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Assessing and improving reliability of
neighbor embedding methods: a map-
continuity perspective

Zhexuan Liu1, Rong Ma 2,3 & Yiqiao Zhong 1

Visualizing high-dimensional data is essential for understanding biomedical
data and deep learning models. Neighbor embedding methods, such as t-SNE
and UMAP, are widely used but can introduce misleading visual artifacts. We
find that the manifold learning interpretations from many prior works are
inaccurate and that themisuse stems from a lack of data-independent notions
of embedding maps, which project high-dimensional data into a lower-
dimensional space. Leveraging the leave-one-out principle, we introduce LOO-
map, a framework that extends embedding maps beyond discrete points to
the entire input space.We identify two forms ofmap discontinuity that distort
visualizations: one exaggerates cluster separation and the other creates
spurious local structures. As a remedy, we develop two types of point-wise
diagnostic scores to detect unreliable embedding points and improve hyper-
parameter selection, which are validated on datasets from computer vision
and single-cell omics.

Data visualization plays a crucial role in modern data science, as it
offers essential and intuitive insights into high-dimensional datasets by
providing low-dimensional embeddings of the data. For visualizing
high-dimensional data, the last two decades have witnessed the rising
popularity of t-SNE1 and UMAP2, which are extensively used in, e.g.,
single-cell analysis3–5 and feature interpretations for deep learning
models6,7.

The neighbor embedding methods8,9 are a family of visualization
methods, which include t-SNE, UMAP, and LargeVis10 as popular exam-
ples, that determine embeddingpoints directly by solving a complicated
optimization algorithm to minimize the discrepancy between simila-
rities of input points and those of the corresponding low-dimensional
points. Given input data x1, …, xn, a neighbor embedding algorithm A
computes the points ðy1, . . . ,ynÞ=Aðx1, . . . ,xnÞ in the 2D plane, aiming
to preserve the essential structures of x1, …, xn. Due to algorithmic
complexity, A is often used as a black-box visualization tool.

These visualization methods are often interpreted as manifold
learning algorithms, which extract and represent latent low-
dimensional manifolds in 2D and 3D spaces11–13. However, unlike clas-
sical dimension reduction methods such as PCA14, where a parametric

mapping fθ is determined and any input point x is embedded through
y = fθ(x), there is no globally defined embedding map for neighbor
embedding methods as the “embedding points” y1, …, yn are deter-
mined in a discrete manner.

A key conceptual difficulty is the lack of sample-independent
notion of embedding maps, since the embedding points y1, …, yn
depend on n input points x1, …, xn collectively, which makes it chal-
lenging to understand the correspondence between an input point xi
and an embedding point yi. Thus, it is unclear what structures the
embedding points inherit from the input points, even in ideal settings
where inputs are drawn from knowndistributions or simplemanifolds.
The lack of continuous-space embedding maps leads to recent
recognition that neighbor embedding methods often produce mis-
leading results by creating severe distortion through the embedding
maps and introducing spurious clusters in low-dimensional
visualization15,16. Moreover, neighbor embedding methods are sensi-
tive to the choice of optimization algorithms17, initialization schemes18,
and hyperparameters18,19, leading to inconsistent interpretations20,21.

Some progress has been made to improve the reliability of these
visualization methods, including insights on embedding stages19,22,23,

Received: 11 November 2024

Accepted: 23 May 2025

Check for updates

1Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biostatistics, T.H. Chan School of Public Health, Harvard
University, Boston, MA, USA. 3Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA. e-mail: yiqiao.zhong@wisc.edu

Nature Communications |         (2025) 16:5037 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0003-0642-662X
http://orcid.org/0000-0003-0642-662X
http://orcid.org/0000-0003-0642-662X
http://orcid.org/0000-0003-0642-662X
http://orcid.org/0000-0003-0642-662X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60434-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60434-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60434-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60434-9&domain=pdf
mailto:yiqiao.zhong@wisc.edu
www.nature.com/naturecommunications


force-based interpretations24, visualization quality22,23,25, initialization
schemes, and hyperparameter selection3,16,26–28. To enhance the faith-
fulness of neighbor embedding methods, multiple diagnostic
approaches have been proposed3,16,26,27,29–31. However, most existing
diagnostic methods offer only partial solutions and rely on ad hoc
fixes, sometimes even introducing new artifacts.

In this work, we show that the manifold learning interpretation,
which implicitly assumes a continuous mapping, is inaccurate. Our
analyses reveal intrinsic discontinuity points in the embeddings that
result in severe distortions. Our results imply that t-SNE and UMAP—
which can induce topological changes to visualization—are funda-
mentally different from PCA and other parametric embedding
methods.

We address the conceptual difficulty by proposing a notion of
embedding map—which we call LOO-map—induced by a given neigh-
bor embeddingmethodA. LOO-map is amapping in the classical sense
and approximates the properties of A around each embedding point.
It is based on a well-established strategy from statistics known as the
leave-one-out (LOO) method, which posits that adding, deleting, or
changing a single input point has negligible effects on the overall
inferential results. Using LOO, we can decouple the pairwise interac-
tion in the algorithm A: we add a new input point x to x1, …, xn and
freeze y1, …, yn in the optimization problem, allowing only one free
variable y. We call the resulting minimizer f(x) the LOO-map, which
satisfies the approximation ðy1, . . . ,yn, f ðxÞÞ � Aðx1, . . . ,xn,xÞ. By
design, the LOO-map f not only satisfies f(xi) ≈ yi for all i’s, but also
reveals the embedding point f(x) of a potential new input point x. As
such, LOO-map extends the mapping defined over the discrete input
set {x1, …, xn} to the entire input space.

LOO-map offers a unified framework for understanding known
issues like distance distortion16,32, low stability30, and poor neighbor-
hood preservation16,33, while also revealing new insights into embed-
ding discontinuity. In our view, discontinuities of f(x) represent an
extreme form of distortion that accompanies topological changes in
the embedding space, e.g., connected clusters become separated and
a uniform shape is fractured into pieces. In contrast, classical dimen-
sion reduction methods such as PCA do not suffer from map dis-
continuity since a continuous parametric map fθ(x) is constructed
explicitly. In this regard, embedding discontinuity is an innate issue of
the family of neighbor embedding methods.

Using LOO-map, we identify two types of observed distortion
patterns, one affecting global properties of the embedding map and
the other affecting local relationships. Both types of distortion are a
consequence of discontinuities in f(x) and can cause topological
changes in the embedding structures.

• Overconfidence-inducing (OI) discontinuity. Overlapping clusters
or data mixtures in the input space are embedded into well-
separated clusters, which creates a misleading visual impression
of over-confidence that there is less uncertainty in the datasets.
This biased perception of uncertainty can, in turn, lead to overly
confident scientific conclusions.

• Fracture-inducing (FI) discontinuity. Small spurious and artificial
clusters form in the embedding space, even for non-clustered
data. Unlike OI discontinuity, such spurious clusters are small,
localized, and formed in arbitrary locations.

We propose two types of point-wise diagnostic scores, namely
perturbation scores and singularity scores, to quantify the severity of
the two types of map discontinuity at each embedding point. Our
approach is flexible and works as a wrapper around many neighbor
embedding algorithms (Supplementary File Section 1) without any
label information.

In this work, we demonstrate the utility of our method through
two use cases: detecting out-of-distribution data (or distribution

shifts) in computer vision using the perturbation score, and selecting
hyperparameters in single-cell data analysis using the singularity score.
We evaluate ourmethodonmultiple simulated and real-worlddatasets
(Supplementary Table 1, “Methods”). Comparisons with existing
approaches show that our method achieves superior performance in
detecting topological changes in embedding and hyperparameter
selection. The R package implementing our method, along with a
tutorial, is publicly available on GitHub: https://github.com/
zhexuandliu/MapContinuity-NE-Reliability.

Results
Overview of methods
We provide an overview of LOO-map and demonstrate the proposed
two diagnostic scores (Fig. 1).

First, we introduce a general strategy to discern and analyze
discontinuities in neighbor embedding methods (e.g., t-SNE,
UMAP). Given input points x1, …, xn in a potentially high-
dimensional space, e.g., attribute vectors or feature vectors, an
embedding algorithmAmaps them to 2D points y1,…, yn by solving
an optimization problem involvingO(n2) pairwise interaction terms.
The LOO strategy assumes no dominant interaction term so that
perturbing any single input point has negligible effects on the
overall embedding. We extensively verify this assumption on
simulated and real datasets (Table 1, Supplementary Table 2,
Methods). By adding a new input x and optimizing its correspond-
ing y while freezing ðyjÞj ≤n, LOO-map reduces the optimization
problem to only O(n) effective interaction terms. We identify the
discontinuity points of f(x) as the source of the observed distor-
tions and artifacts.

