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stClinic dissects clinically relevant niches by
integrating spatial multi-slice multi-omics
data in dynamic graphs

Chunman Zuo 1,2,3,4 , Junjie Xia2, Yupeng Xu2, Ying Xu5, Pingting Gao3,
Jing Zhang6, Yan Wang 7 & Luonan Chen8,9,10,11,12

Spatial multi-slice multi-omics (SMSMO) integration has transformed our
understanding of cellular niches, particularly in tumors. However, challenges
like data scale and diversity, disease heterogeneity, and limited sample
population size, impede the derivation of clinical insights. Here, we propose
stClinic, a dynamic graph model that integrates SMSMO and phenotype data
to uncover clinically relevant niches. stClinic aggregates information from
evolving neighboring nodes with similar-profiles across slices, aided by a
Mixture-of-Gaussians prior on latent features. Furthermore, stClinic directly
links niches to clinical manifestations by characterizing each slice with
attention-based geometric statistical measures, relative to the population. In
cancer studies, stClinic uses survival time to assess niche malignancy, identi-
fying aggressive niches enriched with tumor-associated macrophages, along-
side favorable prognostic niches abundant in B and plasma cells. Additionally,
stClinic identifies a niche abundant in SPP1+ MTRNR2L12+ myeloid cells and
cancer-associated fibroblasts driving colorectal cancer cell adaptation and
invasion in healthy liver tissue. These findings are supported by independent
functional and clinical data. Notably, stClinic excels in label annotation
through zero-shot learning and facilitates multi-omics integration by relying
on other tools for latent feature initialization.

The interrelated, coexisting, and competitive interactions between
different cell types within the tumor microenvironment (TME) or cel-
lular niches drive cancer cell heterogeneity, clonal evolution, disease
progression, and metastasis1. These complex interactions—such as

those between tumor-associated macrophages (TAMs), cancer-
associated fibroblasts (CAFs), and immune cells—form a dynamic
network that significantly influences clinical outcomes, including
tumor stage, grade, prognosis, and treatment response2–4. Studying
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cellular niches, rather than focusing solely on individual cell-states, is
crucial for capturing the collective behaviors and emergent properties
of the tumor ecosystem, which provide a more comprehensive
understanding of cancer dynamics and pave the way for precision
medicine4–6. Identifying clinically relevant niches allows for targeted
interventions in the pro-TME, thereby maximizing therapeutic
benefits7.

Current spatial multi-omics technologies, encompassing tran-
scriptome, genome, epigenome, proteome, and metabolome, retain
omics profiles within spatial context, facilitating the exploration of
tissue cellular niches andmolecularheterogeneity8,9. Spatially resolved
transcriptomics (SRT) data, particularly within tumors, have become
increasingly popular for investigating the role of the TME in disease
progression10–13. Previously, we employed graph neural network
(GNN)-based models to dissect spatiotemporal TME heterogeneity
from SRT data, by analyzing its intracellular molecular networks and
intercellular cell-cell communication11,14. With accumulating SMSMO
data accumulated across diverse tumor types12,15–18, there is an urgent
need to systematically unravel cellular niches from diverse patients
while predicting their associations with clinical outcomes. However,
integrating SMSMO data encounters challenges such as data scale and
diversity19, inter-patient heterogeneity10, and a limited sample set.

Recently, several computational methods have emerged to
analyze SMSMO data. Specifically, (i) integration of SRT data from
adjacent slices of a tissue (homogeneous integration): SpaGCN20

identifies spatial domains across multi-slices with coherent gene
expression and histology but lacks batch-effect correction cap-
abilities. PASTE21,22 aligns or integrates adjacent slices using optimal
transport theory, followed by STitch3D23 and GraphST24, which con-
struct unified neighbor graphs with three-dimensional (3D) spatial
locations inferred by PASTE and apply GNNs for integration and
spatial domain identification. However, the linear alignments in
PASTE, and its derivatives STitch3D and GraphST, struggle to capture
heterogeneity within the TME across diverse slices; (ii) integration of
SRT data from slices across diverse tissues (heterogeneous integra-
tion): SEDR25 combines autoencoder and GNN to integrate gene
expression and spatial location for spatial domain identification,
while PRECAST26 performs dimension reduction and spatial cluster-
ing with straightforward projections. STAligner27 integrates a graph
attention autoencoder and spot triplets to identify shared and spe-
cific spatial domains across diverse SRT datasets. Yet, the reliance on
spot relations across diverse slices may hinder their accurate iden-
tification of niches in heterogeneous patients. BANKY28 integrates
the raw gene expression with two additional gene expression
matrices (one based on a weighted mean of expression of neigh-
boring cells and another using an azimuthal Gabor filter), and redu-
ces them to low-dimensional features using PCA. However, the linear
approach struggles to capture the complexity inherent in the com-
bined data; (iii) integration of spatial multi-omics data from the same
or different slices: CellCharter19 and SLAT29 preprocess multi-omics
data using scVI30 and GLUE31, followed by graph modeling to learn
shared features; and (iv) integration with clinical data:
CytoCommunity32 integrates spatial location and cell phenotype with
a GNN to identify condition-specific spatial domains. However, it is
primarily designed for single-cell spatial protein data, and is not
suitable for high-dimensional spatial omics data (e.g., transcriptome
or epigenome) due to limited cell-type annotation and sample size33.
More importantly, none of these methods have attempted to explain
how the TME or niche influences clinical outcomes. Therefore, there
is a lack of computational methods capable of integrating both
SMSMO and clinical data to identify niches across diverse tissues
while predicting clinically related niches.

In this work, we propose stClinic, a dynamic graph learning
model that integrates SMSMO and phenotype data to analyze niches
in diverse populations. It (i) identifies shared and condition-specific

niches, (ii) evaluates their significance in phenotype prediction, (iii)
transfers labels from a reference set using zero-shot learning, and
(iv) integrates multi-omics data from the same or different slices. To
accurately leverage inter-spot relations within and across slices,
stClinic aggregates messages from evolving neighboring nodes with
similar feature profiles, facilitating effective learning of batch-
corrected features. To overcome sample size limitations, stClinic
directly relates niche to clinical outcomes by representing each slice
using a niche vector characterized by six geometric statistical
measures relative to the population. Crucially, a pre-trained encoder
can map new samples into a common feature space as the reference
set without fine-tuning, enabling label transfer. Additionally, stCli-
nic’s flexible input capabilities allow it to leverage latent features
from other single-cell multi-omics tools (e.g., MultiVI34 and Seurat35)
into dynamic graphs, thereby enhancing spatial multi-omics align-
ment and fusion. stClinic demonstrates its versatile applications by
detecting shared and clinically related niches from 96 tissue slices,
including breast cancer, colorectal cancer (CRC), and liver metas-
tasis (LM). stClinic reveals distinct niches such as TAMs in aggressive
tumors, B and plasma cells in favorable prognoses, and SPP1+
MTRNR2L12+ myeloid cells and CAFs in CRC adaptation and inva-
sion. These findings are supported by independent functional and
clinical data. Importantly, such unsupervised and supervised mod-
els in stClinic provide a flexible framework for decoding niches by
integrating spatial epigenomics, proteomics, and mass spectro-
metry imaging data.

Results
Overview of stClinic
stClinic dissects cellular niches in diverse populations by integrating
SMSMO and clinical data through five key components (Fig. 1a–d): (i)
learning batch-corrected features frommulti-slice data using dynamic
graphs; (ii) assessing niche importance in phenotype prediction via
attention-based supervised learning; (iii) transferring labels from
reference samples by zero-shot learning; (iv) extracting joint features
of multi-omics data from the same slice; and (v) learning aligned fea-
tures of multi-omics data from different slices.

