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Switch-like gene expression modulates
disease risk

Alber Aqil 1, Yanyan Li2, Zhiliang Wang2, Saiful Islam3, Madison Russell2,
Theodora Kunovac Kallak 4, Marie Saitou5, Omer Gokcumen 1 &
Naoki Masuda 2,3

While switch-like gene expression (“on” in some individuals and “off” in others)
has been linked to biological variation and disease susceptibility, a systematic
analysis across tissues is lacking. Here, we analyze genomes, transcriptomes,
andmethylomes from943 individuals across 27 tissues, identifying 473 switch-
like genes. The identified genes are enriched for associations with cancers and
immune, metabolic, and skin diseases. Only 40 (8.5%) switch-like genes show
genetically controlled switch-like expression in all tissues, i.e., universally
switch-like expression. The rest show switch-like expression in specific tissues.
Methylation analysis suggests that genetically driven epigenetic silencing
explains the universally switch-like pattern, whereas hormone-driven epige-
netic modification likely underlies the tissue-specific pattern. Notably, tissue-
specific switch-like genes tend to be switched on or off in unison within indi-
viduals, driven by tissue-specificmaster regulators. In the vagina, we identified
seven concordantly switched-off genes linked to vaginal atrophy in females.
Experimental analysis of vaginal tissues shows that low estrogen levels lead to
decreased epithelial thickness and ALOX12 expression. We propose that
switched-off driver genes in basal and parabasal epithelia suppress cell pro-
liferation, leading to epithelial thinning and vaginal atrophy. Our findings
underscore the implications of switch-like genes for diagnostic and persona-
lized therapeutic applications.

The study of gene expression began in earnest with the characteriza-
tion of lactose-metabolizing on-versus-off switch-like genes in E. coli1.
The presence of lactose triggered the production of enzymes needed
to metabolize it, while the absence of lactose was accompanied by the
absence of these enzymes. These genes acted like switches, toggling
between “on” and “off” states based on the presence or absence of
lactose, respectively. In subsequent decades, the discovery of enhan-
cer elements2–4, epigenetic modifications5–8, and transcription factor
dynamics9 revealed that gene expression in humans is more nuanced,
resembling a dimmermore often than a simple on-and-offmechanism.

Consequently, the study of switch-like genes in humans was largely
relegated to the narrow realm of Mendelian diseases10–12.

The recent availability of population-level RNA-sequencing data
fromhumanshasmade it possible to systematically identify switch-like
versus dimmer-like genes. For dimmer-like genes in a given tissue, we
expect expression levels across individuals to be continuously dis-
tributed with a single mode, i.e., a unimodal distribution. In contrast,
expression levels of switch-like genes in a given tissue are expected to
exhibit a bimodal distribution, with one mode representing the “off”
state and the other representing the “on” state.
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As we will detail, bimodal expression across individuals is a
characteristic of a gene in a specific tissue, referred to as a gene-
tissue pair. We define a gene as switch-like if it exhibits bimodal
expression in at least one tissue. Most of the recent studies on
bimodal gene expression are related to cancer biology, associating
on and off states to different disease phenotypes and their
prognoses13–15. These cancer studies have already produced promis-
ing results for personalized medicine16. However, to our knowledge,
the only study focusing on switch-like genes in non-cancerous tissues
across individuals restricted their analysis to muscle tissue17. As a
result, the dynamics of switch-like expression across the multi-tissue
landscape remain unknown. We hypothesize that switch-like
expression is ubiquitous but often tissue-specific. We further hypo-
thesize that these tissue-specific expression trends underlie common
disease states. Therefore, the analysis of switch-like genes across
tissues and individuals may provide a means for early diagnosis and
prediction of human disease.

Here, we systematically identified switch-like genes across indi-
viduals in 27 tissues. We find that these switch-like genes are enriched
for disease associations. Moreover, our results explain the genetic and
epigenetic regulatory bases of switch-like expression in humans,
highlighting genomic structural variation as a major source of switch-
like expression of genes inmultiple tissues.We also find that sex-bias is
ubiquitous among breast-specific switch-like genes. Furthermore, we
identified a group of switch-like genes in the vagina wherein the “off”
state predisposes individuals to vaginal atrophy. Overall, these find-
ings improve our understanding of the regulation of switch-like genes
in humans. They also suggest promising future paths for preventative
biomedical interventions.

Results
Phenotypic relevance of switch-like genes
The misregulation of highly expressed genes often has consequences
for health and fitness. To systematically identify biomedically relevant
switch-like genes inhumans,we focusedon 19,121 genes that are highly
expressed (meanTPM> 10) in at least oneof the 27 tissues represented
in the GTEx database Fig. 1A, B; and Supplementary Table 1). For each
of the 516,267 gene-tissue pairs (19,121 genes x 27 tissues), we applied
the dip test of unimodality18 to the expression level distribution across
individuals (Fig. 1C). Controlling for confounders, using p-value reca-
libration for the dip test, and correcting for multiple hypotheses, we
identified 473 switch-like genes (Fig. 1C; and Supplementary
Data 1 and 2; Methods; Supplementary Notes 1–3; Supplementary
Figs. 1–4). The expression of these genes is bimodally distributed in at
least one tissue, such that it is switched “off” for one subset of indivi-
duals and switched “on” for the rest of the individuals.

To gauge the phenotypic effects of the 473 switch-like genes, we
performed two enrichment analyses: (1) gene ontology (GO)
enrichment for biological processes using GREAT19 and (2) disease
ontology enrichment20. In the GO analysis, the switch-like genes were
significantly enriched in biological processes related to skin, immu-
nity, and metabolism, including keratinization (fold enrichment =
5.4; hypergeometric test q-value = 9.6 × 10−10), the B-cell receptor
signaling pathway (fold enrichment = 4.6; hypergeometric test
q-value = 1.2 × 10−2), and the D-ribose metabolic process (fold
enrichment = 9.6; hypergeometric test q-value = 2.0 × 10−3) (Fig. 1D).
Similarly, disease ontology analysis revealed enrichment in integu-
mentary, immune-related, and metabolic diseases (Fig. 1E). Notably,
switch-like genes were also enriched in diseases related to cell pro-
liferation, including pre-malignant neoplasms (fold enrichment =
3.46; q-value < 10-4), benign neoplasms (fold enrichment = 1.49;
q-value = 4.4 × 10−3), and cancers (fold enrichment = 1.26;
q-value = 1.8 × 10−2). These findings align with previous studies that
have linked switch-like genes to cancer13–16, further highlighting their
potential role in oncogenesis.

Tissue-specificity of bimodal expression
Expression of different switch-like genesmay be bimodally distributed
in different numbers of tissues. We contend that genes that are
bimodally expressed across all tissues are likely so due to a germline
genetic polymorphism driving switch-like expression across tissues. If
this is the case, the expression of these genes would be highly corre-
lated inmostpairs of tissues. Given this insight, discovering universally
bimodal genes ismore tractable using tissue-to-tissue co-expression of
each gene. Therefore, for each gene, we calculated pairwise tissue-to-
tissue correlation of expression levels for all tissue pairs (Methods;
Supplementary Data 3; Supplementary Note 4; Supplementary Fig. 5).
To visualize tissue-to-tissue co-expression patterns of genes, we per-
formed principal component analysis (PCA) on the tissue-to-tissue
gene co-expression data (Supplementary Data 4). We emphasize that
we are referring to the co-expression of the same gene across pairs of
tissues instead of the co-expression of pairs of genes in the same tis-
sue. In the space spanned by the first two principal components
(explaining 40.6% and 2.98% of the variance, respectively), switch-like
genes form two major clusters (cluster 1 and cluster 2; Methods),
dividing along PC1 (Fig. 2A). Applying PCA exclusively to switch-like
genes reveals the further division of cluster 2 into two distinct sub-
clusters – cluster 2 A and cluster 2B – in the space spanned by the first
two principal components (explaining 74.5% and 5.31% of the variance,
respectively) (Fig. 2B; and Supplementary Data 5).