Then, we devise two label-free point-wise diagnostic scores to
quantitatively assess embedding quality (Fig. 1a). The first quantity,
namely the perturbation score, quantifies how much an embedding
point yi moves when the input xi is moderately perturbed, which
helps to probe the discontinuity of f(x) from the input space. The
second quantity, namely the singularity score, measures how sensi-
tive an embedding point is to an infinitesimal input perturbation,
thus providing insights into f(x) at each specific location x = xi. The
two scores, as we will show below, are motivated by different con-
siderations and reveal qualitatively distinct features of the visuali-
zations (Fig. 1b–d).

Finally, wedemonstrate howour scores can improve the reliability
of neighbor embeddingmethods. Following theworkflow in Fig. 1a, we
extract high-dimensional features of image data using a deep learning
model (e.g., ResNet-1834) and apply t-SNE for the 2D embedding. We
observe that some inputs with ambiguous (mixed) class membership
are misleadingly embedded into well-separated clusters (Fig. 1c),
creating overconfidence in the cluster structure. Ground-truth labels
and label-informed entropy scores confirm that the visualization
under-represents the uncertainty for mixed points, making them
appearmoredistinct than they shouldbe (Fig. 1c). Further examination
of image examples confirms such an artifact of reduced uncertainty in
the embedding space. As a diagnosis, we find that embedding points
with high perturbation scores correlate well with such observed (OI)
discontinuity.

Our second diagnostic score can help with hyperparameter
selection. A practical challenge of interpreting t-SNE embeddings is
that the results may be sensitive to tuning parameters. In fact, we find
that a small perplexity tends to induce small spurious structures
similar to fractures, visually speaking, suggesting the presence of local
(FI) discontinuity in the LOO-map f (Fig. 1d). Our singularity score
captures such FI discontinuity as more high-scoring points emerge
under smaller perplexities. With this diagnosis, we recommend
choosing a perplexity no smaller than the elbow point of the FI dis-
continuity curve.
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Leave-one-out as a general diagnosis technique
We start with a generic setup for neighbor embedding methods that
encompasses SNE35, t-SNE1, UMAP2, LargeVis10, PaCMAP15, among others.
First,we introducebasicmathematical concepts and their interpretations.

• Input data matrix X = ½x1, . . . ,xn�> 2 Rn×d : the input data to be
visualized. Dimension d may be large (e.g., thousands).

• Embedding matrix Y= ½y1, . . . ,yn�> 2 Rn×p: the embedding
pointsweaim todetermine for visualization,wherep canbe 2or3.

• (Pairwise) similarity scores ðvi, jÞi<j : a measure of how close two
input points are in the input space, often calculated based on a
Gaussian kernel.

• (Pairwise) embedding similarity scores ðwi, jÞi<j : a measure of how
close two embedding points are, which takes the form of a heavy-
tailed kernel (e.g., t-distribution). The computation often requires
a normalization step.

• (Pairwise) loss function L: a measure of discrepancy between vi,j
and wi, j. An NE method minimizes this loss function over
embeddingpoints to preserve local neighborhoodstructures. The
algorithms of NE methods aim to find the embedding Y by mini-
mizing the total loss composed of the sum of the divergences
between vi,j and wi,j of all pairs of points and a normalization
factor Z(Y).

Fig. 1 | Overview: assessment of embeddings generated by neighbor embed-
ding methods, illustrated with image data. a We use a standard pre-trained con-
volutional neural network (CNN) to obtain features of image samples from the
CIFAR10dataset, and then visualize the features using a neighbor embeddingmethod,
specifically t-SNE. b Basic ideas of singularity scores and perturbation scores. c t-SNE
tends to embed image features into separated clusters even for images with

ambiguous semantic meanings (as quantified by higher entropies of predicted class
probabilities by the CNN). Perturbation scores identify the embedding points that
have ambiguous class membership but less visual uncertainty. d An incorrect choice
of perplexity leads to visual fractures (FI discontinuity), which is more severe with a
smaller perplexity.We recommend choosing the perplexity no smaller than the elbow
point. Source data are provided as a Source Data file.
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For convenience, we introduce a generic optimization problem
that neighbor embedding methods aim to solve as follows:

min
y1 , ..., yn2R2

X
1≤ i≤n

Lðwðyi,yjÞ; vi, jðXÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
unnormalized pairwise loss

+ Z ðYÞ|ffl{zffl}
normalization factor

: ð1Þ

Particularly, in the t-SNE algorithm (see Supplementary Methods 2 for
other algorithms), we have,

Lðwi, j ; vi, jÞ= � 2vi, j logðwi, jÞ,
wi, j =wðyi,yjÞ= ð1 + k yi � yjk2Þ

�1
, Z ðYÞ= log

P
k≠l wðyk ,ylÞ

� �
:

ð2Þ

A fundamental challenge of assessing the embeddings is that we only
know how discrete points—not the input space—are mapped since the
optimization problem is solved numerically by a complicated algo-
rithm. Consequently, it is unclear if underlying structures (e.g., clus-
ters, low-dimensional manifolds) in the input space are faithfully
preserved in the embedding space.

Consider adding a new point x to existing data points. We may
wish tofixx1,…,xn and analyze howembeddingpointsAðx1, . . . ,xn,xÞ
change as we vary x, thereby quantifying the mapping of x under A.
However, the embedding points would depend on all n + 1 input
points, and require re-running the neighbor embedding algorithm for
each new x.

To address this, we use a generic decoupling technique known as
leave-one-out (LOO), which enables us to isolate the changes of one
embedding point versus the others36–41. We introduce the LOO
assumption, the LOO loss function, and LOO-map as follows.

• LOO assumption: adding (or deleting/modifying) a single input
point does not change embedding points significantly (Fig. 2a).

• LOO loss function L(y; x): it consists of n pairwise loss terms
relevant to the newly added point x. We aim to determine the
embedding y for x (Fig. 2b).

• LOO-map f: it is defined as f : x 7! argminyLðy;xÞ for all possible
input x (Fig. 2b). This definition allows us to examine the map
property in the entire region.

Rooted in the stability idea42–44, LOO assumes that adding (or
deleting/modifying) a single input point does not change embedding
points significantly (Fig. 2a). This assumption allows us to study the
map x 7!Aðx1, . . . ,xn,xÞ approximately. Consider the optimization
problem in Equation (1) with n + 1 input points x1, …, xn, x. Under the
LOO assumption, when adding the new (n + 1)-th input point x, we can
freeze the embedding matrix Y= ½y1, . . . , yn�> and allow only one free
variable y in the optimization problem. More precisely, the mathe-
matical formulation of LOO loss function is given by

Lðy;xÞ=
X

1≤ i ≤n

L wðyi,yÞ; vi,n+ 1
X

x>

� �� �� �
+Z

Y

y>

� �� �
: ð3Þ

The LOO loss is motivated by the following observation: suppose ½ eYey> �

is the embedding of X+ = ½ X
x> �, i.e., it reaches the minimum of the

original loss, then y= ey is necessarily the minimizer of a partial loss
involving the embedding point of the point x:

ey= argminy2R2

X
1≤ i≤n

L wðeyi, yÞ; vi,n+ 1
X

x>

� �� �� �
+ Z

eY
y>

" # !

� argminy2R2

X
1≤ i≤n

L wðyi,yÞ; vi,n + 1
X

x>

� �� �� �
+Z

Y

y>

� �� �

where the approximation is based on the LOO assumption eY � Y. This
approximation allows us to decouple the dependence of eyi on x. We
then define the LOO-map as f : x 7! argminyLðy;xÞ.

We empirically validate the LOO assumption by demonstrating
that Y and eY are very close for a large sample size n. Define the nor-
malized error between embeddings before and after deleting a data
point by

ϵn =
1

k YkF
k Y� eYkF , ð4Þ

where ∥ ⋅ ∥Fmeans the Frobenius norm of a matrix. A sufficiently small
ϵn will support the approximation in our derivation of the LOO-map.

We calculate this error extensively on both simulated and real
datasets (“Methods”). The results support our LOO assumption
(Table 1, Supplementary Table 2). We observe that the approximation
errors are small and generally decreasing in n, which validates our LOO
assumption.