In the unsupervised learning task (Fig. 1b, d), stClinic models
omics profiling data (X) from multi-slices as a joint distribution
pðX,A, z, cÞ, where c represents one of the components within a
Gaussian Mixture Model (GMM) comprising K clusters (see “Selecting
the number of clusters in GMM”), and z stands for batch-corrected
features characterizing biological variations among spots acrossmulti-
slices. stClinic employs a variational graph attentionencoder (VGAE) to
transformX and an adjacencymatrix (A) (i.e., a unified graph) into z on
the Mixture-of-Gaussian (MOG) manifold. The adjacency matrix is
constructed by incorporating spatial nearest neighbors within each
slice and feature-similar neighbors across slices (Supplementary Fig. 1).
It then maps z through L one-layer slice-specific decoders36,37 to both
omics profiling data and the unified graph. Tomitigate the influenceof
potential false neighbors (i.e., dissimilar profiles) in learning embed-
dings, stClinic iteratively removes links between spots from different
GMM components.

To link clusters/niches with clinical outcomes in a limited sample
population (Fig. 1c, d), stClinic represents each slicewith a niche vector
using attention-based statistical measures. For each cluster in each
slice, six metrics are calculated to capture variations: mean, variance,
maximum, andminimum of the UMAP38 embeddings in the combined
feature space z, and proportions within and across all other slices. The
weights of each cluster in phenotype prediction can then be deter-
mined by the parameters of the linear layer.

Once trained on a reference set, stClinic’s frozen graph encoder
can seamlessly map tissue samples into the same embedding space,
facilitating label transfer from the reference set through zero-shot
learning (Fig. 1d). Additionally, with its adaptable input features,
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stClinic relies on latent features extracted frommulti-omics data using
prior tools like MultiVI34 and Seurat35, facilitating label annotations
across various omics datasets (Fig. 1d).

stClinic enables accurate alignment of SRT datasets across
diverse samples
To thoroughly evaluate the performance of stClinic, we analyzed 12
human dorsolateral prefrontal cortex (DLPFC) slices generated using
Visium technology from three donors (Supplementary Table 1)39. Each
slice was annotated with six (or four) layers and white matter (WM)
from a previous study, serving as the ground truth for evaluating
clustering accuracy (Fig. 2a)39. To emphasize the advantages of batch-
corrected features learned from dynamic graphs, we also evaluated

features learned from a fixed graph (stClinic_fix). We compared stCli-
nic with five recentmethods (SEDR, GraphST, STitch3D, PRECAST, and
STAligner). We used the respective algorithms for each method to
predict clusters and applied the mclust algorithm40 to stClinic_fix and
stClinic (Supplementary Table 2). The adjusted rand index (ARI)41 and
normalized mutual information (NMI)42 measure cluster consistency
with the ground truth, while the average silhouette width (ASW)
evaluates cluster separation. The F1 score26, derived from ASW,
assesses both cluster separation and slice mixing. The cell-type local
inverse Simpson’ Index (cLISI)43 and integration LISI (iLISI)26 quantify
the mixing of clusters and slices in the neighborhood, respectively.
Spot embeddings were visualized by projecting them into two UMAP
spaces.

Fig. 1 | Overview of stClinic. a stClinic integrates multi-slice omics data from the
same tissue or different tissues, as well as multi-omics data from the same slice or
different slices/technologies. Vertical integration aligns and integrates multi-omics
datawithin the sameslice,whilediagonal integrationdoes so across different slices.
b Given multi-slice omics profiles (X) and spatial location (S) data as input, stClinic
learns batch-corrected latent features (z) using a dynamically evolving graph,
guided by a Mixture-of-Gaussians prior through Kullback-Leibler (KL) divergence
regularization. c Given z and clinical data (Y) as input, stClinic quantifies the

weights (WT ) of each cluster in clinical outcome prediction by representing each
slice using a niche vector characterized by six geometric statistical measures rela-
tive to the population. d Integrated features z and weights (WT ) serve various
purposes in dissecting niches from heterogenous tissues: identifying shared and
condition-specific niches, assessing niche importance in phenotype prediction,
transferring labels from the reference through zero-shot learning, and annotating
labels across different types of omics datasets.
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Wecorrectedbatcheffects of four adjacent slices for each sample.
In summary, we found that (i) PRECAST achieves higher ASW and F1
scores than stClinic, indicating better cluster separation. However,
stClinic excels in ARI and NMI scores, reflecting greater clustering
accuracy. For example, in Sample 1, stClinic accurately distinguishes
between Layers 4 and 5, as well as Layers 1 and 2 (Fig. 2b, c and Sup-
plementary Figs. 2–4); (ii) compared to stClinic_fix, latent features

from different slices are more effectively mixed in stClinic, and iden-
tical clusters are more closely bound together, demonstrating the
effectiveness of aggregating information from dynamic neighboring
nodes across slices (Supplementary Figs. 2b, 3a and 4a); and (iii) for
cLISI, SEDR and STAligner outperformstClinic in Sample 2, but stClinic
surpasses all methods in Samples 1 and 3. stClinic’s iLISI score is
comparable to those of SEDR, Stitch3D, and STAligner, although all
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four methods underperform relative to GraphST and PRECAST (Sup-
plementary Fig. 2a).

To further investigate stClinic’s ability to integrate heterogeneous
tissue slices, we analyzed 12 DLPFC slices from three samples,
excluding GraphST and STitch3D as they only integrate slices from the
same tissue.We observed that (i) although the clusters of PRECAST are
more separated than those of stClinic, stClinic’s clusters are more
consistent with the ground truth, as evidenced by higher ARI and NMI
scores (Fig. 2d, e and Supplementary Fig. 5a); (ii) UMAP embeddings of
SEDR, STAligner, and PRECAST show over-corrected and disordered
cortical layer structures, whereas stClinic effectively integrates spots
from the same layer across 12 slices. This outcome is characterized by
exceptional cLISI and iLISI scores, as well as superior histological and
transcriptomic similarities compared to other methods (Fig. 2d, e,
Supplementary Fig. 5b, c and Supplementary Note 1); (iii) stClinic
outperforms stClinic_fix in aligning identical clusters from hetero-
geneous slices, resulting in a tighter andmore homogeneous mix (Fig.
2d and Supplementary Fig. 5a–c); and (iv) for sample 3 annotated with
Layers 3–6 and WM, stClinic identifies more accurate and smoother
laminarpatterns thanothermethods, and can evendetect Layers 2 and
1 within the annotated Layer 3. This finding is consistent with the dis-
tribution of Layer 1- and 2-marker genes such as AQP4 and HPCAL139

(Fig. 2f and Supplementary Fig. 5d).
Moreover, an integrative analysis of seven consecutive sections of

the 3D hippocampal structure profiled by Slide-seq44 demonstrated
that, although stClinic does not achieve the highest ASW, F1 score, or
iLISI, it consistently outperforms other methods in capturing cluster
patterns, as supported by a more accurate gene expression distribu-
tion within clusters (Supplementary Fig. 6a–e).

Overall, stClinic effectively aligns identical clusters across slices in
the low-dimensional feature space, enabling the dissection of hetero-
geneous cellular niches across different tissues.

stClinic uncovers intra-tumor niches missed by competing
methods
To demonstrate stClinic’s ability to discern heterogeneous niches
within complex disease tissues, we applied it to analyze two human
Luminal B breast cancer slices, BAS1 and BAS2, as published by 10X
Genomics (Fig. 3a and Supplementary Table 1). These samples were
annotated into 20 groups, categorized into four histological types:
invasive carcinoma (IDC), carcinoma in situ (CIS), tumor edge, and
healthy tissue. We benchmarked stClinic against SpaGCN, Seurat,
SLAT, SEDR, STAligner, PRECAST, and BANKSY. The low-dimensional
features generated by stClinic, Seurat, SpaGCN, and STAligner were
used to identify spatial domains using the Louvain algorithm, while
the other three methods employed their default clustering methods
(Supplementary Table 2). The results were visualized in two-
dimensional UMAP spaces.