Manual inspection reveals that cluster 1, which contains 432
genes, represents genes, such as KRT17, with bimodal expression in a
small subset of tissues (Fig. 2C; Supplementary Note 5). Cluster 2 A
consists of 32 genes, such as GPX1P1, with bimodal expression in all
tissues (Fig. 2D; and Supplementary Fig. 6; Supplementary Note 6).
Lastly, cluster 2B represents eight genes, such as EIF1AY, with bimodal
expression in all non-sex-specific tissues but not in sex-specific tissues
(Fig. 2E; and Supplementary Fig. 7).Wewill refer to genes in cluster 1 as
“tissue-specific switch-like genes.” Although some of them are
bimodally expressed in more than one tissue, these genes tend to
exhibit high tissue specificity in their bimodal expression. Genes in
cluster 2 will be referred to as “universally switch-like genes.”

Genetic variation underlies universally switch-like genes
We found that 8.5% of all switch-like genes (i.e., the proportion of
switch-like genes that are in cluster 2) show clear bimodal expression,
at least in all tissues common to both sexes.We contend that germline
genetic variation across individuals likely drives this universally switch-
like gene expression, specifically due to four major types of genetic
variants. Firstly, we expect genes on the Y chromosome to show
bimodal expression in all tissues common to both sexes since these
genes are present in males and absent in females (Fig. 3A). Consistent
with this reasoning, seven out of the eight genes in cluster 2B liewithin
themale-specific region of the Y-chromosome21; the remaining gene in
cluster 2B is XIST, showing female-specific expression. Secondly,
structural variation affecting a gene could lead to universally bimodal
expression for that gene; for example, a homozygous gene deletion
would result in the gene being switched off (Fig. 3B). We found eight
such genes in cluster 2 A for which genomic structural variants likely
underlie the observed universally switch-like expression; four genes
are affected by gene deletions, two by polymorphic duplication of the
gene, and two by polymorphic insertion into the gene. Thirdly, struc-
tural variation in a regulatory element can also switch off a gene in a
part of the population (Fig. 3C). FAM118A is likely an instance of this
scenario. Lastly, a loss-of-function single-nucleotide variant (SNV) or
short indel, which disrupts gene function, can switch off the gene
(Fig. 3D). We identified 13 genes in cluster 2 A where such SNVs cause
universal bimodality.

Collectively, we could genetically explain the expression of 22 out
of 32 (69%) cases in cluster 2 A despite the small number of genes
fitting our conservative definition for universally switch-like genes.
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SNVs underlie 13 of these cases (Fig. 3B), while structural variants
underlie the remaining nine cases (Fig. 3D). Thus, out of the 22 cases
where we can explain the genetic underpinnings of switch-like
expression, 41% involve genomic structural variation, highlighting
the importance of this type of genetic variation (see Supplementary
Note 7 and Supplementary Figs. 8–10 for a discussion on why an
expression distribution driven by three genotypes at a polymorphic

site might still appear bimodal). Although we could not identify the
genetic variation underlying the bimodal expression of the remaining
10 genes in cluster 2 A, their consistent and highly correlated switch-
like expression across all tissues strongly suggests a genetic basis. We
anticipate that better resolution assemblies and detailed regulatory
sequence annotations will help identify the genetic variants respon-
sible for the remaining universally switch-like genes.
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Fig. 1 | Methodological framework. A List of 27 tissues used in this study.
B Distribution of 19,121 genes by the number of tissues in which they are highly
expressed. C Bimodal expression is a property of a gene-tissue pair. We tested
516,267 gene-tissue pairs (19,121 genes x 27 tissues) for bimodal expression across
individuals. When a gene-tissue pair exhibits switch-like (bimodal) expression, the
individuals divide into two subpopulations: onewith the gene switched off, and the
other with the gene switched on. D Switch-like genes show an enrichment for

biological processes related to skin, metabolism, and immunity. Only enrichments
with q-value < 0.05 are reported. E Switch-like genes exhibit an enrichment for
disease categories related to infections, tumors, etc. Only enrichments with
q-value <0.05 are reported.A andCwere designed entirely in BioRender; all panels
were assembled as Fig. 1 in BioRender. Aqil, A. (2025) https://BioRender.com/
8jr185j. Source data are provided as a Source Data file.
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We highlight a clear example of a common structural variant
leading to universally switch-like expression (Fig. 3B). USP32P2 and
FAM106A – both universally switch-like genes – are bimodally
expressed in all 27 tissues. Both genes show high levels of tissue-to-
tissue co-expression. A common 46 kb deletion (esv3640153), with a
global allele frequency of ~25%, completely deletes both genes
(Fig. 4A, B). We propose that this deletion accounts for the universal
switch-like expression of both USP32P2 and FAM106A in all tissues.
For illustration, we show the expression level distributions of
USP32P2 and FAM106A in the cerebellum (Fig. 4C, D). Indeed, the
haplotype harboring this deletion is strongly associated with the
downregulation of both genes in all 27 tissues (p < 10-5 for every
single gene-tissue pair, Methods). We note that the under-expression
of USP32P2 in sperm is associated with male infertility22, and
plausibly, homozygous males for the deletion may be prone to
infertility. Additionally, FAM106A interacts with SARS-CoV-2 and is
downregulated after infection, at least in lung-epithelial cells23–25.
Individuals with FAM106A already switched off may develop more
severe COVID-19 symptoms upon infection, though further investi-
gation is needed. The case of FAM106A and USP32P2 exemplifies the
link between disease and bimodal gene expression.

Sex is a frequent modulator of tissue-specific switch-like gene
expression
Tissue-specific expression patterns are crucial for tissue function.
Thus, we now turn our attention to tissue-specific switch-like genes.
We found that the breast, colon, intestine, kidney, and vagina show a
higher number of tissue-specific switch-like genes than other tissues
(Fig. 5A). Moreover, within these tissues, the expression of switch-like
genes is not independent; instead, at least a subset of switch-like genes
exhibit high pairwise gene-to-gene co-expression (Fig. 5B, C; and
Supplementary Data 6). This pattern is most pronounced in the breast
and colon, where tissue-specific switch-like genes tend to be either all
switched off or switched on within an individual. A distinct co-
expression pattern emerges in the vagina, where switch-like genes
form two communities. Within each community, genes exhibit posi-
tively correlated expression levels, meaning they tend to be switched
on or off in unison in a given individual. In contrast, genes from dif-
ferent communities show negatively correlated expression. The pre-
sence of these communities is consistent with synchronized hormonal
regulation, likely driven by estrogen, as discussed later in the manu-
script. Specifically, genes in one community are switched on when
systemic hormone levels exceed a certain threshold, while genes in the
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other community are simultaneously switched off under the same
conditions. Overall, these results suggest a shared regulatory
mechanism for the expression of these genes in each tissue. Given that
hormonal regulation plays a substantial role in shaping tissue-specific
expression patterns26,27, we hypothesize that hormones may regulate
genes that are bimodally expressed in specific tissues (cluster
1; Fig. 2B).