LOO-map reveals intrinsic map discontinuities
By analyzing the LOO loss, we identify the two observed discontinuity
patterns as a result of the map discontinuities of f(x). We use t-SNE as
an example to illustrate the main results.

We generate mixture data by sampling 500 points from two
overlapping 2D Gaussian distributions and run t-SNE with two repre-
sentative choices of perplexity, 5 and 50. The resulting visualizations

Fig. 2 | Diagrams showing the idea of Leave-one-out (LOO) and LOO-map. a Idea
of LOO. Adding one input point does not significantly change the overall positions
of embedding points. The assumption allows us to analyze the properties of the
embeddingmapover the entire input space via an approximated loss which we call

LOO loss.bWe introducea global embeddingmap (LOO-map) f ðxÞ= argminyLðy;xÞ
defined in the entire input space as an approximation to the neighbor embedding
method A.

Table 1 | Empirical validation of LOO on both simulated and
real datasets

Number of
points

n = 1000 n = 3000 n = 5000

2-GMM 0.068(0.0017) 0.044(0.0018) 0.034(0.0007)

Swissroll 0.074(0.0110) 0.043(0.0041) 0.033(0.0014)

CIFAR10 0.042(0.0081) 0.044(0.0013) 0.039(0.0006)

IFNB 0.069(0.0022) 0.049(0.0019) 0.044(0.0010)

We measured the approximation error ϵn defined in Eq. (4) across 20 independent trials and
reported the average (and the standard deviation) of ϵn. We find that the errors are small and
generally decreasing in n, which supports our LOO assumption.
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confirm the two discontinuity patterns (Fig. 3a). OI discontinuity
pushes mixed points to cluster boundaries, creating overly tight
structures, while FI discontinuity fragments embeddings into small
pieces, leading tomany sub-clusters. Similar discontinuity patterns are
also common among other neighbor embedding methods (Supple-
mentary Fig. 1).

We trace the origins of the observed discontinuity patterns by the
LOO loss function. To this end, we add a single point x at varying
locations to the input data and track how x ismapped. By visualizing the
landscape of the LOO loss L(y; x) at four different inputs x, we provide
snapshots of the LOO-map x 7! argminyLðy;xÞ. More specifically, we
choose the centers c1, c2 of the two Gaussian distributions and consider
the interpolated input x(t) = tc1 + (1 − t)c2, t∈ [0, 1]. Since x(t) is mapped
to the LOO loss minimizer, tracking the loss minima reveals the trajec-
tory of the corresponding embedding point y(t) under varying t.

We find that the observed OI discontinuity is caused by a dis-
continuity point of f(x) in the midpoint of two mixtures. To demon-
strate this, we visualize the LOO loss landscape and the embedding of
the added point x(t) at four interpolated locations where
t∈ {0, 0.47, 0.48, 1}. There are two clearly well-separatedminima in the

LOO loss landscape when t ≈ 0.5 (Fig. 3b). As a result, the embedding
point y(t) jumps abruptly between localminimawith a slight change in
t. A further gradient field analysis shows a hyperbolic geometry around
the discontinuity point of f(x) (see below).

We also find that the FI discontinuity is caused by numerous
irregular local minima of L(y; x) under an inappropriate choice of
perplexity. This conclusion is supported by the observation that the
loss landscape of L(y; x) is consistently irregular and contains many
local valleys under a small perplexity (Fig. 3c). Moreover, varying the
interpolation coefficient t from 0 to 1 at a constant speed results in an
uneven trajectory of the embedding point y(t). Because of many irre-
gularities, the embedding points tend to get stuck at these local
minima, thus forming spurious sub-clusters. In addition, we find that
larger perplexity typically lessens FI discontinuity (Supplementary
Figs. 2, 3).

LOO-mapmotivates diagnostic scores for capturing topological
changes
OI discontinuity and FI discontinuity reflect the properties of f(x) at
different levels: OI discontinuity is relatively global, while FI

Fig. 3 | LOO loss landscape reveals the origins of two distortion patterns. aWe
illustrate two discontinuity patterns on simulated Gaussian mixture data. OI dis-
continuity: t-SNE embeds points into well-separated clusters and creates visual
overconfidence. FI discontinuity: t-SNE with an inappropriate perplexity creates
many artificial fractures. bOrigin of OI discontinuity: LOO loss contour plot shows
distantly separatedminima.We add a new input pointx at one of the 4 interpolated
locations x = tc1 + (1 − t)c2 where t ∈ {0, 0.47, 0.48, 1} and then visualize the
landscape of the LOO loss L(y; x) using contour plots in the space of y. The middle

two plots exhibit two well-separated minima (orange triangle), which cause a huge
jump of the embedding point (as the minimizer of the LOO loss) under a small
perturbation ofx. cOrigin of FI discontinuity:We showLOO loss contour plotswith
interpolation coefficient t ∈ {0.2, 0.4, 0.6, 0.8}. The plots show many local minima
and irregular jumps. Under an inappropriate perplexity, the loss landscape is
consistently fractured. Numerous local minima cause an uneven trajectory of
embedding points (dashed line) when adding x at evenly interpolated locations.
Source data are provided as a Source Data file.
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discontinuity is relatively local. To quantify their severity respectively,
we introduce two point-wise scores (Methods): (i) perturbation scores
for OI discontinuity and (ii) singularity scores for FI discontinuity. For
computational efficiency, both scores are based on modifying indivi-
dual input points instead of adding a new point so that we maintain n
data points in total. This approach is justified by the LOO assumption,
allowing using the partial loss as LOO loss.

Briefly speaking, we define the perturbation score as the amount
of change of an embedding point yi under the perturbation of an input
point xi of a moderate length. As the data distribution is not known a
priori, we search the perturbation directions using the top principal
directions of the data (Methods).

We define the singularity score as the inverse of the smallest
eigenvalue of a Hessian matrix that represents the sensitivity of the
embedding point yi under infinitesimal perturbations. Our derivation
(Supplementary Methods 1) reveals that small eigenvalues can pro-
duce substantial local discontinuities, whereas a singular Hessian
matrix leads to the most severe discontinuity. We find that infinitesi-
mal perturbations are particularly effective for capturing the local
characteristics of FI discontinuities. Detailed expressions for the sin-
gularity scores of t-SNE, UMAP and LargeVis are provided in Supple-
mentary Methods 2.

Generally, we recommend using the perturbation score to diag-
nose the trustworthiness of cluster structures, and the singular score
to detect spurious local structures.

Simulation studies
We implement our proposed point-wise scores for t-SNE as an exam-
ple. We evaluate our diagnostic scores on two types of simulated
datasets (Methods): (i) 2D Gaussian mixture data with 5 centers
(unequal mixture probabilities, n = 700) and 8 centers (equal prob-
abilities, n = 800), and (ii) Swiss roll data, where n = 800 points are
sampled from a 3D Swiss-roll manifold.

We apply perturbation scores to the 5-component Gaussian mix-
ture data, where t-SNE createsmisleadingly distinct cluster boundaries
(Fig. 4a left). Without label information, our scores identify unreliable
points with deceptively low uncertainty (Fig. 4a, right). Meanwhile, the
entropy differences use the ground-truth labels to calculate the
reduced class entropies (Methods) in the embedding space, thus
providing an objective evaluation of the degree of confidence (Fig. 4a
middle). Our perturbation scores are closely aligned with the entropy
differences.

Next, we apply singularity scores to the 8-component Gaussian
mixture and Swiss roll data under two perplexity settings (Fig. 4b–c).
Each embedding is colored by ground-truth labels, singularity scores,
and dichotomized singularity scores (binary thresholding). The
embeddings differ visually: a low perplexity creates spurious sub-
clusters, while a high perplexity preserves cluster and manifold
structures. Additionally, the distributions of dichotomized scores vary:
a low perplexity results in more high scores at randomly scattered
locations, whereas a high perplexity yields fewer high-scoring points.

Moreover, we quantitatively assess the clustering quality for the
8-component Gaussian mixture data using three indices: DB index45,
within-cluster distance ratio (Methods), andWilks’Λ46. All three indices
(small values are better) indicate that t-SNE visualizations with less
severe FI discontinuity, i.e., lower singularity scores, achieve better
clustering quality, with the DB index dropping from 0.5982 to 0.3038,
the within-cluster distance ratio from 0.0480 to 0.0024, and Wilks’ Λ
from 0.0028 to 9.0 × 10−6. To further study the change in clustering
quality, we generate 6 simulated datasets with varying cluster struc-
tures and dimensions. Across all datasets, tuning perplexity using
singularity scores consistently improves clustering quality, reducing
the DB index by approximately 50%, the within-cluster distance ratio
by 65–91%, and Wilks’ Λ by 57–99% (Supplementary Table 3).

