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In-material physical computing based on
reconfigurable microwire arrays via halide-
ion segregation

Dengji Li 1,8, Pengshan Xie1,8, Yuekun Yang 2,3 , Yunfan Wang1,
Changyong Lan 4, Yiyang Wei4, Jiachi Liao1, Bowen Li 1,5, Zenghui Wu 1,
Quan Quan1, Yuxuan Zhang 1, You Meng 1, Mingqi Ding1, Yan Yan1, Yi Shen1,
Weijun Wang1, Sai-Wing Tsang 1, Shi-Jun Liang 2, Feng Miao 2 &
Johnny C. Ho 1,5,6,7

Conventional computer systems based on the Von Neumann architecture rely
on silicon transistors with binary states for information representation and
processing. However, exploiting emerging materials’ intrinsic physical prop-
erties and dynamic behaviors offers a promising pathway for developing next-
generation brain-inspired neuromorphic hardware. Here, we introduce a
stable and controllable photoelectricity-induced halide-ion segregation effect
in epitaxially grown mixed-halide perovskite CsPbBr1.5I1.5 microwire networks
on mica, as confirmed by various in-situ measurements. The dynamic segre-
gation and recovery processes show the reconfigurable, self-powered photo-
response, enabling non-volatile light information storage and precise
modulation of optoelectronic properties. Furthermore, our microwire array
successfully addressed a typical graphical neural network problem and an
image restoration task without external circuits, underscoring the potential of
in-material dynamics to achieve highly parallel and energy-efficient physical
computing in the post-Moore era.

Conventional computing hardware based on the Von Neumann
architecture is increasingly challenged by latency, power consump-
tion, and density issues. This architecture inherently limits information
representation to binary states (0 or 1) and computing functionality to
Boolean logic operations in silicon-based complementarymetal-oxide-
semiconductor (CMOS) transistors1,2. In contrast, biological neural
systems, which operate based on the dynamics of chemicals and ions,
exhibit far superior energy efficiency and information processing
capabilities. These systems function fundamentally differently from

CMOS transistors and circuits3–6. Inspired by the structure and func-
tion of biological neural systems, there is growing interest in devel-
oping intelligent neuromorphic computing hardware that emulates
the human brain. Such hardware aims to incorporate features like
adaptation, threshold behavior, non-linearity, synaptic connectivity,
and high parallelism. Examples include in-sensor retinomorphic com-
puting, in-memory neuromorphic computing, and physical neural
networks implemented directly through physical processes within
materials and devices7–16. Exploring diverse intrinsic physical
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dynamics, such as ion migration and segregation in emerging materi-
als, is crucial for achieving innovative physical computing hardware
with enhanced architecture, efficiency, and intelligence.

Photoelectricity-induced halide-ion segregation (PEHS) is typi-
cally detrimental in mixed-halide perovskite optoelectronic devices
due to its negative impact on charge mobility and carrier lifetime,
leading to halide-rich domains and localized bandgap variations17–19.
However, this PEHS phenomenon can be actively controlled and
visualized using light and electrical bias. Characteristic photo-
luminescence peaks revert after removing external stimulation, illus-
trating ionmigration fromandback into the initially excitedperovskite
materials20,21. More importantly, as the halide distribution changes,
mixed-phaseperovskites exhibit luminescencevariations andgenerate
non-volatile intrinsic electric fields. This results in a continuous self-
powered bidirectional photocurrent phenomenon within the
material22–24. In addition, driven iodide ion drift has been reported to
manipulate the photocurrent direction in trihalide perovskite photo-
voltaic devices using electric pulses. Consequently, a stable and con-
trollable PEHS effect in mixed-halide perovskites holds promising
potential for developing low-cost neuromorphic systems.

In this article, we unveil the discovery of a stable and controllable
PEHS effect in epitaxially grown mixed-halide perovskite CsPbBr1.5I1.5
microwire (MW) networks on mica. This innovative effect enables a
switchable, self-powered photoresponse during halide phase segre-
gation, facilitating non-volatile light information storage and pixel-
level modulation of optoelectronic properties. By leveraging the
growth morphologies of perovskite arrays and networks, we demon-
strate neuromorphic architectures capable of parallel computing and
image restoration. This approach seamlessly integratesmachine vision
with parallel computing, potentially reducing reliance on backend
processing and significantly optimizing computational efficiency.