Sexual differences in hormonal activity are well documented28,29.
To explore this further, we investigated whether hormone-mediated
sex-biased expression underlies the co-expression of tissue-specific
switch-like genes within tissues. Under this scenario, a gene would be
largely switched on in one sex and off in the other in a given tissue.
Among tissue-specific switch-like genes, we identified 163 gene-tissue
pairs with sex-biased bimodal expression (Fig. 6A; and Supplementary
Data 7). These instances are biologically relevant; for example, we
found switch-like immunoglobulin genes with female-biased expres-
sion in the muscle (IGKJ5) and adrenal gland (IGHJ5), and male-biased
expression in the minor salivary gland (IGHV5-10-1). This observation
may relate to previous findings30,31 of higher antibody responses to
diverse antigens in females than in males. We note that the
X-chromosome gene FAM9C shows female-biased, bimodal expression
in the spleen. This female bias results from its escape from
X-chromosome inactivation32,33, leading to a higher dosage in females.
Additionally, the rs3037872 (C/CTG) variant switches the gene off
specifically in haploid C (males) or diploid C/C (females), but not in
other genotypes, contributing to bimodality. Despite this double
dosage being present across tissues, FAM9C clusters with tissue-
specific switch-like genes (Cluster 1) rather than universally sex-biased
switch-like genes (Cluster 2B). This is because it is switched off in all

individuals across most tissues, precluding high tissue-to-tissue co-
expression.

More dramatically, we found that 157 out of 158 tissue-specific
switch-like genes (cluster 1) in the breast tissue are female-biased
(Fig. 6A). This bias may be a result of differential hormonal milieu in
males versus females. However, the sex-based disparity in the on-
versus-off states of these genes is not absolute, but rather a statistical
tendency. In other words, the gene is not switched off in all males and
switched on in all females. Instead, the proportion of individuals with
the gene switched on significantly differs between sexes; almost all
females have it switched on, while about half of the males have it
switched off (Fig. 6B). Notably, multiple sex-biased switch-like genes—
including SPINT1 and SPINT234, multiple keratin genes35, and the oxy-
tocin receptor gene36,37 (OXTR; Fig. 6C)—in the breast tissue are dif-
ferentially expressed in breast cancers relative to matched non-
cancerous tissues. Future investigations could reveal whether the
toggling of these genetic switches affects breast cancer risk in females.
We caution that sex-biased switch-like expression in the breast may
result from differences in cell-type abundance between females and
males. Nevertheless, the differential expression of some genes
between sexes might developmentally drive such differences in cell-
type abundance. In summary, our results indicate that sex is a major
contributor to bimodal gene expression, with breast tissue standing
out as particularly sex-biased in this context.

In addition to sex, other factors may influence the coordinated
expression of switch-like genes within tissues. To explore this, we
tested for correlations between the expression levels of tissue-specific
switch-like genes and two factors: body mass index (BMI) and age.
Using an FDR threshold of 5% and |r| > 0.3, we assessed whether gene
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expression levels were associatedwith either variable. (Supplementary
Data 7). We observed no significant correlation between body mass
index (BMI) and the expression of these genes. However, the expres-
sion levels of two genes, CDYL2 and TP53INP2, both switch-like in the
uterus, were significantly correlated with age (Fig. 6D). Notably,
TP53INP2 is differentially expressed in endometrial glandular cells,
residing in the inner lining of the uterus, in women with recurrent
implantation failure38. This differential expression suggests TP53INP2’s
involvement in implantation. Since endometrial aging is linked to
decreased fertility39, these findings indicate that age-driven shifts in
TP53INP2 expression may contribute to the uterine environment
becoming less receptive to implantation with increasing age.

Regardless of whether it is associated with sex or age, the afore-
mentioned intra-tissue co-expression of switch-like genes implies an
upstream regulatory mechanism shared among switch-like genes in a
given tissue. We hypothesize that these genes are regulated by a
master regulator, likely a hormone or an external environmental

factor. If regulated hormonally, multiple genes may be switched off
simultaneously when systemic hormone levels drop below a critical
threshold. Such master regulators could coordinate gene expression
within a given tissue through two potential mechanisms: (1) by
simultaneously inducing epigenetic modifications, such as DNA
methylation, that synchronously affect gene activity, or (2) by mod-
ulating the expression of a transcription factor that subsequently
regulates multiple genes. Next, we investigate whether upstream
master regulators result in switch-like gene expression by inducing
differential epigenetic modification across individuals.

Epigenetic regulation of bimodal gene expression by DNA
methylation
DNAmethylationat CpG sites, particularly inpromoter regions, is a key
epigenetic mechanism regulating gene expression. Hypermethylation
in a promoter is typically associated with transcriptional repression,
whilehypomethylation is linked togene activation40–42 (Fig. 7A). To test
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whether differential methylation across individuals contributes to
switch-like expression, we analyzed methylation at CpG sites in the
vicinity of switch-like genes using GTEx data43 (Methods). Our analysis
focusedon six tissues (prostate, lung,muscle, ovary, colon, andbreast)
with at least 30 individuals having both gene expression and methy-
lation data. Among 247 tissue-specific switch-like genes (cluster 1) in
this analysis, 73 (30%) exhibited a significant negative correlation
between expression and methylation (FDR < 5%; |r| > 0.5) in the tissue
where they were bimodally expressed (Supplementary Data 8). Two
out of the 73 genes exhibited a significant correlation between
expression and methylation in the prostate (e.g., TBX4; Fig. 7B).
Strikingly, the remaining 71 genes were all bimodally expressed in the
breast (e.g., KRT6B; Fig. 7C), suggesting that differential methylation
across individuals plays a key role in regulating switch-like expression
in this tissue.

We also tested whether the expression of universally switch-like
genes (cluster 2 A) correlated with methylation at CpG sites in their
vicinity using the same thresholds (FDR < 5%; |r| > 0.5; Supplementary
Data 9). If methylation contributes to their bimodal expression
across multiple tissues, we expect to see significant correlations
between expression and methylation in multiple tissues. We
observed this pattern for 9 out of 32 cluster-2A genes. Notably, five
(GSTM1, USP32P1, USP32P2, FAM106A, KANSL1-AS1) of these nine

genes are linked to copy number variation, likely driving both
expression and methylation differences across individuals. This
result is expected given how methylation levels (β-values) are
measured44. β is defined as the hybridization intensity of the probe
for the unmethylated CpG site divided by the total intensity of both
probes (methylated and unmethylated). In individuals homozygous
for a deletion affecting both a gene and a nearby unmethylated CpG
site, the hybridization intensities of both probes are near back-
ground levels. Consequently, the β-value is intermediate, and the
expression is low. In individuals without the deletion, the CpG site is
intact, and the hybridization signal for the unmethylated probe is
much stronger than the background signal of the methylated probe,
yielding a low β-value coupled with high expression. As a result,
expression levels and methylation show a negative correlation
(Fig. 7D). Indeed, the cluster-2A gene GSTM1 and the nearby CpG site
cg16180556, both affected by a polymorphic deletion, show this
pattern in all six tissues analyzed (Fig. 7E). Importantly, we observe
these patterns despite that the methylation data had already been
normalized using the normal-exponential-out-of-band (Noob)
method to correct for background fluorescence. We emphasize that
such cases are not instances of epigenetic silencing by methylation;
instead, they are examples of copy number variation affecting both
expression and methylation measurements.
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In contrast, the remaining four genes unlinked to copy number
variation represent cases of genuine epigenetic regulation of tran-
scription, specifically through genetic variants that influence
methylation45,46. For example,we identify an intronic variant (rs393329)
in NPIPB2 that functions as both an expression quantitative trait locus
(eQTL) and a methylation quantitative trait locus (mQTL; Fig. 7F).
Across all tissues studied, this variant consistently represses NPIPB2
expression while simultaneously increasing methylation at multiple
CpG sites in the vicinity of NPIPB2. One of these CpG sites is
cg16495772, located 593 bases upstream of the variant. The increased
methylation at this site likely facilitates gene silencing by recruiting
transcriptional repressors or other regulatory machinery. Such epige-
netic modifications are genetically codified and thus transmitted
faithfully fromone generation to another. These findings illustrate how
common genetic variation can drive universally bimodal gene expres-
sion by orchestrating methylation differences between individuals.