Use case 1: detecting out-of-distribution image data
One common practical issue for statistical methods or machine
learning algorithms is the distribution shift, where the training dataset
and test dataset have different distributions, often because they are
collected at different sources47–49. These test data are called out-of-
distribution (OOD) data.

In this case study, we identify one rarely recognized pitfall of t-SNE
visualization: OOD data may become harder to discern in t-SNE embed-
dings because they tend to be absorbed into other clusters. Our pertur-
bation score is able to identify the misplaced OOD embedding points.

We use a standard ResNet-18 model34 trained on the CIFAR-10
dataset50 to extract features of its test dataset and an OOD dataset
known as DTD (describable textures dataset)51. Ideally, visualization of
the features of test images and OOD images would reveal the dis-
tribution shift. However, the t-SNE embedding shows that a fraction of
OOD features are absorbed into compact, well-defined CIFAR-10
clusters (Fig. 5a). Without the label information, one may mistakenly
assume that the misplaced OOD embedding points belong to the
regular and well-separated classes in CIFAR-10. We find that the
embedding misplacement results from OI discontinuity. Our inspec-
tion of the original feature space shows that the misplaced OOD data
points appear to have mixed membership, resembling both CIFAR-10
and OOD data—thus their cluster membership is, in fact, less certain
than what t-SNE suggests.

Our perturbation scores can successfully identify most of these
misplaced OOD embedding points (Fig. 5b–d). The areas under the
ROC curves (AUROC) are on average 0.75 for the three selected clus-
ters. Compared with other methods aiming for OOD detection, our
perturbation score demonstrates superior performance, with kernel
PCA52 achieving an average AUROC of 0.698 and the one-class support
vector machine53 achieving an average AUROC of 0.410 (Supplemen-
tary Fig. 4, Methods). Additionally, we use the prediction probabilities
given by the neural network to calculate the entropy of each point and
find that the entropies significantly correlate with the perturbation
scores; specifically, the correlations are 0.49, 0.58, and 0.64 for the
selected clusters. These findings suggest that perturbation scores are
effective in detecting OOD data and can help safeguard against mis-
interpretation of t-SNE visualizations.

Use case 2: enhancing interpretation of single-cell data
Our second example concerns the application of singularity scores in
single-cell data. In this case study,we investigate how incorrect choices
of perplexity induce spurious sub-clusters. We also provide a guide of
choosing perplexity based on singularity scores, thereby reducing
such spurious sub-clusters.

The first dataset we examined is single-cell RNA-seq data from 421
mouse embryonic stem cells (mESCs) collected at 5 sampling time
points during differentiation54. The second dataset is another single-
cell RNA-seq data from 25,806mousemammary epithelial cells across
4 developmental stages55. We also include our analysis on a mid-sized
mouse brain chromatin accessibility data in the Supplementary File
(Supplementary Fig. 5, Supplementary Table 4). Through analysis of
the datasets, we find that a small perplexity tends to create spurious
sub-clusters (Fig. 6a, c, Supplementary Fig. 5a). Our singularity scores
can provide informative insights into the spurious clusters even
without the ground-truth labels, as summarized below.

• (Distribution difference) Embedding points with large singularity
scores tend to appear in random and scattered locations if the
perplexity is too small. In contrast, under an appropriate per-
plexity, embedding points with large singular scores aremostly in
the periphery of clusters.

• (Elbow point) As the perplexity increases, the magnitude of large
singular scores (calculated as the average of the top 5%) rapidly
decreases until the perplexity reaches a threshold.
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The distribution of large singular values indicates spurious sub-
clusters, reflecting the irregular LOO loss landscape (Supplementary
Fig. 3a, c). We extensively validated the distribution difference
between small and large perplexities through statistical tests, includ-
ing Spearman’s correlation test between singularity scores and cluster
center distances, F-tests, and permutation tests for local regression
models (singularity scores regressed against locations). At low per-
plexities, Spearman’s correlation tests showed non-significant results
for all five mESCs clusters and five mammary epithelial cell clusters
(average p-values: 0.36 for mESCs clusters at perplexity 4 and 0.29 for
mammary epithelial cell clusters at perplexity 5, Supplementary
Tables 4, 6). Increasing perplexities to the singularity score elbow
points (Fig. 6b, d) yielded significant correlations in four of fivemESCs

clusters and five of eight mammary epithelial cell classes. Similarly,
F-tests and permutation tests showed p-values dropping from ~0.3 to
< 0.001 (mESCs) and <10−13 (mammary epithelial cells), confirming the
dependence of singularity scores on location at higher perplexities.
This transition aligns with LOO loss geometry: low perplexities create
scattered localminima, forming spurious sub-clusters (Supplementary
Fig. 3a, c), whereas higher perplexities smooth the loss landscape
(Supplementary Fig. 3b, d), reducing artifacts.

We also observe that the degree of FI discontinuity, as indicated
by the magnitude of the singularity scores, decreases rapidly until the
perplexity reaches the elbow point (Fig. 6b, d). Beyond the elbow
point, the spurious sub-clusters largely disappear, aligning with the
improvement of neighborhood preservation (Fig. 6b, d), as measured

Fig. 4 | Simulation studies demonstrate the effectiveness of proposed scores.
a Perturbation scores identify unreliable embedding points that have reduced
uncertainty. Input points from 5-component Gaussianmixture data form separated
clusters in the embedding space. t-SNE reduces perceived uncertainty for input
points in the overlapping region (left), as captured by the label-dependent mea-
surements, namely the entropy difference (middle). Our perturbation scores can

identify the same unreliable embedding points without label information (right).
Singularity scores reveal spurious sub-clusters on Gaussian mixture data (b) and
Swiss roll data (c). At a low perplexity, t-SNE creates many spurious sub-clusters.
Embedding points receiving high singular scores at random locations is an indi-
cation of such spurious structures. Source data are provided as a Source Data file.
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by the nearest-neighbor distance correlation between the input and
embedding spaces (Methods). However, we would not suggest
increasing perplexity excessively, as it may merge clusters26, result in
the loss of certain microscopic structures3, and often lead to longer
computational running time27. Therefore, we suggest choosing a per-
plexity around the elbow point.

Computational cost of perturbation score
Theoretically, the computational complexity for solving the LOO loss
optimization takesO(n) flops, instead ofO(n2) flops of the original loss
which involves every pairwise interaction term. Practically, our R
package has the following running time.

• For exact perturbation scores, it takes 35.2 s to compute the score
per point for the CIFAR-10 images in Fig. 1 on a MacBook Air
(Apple M2 chip).

• Leveraging pre-computed quantities, we also provide an approx-
imation method to reduce the running time per point to 7.1 s,
while preserving high accuracy relative to the exact score
(Supplementary Fig. 8).

• In addition to the approximation, we introduce a pre-screening
step to increase the computational efficiency by 14X for the same
dataset. This pre-screening step identifies a subset of embedding
points most likely to yield high scores, and thus significantly
reduces computational cost while still providing a comparable
assessment of OI discontinuity locations (Supplementary Fig. 7).
Combining the approximationmethod and the pre-screening step
results in an average of 0.47 s.

Computational cost of singularity score
Theoretically, the computational complexity for calculating the sin-
gularity scores for the entire dataset is O(n2) flops, primarily due to
matrix operations when calculating Hessian matrices. Practically, the
running time for computing singularity scores for CIFAR-10 is 15.9 s for
all 5000 points on a MacBook Air (Apple M2 chip).

Comparison with other assessment metrics
There are multiple recent papers on assessing and improving the
reliability of neighbor embeddingmethods. None of these papers view

the observed artifacts as an intrinsic map discontinuity and as a result,
cannot reliably identify topological changes in their proposed diag-
nosis. For illustration, we compare our method with EMBEDR29,
scDEED28, and DynamicViz30.

• EMBEDR identifies dubious embedding points by using statistical
significance estimates aspoint-wise reliability scores. This process
begins by computing point-wise KL divergences between the
kernels in the input and embedding spaces, followed by a
permutation test to determine whether the neighborhood
preservation is significantly better than random chance. Lower
p-values from the test indicate higher embedding reliability.
EMBEDR selects the perplexity by minimizing the median p-
values.