By comparison, we found that (i) while PRECAST achieves a higher
F1 score, stClinic demonstrates superior ARI performance, exceeding
PRECAST by more than 0.1. This highlights stClinic’s ability to capture
local details and maintain pairwise annotation consistency. Notably,
stClinic uniquely detects tumor boundaries, such as cluster 17 (indi-
cated by black arrows), which is characterized by over-expression of
oxidative phosphorylation and glycolysis genes, potentially reflecting

tumor cell invasion and metastasis45 (Fig. 3a–e and Supplementary
Fig. 7a); (ii) BANKSY achieves a slightly higher NMI score than stClinic,
reflecting its strength in capturing global categorical relationships.
However, BANKSY fails to identify local small domains across slices,
such as IDC_1 (outlined in black) and CIS_2 (outlined in red) (Fig. 3a, c);
(iii) for cLISI, BANKSY, SLAT, and SEDR outperform stClinic, while for
iLISI, PRECAST and Seurat perform better than stClinic (Fig. 3c); (iv)
SpaGCN, despite its ability to identify spatial domains, struggles to
align several common niches across slices due to its lack of batch-
effect correction capabilities (Fig. 3a, b); and (v) stClinic demonstrates
superior robustness to variations in the number of clusters, con-
sistently maintaining overall high clustering and batch-effect correc-
tion performance in terms of F1 score, ARI, and NMI
(Supplementary Fig. 7b).

In summary, stClinic effectively integrates multi-slice SRT data
within a batch-corrected feature space, enabling accurate and reliable
analysis of tumor heterogeneity.

stClinic evaluates niche malignancy through prognosis analysis
We demonstrated the ability of stClinic to assess malignancy levels in
diverseniches using survival time, by analyzing 43 slices from23 triple-
negative breast cancer (TNBC) patients46 (Supplementary Table 1).
These slices, marked by regions of tumor, fibrosis, necrosis, adipose
tissue, and immune infiltrate, were stratified into low-risk and high-risk
groups based on the median overall survival time. The log-rank test
revealed a significant survival difference between the groups (Fig. 4a,
p = 1.66e-08), indicating that the data can effectively distinguish
survival-associated clusters. We compared stClinic with SEDR, PRE-
CAST, and STAligner to identify clusters from these 43 slices (Sup-
plementary Table 2), and subsequently assessed the importance of
different clusters in predicting survival time.

In short, we observed that (i) UMAP embeddings of SEDR, STA-
ligner, and PRECAST are structurally unordered, whereas stClinic
achieves a uniformmixture of spots across 43 slices while maintaining
distinct cluster separation (Fig. 4b and Supplementary Fig. 8a); (ii)
stClinic’s clusters closely align with pathological annotations: clusters
1, 2, 4, 9, and 10 reside in in the tumor region, clusters 6, 7, 8, 11, and 12
in lymphoid cell and fibrosis regions, and clusters 3 and 5 in fibrosis
and myeloid cell regions (Fig. 4c–e and Supplementary
Figs. 8b and 9–13); (iii) stClinic and STAligner identify detailed struc-
tures within the dense lymphoid infiltrate and fibrosis regions using
sub-clustering analysis, while SEDR performs less effectively, as shown
in slice 15. Both stClinic and STAligner detect two clusters enriched in T
and B cells or myeloid cells. Notably, stClinic exhibits significant PVL
enrichment in one cluster compared to the other two, whereas STA-
ligner displays PVL enrichment in one cluster relative to a single other
cluster (Supplementary Fig. 14a–c); (iv) stClinic accurately predicts
survival time, achieving a median of concordance index (C-Index) of
0.855 by using seven-fold cross-validation, with a significant difference
between high-risk and low-risk groups (hazard ratio (HR): 9.354, 95%
confidence interval (CI): 3.963–22.076, log-rank test, p = 4.75e-12) (Fig.
4f and Supplementary Fig. 15); and (v) cluster 10 exhibits the highest
positive weight for survival prediction, while cluster 6 has the lowest
negative weight. Notably, we found that positive-weight clusters show
enrichment of cancer and macrophage cells, associated with poor

Fig. 2 | stClinic is able to align multiple SRT datasets across diverse samples.
a Manual annotation of the 12 slices across three samples on the human DLPFC
dataset, including six (or four) layers and WM. b Bar plot illustrating clustering
accuracy in terms of ARI on three samples by SEDR, GraphST, STitch3D, PRECAST,
STAligner, stClinic_fix, and stClinic. c Spatial domains detected by SEDR, GraphST,
STitch3D, PRECAST, STAligner, and stClinic on the Sample 1. d UMAP visualization
of the latent features by SEDR, PRECAST, STAligner, stClinic_fix, and stClinic across
all 12 slices. In the top and bottom panels, the colors represent the slices and
clusters, respectively. e Comparison of the seven methods (SEDR, GraphST,

STitch3D, PRECAST, STAligner, stClinic_fix, and stClinic) regarding accuracy of
clustering (ARI and NMI) and batch-effect correction (cLISI and iLISI), on
N = 12 slices. It’s noted that lower cLISI values indicate better correction for cell-type
mixing, while higher iLISI values indicate better correction for batch mixing. For
each boxplot, the center line, box limits, and whiskers separately indicate the
median, upper and lower quartiles, and 1.5 × interquartile range. f Spatial domains
identified on slice 151672 by five methods (SEDR, PRECAST, STAligner, stClinic_fix,
and stClinic) under the condition of integrating 12 slices, respectively. Layer 3 is
outlined in black. Source data are provided as a Source Data file.
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prognosis47, while negative-weight clusters are enriched with plasma
and B cells, linked to improved prognosis48,49 (Fig. 4c, g). Collectively,
these findings suggest that clusters 10 and 6 may represent high-risk
and low-risk niches, respectively.

To support our findings, we adopted independent approaches: (1)
cluster 10 cells exhibit over-expression of genes related to tumor
metastasis and epithelial-mesenchymal transition50–52, such as TROP2,
TM4SF1, and FABP5. These genes are involved in functions linked to
tumor malignancy, including cell division, cell cycle, cell migration,
hypoxia, cell proliferation, mechanical stimulus, and degradation of
the extracellular matrix. Moreover, the mean expression level of
30 signature genes is significantly associated with shorter survival in
breast cancer, as demonstrated by data from the TCGA database (log-
rank test, p =0.036) (Fig. 4h–j); (2) conversely, cluster 6 cells over-
express IgG genes linked to improved prognosis53, along with tumor-
suppressive genes like TIMP3 and LYZ 54–56. This cluster mainly com-
prises CD8+ T cells, memory B cells, and dendritic cells (DCs),

suggesting its crucial role in the tumor immune response through
mechanisms such as CD8+ T-mediated cytotoxicity, antigen pre-
sentation byDCs, and antibody production by B cells. Additionally, the
mean expression level of 30 signature genes is significantly associated
with longer survival in breast cancer from the TCGAdatabase (log-rank
test, p =0.032), suggesting that the immune-active profile of this
cluster may serve as a prognostic biomarker for better outcomes in
patients with stronger anti-tumor immune responses (Fig. 4c, h, i and
Supplementary Figs. 16 and 17a); and (3) cluster 10 cells exhibit higher
CNV levels compared to cluster 6 cells (Fig. 4k and Supplementary
Fig. 17b–d). These results indicate that clusters 10 and 6 are associated
with unfavorable and good prognosis, respectively.

Overall, stClinic offers a valuable methodological approach to
assess niche malignancy by predicting survival time, thereby enhan-
cing prognostic assessment and potentially uncovering targets for
clinical immune therapy. These hold promise for improving patient
outcomes in cancer treatment.