Results
Physical computing based on optoelectronic reconfigurable
microwires
For the all-in-one sense-storage-computing chips, execution efficiency
and power consumption are important issues that must be addressed.
In order to achieve neural-like arithmetic functionality and tobreak the
shackles of von Neumann architectures in the post-Moore era, energy-
efficient all-in-one devices with neuron-like multifunctional archi-
tecture (parallel and random connectivity) demonstrate great devel-
opment potential. Due to the ionmigration characteristics in the PEHS
effect and the continuously changing bandgap in mixed halide ratio
perovskites, the two-terminal structure based on mixed-halide per-
ovskite MW networks demonstrates a stable, reconfigurable, pro-
gramable, and self-powered photoresponse under multiple
wavelength lasers. Moreover, the extent of the PEHS effect can be
effectively tuned by both the external electric field and the illuminated
power density, making it a promising candidate for machine recogni-
tion applications. As displayed in the central panel of Fig. 1a, there is no
inner electric field in the initial uniformly mixed-halides perovskites.
Hence, the measured Ids–Vds curve goes through the initial point.
Under light and electrical stimulation, halide phase separation gradu-
ally occurs in the perovskite, generating internal electric fields closely
related to the external stimulation field (left and right panel of Fig. 1a).
After removing the external positive and negative voltage control,
internal electric fields opposite the external fields are formed within
the perovskite, which we define as the p-p+ and p+-p states25. Accord-
ingly, with the formation of the internal electric field, the perovskite
exhibits corresponding self-powered positive and negative
photoconductivity.

Based on these unique electrical characteristics, mixed-halide
perovskite devices are particularly well-suited for high-parallelism
synchronous computation due to their flexible hardware configura-
tion capabilities. However, to achieve dynamic resource allocation

and enable the simultaneous execution of multiple tasks or opera-
tions, maintaining stability in the configurable properties is crucial.
Therefore, perovskite parallel arrays were selected to assess the
operational stability and reliability of the PEHS effect during
manipulation. Scanning photocurrent mapping (SPCM) clearly
reveals a distinct photocurrent array of +550 pA and −180 pA, com-
pared to the mica background, in the p-p+ and p+-p state arrays
(Fig. 1b). These pronounced photocurrent patterns correspond
directly with the perovskite MWs connected to both electrodes
(Supplementary Fig. S1), highlighting the device’s exceptional stabi-
lity and reconfigurability.

The reconfigurable nature of these arrays allows for the real-time
adjustment and optimization of hardware resources, enabling the
efficient execution of complex parallel tasks with minimal latency.
Based on the growth morphology of mixed-halide perovskite materi-
als, we designed two processor types: parallel and random arrays.
Parallel arrays show high row uniformity, with adjacent devices exhi-
biting voltage-modulated photoelectric behaviors akin to addition and
subtraction. On the other hand, random arrays enable large-scale
integration, with each device displaying an independent, specific ran-
dom topology. Figure 1c illustrates a schematic combining an MW
array with photonic interactions, where the MW array is programmed
to carrymatrix information and enables efficient parallel computation
through photonic signals. In this scenario, real-world features like
color accuracy and grayscale are extracted, converted into electrical
signals, and input into pre-programmed arrays. These arrays perform
matrix functions, producing output signals refined into high-quality
results. This technology efficiently handles large data processing, with
parallel computing greatly boosting speed and efficiency. The high
programmability and stability of the MW array ensure accurate, reli-
able computation. Combinedwith visual recognition or complex tasks,
it significantly improves processing speed,making it ideal for real-time
applications.