• scDEED calculates point-wise p-values by conducting a similar
permutation test on the correlations of nearest-neighbor dis-
tances. Similarly, lower p-values indicate higher embedding
reliability. ScDEED provides two approaches for parameter
selection based on dubious embedding points: the first locates
the elbowpoint, and the second selects theperplexity tominimize
the number of dubious points.

• DynamicViz employs a bootstrap approach to assess the stability
of embeddings. Point-wise variance scores are constructed based
on resampling, defined as the average variance of distances to the
neighbors. Embedding points with lower variance scores are
considered more reliable. DynamicViz selects the perplexity by
minimizing the median variance score.

Compared with existing methods, our perturbation score offers
the following advantages in detecting distortions of global structure.
First, perturbation scores are better at locating the topological chan-
ges of global structures by pinpointing the exact points. By design,
they capture embedding points close to the intrinsic discontinuity of
the embedding map. In a simulated Swiss roll dataset, t-SNE erro-
neously splits the smooth manifold into two disconnected pieces
(Fig. 7a), which is a severe visualization artifact caused by OI dis-
continuity. Our perturbation scores accurately highlight unreliable
points exactly at the disconnection location (Fig. 7b). In contrast,
EMBEDR and scDEED label most points as unreliable, failing to

Fig. 5 | Perturbation scores detect out-of-distribution (OOD) image data. a We
use a pretrained ResNet-18 model to extract features of CIFAR-10 images and, as
out-of-distribution data, of DTD texture images. Then we visualize the features
using t-SNE with perplexity 100. A fraction of OOD embedding points are absorbed
into clusters that represent CIFAR-10 image categories such as deer, truck, and

automobile. b–d Perturbation scores can effectively identify misplaced out-of-
distribution data points. The ROC curves show the proportion of OOD points
correctly identified by the perturbation scores. Source data are provided as a
Source Data file.
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pinpoint the discontinuity (Fig. 7c, d), as they emphasize neighbor-
hood preservation rather than topological changes. DynamicViz
identifies the general region but lacks precision (Fig. 7e).

Second, perturbation scores are also robust to low-density
regions. In the simulated Gaussian mixture dataset (Supplementary
Fig. 9a), DynamicViz fails to accurately characterize discontinuity
locations inareaswith a lower point density, as these areas areprone to
insufficient sampling (Supplementary Fig. 9c). In contrast, our per-
turbation scores are more robust to the low-density regions (Supple-
mentary Fig. 9b).

Compared with existing methods, our singularity score con-
sistently selects a perplexity that is neither too small nor too large,
thereby reducing sub-clusters while preserving fine-grained struc-
tures. We illustrate the advantage of this consistency in aiding hyper-
parameter selection using three datasets (Supplementary Table 7).

For the mouse embryonic cell differentiation data (Fig. 6a),
scDEED recommends two approaches for perplexity selection; the first
is based on the elbow point and yields 3, and the second is based on
minimizing the number of dubious points and does not produce a

unique value (Supplementary Fig. 10a). EMBEDR fails to suggest a valid
hyperparameter because we encountered errors potentially due to a
small dataset size. DynamicViz and singular scores select moderate
perplexity (20 and 25), reducing spurious sub-clusters compared to
perplexity of 3 (Supplementary Fig. 10b) and achieving the higher
neighborhood preservation score (0.5594 (singularity score, highest),
0.4955 (scDEED), 0.5524 (DynamicViz)).

For the mouse brain chromatin accessibility data (Supplementary
Fig. 5a), scDEED selects 10 (elbow point) and 145 (minimizing dubious
points). EMBEDR chooses perplexity of 145, showing a tendency of
favoring larger perplexity that is also observed by Xia et al.28. Dyna-
micViz selects perplexity of 10. Our singularity score selects perplexity
of 95 (Supplementary Fig. 11a). By visual inspection, perplexity of 10 is
inappropriately small because visualization exhibits numerous spur-
ious sub-clusters. In contrast, perplexities of 95 and 145 avoid spurious
sub-clusterswhilemaintaining fine-grained structures (Supplementary
Fig. 11b). Quantitatively, the perplexities suggested by singular scores,
scDEED, and EMBEDR lead to similar neighborhood preservation
scores (0.4108, 0.4223, 0.4223).

Fig. 6 | Singularity scores inform the selection of the perplexity parameter.
Comparative t-SNE embeddings and the corresponding singularity scores at two
different perplexities inmouse embryonic cell differentiationdata (a) and inmouse
mammary epithelial cell data (c). The perplexity as a tuning parameter has a large
impact on t-SNE visualization qualitatively. At a small perplexity, there are many
spurious sub-clusters. Embeddings with high singular scores appear in random
locations, which indicates the presence of such spurious structures and severe FI
discontinuity. Plots of the degree of FI discontinuity and neighborhood

preservation versus perplexity are shown for mouse embryonic cell differentiation
data (b) and for mousemammary epithelial cell data (d). We recommend choosing
a perplexity no smaller than the elbow point, as this ensures that randomly posi-
tioned points with high singularity scores largely disappear, remaining only at
cluster peripheries. Consequently, the neighborhoods of most points are embed-
ded more faithfully, resulting in better neighborhood preservation score. Source
data are provided as a Source Data file.
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In themousemammary epithelial cell dataset, similar phenomena
are observed: our singularity score selects a balanced perplexity
while scDEED and EMBEDR select perplexities that are either too
small or too large, and DynamicViz lacks scalability for large datasets
due to its bootstrap-based approach, which requires repeated
execution of visualization algorithms (Supplementary Fig. 12). Overall,
the singularity score offers robust guardrail perplexities that sig-
nificantly reduce spurious sub-clusters while producing informative
visualization.

Theoretical insights: landscape of LOO loss
By analyzing the LOO loss function in Equation (3) under a simple set-
ting, we will show that OI discontinuity is caused by a hyperbolic saddle
point in the LOO loss function, thereby theoretically justifying Fig. 3b.

Suppose that n input points x1, …, xn are generated from a data
mixture with two well-separated and balanced groups, where the first
group is represented by the index set I + � f1, 2, . . . ,ngwith jI + j=n=2
and the second group represented by I� = f1, 2, . . . ,ng n I + . Without
loss of generality, we assume that the mean vectors of ðyiÞi2I +

and
ðyiÞi2I�

are θ and −θ, respectively, since embeddings are invariant to
global shifts and rotations. Equivalently, we write

yi =
θ+δi i 2 I +

�θ+δi i 2 I�

	

where
P

i2I +
δi =

P
i2I�

δi =0. To simplify the loss function, wemake an
asymptotic assumption: consider (implicitly) a sequence of problems
where input data have increasingdistances between the twogroups, so
we expect an increasing separation of clusters in the embedding space:

k θ k! 1, max
i≤n

k δi k =Oð1Þ :

Now consider adding an input point (‘mixed’ point) to a location close
to themidpoint of the two groups.We assume that its similarity to the
other inputs is

vi,n+ 1 =
p0 + ε+ oðεÞ
p0 � ε+ oðεÞ

	

for 1 ≤ i ≤ n, where p0 > 0 and ε is a small perturbation parameter. This
assumption is reasonable because the similarity of the added point
x ≔ xε has roughly equal similarities to existing inputs up to a small
perturbation. We make the asymptotic assumption ∥θ∥−1 ≍ ε, namely
ε∥θ∥ = O(1) and [ε∥θ∥]−1 = O(1).

Theorem 1. Consider the LOO loss function for t-SNE given in Eqs. (2)
and (3). Under the assumptions stated above, the negative gradient of
the loss is

�∇yLðy;xεÞ= ð1 + oð1ÞÞ y== � y?
kθk2|fflfflfflfflffl{zfflfflfflfflffl}

hyperbolic term

+
εθ

kθk2|ffl{zffl}
perturbation term

0
BBB@

1
CCCA

where y// = θθ⊤y/∥θ∥2 is projection of y in the direction of θ,
and y⊥ = y − y//.

This result explains how the hyperbolic geometry creates OI
discontinuity.

• The hyperbolic term indicates the unstable saddle point of the
loss aty =0. Indeed, it is exactly the tangent vector of a hyperbola,
so in the embedding force (negative gradient) field there is a pull
force towards the x-axis and a push force away from the
y-axis (Fig. 8).

