for in the simulation. Diffusion signals were computed
from the accumulated diffusion phase. To investigate the effect of
fibre angle on measured ADC changes, linear ADC-fMRI simulations
were repeated with linear encoding in 21 different directions, iso-
tropically distributed over a sphere. Isotropic ADC-fMRI simulations
were computed using each of these directions as the reference direc-
tion for b-tensor encoding. For each simulation, the intracellular and
extracellular signals were recorded separately in addition to the
combined signal.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data are available at https://doi.org/10.5281/zenodo.15397056.
Source data are provided with this paper.
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