Fig. 3 | stClinic enables the identification of intra-tumoral niches in two human
LuminalBbreast cancer slices: BAS1andBAS2. aManual pathological annotation
of Hematoxylin and Eosin (H&E)-stained plots and clusters identified by SpaGCN,
Seurat, SLAT, SEDR, STAligner, PRECAST, BANKSY, and stClinic. b UMAP visuali-
zation of latent features for the two slices generatedby eightmethods. Colors in the
top and bottom panels represent slices and clusters, respectively. c Comparison of

clustering accuracy (ARI and NMI) based on manual annotations, slice mixing
accuracy using annotations (cLISI) and slice numbers (iLISI), and combined cluster
separation and slice mixing performance (F1 score) across eight methods. d Over-
expressed genes in cluster 17 compared to other clusters. e Functional annotation
of over-expressed genes in cluster 17 relative to other clusters. Unadjusted one-
sided Fisher’s exact test. Source data are provided as a Source Data file.
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Fig. 4 | stClinic evaluates the malignancy level of niches on the 43 TNBC slices.
a Kaplan–Meier survival curve for 43 breast cancer slices, with slices stratified into
low-risk and high-risk groups based on their median overall survival time. Unad-
justed two-sided log-rank test. b UMAP visualization of the latent features by
stClinic on 43 slices, where the colors in the left and right panels indicate slices and
clusters, respectively. c Heatmap showing the cell-type proportions on spatial
domains by stClinic. d H&E plot of slices 15 and 26. Slice 15 was annotated with
fibrosis, necrosis, tumor, anddense lymphoid infiltration regions,while slice 26was
annotated with fibrosis and tumor regions. e Spatial domains identified by stClinic
on slices 15 and 26. f Kaplan–Meier survival curves for 43 breast cancer slices, with
slices classified into low-risk and high-risk groups based on their median hazard
ratio predicted by stClinic. Unadjusted two-sided log-rank test. g Bar plot

displaying the weights of cluster in prognosis by stClinic. hHeatmap depicting the
average gene expression of the top 30 over-expressed genes for clusters 10 and 6.
iOverall survival rate of patientswith the low or high expression patterns of the top
30 over-expressed genes for clusters 10 (top panel) and 6 (bottom panel) in breast
cancer data from TCGA by GEPIA289. Unadjusted two-sided log-rank test.
j Functional enrichment analysis of the over-expressed genes in cluster 10. Unad-
justed one-sided Fisher’s exact test. kBoxplot showing the total copynumber gains
and losses per spot in clusters 10 (N = 2717) and 6 (N = 5124), as inferred by
CopyKAT90. Unadjusted one-sidedWilcox rank-sum test. 2.22e-16 represents a very
small number, effectively close to zero. For eachboxplot, the center line, box limits,
and whiskers separately indicate the median, upper and lower quartiles, and
1.5 × interquartile range. Source data are provided as a Source Data file.
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stClinic identifies metastasis-relevant niches by integrating pri-
mary colorectal cancer and liver metastasis data
To validate that stClinic can predict metastasis-related niches, we
manually collected 24 slices comprising 14 primary CRCs and 10
LMs15,57–60, including pairs from the same patient (CRC9/LM3 and

CRC10/LM4) (Fig. 5a and Supplementary Table 1). These slices were
annotated into five regions: normal epithelium, stroma, tumor, normal
liver, and immune cell aggregate15,57–60. By applying stClinic to integrate
these 24 slices, we identified 13 clusters and assessed the niche
importance in distinguishing LM and CRC.

Fig. 5 | stClinic enables the identification of metastasis-relevant TMEs by
integrating primary colorectal cancer and liver metastasis datasets. a Sample
set of 14 primary CRCs and 10 LM slices. bUMAP visualization of the latent features
by stClinic on 24 slices, where the colors in the left and right indicate slices and
clusters, respectively. c Heatmap showing the cell-type proportions on spatial
domains identifiedby stClinic.dH&Eplot of four representative slices: CRC1,CRC9,
LM3, and LM5, where CRC9 and LM3 are from the same patient. The top panel
shows the pathological annotations of four slices, while the bottompanel indicates
the spatial domains identified by stClinic. e Bar plot showing the weights of dif-
ferent clusters in liver metastasis by stClinic. f Spatial distribution of liver

metastasis-related clusters (1, 7, 9) on LM5 and LM3. g Heatmap of cluster enrich-
ment on CRC and LM slices identified by stClinic. h Spatial expression of repre-
sentative genes (SPP1, MTRNR2L12, and COL1A1) for metastasis-related cells, for
slices LM5 and LM3data denoised by stClinic. iDisease-free survival rate of patients
with high and low expression patterns of the top 10 over-expressed genes for
cluster 1 in colon cancer data from TCGA by GEPIA289. Unadjusted two-sided log-
rank test. j Functional enrichment analysis of the over-expressed genes in cluster 1.
Unadjusted one-sided Fisher’s exact test. Source data are provided as a Source
Data file.
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Upon analysis, we found that (i) stClinic’s spatial domains align
more closely with pathological annotations compared to SEDR, PRE-
CAST, and STAligner. For example, clusters 1, 4, 7, 9, and 12 are enri-
ched in the tumor region, cluster 2 in the normal liver region, cluster 6
in the immune cell aggregate region, cluster 5 in the normal epithelium
region (Fig. 5b–d and Supplementary Figs. 18–24); (ii) spots belonging
to the same clusters across 24 slices are more evenly mixed in stClinic
compared to othermethods (Fig. 5b and Supplementary Fig. 20a); and
(iii) stClinic accurately predicts primary and metastatic cancer cate-
gories byniche, achieving an average area under the receiver operating
characteristic curve (AUCROC) of 0.914 and an accuracy (ACC) of
0.917, across 24 sets of leave-one-out cross-validation (Supplementary
Fig. 25). Notably, cluster 1 exhibits the highest positive weight for
classification, suggesting its association with LM from primary CRC
(Fig. 5e, f).

To validate our findings, we adopted the following ways: (1)
cluster 1 is notably abundant in LM, particularly in the normal liver
region (Fig. 5g); (2) cluster 1, enriched with SPP1+ myeloid and CAF
cells, forming an immunosuppressive niche supporting CRC in the
liver61. Notably, SPP1+ myeloid cells over-express MTRNR2L12, enhan-
cing macrophage survival within the TME, particularly in metastasis62

(Fig. 5h); (3) themean expression level of 10-gene signature in cluster 1
is significantly associatedwith shorter disease-free survival (DFS) in the
CRC samples from the TCGA database (log-rank test, p = 0.046), sug-
gesting that its potential as a biomarker for predicting disease recur-
rence or death (Fig. 5i); (4) a random forestmodel trained on a 10-gene
signature successfully classified CRC (stages I–III vs. stage IV) using
90% of the TCGA data, achieving an accuracy of 0.87 and an AUC of
0.74 on the test data. The AUCwas significantly higher than those from
1000 random 10-gene sets drawn from ~60,000 genes, indicating non-
random predictive value (unadjusted one-sided Permutation test,
p =0.049); and (5) cluster 1 shows various functions, including cell
cycle, collagen degradation, endothelial cell migration, p53 signaling
pathway, angiogenesis, cytokinesis, glucose metabolic process, and
hypoxia (Fig. 5j). These results suggest that cluster 1 may suggest a
potential role in early normal liver tissue infiltration, this remains a
hypothesis that requires further genomic data for confirmation.

In short, stClinic streamlines the prediction of metastasis-related
niches by integrating primary CRC and LMdata. This paves the way for
a deeper understanding of how cancer cells navigate and invade new
environments by interacting with the surrounding cell populations.

stClinic annotates labels from the reference using zero-shot
transfer learning
A notable feature of our stClinic model is its seamless label transfer
from the reference set without the need for retraining (Fig. 6a). We
conducted experiments on the DLPFC dataset to illustrate the effec-
tiveness of stClinic. Specifically, we (i) trained a stClinic model using
reference slices 151673–151675; (ii) utilized the frozen graphencoder to
map slice 151676 from the same tissue and slice 151507 from different
tissues into the same embedding space as the reference; and (iii)
predicted spot labels based on their nearest neighbors in slices
151673–151675. For benchmarking, we compared stClinic with Seurat
and Geneformer63, a scRNA-seq data foundation model that supports
batch-effect correction and zero-shot learning. The results revealed
that (i) stClinic classifies ~70% of spots accurately, compared to Seurat
and Geneformer’s 16–18% accuracy, showing its superior general-
izability in both the same and different tissues (Fig. 6b–d); and (ii) in
~80% of layers, over 50% of spots were accurately predicted into their
respective classes by stClinic (Supplementary Fig. 26a, b).