Epitaxy growth of mixed-halide perovskite MW networks
In this study, neuromorphic device units were fabricated by direct
evaporation of gold electrodes onto single-crystalline mixed-halide
MW networks on mica. These CsPbBr1.5I1.5 MWs were grown using a
vapor-phase route, forming triangular prismstructures ~1 µminheight.
(Methods and Supplementary Fig. S2)26,27. We realize the direct
observation of the epitaxy growth of perovskites on the mica through
HRTEM. Our segregated halide perovskite FIB samples were formed
and attributed to a one-minute 5 V/μm voltage and continuous
30mWcm-2 light exposure stimulation. Figure 2a shows a direct con-
nection between themica lattice and perovskite lattice rather than the
van der Waals gap, suggesting the direct epitaxy growth mechanism.
Meanwhile, mixed-halide perovskite’s [001] growth direction was
parallel to [�110] of the muscovite mica. I-based and Br-based per-
ovskites were randomly distributed across the structure, with some
amorphous regions due to halide diffusion (Fig. 2b). Domain bound-
aries, 2–3 nm wide, contained partial screw dislocations with the Bur-
ger’s vector along the [100] direction (Fig. 2cii–iv, and Supplementary
Fig. S3). These I-rich, Br-rich, and transition zones showed edge dis-
locations from stress during phase separation. Shear transformations
induced similar dislocations near boundaries with minimal lattice
misalignment. Diffraction analysis revealed dislocation patterns at the
Br/I interface. Images of the mica substrate showed the 2M1 polytype
structure of muscovite with a 19.9 Å interplanar spacing (Fig. 2d
and Supplementary Fig. S4)28,29. The (100) and (010) perovskite planes
exhibited similar but slower growth rates compared to the (001) plane
(Fig. 2e). A ~ 1.6% mismatch between the (110) plane of CsPbI3 and the
(001) plane of muscovite confirmed direct epitaxy (Fig. 2d, e). Energy-
dispersive X-ray spectroscopy (EDS) mapping revealed a distinct
interface between the halide perovskites and mica, with no significant
diffusion (Fig. 2f and Br/I ratio in Supplementary Fig. S5). These
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observations were further validated by X-ray diffraction and scanning
electron microscopy (Supplementary Figs. S6 and S7).

While standard lattices suggest favorable vacancy-assisted halide
ion diffusion, the precise migrationmechanism under external stimuli
remains unclear. Cs+ migration has an activation energy of 0.77 eV,
likely a lower limit, as the ideal migration path hinders long-range
transport30,31. Pb2+ vacancy migration, with a much higher energy bar-
rier of 2.31 eV, indicates a stable Pb sublattice32,33. This supports the
thermodynamic stability of the inorganic lead iodide sublattice in
perovskites and suggests cation diffusion is likely the rate-limiting step
in crystal growth34,35. Insteadof a linear jump, halide ions likely follow a
curved path around Pb2+ ions (Fig. 2g for Br-migration, Fig. 2h for
I-migration)36–38. Calculations (see “Methods”) show I-migration has a
lower energy barrier (0.586 eV) than Br-migration (1.356 eV), making I
diffusionmore efficient. This suggests that reverse bias can easily drive
I ions or vacancies to drift, forming segregated I-rich or Br-rich regions
and flipping the p–i–p+ structure to a p+–i–p configuration.

Switchable halide-ion segregation effect with light and bias
Here, thosemixed-halide single-crystal MWnetworks were adopted to
visualize the switchable PEHS effect away from grain boundaries.
A confocal microscope (Fig. 3a) measured continuous

photoluminescence (PL) spectra from a fixed position in the MWs
using400-nm laser illuminationat 20mWcm−2. Spectrawere recorded
every 0.1 sec, with time-dependent changes shown in Fig. 3b under
different electrical biases. Initially, a stable emission peak appeared at
~591 nm with no bias. Applying a + 30V bias resulted in three peaks at
552.5 nm, 591 nm, and 695 nm (Supplementary Fig. S8a). Within ~2 sec,
the main peak blue-shifted from 591 nm, creating a strong peak at
552.5 nm and a weak peak at 695 nm, while the 591 nm peak decayed
nearly to zero, indicating the segregation ofmixed-halide ions and the
movement of iodine ions away from the excited region. When the
external bias was switched to −30 V, the emission peak at 552.5 nm
began to redshift, returning the phase-segregated condition to the
initial mixed-halide state (Supplementary Fig. S8b). Finally, after
removing the external bias, the emission peak stabilized at 591 nm. In
this case, the initial blue shift driven by the positive bias indicates the
formation of Br-rich domains and serves as a clear signature of
PEHS39,40. As the external bias increases, emission peaks from Br-rich,
uniform I-Br, and intermediate halide states are observed. The decline
of the peak at 591 nm and the growth of a wide-bandgap peak at
552.5 nm suggest that the uniform I-Br domains decompose, iodine
ions are driven away, and the as-grown Br-rich composition forms at a
high intensity (Supplementary Fig. S8a). Adjusting the external bias
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density (Supplementary Fig. S9) produces stable PL spectra, showing a
strong link between halide ion distribution and bias power. This pro-
cess is termed bias-modulated halide-ion separation (BMHS). Notably,
after the external stimulus is removed, segregated halide ions gradu-
ally return to their original positions due to the concentration
gradient41 or the mixing entropy40,42. Applying reverse bias accelerates
this mixing while removing the bias restores the initial distribution.
This reversible behavior confirms that halide ion distribution is con-
trolled by the external bias. In contrast, the emission wavelength of
pure CsPbBr3 remains unchanged under varying bias (Supplementary
Fig. S10), indicating that the effect is unique to mixed-halide systems
and not due to degradation or heating. No significant sample degra-
dation was observed throughout the measurement.