Concordantly switched-off genes in females result in vaginal
atrophy
We found that among switch-like genes in the vagina, genes linked
to vaginal atrophy in postmenopausal women are significantly
overrepresented (86-fold enrichment; p < 10−4; “see Methods”).
Vaginal atrophy, affecting nearly half of postmenopausal women,
is triggered by sustained low levels of systemic estrogen and is
marked by increased microbial diversity, higher pH, and thinning
of the epithelial layer in the vagina47,48. It is also known as atrophic
vaginitis, vulvovaginal atrophy, estrogen-deficient vaginitis, uro-
genital atrophy, or genitourinary syndrome of menopause,
depending on the specialty of the researchers. Symptoms experi-
enced by women include dryness, soreness, burning, decreased
arousal, pain during intercourse, and incontinence49. Our analysis
of switch-like genes in the vagina provides insights into the
development of vaginal atrophy.

162 1

Salivary

Breast 

Spleen

11

158

3

12

157 0

1

01

0

01

Total:

A B

Female Male

Muscle

Adrenal

4

4

F
e

m
a

le
 

In
d

iv
id

u
a

ls
M

a
le

 
In

d
iv

id
u

a
ls

In
d

ivid
u

a
l

 1

In
d

ivid
u

a
l

 1
6

6
In

d
ivid

u
a

l 
1

6
7

In
d

ivid
u

a
l 

4
5

7

Sex-biased switch-like 
genes in the breast

Low
 Expression 

High 
Expression

Breast 
log(TPM + 1)C

C

Age (years)

lo
g

(T
P

M
 +

 1
) C

TP53INP2

r = –0.36

Age (years)

lo
g

(T
P

M
 +

 1
) C

CDYL2

r = –0.52

Age-driven switch-like gene expression in the uterusD

Fig. 6 | Sex- and age-biased expression of tissue-specific switch-like genes
(cluster 1). A Number of tissue-specific switch-like genes that show female- and
male-biased expression. We only display the tissues that have at least one tissue-
specific switch-like gene showing sex bias. The number in the central grid under-
neath each tissue image represents the number of tissue-specific switch-like genes
in that tissue. The orange numbers to the left indicate the count of female-biased
genes in each of the five tissues shown. The blue numbers to the right indicate the
count of male-biased genes. B Heatmap showing the expression of the 157 sex-
biased switch-like genes in thebreast. Eachcolumn represents a gene, and each row
represents an individual. These genes tend to be switched on in females. They also

tend to be switched on in approximately one half of the males and switched off in
the other half.C Violin plots showing the expression level distribution in the breast
for five female-biased tissue-specific switch-like genes discussed in the main text.
D CDYL2 and TP53INP2 exhibit age-driven bimodality in the uterus. Each point in
these graphs represents an individual. In addition to the black best-fit lines, D also
shows a brownhorizontal line representing a hypothetical switching threshold. The
age bias in the expression of these genes can be understood as the proportion of
females below the brown line, which differs between those younger than 50 and
those older. All panels were assembled as Fig. 6 in BioRender. Aqil, A. (https://
BioRender.com/ebd39qz). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-60513-x

Nature Communications |         (2025) 16:5323 8

https://biorender.com/ebd39qz
https://biorender.com/ebd39qz
www.nature.com/naturecommunications


Specifically, we overlapped a previously published list50 of the
top 40 differentially expressed genes in vaginal atrophy with our list
of bimodally expressed genes in the vagina. We found that the genes
ALOX12, DSG1, KRT1, SPINK7, CRISP3, SBSN, and CRCT1 are both
bimodally expressed in the vagina (Fig. 8A) and among the top
transcriptionally downregulated genes in women with vaginal atro-
phy. We refer to these genes as “atrophy-linked switch-like genes.”
Indeed, these seven genes are either all switched on, or all switched

off concordantly in 73% (113/156) of the vaginal samples we studied.
The pairwise concordance rates (percentage of individuals with both
genes switched on or both genes switched off) for these genes are
shown in Fig. 8B. Among postmenopausal women with this con-
cordant gene expression, 50% are in the “off” state – a fraction that
closely matches the prevalence of vaginal atrophy in post-
menopausal women47,51. Therefore, our data suggest that estrogen-
dependent transcription underlies concordant expression of
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Fig. 7 | Correlationbetween expressionof switch-like genes andmethylation at
nearby CpG sites. A A schematic showing that methylation at CpG sites in gene
promoters typically represses transcription. B Correlation in the prostate between
expression of tissue-specific switch-like gene TBX4 and methylation at a CpG site
close to the transcription start site for the gene.CCorrelation in the breast between
expression of tissue-specific switch-like gene KRT6B and methylation at a CpG site
close to the transcription start site for the gene. D A schematic showing how the
polymorphic deletion of a gene and a nearby unmethylated CpG site can lead to a
negative correlation between the expression level of the gene and the methylation
level at the CpG site across individuals. This mechanism is not an example of
epigenetic silencing. E The expression of GSTM1 is negatively correlated with
methylation levels at a nearby CpG site across individuals in multiple tissues

because of a polymorphic deletion affecting both the gene and the CpG site. F The
genetic variant rs393329 (T- > C) represses NPIPB2 expression across tissues via
cg16495772 (a CpG site in the vicinity ofNPIPB2)methylation. The x-axis represents
genotypes of the variant. The figure on the left shows methylation level distribu-
tions of cg16495772 for each genotype in six tissues. The figure on the right shows
expression level distributions of NPIPB2 for each genotype in six tissues. In each
violin, data points below the 1st percentile and above the 99th percentile were
excluded to minimize the impact of outliers on the distribution. In B, C, E, and
F, log(TPM+ 1)C refers to the values of log(TPM+ 1) corrected for the effects of
technical confounders. A and D were designed entirely with BioRender. All panels
were assembled as Fig. 7 in BioRender. Aqil, A. (2025) https://BioRender.com/
eet7v3w. Source data are provided as a Source Data file.
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atrophy-linked switch-like genes, with the “off” state of these genes
associated with vaginal atrophy.

For background, the vaginal epithelial layers are differentiated
from the inside out. The basal and parabasal layers of the epithelium
consist of mitotic progenitor cells with differentiation potential, while
the outermost layer comprises the most differentiated cells52,53. When
basal and parabasal cells stop proliferating, the death of mature cells
leads to a thin epithelium, causing vaginal atrophy. Given this back-
ground, atrophy-linked switch-like genes may either be a cause or a
consequence of vaginal atrophy. In particular, if an atrophy-linked
switch-like gene encodes a protein necessary for the continued pro-
liferation and differentiation of basal and parabasal cells, we call it a
“driver” gene. In the absence of the driver gene’s protein, cell differ-
entiation ceases, and the outer layer gradually disappears, resulting in
vaginal atrophy (Fig. 8C). On the other hand, if the product of an
atrophy-linked switch-like gene is not required for basal and parabasal
cell proliferation, we refer to it as a “passenger” gene, borrowing the
terminology from cancer literature54. In healthy vaginas with a thick
epithelium, there are more cells in which passenger genes would be
expressed. By contrast, in atrophic vaginas, the epithelium thins,
resulting in fewer cells where these genes can be expressed. This
contrast would lead to the bimodal expression of passenger genes
across vagina samples in whole-tissue RNA-sequencing datasets. We
hypothesize that at least some of the atrophy-linked switch-like genes
are driver genes.