A similar experiment was conducted on heterogeneous cancer
samples, training stClinic on VIDC and BAS1, and transferring labels to
BAS2 (Fig. 6e). By comparison, we observed that (1) stClinic’s UMAP
embeddings display greater separation compared to Geneformer and
Seurat, as indicated by higher F1 scores (Fig. 6f and Supplementary

Fig. 27a). While Seurat exhibits a higher iLISI, indicating greater slice
mixing, stClinic’s predictions align more closely with annotations, as
demonstrated by superior hLISI, the highest ARI andNMI for BAS1, and
consistent cell-type compositions across slices within identical cluster
(Fig. 6g, Supplementary Fig. 27b, c, and Supplementary Note 2).
Additionally, stClinic uniquely identifies cluster 10 (tumor edge) sur-
rounding cluster 1 (tumor core), enriched in macrophages, memory B
cells, andCD4+T cells, with enhanced complement activation andHLA
class II expression, reflecting dual roles in tumor growth64 and anti-
tumor immunity (Supplementary Fig. 27d–g); (2) stClinic achieves the
highest ARI and NMI scores for transferred labels on BAS2, whereas
Seurat performs the worst (Fig. 6g); (3) stClinic demonstrates strong
clustering, batch-effect correction, and label transfer performance
across varying numbers of clusters,with the highest ARI score for BAS1
at 14 clusters, whichwas selected for label transfer analysis (Fig. 6g and
Supplementary Figs. 27a and 28); and (4) stClinic distinctly identifies
cluster 9 surrounding cluster 6 in BAS1 and accurately transfers these
labels to BAS2. In both BAS1 and BAS2, cluster 9 exhibits over-
expression of basal cell markers (KRT5, KRT14, and KRT17)65, and
SERPINA366, and genes associated with extracellular matrix remolding,
collagen metabolism, cell migration, tissue repair, inflammatory
response, and the PI3K-Akt signaling pathway, underscoring its critical
role in promoting tumor cell invasion (Fig. 6h–j).

Collectively, stClinic introduces a framework for dissecting query
samples using reference data, facilitating knowledge transfer from
prior studies and advancing our understanding of complex biological
systems.

stClinic improves the results for detecting finer structures by
integrating multi-omics from the same slice or different slices
Benefiting from stClinic’s flexible framework, we explored its capacity
to integrate spatial multi-omics data from both the same67 and differ-
ent slices68,69 (Fig. 7a, b). We used MultiVI34 to map both RNA-seq and
ATAC-seq from the P22 mouse brain coronal section67 into latent fea-
tures (Supplementary Table 1). For comparison, we separately
employed scVI30 and peakVI70 tomap RNA-seq and ATAC-seq data into
latent features. stClinic then extracts low-dimensional features from
these profiles and spatial location data. Spatial clusters were subse-
quently predicted, with CellCharter19 used for comparison. Our ana-
lysis revealed that (i) multi-omics integration tools like stClinic,
CellCharter, and MultiVI better approximate true tissue structure
compared to single-omics model (Fig. 7c and Supplementary
Fig. 29a, b); (ii) stClinic’s domains closely align with anatomical struc-
tures, such as VL (cluster 12) and islm (cluster 13), consistent with
distribution of their corresponding markers: Dlx1 and Drd3, indicating
the efficiency in dynamically aggregate information from neighboring
nodes within complex tissues (Fig. 7d and Supplementary Fig. 29c–e).

We then investigated whether or not stClinic could effectively
align multi-omics data from different slices. For the RNA-seq (from
Stereo-seq)69 and ATAC-seq (from spatial ATAC-seq)68 on different
mouse embryo slices (Supplementary Table 1), we applied Seurat35 to
map them into a shared feature space, generating a feature profile for
each slice. Then, we treated this as a multi-slice integration task (Fig.
7b). We also employed GLUE31, SLAT29, and MaxFuse71 for analysis.
Comparatively, stClinic demonstrates superior alignment between
RNA-seq and ATAC-seq compared to GLUE, SLAT, Seurat, and Max-
Fuse, despite the different resolutions between the two technologies,
i.e., 0.2μm for Stereo-seq and 20μm for spatial ATAC-seq. Further-
more, transferred ATAC-seq labels from RNA-seq data in stClinic
exhibited greater consistency with known marker genes, such as
Cntnap5b for spinal cord, Dnm3os for connective tissue, and Tnn2 for
heart (Fig. 7e–g and Supplementary Fig. 29f).

Overall, these findings highlight stClinic’s effectiveness in intelli-
gently integrating information from feature-similar neighboring
nodes, whether these omics are from the same slice or different slices.
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Discussion
This study presents stClinic, a dynamic graph model for analyzing
niches in heterogeneous populations using SMSMO and clinical data,
by identifying shared and patient-specific niches, assessing niche sig-
nificance in clinical outcomes, transferring labels from the reference
using zero-shot learning, and integrating multi-omics data from both

the same and different slices. stClinic aggregates information from
evolving neighboring nodeswith similar profiles, enabling the learning
of batch-corrected and biologically coherent representations. It
introduces six geometric statistical measures to quantify cluster/niche
patterns—presence, proportion, and distribution—using UMAP
embeddings of batch-corrected features. UMAP’s preservation of local
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and global structures ensures consistent cluster alignment across sli-
ces, enabling predictive statistics that link niche features to clinical
outcomes. Notably, stClinic directly connects spatial niches to clinical
outcomes through multi-slice omics integration. Its shared encoder
seamlessly maps new samples into the common feature space of the
reference set for label transfer through zero-shot learning. Through
versatile input features, stClinic incorporates latent features from
other multi-omics tools, enabling label annotations across diverse
datasets.

Benchmark comparisons between stClinic and the other six
methods on the human DLPFC dataset demonstrated that stClinic’s
latent features of the same clusters from different slices are more
effectively integrated, facilitating the dissection of heterogeneous
cellular niches. Further evaluations on human breast, colorectal, and
LM cancer samples highlighted the unique benefits of stClinic in
assessing the niche importance for phenotypic prediction. stClinic
evaluates niche malignancy through prognosis analysis, identifying
high-risk niches marked by TAMs linked to cell proliferation and
migration, and low-risk niches enriched with B and plasma cells, sig-
nifying immune cell activation. Additionally, stClinic predicts a niche
promoting CRC cells adaptive to normal liver tissue, featuring SPP1+
MTRNR2L12+ myeloid cells and CAFs by integrating primary and
metastasis cancers. These findings provide valuable insights for
uncovering targets in clinical immune therapy and improving prog-
nostic assessment, ultimately leading to enhanced patient outcomes.

In this study, we focused on analyzing spot-level SRT data gen-
erated using Visium and also demonstrated the effectiveness of stCli-
nic in revealing tissue structures across multiple technologies. By
analyzing two mouse embryo slices—seqFISH (E8.75)72 and Stereo-seq
(E9.5)69—stClinic successfully identified the Otocyst at both stages,
marked by key genes such as Gbx2, Dll3, Lfng, and Fst73. Notably, the
Otocyst was not detected by other methods or prior analyses69,72

(Supplementary Fig. 30a–g). Additionally, we have shown the versati-
lity of stClinic by analyzing two breast cancer slices, profiled by 10X
Xeniumand Visium, from the same tissue74. The results highlighted the
efficiency of stClinic in aligning identical niches between the slices, and
also identifying a greater diversity of cancer cell-states. For example, it
detected four clusters within the ductal CIS regions (DCIS #1 and DCIS
#2) in the Xenium slice, whereas other methods detected only two or
three clusters. These findings were further validated by differential
gene expression analysis and cell-type enrichment (Supplementary
Fig. 31a–g). With the expansion of spatial multi-omics technologies,
such as spatial ATAC-seq75, MSI76, and transcriptome-protein77, or
transcriptome-chromatin accessibility profiling67,78, stClinic has shown
robustness and adaptability for integrative analyses across datasets of
varying resolutions and scales.

We benchmarked the running time of stClinic on the simulated
datasets by subsampling spots from the CRC and LM datasets. Com-
pared to STAligner, stClinic is faster, taking only 19min to integrate a
dataset of 68K spots from 24 slices. This highlights the efficiency of

stClinic in analyzing large-scale SRT datasets from multi-slices (Sup-
plementary Fig. 32).