Focusing on PL density, Fig. 3b and Supplementary Fig. S11a show
a significant drop in overall intensity when applying a 30V external
bias. After removing the bias, the PL intensity recovered to about 40%
of its initial value within 10minutes (Supplementary Fig. S11b and S12).
When the bias was reversed, the PL intensity quickly rebounded to
around 80% in under one minute (Supplementary Fig. S13). As shown
in Fig. 3c, this phenomenon is thought to be closely linked to the
evolution of alloyed perovskite lattices from phase homogeneity to
segregation andback under operational stressors like light andbias21,43.
A previously proposedmodel suggests that charge carriersmaycouple
with the soft lattice to form polarons, creating enough strain to drive
halide segregation and form iodine-rich domains44–47. Existing expla-
nations do not account for controllable phase segregation in
CsPbBr1.5I1.5 MW networks under high external bias. We propose a
lattice model based on polaron-induced segregation to explain chan-
ges in halide distribution with varying biases. This model considers
three stages of driving forces: 1) excitation and local aggregation of
iodine towards polarons due to the external electricfield (stages i to ii),

2) migration of iodine-rich regions under the inverse electric field
(stage ii to iii), and 3) homogeneous mixing of halides when strong
strain gradients are absent (stage iii to iv). Additionally, lattice distor-
tion strongly correlates with the extent of Br-I phase separation, sig-
nificantly impacting the material’s emission and optoelectronic
properties. The typical emission peak characteristics at different
stages are shown in Fig. 3d. Within this framework, remixing occurs
under reverse bias as strain gradients are reduced where polarons
overlap or merge.

To validate themodel, we used confocal fluorescencemicroscopy
to observe emission behavior in our samples under different external
biases. As shown in Fig. 3e, applying a positive bias caused significant
fluorescence attenuation in both the green (500–570 nm) and red
(640–700nm) regions, while an inverse bias led to noticeable
enhancement. Additional fluorescence images from continuous mea-
surements are provided in Supplementary Figs. S14 and S15. These
results align with the changes in PL density, supporting the proposed
models. The model suggests that phase segregation responds rapidly
to external bias, while natural recovery through halide ion diffusion is
slower. Clear bandgap differences were observed between phases25,48.
Beyond the distinct emission effects, a local electric field is generated
within the perovskite MWs due to bias-induced phase segregation,
with its direction controlled by adjusting the I-rich region via external
bias. Detailed self-powered photoresponse characteristics are dis-
cussed in the Supplementary materials.

Reconfigurable self-power photoresponse
To better understand the effect of composition tuning on the internal
electric field, a simplified process is introduced, focusing only on the
initial mixed states and fully segregated Br-I states (Supplementary
Fig. S16a). The electric field mechanism in this system is driven by the
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bandgap difference between CsPbBr3 and CsPbI3, with the field
direction from theBr-rich region (p state) to the I-rich region (p+ state).
This aids in clarifying the field dynamics25,48. To assess the impact of
composition tuning during halide-ion segregation, devices from PS
emission studies weremeasured under similar conditions. The source-
drain current (Ids) versus source-drain voltage (Vds) was recorded for
devices under varying bias pulses, with and without light illumination
(Supplementary Fig. S16b, c). Before applying external bias, the Ids-Vds

curve passes through the origin, confirming good ohmic contact
between the Au electrode and the initial mixed-state networks, as gold
electrodes typically do not favor a particular charge transport direc-
tion. With varying bias pulses applied, the electric field inside the
network was measured even in the dark, showing a directional pho-
tovoltaic effect for both positive and negative pulses. This highlights
the influence of Vds on the internal polarity of the mixed-halide per-
ovskite photodiode. The device’s self-powered photoresponse was
then measured, with photocurrent (Iph = Ilight − Idark) defined as the
current difference between light and dark conditions per unit
area. After a positive pulse, Iph is negative. In contrast, a negative
pulse makes it positive (Supplementary Fig. 16d). A tunable self-
powered photoresponse was observed across the NUV to NIR
range, producing consistent positive and negative photocurrents
under 450 nm, 532 nm, and 1550 nm laser illumination (Supple-
mentary Figs. S16e–g, S17–19).