Two key findings allowed us to construct this hypothesis. Firstly,
switch-like genes in the vagina show an 8-fold ontological enrichment
for the skin development (FDR =0.016) and a 13-fold enrichment for
keratinocyte differentiation (FDR =0.013), both related to epithelial
thickness and differentiation. Notably, two atrophy-linked switch-like
genes in the vagina that we identified, DSG1 and KRT1, are involved in
the differentiation of epithelial cells in the vagina55,56. Protein stainings
available through Human Protein Atlas57 show that all seven atrophy-
linked switch-like genes are expressed at the protein level, pre-
dominantly in the vaginal epithelium. Secondly, administering 17β-
estradiol (a type of estrogen) to postmenopausal women with vaginal
atrophy leads to the upregulation of five (ALOX12,DSG1, KRT1, SPINK7,
and CRISP3) of these seven genes, causing symptoms to subside58.
According to our hypothesis, administering estrogen activates the
expression of the driver switch-like genes in the vagina, resuming the
proliferation of basal and parabasal cells in the epithelium. This pro-
cess leads to the reformation of a thick and healthy vaginal mucosa,
thereby alleviating the symptoms of vaginal atrophy.

Thus, it is essential to distinguish driver genes from passenger
genes to understand the etiology of vaginal atrophy. However, we
expect driver and passenger genes to show the same expression pat-
terns in healthy versus atrophic vaginas using bulk RNA-sequencing
data. In order to make this distinction, we need comparative expres-
sion data, specifically from the basal and parabasal epithelium from
healthy versus atrophic vaginas. We expect driver genes to be differ-
entially expressed in the basal and parabasal layers of the epithelium.
By contrast, we expect passenger genes to show no differential
expression in the basal and parabasal layers between healthy and
atrophic vaginas.

To look at the expression levels in thebasal andparabasal layersof
the epithelium, we arbitrarily chose ALOX12 from the seven atrophy-
linked switch-like genes for immunohistochemical staining of its pro-
tein product in the vaginalmucosa (which includes the epithelium and
the underlying connective tissue).We found that theALOX12protein is
present in the epithelial cells, and its abundance directly correlates
with epithelial thickness, as expected fromour transcriptomic analysis.
However, we found no significant difference in the staining of the
ALOX12 protein in the basal or parabasal epithelial layers between
healthy and atrophic samples (Fig. 8D). This suggests that the gene is
not differentially expressed in the basal or parabasal layers of the

vaginal epithelium between healthy and atrophic vaginas. Therefore,
ALOX12 is a passenger gene for vaginal atrophy. Comparative immu-
nohistochemical staining of the protein product of the other switch-
like genes in the vagina, especially the remaining six atrophy-linked
switch-like genes, may identify the driver gene in the future. Indeed,
the KRT1 protein is recognized as a marker of basal cell differentiation
inmouse vaginas59, a finding thatmay also be true for humans. Overall,
our results open up several paths for potential pre-menopausal risk
assessment and intervention frameworks targeting cell differentiation
pathways in the clinical setting.

Discussion
In this study, we investigated factors underlying switch-like gene
expression and its functional consequences by integrating genomic,
methylomic, and transcriptomic data from 943 individuals. Our sys-
tematic analysis revealed 473 switch-like genes, with 6.8% of them
bimodally expressed in all tissues, suggesting a genetic basis, while the
majority display tissue-specific bimodality. Notably, tissue-specific
switch-like genes tend to be concordantly switched on or off within
individuals, implicating tissue-specific master regulators such as hor-
monal signals. Our methylation analysis suggests that hormonally
driven epigenetic modification is a key source for achieving breast-
specific bimodal expression. In contrast, genetically driven epigenetic
silencing leads to universally bimodal expression for genes unlinked to
structural variation. We also found that a drop in systemic estrogen
levels in the vagina triggers the coordinated silencing of seven vagina-
specific switch-like genes, resulting in vaginal atrophy. More broadly,
our findings connect switch-like genes to cancers, infections, endo-
crine disorders, and skin-related conditions. Furthermore, this study
has paved two major paths forward toward early medical interven-
tions, as we discuss below.

First, we emphasize that bimodal expression that is correlated
across all tissues is driven by genetic polymorphisms. However, the
genetic bases for 13/23 universally switch-like genes remain elusive.We
propose that the underlying genetic bases for these universally switch-
like genes are structural variants, which are not easily captured by
short-read DNA sequencing. These structural variants may be dis-
covered in the future as population-level long-read sequencing
becomes more common. The first biomedical path forward is to use
long-read DNA sequencing to pinpoint the genetic polymorphisms
responsible for the bimodal expression of disease-related genes. Of
particular interest are the genes CYP4F24P and GPX1P1, both long non-
codingRNAs,whichare implicated innasopharyngeal cancer.Whilewe
have identified the genetic basis for the bimodal expression of
CYP4F24P, that of GPX1P1 remains unknown. CYP4F24P is significantly
downregulated in nasopharyngeal cancer tissues60, while GPX1P1 is
significantly upregulated in nasopharyngeal carcinomas treated with
the potential anticancer drug THZ161. Investigatingwhether individuals
with naturally switched-offGPX1P1 and CYP4F24P are at a higher risk of
nasopharyngeal cancer will enable genotyping to identify individuals
at elevated risk for nasopharyngeal cancer, facilitating early interven-
tions and improving patient outcomes.

Secondly, switch-like genes present a promising avenue for
exploring gene-environment interactions, an area of growing interest.
Recent studies indicate that environmental factors can significantly
modulate genetic associations62,63. Polymorphisms that result in
switch-like gene expression have already been linked to several dis-
eases within specific environmental contexts64. For instance, the
deletion of GSTM1 has been associated with an increased risk of
childhood asthma, but only in cases where the mother smoked during
pregnancy65. Even more critically, switch-like genes can create differ-
ent cellular environments depending on whether they are switched on
or off. Theseenvironmentsmay, in turn, influencehowgenetic variants
affect disease risk. Thus, much like current gene-environment asso-
ciation studies that control for factors such as birthplace, geography,
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and behaviors like smoking, it is conceivable that controlling for
switch-like gene expression states could enhance the power of such
studies. By cataloging these switch-like genes and developing a fra-
mework to classify them as “on” or “off” in various samples, our work
lays the groundwork for more robust association studies in future
research.

While our findings regarding switch-like genes provide exciting
topics for exploration, we caution that we base our results on
expression at the RNA level. The bimodal expression of genes across
individuals at the RNA level may not necessarily lead to bimodal
expression at the protein level. For example, the universally switch-
like expression of RPS26 at the RNA level can be explained by a single-
nucleotide variant (rs1131017) in the gene’s 5’-untranslated region
(UTR). In particular, RPS26 has three transcription states based on
the SNV genotypes. The ancestral homozygote C/C corresponds to a
high transcription state, the heterozygote C/G to a medium state,
and the derived homozygote G/G to a low state. Remarkably, this
pattern is reversed at the translation level66: Messenger RNA carrying
the derived G allele produces significantly more protein. This rever-
sal may be due to a SNV in the 5’-UTR that can abolish a translation-
initiation codon67. This finding demonstrates how the same SNV can
regulate a gene’s expression level in opposite directions during
transcription and translation. This multi-level regulation in opposite
directions likely serves to dampen protein expression variability. It
has been shown previously that RNA variability is greater than pro-
tein variability in primates68,69; the presence of dampening variants
discussed here may be one reason behind these findings. Such
compensatory mechanisms for gene expression remain fascinating
areas for future research.