Fig. 7 | Comparing perturbation scores with three diagnostic scores for the
t-SNE embedding on the simulated Swiss roll dataset. a The t-SNE embedding of
n = 1000 simulated points from the Swiss roll manifold under perplexity 150. The
colors correspond to the ground-truth spiral angles of the points. t-SNE algorithm
erroneously breaks the smooth manifold into two disconnected parts, which
indicates OI discontinuity. b Perturbation scores clearly mark the unreliable
embedding points where disconnection (discontinuity) occurs. c EMBEDR uses the
p-values fromone-sidedpermutation tests to identify unreliable embeddingpoints.

It suggests that most embedding points are unreliable (lower p-values are more
reliable). But it does not identify the discontinuity location. d ScDEED evaluates
most embedding points as dubious, but similar to EMBEDR, it does not identify the
discontinuity location. eDynamicVizmarks both the discontinuity location and the
areas at both ends of the Swiss roll as unstable,making it difficult to distinguish the
actual discontinuity locations. Furthermore, while it can roughly identify the dis-
continuity location, it still fails to pinpoint the exact points where the split occurs.
Source data are provided as a Source Data file.
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• The perturbation term reflects the effects of input point xε. It tilts
the negative gradients slightly in the direction ofθ if ε > 0 or − θ if
ε < 0, which causes the algorithm to jump between widely sepa-
rated local minima of L(y; x) under small perturbations.

Discussion
We developed a framework to interpret distortions in neighbor
embedding methods as map discontinuities by leveraging the LOO
strategy. Based on our LOO-map, we introduce two diagnostic scores
to identify OI and FI discontinuities. While being generally effective,
our method may not capture all distortion patterns, as factors like
initialization, iterative algorithms, and other hyperparameters can
introducedifferent types of distortions.We also recognize the absence
of a formal mathematical framework for rigorously characterizing the
LOO-map.

In future research, we aim to explore links between classical
parametric and implicit embedding maps to fully address topological
issues and improve interpretability. We also aim to enhance the scal-
ability of our methods through efficient optimization, sparsity, tree-
based approximations, and parallel computation.

Methods
Verify leave-one-out assumption empirically
Our LOO approach assumes that adding (or deleting/modifying) a
single input point does not change the embeddings of other points on
average significantly. To verify the LOO assumption, we conduct the
following experiment.

LetX= ½x1, . . . ,xn�> be the input data matrix, and Y= ½y1, . . . , yn�>
be the matrix of embedding points. We then add one point x to X to
have the new input data X+ = ½x1, . . . ,xn,x�>. We then run the t-SNE
algorithm to obtain the embedding of X+ as ½ey1, . . . , eyn, ey�>. Denoted
½ey1, . . . , eyn� as eY. To verify LOO empirically, we keep track of the dif-
ference between Y and eY:

ϵn =
1

k YkF
k Y� eYkF

and expect ϵn to be small.
We initialize the t-SNE algorithm in the second run by the

embedding points we obtain from the first run: when calculating the
embedding of X+, we use Y as the initialization for the first n points.

This initialization scheme aims to address two issues: (i) the loss
function in a neighbor embedding method is invariant to a global
rotation and a global shift of all embedding points, so it is reasonable
to choose embedding points with an appropriate initialization. (ii)
There are potentially multiple local minima of the loss function due to
non-convexity. We verify the LOO assumption at a given local mini-
mum (namely Y) obtained from the first run.

The experiment is conducted with different sample sizes n and
with different types of datasets (simulated cluster data, simulated
manifold data, real single-cell data, deep learning feature data). The
comprehensive results showing the values of ϵn under different set-
tings are presented in Supplementary Table 2. We observe that the
approximation errors ϵn are small and generally decreasing in n, which
supports our LOO assumption.

Perturbation score
For implementation convenience, our calculation of the perturbation
score and the singularity score is based on modifying an input point
insteadof adding anew inputpoint. According to the LOOassumption,
the difference is negligible.

Given an input data matrix X= ½x1, . . . ,xn�> and its embedding
matrix Y= ½y1, . . . , yn�>, we view yi as the mapping of xi by the partial
LOO-map fi:

f iðxÞ= argminy2R2Liðy;xÞ, where

Liðy;xÞ=
P

k≠i L wðyk ,yÞ; vi, kð�XÞ
� �

+ Z ð�YÞ,
ð5Þ

where �X= ½x1, . . . ,xi�1,x,xi+ 1, . . . ,xn�> differs from X only at the i-th
input point, and �Y= ½y1, . . . ,yi�1, y, yi + 1, . . . ,yn�> has frozen embed-
ding points except for the i-th point which is the decision variable in
the optimization problem. This partial LOO-map fi is based on
perturbing (or modifying) a single input point rather than adding a
new point, thus maintaining n points in total. According to the LOO
assumption, fi ≈ f, so we calculate the perturbation score for the i-th
point based on fi.

To assess the susceptibility of yi under moderate perturbations in
xi, we apply a perturbation of length λ in the direction of e to xi and
measure the resulting change in the embedding map determined by
the partial LOO-map fi. In our implementation, we search the pertur-
bation directions among the first 3 principal directions of the data
{e1, e2, e3} and their opposites { −e1, −e2, −e3}, and the perturbation
length λ is specified by the user. In this way, we can define the

Fig. 8 | Negative gradient fields of the real/theoretical LOO loss. aWe draw the
negative gradient fields (force fields) − ∇yL(y; xε) based on the LOO loss under the
same setting as in Fig. 3b. b We draw a similar field plot based on the hyperbolic
term yk�y?

kθk2 fromTheorem 1, wherewe take θ = (c1 − c2)/2 and c1, c2 are the centers of
two clusters in the embedding. In addition, we add loss contours to both plots,

which show hyperbolic paraboloids around the origin. We observe a strong align-
ment between the negative gradient field of the LOO loss and that of the theoretical
analysis. Both field plots show a pull force towards the x-axis and a push force away
from the y-axis. Source data are provided as a Source Data file.
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perturbation score of the i-th data point as

max
e2f ± e1 , ± e2, ± e3g

k f iðxi + λeÞ � yik2: ð6Þ

In general, perturbation scores are not sensitive to perturbation
lengths. Supplementary Fig. 6 illustrates the perturbation scores of the
CIFAR10 deep learning feature data for three perturbation lengths
(λ ∈ {1, 2, 3}). Points with high perturbation scores remain consistent
across different perturbation lengths. In practice, we recommend that
users run perturbation scores on a subset of data points and testwith a
few different perturbation lengths. Conceptually, the perturbation
score detects points that fall within a radius of λ around the location of
the OI discontinuity.

Moreover, we provide two approximation algorithms to accel-
erate the calculation of the perturbation score for t-SNE along with a
strategy for users to pre-screen points for which the perturbation
score should be computed.

Approximationmethod 1. For high-dimensional input data, often PCA
as a pre-processing step is implemented before calculating the simi-
larity scores. As similarity scores are recalculated for eachperturbation
we consider, PCA is repeated numerous times, leading to a significant
increase in computation. Since PCA is robust to perturbing a single
input point, we reuse the pre-processed input points after one PCA
calculation based on the original input data. This approximation
avoidsmultiple calculations of PCA.We find that this approximation is
sufficiently accurate, as the differences between perturbation scores
by approximation method 1 and the exact perturbation scores are
empirically negligible (Supplementary Fig. 8a).

Approximation method 2. Besides reducing PCA computations, we
can further accelerate the calculation of perturbation scores by
approximating the similarity scores.

Given the input datamatrixX = ½x1, . . . ,xn�> and perplexityP, the
computation of (exact) similarity scores ðvi, jðXÞÞi<j in the t-SNE algo-
rithm follows the steps below.

• Calculate the pairwise distance dij = ∥xi − xj∥2 for i, j = 1, …, n.
• Find σi, i = 1, …, n that satisfies

�
X
j≠i

expð�d2
ij=2σ

2
i ÞP

k≠i expð�d2
ik=2σ

2
i Þ
log2

expð�d2
ij=2σ

2
i ÞP

k≠i expð�d2
ik=2σ

2
i Þ

 !
= log2ðPÞ:

ð7Þ

• Calculate pjji =
expð�d2

ij=2σ
2
i ÞP

k≠i
expð�d2

ik=2σ
2
i Þ
, i, j = 1, …, n. And

vi, jðXÞ=
pjji +pijj

2n
:

Themain computational bottleneck is at step 2,wherewe conduct
a binary search algorithm for n times to solve ðσiÞ1≤ i≤n.