There are still some limitations in stClinic. Specifically, (1) the
removal of links between spots from distinct GMM components
enhances the separation of latent features across clusters. However,
exploring spatiotemporal relationships between clusters is essential
for quantifying biological systems and predicting their complex
dynamics and behaviors79. In future studies, we plan to develop
sophisticated algorithms to infer continuous inter-cluster relations
within 3D tissue by carefully exploiting spot relations; (2) the pre-
diction accuracy for sample classification in supervised tasks is
moderate. This could potentially be enhanced by integrating
other modalities in SRT data, including cellular features from his-
tological images11; and (3) the core predictions are robust and
reproducible across random seeds, despite the inherent variability
associated with the stochastic nature of deep learning models. To
further improve stability, we will explore ensemble learning and
consensus clustering (Supplementary Fig. 33a, b and Supplementary
Note 3).

Methods
stClinic model
The stClinic model comprises five components (Fig. 1a–d): (1)
extracting batch-corrected features frommulti-slices with a dynamical
graph; (2) evaluating niche importance in clinical outcomes through
attention-based supervised learning; (3) transferring labels from
reference via zero-shot learning; (4) integratingmulti-omics data from
the same slice; and (5) aligning data across different slices or tech-
nologies, both of which rely on external tools for latent feature
initialization.

Learning shared latent features across multiple slices by
dynamic graph learning
stClinic learns batch-corrected features ðz 2 Rd ×nÞ by aggregating
information fromdynamically evolving neighboring nodeswith similar
characteristics within and across slices, where d and n are the dimen-
sion size and the number of spots, respectively. Specifically,

Construction of the initial unified graph across multi-slice. We
initially constructed aunified graph (G0 = ðV,EÞ) (Supplementary Fig. 1)
to establish links between two spots from multi-slices using omics
profiles (X = x1, . . . ,xL

� �
,xi 2 Rm×ni ) and spatial location data

(S = s1, . . . , sL
� �

, si 2 Rni × 2), where L,m, andni represent the number of
slices, common features of all slices, and spots in the ith slice,
respectively. Intra-edges within a slice were established by measuring
the Euclidean distance between spots, retaining an average of 5–6
nearest neighbors based on a predefined threshold r or using the
k-nearest neighbor method. Inter-edges linking spot pairs from dif-
ferent slices were identified asmutual nearest neighbors (MNN) based
on feature similarity using the MNN method80.

Fig. 6 | stClinic facilitates label transfer from a reference set using zero-shot
learning. aApre-trained encodermaps new samples into the same feature space as
the reference set without fine-tuning, enabling label transfer. bUMAP visualization
of latent features by Geneformer, Seurat, and stClinic across four slices
(151673–151676). Slices 151673–151675 serve as the reference set for training stClinic
and Seurat models, while slice 151676 is treated as the query slice. The top panel
colors represent slices, the middle panel colors indicate spot annotations, and the
bottom panel shows the spatial distribution of predicted labels for slice 151676.
c UMAP visualization of latent features by Geneformer, Seurat, and stClinic across
four slices (151673–151675 and 151507), using the samemodels as in (a). Slice 151507
is treated as the query sample. The top panel colors represent slices, the middle
panel colors indicate spot annotations, and the bottom panel shows the spatial
distribution of predicted labels for slice 151507. d Table showing the accuracy of

three methods for intra- and inter-tissue label transfer in DLPFC samples.
e Immunofluorescence plot and annotations of VIDC, along with detailed histolo-
gical annotations of BAS1 and BAS2. f UMAP visualization of latent features by
Geneformer, Seurat, and stClinic across VIDC, BAS1, and BAS2, with VIDC and BAS1
as the reference set and BAS2 as the query slice. Noted that colors indicate slices.
g Line plot displaying ARI and NMI scores for clusters predicted by Geneformer,
Seurat, and stClinic compared to annotations across varying numbers of clusters in
BAS1 and BAS2. h Spatial distributions of clusters predicted or transferred by three
methods in VIDC, BAS1, and BAS2. i Spatial distribution of cluster 9 and its marker
genes (KRT5, KRT14, KRT17, and SERPINA3) in BAS1 and BAS2. j Functional anno-
tation of over-expressed genes in cluster 9. Unadjusted one-sided Fisher’s exact
test. Source data are provided as a Source Data file.
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Encoding features by a dynamically evolving graph model. We
continuously updated the graph model in the following ways: (i) uti-
lizing a VGAE to learn shared features by integrating omics profile data
(X 2 Rm×n) and an adjacency matrix (Ait 2 Rn×n) representing the
unified graphGit , then employing L slice-specific BatchNormdecoders

to reconstruct each omics profile data and adjacency matrix, while
incorporating GMM to classify spots into distinct GMM components;
and (ii) removing edges between spots from different components in
Git to generateGit + 1, and updating the graphGit byGit + 1. Note that the
initial graph input is G0.
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The VGAE probabilistic model combined with GMM. Given K clus-
ters, the shared features z could be obtained through the VGAE via
the reparameterization, and c is a categorical variable whose prob-
ability is discrete. pðzjcÞ is a mixture of Gaussian distributions para-
meterized by the mean value vector uc and the covariance matrix σc

conditioned on c. Considering that X, A and c are independently
conditioned on z, then the joint probability pðX,A, z, cÞ can be fac-
torized as:

p X,A, z, cð Þ = p Xjzð Þp Ajzð Þp zjcð Þp cð Þ ð1Þ
Each factorized variable defined as follows:

c � Cat
1
K

� �
ð2Þ

z � Nðuc,σc
2IÞ ð3Þ

Maximizing the log-likelihood of the observed omics profiling
data and the unified graph is intractable, therefore, the evidence lower
bound is optimized instead:

logp X,Ajz, cð Þ ≥ Eq z, cjX,Að Þ log
p X,A, z, cð Þ
q z, cjX,Að Þ

� �

= log pθ1 Xjzð Þ� �
+ δ log pθ2 Ajzð Þ� �

� φDKLðq z, cjX,Að Þjjp z, cð ÞÞ

ð4Þ

where log pθ1 Xjzð Þ� �
encourages the reconstructed dataX0 to resemble

the input omics profiling data X, and the network pθ1 indicates L slice-
specific BatchNorm decoders. log pθ2 Xjzð Þ� �

encourages the recon-
structed graph to match the unified graph, which is achieved by an
inner product between the features:A0 =SigmoidðzT, zÞ. KL divergence
from the MOG prior pðz, cÞ to the variational posterior qðz, cjX,AÞ,
regularizing the latent features z to lie on aMOGmanifold. δ andφ are
used to control the weight of each term. Theminimization ofX and X0

can be calculated by the mean square error:

LExp =
1
L

XL
i= 1

jjXi � Xi
0jj2 ð5Þ

and the minimization of A and A0 can be calculated by the cross-
entropy loss:

LAdj = � 1
n×n

Xn
u= 1

Xn
v= 1

ðauv × log a0
uv

� �
+ 1� auv

� �
× logð1� a0

uvÞÞ ð6Þ

whereauv and a0
uv are elements in the uth row and the vth columnof the

adjacency matrix A and A0, respectively. Hence, the goal of the prob-
abilistic model is summarized as follows:

Lunsup = �LELBO X, Að Þ= LExp + δLAdj +φDKLðqðz, cjX,AÞjjp z, cð ÞÞ ð7Þ

theoverall structureofVGAE. The specific encoder structureof VGAE
can be built by stacking multiple multi-head graph attention (GAT)

layer. Specifically, each layer is defined as follows:

hl + 1
i = ELU

1
Q

XQ
q= 1

X
j2Ni

aq
ijW

qhl
j

0
@

1
A ð8Þ

aq
ij =

expðLeakyReLUð aqð ÞT ½Wqhl
i jjWqhl

j �ÞÞP
o2Ni

expðLeakyReLUð aqð ÞT ½Wqhl
i jjWqhl

o�ÞÞ
ð9Þ

where Q represents the number of attention heads and the default
value of 3,Ni is the neighbor nodes of the spot i, h

l
j indicates the input

features of the node j in the lth GAT layer, Wq is the linear transfor-
mationweightmatrix for input features in the qth attention head, aq

ij is
the normalized attention coefficients calculated by the qth attention
head via SoftMax activation. The encoder is composed of two layers of
GAT; the dimensions of the first and second layers are 512 and 10,
respectively.