In summary, our study has significant implications for under-
standing the fundamental biology of gene expression regulation and
the biomedical impact of switch-like genes. Specifically, it contributes
to the growing repertoire of methods for determining individual sus-
ceptibility to diseases, facilitating early therapeutic interventions. By
providing an approach to studying gene expression states, our study
will enhance the predictive accuracy of disease susceptibility and
improve patient outcomes.

Methods
Ethics statement
This study complies with all relevant ethical regulations.We obtained the
RNA-seq data from GTEx, which obtained institutional review board
approval for all collected samples. All GTEx samples from the original
study were collected with informed consent (from next-of-kin) under
protocols approved by the GTEx consortium, as detailed in the original
project documentation. Vaginal tissue sections reused in this work were
collected and stained in a previous study70 under approval from the
Regional Ethical Review Board, Uppsala, Sweden (record-/diary-number
2008/076). No newhuman sampleswere obtained for the present study;
only previously approved, de-identified material was reanalyzed. The
research conformed to the criteria set by the Declaration of Helsinki.

Data
The Genotype-Tissue Expression (GTEx) project is an ongoing effort
to build a comprehensive public resource to study tissue-specific
gene expression and regulation. The data we use are transcripts per
million (TPM) obtained from human samples across 54 tissues and
56,200 genes (as of December 1st, 2023). We excluded laboratory-
grown cell lines from our analysis. Since we need a reasonable
number of individuals from each tissue, we excluded tissues with
fewer than 50 individuals for our calculations. Of the remaining tis-
sues, there were instances ofmultiple tissues from the same organ. In
such cases, we arbitrarily chose one tissue per organ. We thus focus
our analysis on 27 tissues (Fig. 1). Additionally, we retained only those

genes for which the mean TPM across individuals was greater than 10
in at least one of the 27 focal tissues. This filter was applied because
the analysis of lowly expressed genes may lead to false-positive calls
for bimodal expression and, as a result, to assigning biological sig-
nificance to cases where there is none. After these filtering steps, we
are left with TPM data from 19,121 genes in each of the 27 tissues. We
will refer to this set of 19,121 genes as G in our equations and the rest
of the methods. We note that each tissue contains data from a dif-
ferent number of samples (individuals), totaling 943 across tissues:
312 females and 631 males.

We accessed GTEx protected data from dbGaP (phs000424.v10.p2)
and the anvil platform (https://anvil.terra.bio/#workspaces/anvil-
datastorage/AnVIL_GTEx_V9_hg38). For DNA methylation (DNAm) data,
we used the file GTEx_v9_EPIC_data_noob_final_BMIQ_all_tissues_987.txt.
This data, containing CpG site IDs and beta values for methylation, had
undergone normal-exponential out-of-band normalization to correct for
background fluorescence noise. Additionally, it had also undergone beta
mixture quantile normalization to correct for the bias between Type I
and Type II probes on Illumina methylation arrays.

Notations
We denote by Si the number of samples (individuals) available for
tissue i. We also denote by xg, i, s the TPMvalue for gene g in tissue i, for
sample s ∈ {1, …, Si} and g 2 G. According to convention, we log-
transform the TPM, specifically by log(xg, i, s + 1)71 to suppress the effect
of outliers; TPM is extremely large for some samples. Note that
log(xg, i, s + 1) conveniently maps xg, i, s = 0 to 0.

Correcting expression levels for confounders
To account for confounding variables, we adopted an approach
wherein we use confounders to predict expression values via regres-
sion and then treat the residuals as the corrected expression. Regres-
sion models may perform poorly when predictors are highly
correlated (see Supplementary Note 1 and Supplementary Fig. 1), a
phenomenon known as multicollinearity. Using principal component
analysis (PCA) to transform a set of intercorrelated confounders into
an orthogonal set of principal components (PCs) ensures that the
predictors used in the regression model are uncorrelated72. This
orthogonality leads tomore stable coefficient estimates, which in turn
supports a more reliable calculation of the fitted values and thus the
residuals. We combined up to six confounder vectors (corresponding
to DTHHRDY, SMRIN, SMTSISCH, SMTSPAX, SMNABTCHT, and
COHORT; the number varying by tissue) to form a confounder matrix
for each tissue. COHORT and DTHHRDY are characteristics of indivi-
duals as opposed to that of tissue-individual pairs. Thus, for a given
individual s, the values of COHORT and DTHHRDY were identical for
every tissue-individual pair (i, s). Sinceonly 14 individuals (12males and
2 females) belonged to the surgical cohort, we removed them from all
downstream analysis to prevent complications in confounder-
correction. Then, we performed PCA on these matrices. The
obtained PC score PCk,i,s represents the value of the kth PC in tissue i for
individual s. We then fitted the following generalized additive model
(GAM) to regress out the effects of the confounders from the
expression data:

log xg, i, s + 1
� �

=αg, i +
XKi

k = 1

f k, g, i PCk, i, s

� �
+ εg, i, s, ð1Þ

where αg, i is the intercept term for gene g in tissue i representing the
expected log-expression when the effects of all confounders are
zero; f k, g, i(⋅) is a smooth spline function for gene g in tissue i applied
to kth principal component; Ki is the number of confounders
considered for tissue i. εg, i, s represents the random error term for
gene g in tissue i for sample s. The fitted values provided by the
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model are

log xg, i, s + 1
� �

= α̂g, i +
XKi

k = 1

f̂ k, g, i PCk, i, s

� �
: ð2Þ

We define the residual as

ε̂g, i, s = log xg, i, s + 1
� �

� log xg, i, s + 1
� �

: ð3Þ

Here, ε̂g, i, s represents the confounder-corrected expression value for
gene g in tissue i for individual s; that is, it reflects the component of
the log-transformed expression that remains after removing the
systematic effects of the technical confounders.

Dip test
We sought to determine whether a given gene–tissue pair exhibits
bimodal expression across individuals. Although several tests of
bimodality exist16,73, we employed the dip test via the R function
dip.test() from the “diptest” package. Under the null hypothesis of
unimodality, a well-calibrated dip test should yield p-values that are
uniformly distributed over the interval [0,1].

To assess whether the test is well-calibrated, we examined a set
of housekeeping genes, which are expected to exhibit unimodal
expression, in each tissue. For housekeeping gene g in tissue i, we
applied the dip test to the distribution of confounder-corrected
expression values ε̂g, i, s across the Si samples. We observed that the
resulting p-values were heavily skewed toward 1, indicating that the
dip test is more conservative than implied by the raw p-values—a
finding also confirmed using simulated unimodal distributions
(Supplementary Note 2; Supplementary Fig. 2). To address this bias,
we constructed an empirical null mapping from raw to calibrated
p-values (calibration curve) by rank ordering the raw housekeeping-
gene p-values (Supplementary Fig. 2C). We denote by n the number
of housekeeping-gene p-values. We sorted the n p-values in ascend-
ing order and assigned the kth smallest p-value a recalibrated value of
k/n. We applied this calibration curve to recalibrate the raw p-values
for all dip tests performed in this study before multiple-hypothesis
correction, ensuring that the reported false discovery rates are
accurate.