Next, with a fixed bias pulse of 1 V/μm for 5 s applied under all
laser wavelengths, the self-powered photoresponse at varying light

intensities was investigated. In deep learning, light intensity is
treated as pixels in trained images, with the intensity-photocurrent
relationship impacting the computational outcome. The photo-
response (Supplementary Fig. S16e) was tested at different inten-
sities (0.4–24mW cm² for 450 nm, 5 to 16.5 mW cm² for 532 nm, and
70 to 840mW cm² for 1550 nm), showing a positive correlation
between photocurrent and power density as higher photon flux
generates more carriers. All data were compiled in Supplementary
Fig. S16h–j and Supplementary Fig. S17–19, fitting the power law
equation Iph∝Pα. The α values from inverse positive bias manipula-
tion were closer to 1 than from initial bias manipulation, indicating
lower trap density due to lattice distortion during segregation,
consistent with our models. For 1550 nm, the photon energy alone
is not sufficient to excite Br-I perovskites, but the thermal effect of
the laser influences the halide-ion segregation, enabling a photo-
response. The devices showed sub-linear behavior under 450 and
532 nm and super-linear behavior under 1550 nm due to varying
recombination probabilities of photogenerated or hot carriers
caused by trap states during segregation. Moreover, the single-MW
optoelectrical comparison characterization was conducted to elu-
cidate the underlying physical mechanisms. Supplementary
Fig. S20a indicates sub-ms response dynamics of the single-MW
device. Meanwhile, Supplementary Fig. S20b displays the self-
powered time-resolved photocurrent data for an individual MW
under 0.1-5 mW cm–2 450 nm illumination. Besides, the regulatory
performance of devices with multiple micron wires strongly
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the whole bias-modulated PEHS process. d PL spectra of the corresponding stages.
e Fluorescence variables of the perovskite MWs in the bias-modulated process.
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correlates with the number and dimensions of the micron wires
between the channels (Supplementary Fig. S21).

Previous studies show that the power-dependent optoelectronic
characteristics of the device are closely linked to the trap state density
of the channel materials49. With a continuous ±0.5 V/μm bias (Sup-
plementary Fig. S22), the photocurrent gradually saturated as power
density increased, indicating more photogenerated carriers were
trapped due to increasing trap density or an enhanced inverse inner
electric field during halide-ion segregation. To confirm that the
reconfigurable bias-manipulated photovoltaic effect is independent of
electrodes, a comparison with Au-Ni electrodes was made. Since Au
and Ni have similar work functions, minimizing Schottky barrier
effects, the Au-Ni device showed similar photoconductive responses
(Supplementary Fig. S23), confirming that the electricalperformance is
not influenced by electrode effects or contact interfaces.

The photocurrents (Supplementary Fig. S24) displayed varied
hysteresis loops depending on the scanning direction, with a positive
inner bias for the -1 V-to-1 V scan and a negative bias for the reverse
scan, consistent with the proposed model. For Au electrodes, Voc
ranged from 0.5 V to −0.6V, while for Ni electrodes, it ranged from 1V
to -1V, reflecting differences in charge carrier storage and transport.
Here, Voc was defined as the open-circuit voltage measured under
illumination at zero current flow. With better chemical stability and
conductivity, Au electrodes provided more stable operation under
photoelectric stimulation. As shown in Supplementary Fig. S25, the
device capacitance increased consistently as the bias decreased,
peaking at zero bias. The exponential decrease in capacitance under
reverse bias aligns with P–N junction barrier capacitance trends, while
the symmetric behavior reflects the reconfigurable nature of the P–N
junction50. This symmetry supports the PEHS model and its link to
reconfigurable photovoltaic effects, confirming its validity and
potential for neuromorphic computing applications.