To provide an approximation method, we note that when per-
turbing the k-th point, for i ≠ k, Equation (7) still approximately holds
for the original standard deviation σi since only one of the terms has
been changed. Therefore, we can set eσi � σi for i ≠ k as an approx-
imation to ðeσiÞ1 ≤ i≤n, the standard deviations after perturbation. In this
way,weonly need to conduct the binary search once to solve eσk , which
significantly speeds up the calculation of the similarity scores after
perturbation.

In termsof computational performance, approximationmethod 2
leads to a reduction of running time by nearly 80% for a dataset of size
5000.We also find that approximationmethod 2 is highly accurate. As
shown in Supplementary Fig. 8b, perturbation scores based on

approximation method 2 are approximately equal to the exact per-
turbation scores for most of the points.

Pre-screening of points. To further speed up the computation, weuse
the heuristic that embedding points receiving high perturbation
scores are often found at the peripheries of clusters. This heuristic
motivates us to calculate the perturbation scores only for the periph-
eral points in the embedding space, as these points are most likely to
be unreliable. We find that applying this pre-screening step tends to
find most of the unreliable points (Supplementary Fig. 7) with sig-
nificantly increased computational speed.

We use the function dbscan in the R package dbscan (version 1.2-
0) to identify embeddings on the periphery of clusters.

Singularity score
Given an input data matrix X= ½x1, . . . ,xn�> and its embedding matrix
Y= ½y1, . . . , yn�>, we describe our derivation of singularity scores. If we
add an infinitesimal perturbation ϵe to xi, then by the Taylor expansion
of the partial LOO-map fi, the resulting change in the i-th embedding
point is expressed as

f iðxi + ϵeÞ � yi = �ϵH�1
i

X
k:k≠i

∂2Lðwðyi, ykÞ; vi, kðXÞÞ
∂yi∂x

>
k

e+ oðϵÞ, ð8Þ

where Hi denotes the Hessian matrix of the partial LOO loss Li(y; xi)
with respect to y at y = yi. Notably, when ϵ = 0 (no perturbation), we
have fi(xi) = yi. Denote the total loss as

Lðy1, . . . ,yn;XÞ=
X

1 ≤ i<j ≤n

Lðwðyi,yjÞ; vi, jðXÞÞ+Z ðYÞ:

Then, Hi can be written as

Hi =
∂2Liðy;xiÞ
∂y∂y>

∣
y=yi

=
∂2

Lðy1, . . . ,yn;XÞ
∂yi∂y

>
i

,

i.e.,Hi is also equal to theHessianmatrix of the total lossLwith respect
to the i-th variable taking value at yi.

Importantly, Hi is independent of the perturbation direction e.
The more singular Hi is, the more sensitive the embedding point of xi
becomes to infinitesimal perturbations. Thus, we define the singularity
score of the i-th data point as the inverse of the smallest eigenvalue of
the Hessian matrix of L, that is λ�1

minðHiÞ. Supplementary Methods 1
provides detailed derivations of Eq. (8), and SupplementaryMethods 2
provides expressions of singularity scores for t-SNE, UMAP, and
LargeVis.

Scoring metrics and statistical tests
Entropy of class probabilities. For a classification task, a statistical or
machine learning algorithm outputs predicted class probabilities for a
test data point. For example, in neural networks, the probabilities are
typicallyobtained through a softmaxoperation in thefinal layer. Often,
the model predicts a class with the largest probability among all clas-
ses. The entropy of the probabilities can quantify how confident the
model is in its prediction.

For a classification task of k classes, if we denote the output class
probabilities for one data point x as p = (p1,…, pk), then we define the
entropy as EðpÞ= �Pk

j = 1 pj logðpjÞ. This quantity is widely used for
measuring class uncertainty.

Entropy difference. We will describe an uncertainty measurement
given access to the labels of input points. For a dataset ðxiÞi ≤n with
clustering structures, we posit the following k-component Gaussian
mixture model (GMM) from which each xi is sampled. Consider a
uniform prior on the k clusters, i.e., pðAjÞ= 1

k, j = 1, 2,…, k. Given cluster
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membership Aj, we define the conditional probability density function

pðxjAjÞ= gðxjμj ,ΣjÞ,

whereμj, Σj are themean and covariancematrix in the j-th component,
and g(x∣μj, Σi), j = 1, 2, …, k are the Gaussian density functions with
mean μj and covariance matrix Σj. We then have the posterior prob-
ability of Aj given an observation x as

pðAjjxÞ=
pðxjAjÞPk
j = 1 pðxjAjÞ

: ð9Þ

In the analysis of neighbor embedding methods, we will use the
posterior probabilities as an uncertainty measurement. Given the
ground-truth labels of the data points, we can fit twoGMMs, one in the
input space and the other in the embedding space, yielding estimated
parameters ðμj,ΣjÞj ≤ k for each fitted GMM. Then we can calculate the

posterior probabilities of each data point belonging to the k compo-
nents by Equation (9) with fitted parameters, in both the input space
and the embedding space. For any data point, denote the posterior
probabilities in input space as p = (p1, p2, …, pk) and in embedding
space as q = (q1, q2,…, qk). Finally, we define the entropy difference for
each point as the difference between the entropy of p and the entropy

of q, i.e., EðpÞ � EðqÞ= �Pk
j = 1 pj logðpjÞ+

Pk
j = 1 qj logðqjÞ.

The entropy difference measures the amount of decreased
uncertainty of cluster membership. A positive entropy difference
means E(q) < E(p), so the associated data point appears to be less
ambiguous in cluster membership after embedding. Vice versa, a
negative entropy difference means increased uncertainty after
embedding.

Since calculating entropy differences is based on ground-truth
labels and fitting a clear statistical model, we believe that entropy
differences are a relatively objective evaluation of visual uncertainty. If
a diagnostic score without label information is aligned with the
entropy difference, then the diagnostic score is likely to be reliable.

Evaluation score of neighborhood preservation. We calculate point-
wise neighborhood preservation scores to evaluate how well the local
structures are preserved by an embedding algorithm. Given the input
matrix X and the embedding matrix Y, to calculate the neighborhood
preservation score for the i-th point, we first identify its k-nearest
neighbors in the input space, with their indices denoted as
N i = fi1, i2, . . . , ikg. Then, we compute the distances from the i-th point
to its neighbors in both the input and embedding spaces:

d input
i = ½dðxi,xi1

Þ, . . . ,dðxi,xik
Þ�>

d embedding
i = ½dðyi,yi1

Þ, . . . ,dðyi,yik
Þ�>:

The neighborhood preservation score for the i-th point is defined as
the correlation between d input

i and d embedding
i . A higher correlation

indicates better preservation of the neighborhood structure.
We use the median neighborhood preservation score across all

points in the dataset to assess the overall neighborhood preservation
of the embedding. For hyperparameters, we choose k = [n/5] and use
the Euclidean distance as the metric d in implementation.

Davies-Bouldin index. We calculate the DB index45 using the R func-
tion index.DB in the R package clusterSim (version 0.51-3) with
p = q = 2, i.e., using the Euclidean distance.

Within-cluster distance ratio. Considerm clusters and in each cluster
i, there are ni data points, denoted as fxijg1≤ j ≤ni

. The centroid for each
cluster is denoted as xi� =

1
ni

Pni
j = 1 xij and the mean of all data points is

denoted as x�� =
1
n

Pm
i = 1

Pni
j = 1 xij .

Denote the total sum of squares (TSS) and the within-cluster sum
of squares (WSS) by

TSS =
Xm
i= 1

Xni

j = 1

k xij � x��k22, WSS =
Xm
i= 1

Xni

j = 1

k xij � xi�k22:

The within-cluster distance ratio is defined as WCDR= WSS
TSS . A smaller

within-cluster distance ratio WCDR indicates a more pronounced
clustering effect.

Wilks’ Λ. We compute Wilks’ Λ statistic46 by performing a multivariate
analysis of variance using the manova function from the R package
stats (version 4.2.1), followed by a statistical test.

Statistical tests for distribution difference of singularity scores. We
have claimed that embedding points with large singularity scores tend
to appear in random locations under small perplexities but appear in
the periphery of clusters under large perplexities. To quantitatively
verify suchdistinction,weconduct several statistical tests andfind that
the results of the tests support our claim about the distribution dif-
ference (Supplementary Tables 4–6). We provide the details of the
tests as follows.

We first conducted Spearman’s rank correlation tests. Given the
embedding Y= ½y1, . . . , yn�> and the cluster label of each point as well
as their singularity scores s= ½s1, . . . , sn�>, we can first calculate the
distance of each point to its cluster center. The distance vector is
denoted as d= ½d1, . . . ,dn�>. We then conduct the Spearman’s rank
correlation test56 on the singularity scores s and the distances to
cluster center d. The tests show that there is no significant correlation
under low perplexity but a significant correlation under larger
perplexity.