Specifically, we applied a two-round dip test procedure to identify
gene-tissue pairs exhibiting bimodal expression across individuals:
one round on raw expression data and another on confounder-
corrected expression data. This two-round approach was carried out
to explicitly gauge the impact of technical confounders on bimodality
detection (Supplementary Note 3; and Supplementary Fig. 3), rather
than simply relying on corrected data for analysis.

In the first round, for each pair of gene g and tissue i, we carried
out a dip test on the distribution of log(xg, i, s + 1) across the Si samples
with 10,000 bootstrap samples. The resulting p-values were recali-
brated using the empirical mapping derived from the housekeeping
genes. Following recalibration, we applied the Benjamini–Hochberg
procedure at a 5% false discovery rate and imposed an effect-size
threshold on the dip statistic D to reduce false positives. We set this
threshold based on the housekeeping null: specifically, we chose the
threshold as the mean D plus three standard deviations from the dip
test on housekeeping gene-tissue pairs, which yielded 0.033. This
threshold ensures that the effect size is greater than that expected
under unimodality. In addition, to penalize gene–tissue pairs with low
mean expression, we defined our threshold as

D >max 0:033,
0:033

log �xg, i + 1
� �

0
@

1
A, ð4Þ

where

�xg, i =
1
Si

XSi
s = 1

xg, i, s: ð5Þ

We applied this penalization to eliminate cases of noise-driven
bimodality since, in cases with lowmean expression levels, noise tends
to drown out the true biological signal.

In the second round, we reassessed these candidate genes using
the confounder-corrected expression values ε̂g, i, s in place of the raw
log(xg, i, s + 1) data. In this round, we applied the same dip-test proce-
dure with 10,000 bootstrap iterations, followed by empirical p-value
recalibration and Benjamini–Hochberg correction (5% FDR). However,
because the residuals ε̂g, i, s are centered around zero, the additional
penalization for effect size applied in the first round of dip test was not
appropriate. Therefore,weused a simplified criterionofD >0.033. The
genes that were thus identified as having bimodal distribution in at
least one tissue are referred to as “switch-like genes”. We note that, to
display gene expression levels in the figures, instead of using ε̂g, i, s, we
use:

log xg, i, s + 1
� �

C
=

ε̂g, i, s + �xg, i, ε̂g, i, s + �xg, i >0,

0, otherwise.

�
ð6Þ

The quantity on the left-hand side of this equation is denoted as
log(TPM+ 1)C in the figures. Here the subscript C stands for “cor-
rected.” We perform this transformation to ensure that 1) the average
corrected levels roughly match the average raw expression levels, and
2) the corrected expression levels are not negative. The values of
log(TPM+ 1)C for all 473 switch-like genes in all tissue-individual pairs
used in this study are available in Supplementary Data 10.

Functional enrichment among switch-like genes
We performed two enrichment analyses to investigate the biological
roles and disease associations of switch-like genes. For Gene Ontology
(GO) enrichment, we used the Genomic Regions Enrichment of
Annotations Tool (GREAT)19 to evaluate overrepresentation of various
biological processes among switch-like genes. GREAT provides both
effect sizes and q-values for enriched GO terms.

For disease enrichment, we leveraged the Disease Ontology
resource20 using the R package “ontologyIndex” to parse the disease
ontology file. This file organizes diseases into a hierarchical structure
with top-level (primary) categories and their corresponding daughter
(secondary) categories. Our analysis focused on diseases in the seven
top-level categories: (1) Disease by infectious agent; (2) Disease of
anatomical entity; (3) Disease of cellular proliferation; (4) Disease of
mental health; (5) Disease of metabolism; (6) Genetic disorder; and (7)
Physical disorder. Each disease was further assigned to a secondary
category based on its hierarchical structure (i.e., the daughter terms of
the top-level categories). We then determined, for each secondary
category, the number of genes in the complete set G and the number
of switch-like genes associated with that category.

Fold enrichment for each secondary disease category among
switch-like genes was calculated as the ratio of the proportion of
switch-like genes (319 of the 473 switch-like genes were represented in
this dataset) linked to that category to the corresponding proportion
among all genes in G (18,342 out of the 19,121 genes in G were present
in this dataset). To assess statistical significance, we generated 10,000
random gene sets of size 319 (which is the number of switch-like genes
represented in the diseasedataset) from18,342 and computed the fold
enrichment for each set. The p-value for a given secondary category
was defined as the fraction of these random sets for which the fold
enrichment was equal to or exceeded the value observed among the
switch-like genes. Finally, we applied Benjamini–Hochberg correction
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to control the false discovery rate at 5%, and retained only those sec-
ondary categories for which at least 10 switch-like genes were linked.

Tissue-to-tissue co-expression of genes
We sought to identify switch-like genes exhibiting bimodal expression
in all tissues. One seemingly straightforward approach is to count the
number of tissues showing a bimodal distribution of expression levels
for each gene. However, even if a gene genuinely exhibits bimodal
expression across all tissues, our methodology may fail to recognize it
as such if themean expression levels (�xg, i) of the gene are low in some
tissues. This is because our effect size threshold in the first round of
dip tests penalizes gene-tissue pairs with low �xg, i. Moreover, if gene
expression follows a bimodal distribution across all tissues, then it
does so likely due to a genetic polymorphism affecting expression.
Thus, the expression of such genes would be highly correlated
between tissues. Given this insight, discovering universally bimodal
genes is more tractable using tissue-to-tissue co-expression of
each gene.

For each gene g, we construct the co-expression matrix Rg ,
wherein each element is the Pearson's correlation coefficient of the
expression levels of the gene between two tissues. To calculate the co-
expression between a pair of tissues, we need to use the samples for
which the TPM is measured for both tissues74. In general, even if the
number of samples is large for both tissues, it does not imply that there
are sufficiently many common samples. Therefore, using the sample
information described in GTEx_Analysis_v8_Annotations_SampleAt-
tributesDD.xlsx in the GTEx data portal, we counted the number of
samples sharedby each tissuepair and excluded the41 tissuepairs that
share fewer than 40 samples.We calculated the co-expression for each
of the remaining 27 × 26/2 − 41 = 310 tissue pairs. We denote by Si, j the
number of samples shared by the two tissues i and j. Then, we calcu-
lated the Pearson correlation coefficient between ε̂g, i, s and ε̂g, j, s across
the Si, j samples. Specifically, we calculate

rg i, jð Þ=
PSi, j

s = 1 ε̂g, i, s �mg, i

h i
ε̂g, j, s �mg, j

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPSi, j

s = 1 ε̂g, i, s �mg, i

h i2PSi, j
s = 1 ε̂g, j, s �mg, j

h i2r , ð7Þ

where

mg, i =
1
Si, j

XSi, j
s = 1

ε̂g, i, s ð8Þ

and

mg, j =
1
Si, j

XSi, j
s = 1

ε̂g, j, s: ð9Þ

Wenote thatbothmg, i andmg, j are close to0 since they represent
means of residuals from the generalized additive models. For each
gene g, we define matrix Rg as a 27 × 27 tissue-to-tissue co-expression
matrix with the ði, jÞ-th element equal to rg i, jð Þ if Si, j ≥ 40; otherwise,
that entry is recorded as missing (NA). We then vectorize the correla-
tion matrix, Rg , into the vector rg . Since the correlation matrix is
symmetric, we only vectorize the strict upper-triangular part of Rg .
This region contains all unique off-diagonal correlations (351 in total).
41 tissue pairs have Si, j < 40, so their entries are discarded. Thus, rg is a
310-dimensional vector. A gene, g, was removed from the downstream
analysis if ε̂g, i, s or ε̂g, j, s was 0 across all Si, j samples for any of the 310
tissue pairs. In this process, one out of 473 switch-like genes was
removed. We ran a PCA, using the prcomp() function in R, on vectors
rg , for all genes for which we could calculate rg i, jð Þ for all 310 tissue

pairs. In parallel, we ran PCA on only the set of vectors (genes) char-
acterizing only the 472 ( = 473 − 1) switch-like genes.