Next-generation computing hardware requires 1) a high density of
configurable computing units for parallel operations; 2) a high-speed,
high-bandwidth interconnect network with low power consumption;
and 3) simple preparation and integration methods. To address these
requirements, the precise response time was obtained under stan-
dardized operational conditions (450 nm illumination at 12mW/cm²),
which aligns with prior findings (Supplementary Fig. S26a). Addition-
ally, endurance testing was performed under 11 repeated modulation
cycles at -0.4 V/µm to evaluate the device’s durability. The results
(Supplementary Fig. S26c) reveal that the devicemaintained relatively
stable self-powered performance across these 11 cycles, with no
notable decline in overall performance. Subsequently, we have enri-
ched the work with ambient stability test data collected over 1000 sec
under controlled conditions (25 °C, 40–50% relative humidity). These
findings (Supplementary Fig. S26b and S26d) underscore the halide
perovskite device’s reliable operational stability over extended dura-
tions, with no significant deterioration in performance metrics. While
our proposed approach makes progress toward achieving a high-
density, low-power parallel system, there are still areas that require
further development. Continued efforts and advancements will be
necessary to address these challenges fully.

Besides, we tested the communicationeffectbetween twodevices
during bias manipulation. The SEM images and schematic (Supple-
mentary Fig. S27) show that the connected devices demonstrated the
desired self-powered configurable performance. Applying varying bias
to one device controlled the entire system’s performance, switching
from −1.75 nA to 0.75 nA photocurrent, indicating a series-combined
mechanism.

Implementation of physical computing by two kinds of
microwire arrays
The traveling salesperson problem (TSP) (Fig. 4a) involves finding the
shortest path to visit a set of cities and return to the starting point, with

applications in logistics, chip manufacturing, and route planning. Due
to its computational complexity and finding a global optimal solution,
solving TSP is difficult with conventional hardware. However, the
polymorphic MWs van der Waals array allows for integrating highly
parallel arrays for efficient problem-solving.Wepropose a 5 × 5 parallel
array (Fig. 4b) to demonstrate solving a TSP involving four cities.
Optoelectronic stimuli encode the node parameters (distances),
enabling optimal solutions through matrix operations. Each device in
these arrays shows analog-modulated performance (Supplementary
Fig. S28), with overall performance being the cumulative output of
each pixel device. As illustrated in the flow chart in Fig. 4biii, the final
histogramaccurately identifies the lowestphotocurrent for tasks 2 and
4, confirming the effectiveness of the parallel array in high-parallelism
computing. Furthermore, when integrated with edge enhancement
algorithms, this reconfigurable, non-volatile bidirectional photo-
conductor significantly enhances image perception details while
optimizing hardware and software power consumption. Specifically,
edge enhancement for the “CityU” and “Nanjing University” logos was
achieved by mitigating the contrast difference between the logo pat-
terns (black) and the background (white). As illustrated in Supple-
mentary Fig. S29, the device effectively reproduces the image features
demonstrated in the simulation results, showcasing its capability to
replicate intricate details accurately.

Deep learning with convolutional neural networks (CNNs) is cru-
cial for image recognition in machine vision, but image contrast sig-
nificantly affects accuracy. In image restoration, one challenge is
information loss due to low contrast. For a different morphology of
MW arrays, a random large-area distribution can achieve pixel-level
image modulation. Moreover, for grayscale images with complex and
diverse pixel gradient directions, the random topological properties
demonstrate unique advantages in both restoration/repair and pro-
cessing/recognition tasks. We used a 3 × 3 random array to simulate
repairing damaged images. Each of the nine devices generated non-
volatile positive and negative photoconductivity by being pro-
grammed with photoelectric signals, enhancing overall image con-
trast. By adjusting the grayscale range, we can regulate image contrast;
a broader grayscale range results in higher contrast and more detail
(Fig. 4f). To simulate contrast degradation from occlusion or damage,
we first input an “H”-shaped signal into the array (Fig. 4d). The “H”
sections generate positive current signals. In contrast, the other sec-
tions produce negative signals. The occluded region is defined as the
two lower left areas where the light signal is reduced to one-tenth of
the initial level. Despite significant damage to the “H”-shaped light
signal, the displayed shape is still noticeably restored, and this
restoration effect remains stable for 120 sec without significant
degradation (Supplementary Fig. S30).