Moreover, the one-layer linear decoder specific to the ith slice,
along with BatchNorm, is used to reconstruct ith omics profiling data
(Xi

0) from the latent feature zi
36:

X0
i = γi ×

hi � μiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i + ϵ

q +βi ð10Þ

hi =Wzi +b ð11Þ

where the dimension of hi of the same with Xi, μi and σ2
i are the

mean and variance of spots in the ith slice, γi and βi are responsible
for the slice-specific scaling and shifting parameters, and ϵ is a
constant.

graph dynamic evolution strategy. We adopted the following graph
evolution strategy to ensure each spot is connected to spots with the
most similar characteristics:
i) Parameter initiation: We pre-trained the VGAE model without

GMM regularization for 300 iterations to obtain preliminary
features z, with X and A0 as input. Subsequently, we used the
GMM model to predict the clusters from features z, and utilized
the mean (μc) and variance (σc) of each cluster to initialize the
parameters of GMM distribution; and

ii) Dynamic training: We trained the VGAE model with GMM reg-
ularization, using X and Ait as input to yield features z, where it
ranges from 0 to 2; predicted clusters from features z using the
GMM model; removed links between two spots from different
clusters in Ait to generate the new adjacency matrix Ait + 1; and
then updated Ait with Ait + 1.

We iteratively trained the graph model until convergence, and
then applied z for spatial clustering, visualization, and data denoising
(Fig. 1b, d).

Fig. 7 | stClinic improves the detection of finer structure by integrating spatial
multi-omics data from the same and different slices. a stClinic learns joint fea-
tures by integrating latent features from multi-omics tools like MultiVi alongside
spatial location data within dynamic graphs. b Leveraging aligned features from
multi-omics tools like Seurat in amulti-slice integrative condition, stClinic employs
the same strategy as to learn the final features. cManual annotation ofmouse brain
coronal section, and spatial domains identified by single modality (RNA or ATAC),
CellCharter, and stClinic. d Spatial ATAC levels of marker genes for cluster 1
(Pde10a), cluster 3 (Cux2), cluster 8 (Mbp), cluster 12 (Dlx1), and cluster 13 (Drd3),

for mouse brain coronal section data denoised by stClinic. e Cell-type distribution
of brain, connective tissue, head mesenchyme, heart, liver, lung primordium,
mesenchyme, spinal cord, and surface ectoderm on mouse embryo E10.5 tissue
profiled by Stereo-seq. f Transferred cell-type distribution on mouse embryo E11
tissue profiled by spatial ATAC-seq using MaxFuse, GLUE, SLAT, Seurat, and stCli-
nic, respectively. g Spatial ATAC levels of marker genes for brain (Sox1ot), spinal
cord (Cntnap5b), connective tissue (Dnm3os), and heart (Tnn2), for mouse embryo
E11 data denoised by stClinic. Source data are provided as a Source Data file.
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Predicting clinically relevant niches by attention-based super-
vised learning
We proposed a slice representation method that reflects the under-
lying data structure for each niche per slice across the population,
enabling the construction of the associations between niche and
clinical information (Y= y1, . . . , yL

� �T 2 RL× 1). Specifically,
(i) after extracting shared features (z) from multi-slices using a

dynamic graph model and predicting clusters, UMAP was
collectively applied to the z space across all slices, creating a
unified embedding space for comparability between slices and
clusters. The kth cluster in the ith slice was then characterized
by six statistical measures: mean (μ1, i

k and μ2, i
k), variance

(σ2
1, i

k
and σ2

2, i
k
), max (max1, i

k and max2, i
k), min (min1, i

k and
min2, i

k) within the two UMAP embeddings, along with the
proportion within the ith slice (Pi

k) and across all other
slices (Po, i

k);
(ii) inspired by attention-based models emphasizing capturing

more critical information to the current task from rich
information11, the ith slice representation (ri) was defined by a
vector of clusters, using the 10-dimensional statistical measures
via attention by the following formula:

ri =
X10
j = 1

λi
j � f i j ð12Þ

λji =
expððajÞT ðjj10j = 1f jiÞÞ

P10
o= 1

expð ao
� �T ðjj10j = 1f jiÞÞ ð13Þ

where aj 2 R10K × 1 is the parameter vector of the jth statistical
measure, and f i

j 2 R1 × 10 indicate the jth statistical measure of
the ith slice. A higher inner product between aj and jjKk = 1fki
represents that the role of the jth statistical measure is more
important to the ith slice; and

(iii) an FC layer with SoftMax or Cox layer (Y0 = FðWr+bÞ) was
employed to predict sample labels, guided by clinical informa-
tion. If the clinic information is survival time, F indicates the Cox
layer81, the loss function of which is summarized as follows:

LCOX = �
X
C ið Þ= 1

ðy0
i � log

X
y0j ≥y

0
i

expðy0jÞÞ ð14Þ

where y0 is the predicted Hazard ratio (HR) value, C ið Þ= 1 represents
the non-censored slice set, and only the non-censored slices are
taken into the computation of Cox loss. If the clinical information is a
category variable (e.g., primary and metastasis), F indicates the
SoftMax layer, the loss function of which is summarized as follows:

LCLS =
1
L

XL
l = 1

ð�
Xp
i= 1

yi logðy0
iÞÞ ð15Þ

where L and P are the numbers of slices and classes, respectively, and
yi and y0

i are the label vector of the ith slice from the ground truth and
prediction.

After themodel training,WT reflects the significance of each TME
in association with clinical information (Fig. 1c, d).

Datasets and preprocessing
Spatial omics data. In our study, we analyzed publicly available
spatial omics data from diverse tissues, including human DLPFC,
breast cancer, colorectal, and LM samples, as well asmouse brain and
embryo samples (Supplementary Table 1). Specifically, (i) the human
DLPFC dataset contains 12 slices, with the number of spots ranging

from 3460–4789, and a median of 384439; (ii) the 3D Hippo sample
includes seven adjacent slices, totaling 10,908 spots44; (iii) VIDC,
BAS1, and BAS2 slices contain 4727, 3798, and 3987 spots, respec-
tively; (iv) the TNBC sample consists of 43 slices with detailed clinical
information, including age, stage, survival time, with the number of
spots ranging from 554–3116, with a median of 126446; (v) the CRC
and LM dataset comprises 24 tissue sections, including 10 metastatic
cancers and 14 primary cancers, with spot counts ranging from 1048
to 4796, and a median of 2636om 1048 to 4796, and a median of 26;
(vi) the mouse brain coronal section, profiled using spatial ATAC-
RNA-seq technology, contains 9215 spots67; (vii) two mouse embryo
slices, E10.5 (Stereo-seq) and E11 (Spatial ATAC-seq), have 4132 and
2099 spots, respectively68,69; (viii) the E8.75 seqFISH72 and E9.5
Stereo-seq69 mouse embryo slices include over 10,000 and 5000
cells/spots, respectively; and (ix) the Visium and Xenium slices from
the same breast cancer tissue have 3841 and 100,642 spots/cells,
respectively74.

scRNA-seq data. To comprehensively understand the complex
structure of inter- and intra-tumoral TMEs across various cancer
samples, we estimated the proportions of different cell types using
scRNA-seqdatawithGraphST. For theVIDC andBAS1 slices,weutilized
scRNA-seq data from 3961 cells of the CID4535 sample12 to quantify
spatial distributions of 11 cell types: CAFs, perivascular-like (PVL),
macrophage,monocyte, endothelial, CD8+T, CD4+T, DC, endothelial,
cancer epithelial, and plasmablasts. In the TNBC dataset with 43 slices,
we used the scRNA-seq data from 42,512 cells across 10 TNBC
samples12, covering 23 cell types. For theCRCLMdataset,we analyzed a
scRNA-seq dataset comprising 6275 cells82 from one CRC patient to
infer cell-type proportions for each spot across 29 cell types (Supple-
mentary Table 1).

SRT data preprocessing. For each slice of SRT data, we followed the
standard workflow of the scanpy package83, which includes normal-
ization and log-transformation of the raw gene expression. Subse-
quently, we selected the top 5000 highly variable genes (HVGs) for
each slice. The intersection of these HVGs across all slices was con-
sidered as common genes, and the horizontal concatenation of these
common genes across all spots frommulti-slices constituted the input
data X. In scenarios involving integrative analysis across multiple
heterogeneous slices, we suggested users consider selecting a larger
number of HVGs to ensure that the common gene set comprises
~1000 genes.