In the space spanned by the first two principal components, we
calculated the pairwise distance between genes using the dist() func-
tion in R with method = “euclidean”. We then performed hierarchical
clustering using the hclust() function with method = “complete”.
Finally, we used the cuttree() function with k=2 and k=3 to obtain two
and three clusters, respectively.

Identifying the genetic basis of universal bimodality
To identify the genetic basis of bimodality for switch-like genes in
cluster 2 A,weobtained the coordinates of the genes for both hg19 and
hg38 using their Ensembl IDs as keys through Ensembl BioMart. We
obtained coordinates of common structural variants using both the
1000 genomes project (hg19)75 and the HGSV2 dataset (hg38)76. We
performed an overlap analysis using BedTools77 to identify poly-
morphic deletions or insertions into these genes. Additionally, we
obtained the GTEx dataset for the expression quantitative trait loci
(eQTL). We identified genes in cluster 2 A that had at least one eQTL,
which was consistently associated with either increased or decreased
expression of a given gene across all 27 tissues analyzed.

Gene-to-gene co-expression within tissues
We performed gene-to-gene co-expression analysis within the breast,
colon, intestine, kidney and vagina tissues. In a given tissue i, we
denote the set of cluster-1 (tissue-specific switch-like) genes by Ci.
Then, for i ∈ {breast, colon, intestine, kidney, vagina}, we calculated
the Pearson correlation, across the Si samples, between ε̂g, i, s and ε̂h, i, s
for every g, h ∈ Ci where g ≠ h.

Quantifying the effect of sex, age, and BMI on cluster-1 gene
expression
For every gene-tissue pair (g, i), where g is a switch-like gene, and i is a
tissue common to both sexes, we tested the hypothesis that the dis-
tribution of ε̂g, i, s acrossmale samples differed from that across female
samples using the Wilcoxon rank-sum test. We applied the Benjamini-
Hochberg procedure ofmultiple hypotheses correctionwith FDR = 5%.
We quantified the effect size of the sex bias using Cohen’s d, using the
threshold jdj >0.278. Additionally, for every gene-tissue pair (g, i),
where g is a switch-like gene, and i can be any tissue, we tested the two
hypotheses that ε̂g, i, s is correlated with age and that ε̂g, i, s is correlated
with BMI. We applied the Benjamini-Hochberg procedure of multiple
hypotheses correction with FDR= 5% to results from both analyses
separately. We classified gene-tissue pairs as correlated with age or
BMI using thresholds FDR < 5% and |r| > 0.3, where r is the Pearson
correlation coefficient.

Analysis of methylation levels
Methylation data were annotated using the IlluminaHumanMethyla-
tionEPICanno.ilm10b4.hg19 library in R79. We retrieved CpG annota-
tion information by invoking the getAnnotation() function, which
provided genomic coordinates, probe IDs, and regulatory feature
information for each CpG site for which we had methylation data
available from GTEx. The extracted annotation included fields such as
Name, chromosome (chr), genomic position (pos), rsID of SNPs at the
CpG site (CpG_rs), UCSC_RefGene_Name, UCSC_RefGene_Group, and
various enhancer and regulatory feature annotations.

We then performed correlation analyses between switch-like gene
expression andmethylation levels within a 50kb window surrounding
each gene, separately for cluster-1 and cluster-2 genes. Our analysis
focusedon six tissues (prostate, lung,muscle, ovary, colon, andbreast)
with at least 30 individuals having both gene expression and methy-
lation data. For each analysis, we computed the Pearson correlation
coefficient between the gene’s confounder-corrected expression
values and the methylation levels at nearby CpG sites. We applied
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stringent thresholds (FDR < 5%and |r| > 0.5). For the analysis of cluster-
2A genes in particular, we further required that a gene show a sig-
nificant correlation with methylation in at least two tissues before
concluding thatmethylation contributes to itsmulti-tissue bimodality.

Enrichment of switch-like genes among disease-linked genes
We performed enrichment analysis to test whether the top 40 genes
differentially expressed in vaginal atrophy are overrepresented among
cluster-1 vagina-specific switch-like genes. We denote the set of genes
differentially expressed in vaginal atrophy as V and set of cluster-1
switch-like genes bimodally expressed in the vagina as Cvagina. We
calculated the fold enrichment of genes downregulated in vaginal

atrophy among cluster-1 genes in the vagina by
jCvagina \V j=jCvagina j

jG\V j=jGj .

To calculate the p-values associated with these enrichments, we
obtained 10,000uniformly randomsamples (with replacement) of size
|Cvagina| from G. The p-value for the enrichment of genes linked to
vaginal atrophy among cluster-1 switch-like genes in the vagina is then
given by the fraction of random samples among the 10,000 samples
for which jqj \ V j≥ jCvagina \ V j. Here, qj is the set of genes in random
sample j where j ∈ {1, …, 10000}.

Discretizing expression levels
We performed kernel density estimation using the density() function
in R on the distributions of logð1 + xg, vagina, sÞ across the Svagina samples
for g ∈ Cvagina \ V .

We used the minimum of the estimated density as the switching
threshold; if an individual had an expression level above the threshold
in a given tissue, the gene was considered “on” in the individual in that
tissue. The gene was considered “off” otherwise. We then calculate the
concordance of expression among genes in the set Cvagina \ V in the
vagina as follows:

1
Svagina

XSvagina
s = 1

Y
g 2Cvagina\V

1
g is ‘‘on’’ in sample s invagina

� � + Y
g 2Cvagina\V

1ðg is ‘‘off’’ in samples invaginaÞ

2
4

3
5,

where 1(⋅) is the indicator function.

Immunohistochemistry
Vaginal biopsies, takenby useofpunchbiopsies frompostmenopausal
women, were fixed and stained by use of anti-ALOX12 antibodies70,80.
This polyclonal rabbit anti-ALOX12 antibody (catalog no. HPA010691;
Prestige Antibodies® powered by Atlas Antibodies, Sigma-Aldrich) was
diluted 1:50 in 0.1% bovine serum albumin. Sections were incubated
overnight at 4 °C. Negative controls, prepared by omitting the primary
antibody, were included for all samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Bulk RNA-seq expression data (TPM, GTEx v8) is available from the
GTEx open-access portal (https://gtexportal.org/home/downloads/
adult-gtex/bulk_tissue_expression). Controlled-access GTEx data,
including full metadata, can be requested through dbGaP accession
phs000424.v10.p2 at [https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000424.v10.p2]. DNA-methylation
data were obtained from GTEx_v9_EPIC_data_noob_final_BMI-
Q_all_tissues_987.txt in the AnVIL workspace AnVIL_GTEx_V9_hg38
[https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_GTEx_
V9_hg38]. All results generated for this study are provided as Sup-
plementary Data 1–10 and archived on Figshare [https://doi.org/10.
6084/m9.figshare.28848356], where they are freely available without
restriction81. Source data are provided with this paper.

Code availability
The code used to generate the results in this study is publicly acces-
sible on GitHub [https://github.com/AlberAqil/Switch_like_gene_
expression_modulates_disease_risk_2025/]. A permanent version of all
code is deposited on Zenodo [https://doi.org/10.5281/zenodo.
15270596]82.
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