Based on actual device test results, we assigned values to the
restored effects according to the image’s grayscale range. As shown in
Fig. 4g, we evaluated the performance of a standard three-layer CNN
under different contrast conditions. Details of CNN’s deep learning
process are in the “Methods” section. In Fig. 4h, the network demon-
strates strong robustness, maintaining high accuracy at 94.5% within
the normal grayscale range. However, as the range narrows (indicating
reduced contrast), accuracy declines and sharply drops. This decline
occurs because the neural network struggles to distinguish edge
details and capture key features in low-contrast images. Supplemen-
tary Fig. S31 shows confusionmatrices reflecting a similar trend to the
accuracy curve under standard and reduced contrast conditions.
Given the significant impact of image distortion on visual recognition,
we also assessed how different grayscale ranges affect recognition
accuracy when the object is distorted. In Fig. 4i, we verify whether the
recognition capabilities of original and distorted images follow similar
patterns under varying contrast conditions. After reducing the grays-
cale range, the inset illustrates the contrast changes in the original and
distorted MNIST images, highlighting the need for machine
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recognition systems to capture and analyze image features based on
contrast efficiently. Additional grayscale letter images are provided in
Supplementary Fig. S32.

In conclusion, this work demonstrates the potential of PEHS in
epitaxially grown mixed-halide perovskite MW networks as a promis-
ing route for next-generation neuromorphic hardware. The stable and

controllable PEHS effect, verified by in-situ photoluminescence mea-
surements, enables non-volatile light information storage and precise
modulation of optoelectronic properties. The dynamic segregation
and recovery processes and the reconfigurable self-powered photo-
response highlight the material’s capability for physical computing.
Successfully solving the classic TSP and an image restoration task
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without external circuits emphasizes the significant potential of
leveraging material-intrinsic dynamics to achieve highly parallel and
energy-efficient computation. These findings offer valuable insights
into developing brain-inspired hardware for advanced computing
applications in the post-Moore era.

Methods
Preparation of CsPbBr1.5I1.5 MW arrays and networks
The primary materials, PbI2 (99%) and CsBr (99.999%) powders, were
sourced from Sigma-Aldrich without additional purification. Initially,
100mg of PbI2 and 70mg of CsBr were finely ground in an agate
mortar for approximately ten minutes, producing a pale yellow pow-
der. This mixture was then pre-annealed at 340 °C for 10minutes,
transforming into a reddish-brown powder. The mica substrate was
then mechanically exfoliated to obtain a clean, uniform two-
dimensional surface and positioned at the downstream end of a two-
zone CVD system. The reddish-brown precursor powder was placed at
the center of the first heating zone, about 15 cm from the mica. The
systemwas subsequently evacuated to around 7mTorr, and 300 sccm
of high-purity argon gas (Ar, 99.999%) was introduced to purge the
tube furnace. The argon flow rate was then adjusted to 70 sccm, and
the pressure for growth was stabilized at 0.85 Torr. The first heating
zonewasgradually raised to 440 °Cover 50minutes andmaintained at
this temperature for another 60minutes, while the second heating
zone was kept steady at 310 °C. Finally, a reddish-brown product was
deposited on the mica as the furnace cooled to room temperature in
an argon atmosphere. Using thismethod, we can obtain a parallel array
of mixed-phase perovskites. Moving the mica substrate in the second
heating zone 5 cm closer is required to achieve a randomly networked
sample, reducing the distance from the precursor to about 10 cm and
lowering the growth pressure to 0.6 Torr. This adjustmentwill result in
a randomly networked mixed-halide perovskite structure.

Material characterization
Our sample slices were prepared using an American-made FEI Helios 5
Hydra CX for focused ion beam (FIB) milling. The corresponding
observations were obtained using high-resolution transmission elec-
tron microscopy (HRTEM) images and energy-dispersive X-ray spec-
troscopy (EDS)mapping froman American-made FEI Talos F200x. The
crystalline phases of the samples were characterized using an X-ray
diffraction (XRD) system (D2 Phaser with CuKα radiation, Bruker). The
surface morphology was examined with an optical and scanning
electron microscope (Quanta 450 FEG, FEI). Elemental composition
was confirmed through an energy-dispersive X-ray (EDX) detector
attached to the Quanta 450 FEG. The continuous fluorescence char-
acterization of the material was observed and recorded using a Laser
Confocal Scanning Microscope (Leica SPE), with an external control
voltage supplied by a source meter (KEYSIGHT B2912). The steady-
state photoluminescence (PL) spectra were recorded using an F-4600
fluorescence spectrophotometer (HITACHI), while time-resolved PL
data were obtained from a HORIBA Fluoromax-4. In-situ PL spectra
under varying conditions were measured with a custom-built system
utilizing a spectral CCD array spectrometer (Ocean Optics USB2000).