Weuse the functioncor.test in theRpackage stat (version4.2.1)
to perform Spearman’s rank correlation tests.

We then conducted tests for the local regression models. To test
for distribution differences, we first fit a local regressionmodel57 using
the singularity scores as the response variables and the coordinates of
embedding points as predictors. Next, we fit a null model with the
singularity scores as the response and only the intercept as the pre-
dictor. An F-test is then conducted to determine whether the magni-
tude of the singularity scores is associated with the locations of the
embedding points.

We also perform permutation tests by shuffling the singularity
scores and fitting a local regression model for each shuffle to
approximate a null distribution for the residual sum of squares.
Empiricalp-values are then computed to assesswhether the singularity
scores are distributed randomly. Lower p-values suggest rejecting the
null hypothesis of random distribution.

We use the loess function from the R package stat (version 4.2.1)
to fit the local regression models.

Benchmark methods for OOD detection
Kernel PCA. We implemented the state-of-the-art kernel PCA method
for out-of-distribution detection52 to benchmark against the pertur-
bation score. Since our perturbation score does not require separate
training and testing steps and was directly applied to the dataset,
kernel PCA was trained on the dataset and then evaluated on the same
dataset to ensure a fair comparison. Additionally, to maintain con-
sistency with the default PCA preprocessing step in the t-SNE algo-
rithm, we applied PCA before training, retaining the first 50 principal
components.

One-class support vector machine. We implemented the one-class
support vector machine (SVM)53 using the OneClassSVM function
from the Python package scikit-learn (version 1.2.0), employing a
polynomial kernel for optimal performance. Since our perturbation
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score does not require separate training and testing steps and was
directly applied to the dataset, one-class SVM was also trained on the
dataset and then evaluated on the same dataset to ensure a fair com-
parison. To align with the preprocessing step in t-SNE, we first applied
PCA, reducing the data to its top 50 principal components before
training.

Datasets
Gaussianmixture data. A Gaussianmixturemodel with k components
is a linear combination of k-component Gaussian densities. The
probability density function of the random variable x generated by
Gaussian mixture model58 is

pðxÞ=
Xk
i = 1

πigðxjμi,ΣiÞ,

whereμi, Σi are themean and covariancematrix in the i-th component,
the scalarsπi, i= 1, 2,…, k are themixtureweights satisfying

Pk
i= 1 πi = 1,

and g(x∣μi, Σi), i = 1, 2,…, n are the probability density functions of the
Gaussian distribution family with mean μi and covariance matrix Σi.

We randomly generated Gaussian mixture datasets with various
numbers of components andmixture weights using the function rGMM
in the R package MGMM (version 1.0.1.1).

Swiss roll data. The Swiss roll data is a classicalmanifold data. Usually,
the dataset consists of three-dimensional i.i.d. data points, denoted as
ðx, y, zÞ> 2 R3, where

x = t cosðtÞ, y= t sinðtÞ, z = z:

Here, t is the parameter controlling the spiral angle and is uniformly
distributed in a chosen range [a, b]. And z is the height parameter and
is also uniformly distributed in the chosen span of heights [c, d].

We randomly generated Swiss roll datasets and used the function
Rtsne in the R package Rtsne (version 0.17) to obtain the t-SNE
embeddings of the datasets. We computed the perturbation scores
with perturbation length 1 in Fig. 7b.

Deep learning featuredata.We used the pretrained ResNet-18model
to performa forwardpass on theCIFAR-10 dataset to extract features
of dimension 512. We also performed the forward pass using the
same pre-trained model on the Describable Textures Dataset (DTD)
dataset51 as our out-of-distribution data in Fig. 5. We also randomly
subsampled both datasets to reduce computational load. Specifi-
cally, in Fig. 1, we sampled 5000 images from the CIFAR-10 test
dataset as our deep learning feature data and obtained the t-SNE
embedding under perplexity 125. We then computed the perturba-
tion scores with perturbation length 2. In Fig. 5, we sampled 2000
CIFAR-10 images and 1000 DTD images, combining them into a
dataset that includes OOD data points. We obtained the t-SNE
embedding under perplexity 100 and computed the perturbation
scores with perturbation length 2.

Mouse brain single-cell ATAC-seq data. The ATAC-seq dataset was
created to capture the gene activity of mouse brain cells. The dataset
has been preprocessed by Luecken et al.59. We applied the R functions
CreateSeuratObject, FindVariableFeatures and Normal-
izeData in R package Seurat to identify 1000most variable genes for
3618 cells. The dataset was subsampled when being used to verify the
LOO assumption.

Mouseembryonic stemcell differentiationdata. The single-cell RNA-
seq dataset was constructed to investigate the dynamics of gene
expression of mouse embryonic stem cells (mESCs) undergoing
differentiation54. The dataset was preprocessed, normalized, and

scaledby following the standardprocedures byRpackage Seurat using
functions CreateSeuratObject, NormalizeData and ScaleData.
We also used R function FindVariableFeatures to identify the
2000 most variable genes for all 421 cells.

Human pancreatic tissue single-cell RNA-seq data. The single-cell
RNA-seq data generated from human pancreatic tissues60 provides a
comprehensive view of gene expression across 8 different cell types in
pancreatic tissue. The dataset was preprocessed, normalized, and
scaled by following the standard procedures described above. We also
used R function FindVariableFeatures to identify the 2000 most
variable genes for all 2364 cells. The dataset was subsampled when
being used to verify the LOO assumption.

Single-cell RNA-seq data of PBMCs with treatment of interferon-
beta. This single-cell RNA-seq dataset profiles gene expression in
peripheral blood mononuclear cells (PBMCs) following interferon-β
(IFNB) treatment, capturing cellular responses to immune
stimulation61. The dataset was preprocessed, normalized, and scaled
by following the standard procedures described above. We used R
function FindVariableFeatures to identify the 2000most variable
genes for all 6,548 cells. The dataset was subsampled when being used
to verify the LOO assumption.

Mouse mammary epithelial single-cell data. This dataset contains
the gene expression profile of mammary epithelial cells across from
two mice at four developmental stages: nulliparous, mid-gestation,
lactation, and post-involution55. The dataset was preprocessed, nor-
malized, and scaled by following the standard procedures described
above. We used R function FindVariableFeatures to identify the
2000 most variable genes for all 25,806 cells.

Implementation of t-SNE
We used the function Rtsne in the R package Rtsne (version 0.17) to
perform the t-SNE algorithm. We choose theta = 0 to perform exact
t-SNE. We also adjusted the code in Rtsne to access the similarity
scores ðvi, jðXÞÞi<j . The adjusted function Rtsne can be found in https://
github.com/zhexuandliu/MapContinuity-NE-Reliability.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study are publicly available and can be
accessed through the following sources. The CIFAR-10 dataset used in
this study is available at [https://www.cs.toronto.edu/~kriz/cifar.html].
The Describable Textures dataset used in this study is available at
[https://www.robots.ox.ac.uk/~vgg/data/dtd/]. The pretrained ResNet-
18 model is available at Hugging Face [https://huggingface.co/
edadaltocg/resnet18_cifar10]. The mouse brain single-cell ATAC-seq
data can be downloaded from Figshare [https://doi.org/10.6084/m9.
figshare.12420968]. Mouse embryonic stem cell differentiation data is
available with NCBI GEO accession code GSE98664. The single-cell
RNA-seq dataset generated from PBMCs treated with interferon-β is
available from the R package Seurat (version 5.0.3) under the name
ifnb, and is also available with NCBI GEO accession code GSE96583.
The single-cell RNA-seq data of human pancreatic tissues is available
from the smartseq2 dataset in the R package Seurat (version 5.0.3)
under thenamepanc8, and is also available in EMBL-EBIwith accession
code E-MTAB-5061. Mouse mammary epithelial single-cell data is
available from the R package scRNAseq (version 2.20.0) under the
name BachMammaryData, and is also available with NCBI GEO acces-
sion code GSE106273. Source data are provided with this
paper62. Source data are provided with this paper.
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Code availability
The code for calculating the two diagnostic scores (as an R package),
and the code for reproducing the simulation and analysis of this paper
are available at the GitHub repository [https://github.com/
zhexuandliu/MapContinuity-NE-Reliability] (Zenodo DOI: [https://doi.
org/10.5281/zenodo.15384393])62.
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