Spatial multi-omics data preprocessing. For spatial multi-omics data
from the same slice, we leveragedmultiVI to project these profiles into
a joint-learning feature space, taking the low-dimensional features as
input data X. For spatial multi-omics data from different slices, we
transformed these data into a common feature space using Seurat,
treating the horizontally concatenated feature matrices of all spots as
input data X.

Selecting the number of clusters in GMM
We adopted the following strategies to choose the number of clus-
ters (K) in the GMMmodel. Specifically, (1) for datasets with detailed
histological annotations, such as human DLPFC, mouse brain, and
mouse embryo tissues, K is set to the number of different annotation
types; and (2) for datasets with generalized annotations, like human
BRCA and TNBC tissues, K is determined by the number of the sig-
nificantly different eigenvalues of XTX84, where X represents the
input data.

Clustering and visualization
After learning the shared latent features z from multiple SRT datasets
by unsupervised stClinic, we utilized clustering algorithms to predict
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clusters based on these features. For the DLPFC dataset with known
histological annotations, we employed the GMM model from the
mclust package40 to predict clusters. For heterogeneous tissues like
tumor, brain, and embryo, we applied the Louvain algorithm from the
scanpy package. The “tl.umap” function from the scanpy package was
used to map the features z into a two-dimensional UMAP spaces, and
the “pl.umap” function was used to visualize spot embeddings in dif-
ferent domains. Additionally, the “pl.spatial” function was used to
visualize clustering results and gene expression patterns for each slice
at the spatial level.

Identification and functional annotation of upregulated genes
We employed the “tl.rank_genes_groups” function from the scanpy
package to perform Wilcoxon tests on gene expression data across
various spatial domains, identifying upregulated genes in each
domain. These genes were then functionally annotated using the
DAVID tool (https://david.ncifcrf.gov/tools.jsp).

Evaluation of clustering
In addition to the ARI85 and NMI86 scores to evaluate the clustering
performance by comparing the predicted clusters with the ground
truth, we adopted additional metrics, ASW, to evaluate the clustering
by calculating the similarities of features between spots within the
predicted clusters. The silhouettewidth is used tomeasurehow similar
a spot is to its predicted clusters compared to other clusters, and a
higher valuemeans that the spot is well-assigned to its cluster, which is
defined as follows:

SW ið Þ= b ið Þ � a ið Þ
max a ið Þ,b ið Þ	 
 ð16Þ

where a ið Þ and b ið Þ are the average Euclidean distance of the latent
features between spot i and other spots in the same cluster, and i to all
spots in the near cluster to which i does not belongs, respectively. The
average of the silhouette width of all spots is calculated to evaluate the
clustering performance.

Evaluation of batch correction
To comprehensively evaluate the performance of batch correction
algorithms, we adopted two different methods: LISI and F1 score43.
Specifically, (i) LISI, utilizing a fixed perplexity, chooses the nearest
neighbors based on local distribution and computes the inverse
Simpson’s index to measure the diversity, representing the effective
number of types in the neighborhood. In iLISI, scores are calculated for
batch labels, with a score close to the expected number of batches
indicating effective mixing. For cell-type LISI (cLISI), a score nearing 1
indicates pure clusters, while for histological type LISI (hLISI), a score
approaching 1 reflects pure histological type annotations; and (ii)
F1 scorewas employed as an overall measure to evaluate cluster purity
and slice mixing based on ASW. ASWslice calculates the ASW value
using slice labels as groups, while ASWcluster determines the ASW value
using cluster labels as groups. The specific formula is defined as fol-
lows:

F1 =
2 1� ASWslice

0� �
ASWcluster

0

ASWcluster
0 + 1� ASWslice

0� � ð17Þ

where ASWslice
0 = 1+ASWslice

2 , and ASWcluster
0 = 1+ASWcluster

2 . A higher
F1 score indicates better slice integration.

Assessment of clinical or phenotypical prediction
In the prognostic prediction task, we adopted the median of
the cross-validated C-Index81 to evaluate the agreement between
the patient ranking based on the predicted HR and the ranking by
survival time. A higher C-Index reflects more accurate survival

predictions, with a value of 0.5 indicating random prediction and 1
indicating complete consistency with the actual observations. For
categorical clinical information such as primary and metastasis,
we employed the cross-validated classification accuracy
and AUCROC value to evaluate the classification performance of
stClinic.

Statistics and reproducibility
No statistical methods were employed to predefine the sample size.
Neither biological nor technical replicates were performed on the
biological samples outlined in Figs. 4d and 5d. All data were sourced
from the public domain, and no exclusions were made from the ana-
lysis. The experiments were not randomly conducted, and the
researchers were blinded to allocation during the experiment and
assessment of results. Further details can be found in the Reporting
summary file.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this manuscript are publicly available. The DLPFC
dataset is available from the R package spatialLIBD (http://spatial.libd.
org/spatialLIBD/)39. The 3D hippo dataset can be accessed via the link
(https://drive.google.com/drive/folders/10lhz5VY7YfvHrtV40Mwaq
LmWz56U9eBP?usp=sharing). The VIDC, BAS1, and BAS2 datasets of
human Luminal B breast cancer are available on the 10X Genomics
Website (https://www.10xgenomics.com/datasets/). The Visium and
Xenium datasets of human HER2+ breast cancer are available from the
Gene Expression Omnibus (GEO) with GSE243280. The seqFISH and
Stereo-seq datasets of mouse embryo are available at (https://
marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/) and (https://db.cngb.
org/stomics/mosta/download/), respectively. The TNBC dataset, con-
taining 43 slices, is available from GEO with GSE210616, and the cor-
responding clinical information is available at the website (https://doi.
org/10.1158/0008-5472.CAN-22-2682). The CRCLM dataset can be
accessed via the link (https://drive.google.com/file/d/1QsQIT0-
iwcWBFzUBcLUPKYuSnSBxfaME/view?usp=drive_link). The Brain
dataset profiled by spatial ATAC-RNA-seq is accessible from GEO with
GSE205055. The E10.5 mouse embryo profiled by Stereo-seq and the
E11 mouse embryo profiled by Spatial ATAC-seq are available from the
link (https://db.cngb.org/stomics/mosta/download/) and GEO with
GSE171943, respectively. The scRNA-seq datasets of CID4535, TNBC,
and CRC samples are available from GEO under accession numbers
GSE176078, GSE176078, and GSE132465, respectively. Source data
provided for this paper are available at figshare (https://doi.org/10.
6084/m9.figshare.27376827)87.

Code availability
stClinic and all the code for reproducing the analyses and bench-
marking are freely available under the MIT License. stClinic is imple-
mented based on Python 3.8.5 and R 4.3.2. Other tools and packages
used in the data analysis include: anndata 0.9.2, numpy 1.22.3, pandas
2.0.3, scipy 1.10.1, matplotlib 3.7.2, scanpy 1.9.3, umap-learn 0.5.3,
louvain 0.8.1, h5py 3.9.0, torch 2.4.0, torchaudio 2.4.0, torchvision
0.19.0, tqdm 4.65.0, hnswlib 0.5.1, rpy2 3.5.1, scikit-learn 1.3.0, scikit-
misc 0.2.0, seaborn 0.11.2, lifelines 0.27.8, network 3.1, torch-sparse
0.6.18, torch-scatter 2.1.2, Squidpy 1.2.2, SEDR 1.0.0, STAligner 1.0.0,
GraphST 1.1.1, Stitch3D 1.0.3, PRECAST 1.6.4, SLAT 0.3.0, BANKSY
0.99.12, SpaGCN 1.2.7,MultiVI 1.3.0, scVI 1.3.0, peakVI 1.3.0, CellCharter
0.3.4, GLUE 0.3.2, MaxFuse 0.0.2, stClinic 0.0.10, Seurat v4, ggplot2
3.3.6. The codes are publicly available at Zenodo https://zenodo.org/
records/1524639688. The stClinic tool will be maintained and updated
at https://github.com/cmzuo11/stClinic.
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