Preparation and characterization of the device
All the optoelectronic devices here were fabricated using an eva-
poration method with custom-designed patterns. The gold electrodes
were deposited by thermal evaporation, while the nickel electrodes
were created using electron-beam evaporation. To enable external
voltage control during real-time monitoring of the material’s photo-
luminescence changes and fluorescence effects, we designed mask
patterns with 5mm and 1mm channel lengths. We usedmask patterns
with a channel length of 20 µm for device designs aimed at algorithm
verification. All electrodes were deposited to a thickness of 50 nm. The
optoelectronic properties of all devices were measured using a

standard electrical probe station equipped with a semiconductor
analyzer (Agilent 4155 C). A homemade light chopper was employed to
control the light for the 405, 450, 532, and 635 nm lasers, while an
attenuator was used to adjust its intensity. In contrast, the 1550nm
laser utilized an attached modulator (AFG 2005, Arbitrary Function
Generator, GoodWill Instrument Co. Ltd) tomodulate the infrared (IR)
irradiation. Illumination laser power was measured using a PM400
power meter (Thorlabs).

SPCM measurement
To explore the operational stability and underlying working mechan-
ism of the reconfigurable self-poweredmixed-halide perovskite arrays
based on PEHS, photocurrent mapping was performed using an inte-
grated optoelectronic scanning system (ScanPro Advance, Metatest).
The spot size was set to 2 μm to achieve high spatial resolution. Before
scanning, the device was subjected to varying bias voltages under
450nm laser illumination at 12mW/cm² tomanipulate the PEHS effect.
The applied voltage was controlled by a source/measure unit (2636B,
Keithley).

DFT calculation method
All the computations related to the halide energy barrier were carried
out using CASTEP’s first-principles calculation framework. The
exchange-correlation potential was approximated using the general-
ized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) formula and DFT-D correction51,52. Spin-polarized calculations
were performed, and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method was utilized to locate the ground state of the supercells.
Convergence criteria were set to an energy change below 10−5 eV per
atom, a force less than 0.02 eV/Å, stress under 0.05GPa, and dis-
placement change of less than 0.001 Å. The atomic wave functions
were truncated at a cutoff energy of 450eV. The diffusion energy
barrier was identified as the highest point on the minimum energy
path, determined using the linear/quadratic synchronous transit (LST/
QST) method.

Deep learning
Based on the actual device test results, we assign values to the restored
effects according to the grayscale range in the image. The specific
steps are shown in Supplementary Fig. S33. A standard three-layer
convolutional neural network (CNN) under different contrast condi-
tions was conducted by training it 30 times using 110,000 MNIST
images containing 26 letters, each with varying levels of graying.
During training, the degree of graying was explicitly included as an
additional parameter. The training data converged after 50 epochs.
During the training of the CNN, the input consists of the grayscale
information from 784 pixels of MNIST images. This data is first pro-
cessed usingMobileNetV2, which extracts and integrates pixel-specific
features. The CNN then applies multiple convolutional layer filters to
detect local features such as edges, textures, andpatterns. Thesefilters
slide across the image, computing a weighted sum of pixel values to
produce feature maps. Following this, the network creates hidden
layers from the pixel information. The network is trained to categorize
images and identify underlying patterns effectively. After several
convolutional and pooling layers, the featuremaps are flattened into a
one-dimensional vector. This vector is passed through fully connected
layers, which combine features to make final predictions. The output
layer uses the SoftMax function to assign probabilities to different
classes, allowing the network to classify the image into predefined
categories.

Data availability
Relevant data that support the key findings of this study are available
within the article and the Supplementary Information file. All raw data
generated during the current study are available from the
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corresponding author upon request. Source data are provided with
this paper.

Code availability
The code is available at: https://github.com/Eddy-Ho/DJ-Li.git.
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