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Investigating setting-specific superspreading
potential and generation intervals of COVID-
19 in Hong Kong

Dongxuan Chen1,2,5, Dillon C. Adam1,2,5, Yiu-Chung Lau 1,2,5, Dong Wang1,2,
Wey Wen Lim 1,2, Faith Ho1, Tim K. Tsang 1,2, Eric H. Y. Lau1,2, Peng Wu 1,2,
Jacco Wallinga3,4, Benjamin J. Cowling 1,2 & Sheikh Taslim Ali 1,2

Superspreading is an important feature of COVID-19 transmission dynamics,
but few studies have investigated this feature stratified by transmission set-
ting. Using detailed clustering data comprising 8647 COVID-19 cases con-
firmed in Hong Kong between 2020 and 2021, we estimated themean number
of new infections expected in a transmission cluster (CZ ) and the degree of
overdispersion (k) by setting. Estimates of CZ ranged within 0.4–7.1 across
eight settings, with highestCZ in the close-social indoor setting that an average
of seven new infections per cluster was expected. Transmission was most
heterogeneous (k = 0.05) in retail setting and least heterogeneous (k = 1.1) in
households, where smaller k indicates greater overdispersion and super-
spreading potential. Point-estimates of the mean generation interval (GI)
ranged within 4.4–7.0, and settings with shorter mean realized GIs were
associated with smaller cluster sizes. Here, we show that superspreading
potential and generation intervals can vary across settings, strengthening the
need for setting-specific interventions.

Prior to the introduction of the Omicron variant in Hong Kong, one
primary case infected with the ancestral Wuhan-like strain of SARS-
CoV-2 might infect on average two or three secondary cases when the
surrounding population is completely susceptible, according to the
estimates of the basic reproduction number1,2 i.e. R0 = 2-3. However, it
has been commonly observed that the offspring distribution of SARS-
CoV-2 infected individuals is highly heterogenous or “heavy-tailed”,
whereby 20% of cases may be responsible for 80% of all new
infections3,4. Transmission heterogeneity can be measured directly by
the dispersion parameter k of a negative-binomial distribution5,6 when
fitted to a count distribution of individual offspring, that is, the num-
ber of secondary cases directly infected by any one case, including
zero. When looking into individual offspring, superspreading event is

observed when a few cases infected many others than the rest of the
cases. Extending to a general form, superspreading event is observed
when a few transmission clusters involved far more cases and resulted
in large outbreaks than the rest of the transmission clusterswhich only
involved a few cases. Given such, the dispersion parameter k can also
be indirectly estimated from distributions of final cluster sizes or
transmission chain sizes when modelled as a stochastic branching
process7. This approach can be particularly useful in public health
because contact tracing data detailing infector-infectee relationships
is rarely feasible except for minor outbreaks. Importantly, smaller
values of k correspond to greater degrees of overdispersion. Conse-
quently, when k decreases (holding the mean of offspring or final
cluster size constant), the expected probability of observing large
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explosive clusters, i.e. superspreading events, increases, which poses
unique challenges for outbreak control compared to outbreaks with
less heterogenous transmission (when k is higher). Past studies esti-
mating overall transmission heterogeneity for SARS-CoV-2 found k
ranged between 0.2 and 0.64,8–10, which indicate considerable super-
spreading potential, assuming a threshold value for superspreading of
k = 1. However, these estimates largely reflect overall transmission
heterogeneity at the population level4,8, though some studies have
examined transmission heterogeneity in a single setting10, or stratified
by the age of infectors9.

From an outbreak control perspective, it is important to consider
how transmission dynamics may be different across settings. At least
one previous study on COVID-19 found substantial differences
between estimates of the reproduction number by setting11, empha-
sizing the need for setting-specific control measures. Moreover, pre-
vious studies have found that public health and social measures
(PHSMs) could shorten the realized generation interval12,13 by trun-
cating the infectious period. But these results only represent short-
ening of the generation interval at the population level, again, with rare
studies examining whether realized generation intervals could differ
by setting14. As such, investigation of setting-specific superspreading
potential and generation interval could be used to understand the
effectiveness of PHSMs, and the need for setting-specific interventions
to better prepare for future outbreaks.

In this work, we use detailed clustering data on COVID-19 cases in
Hong Kong provided by the Centre for Health and Protection (CHP)
from2020 to 2021, to characterize eight distinct transmission settings,
and investigate the superspreading potential in a general form based
on observed final cluster size distribution stratified by transmission
settings. We compare the estimated mean (CZ ) and degree of over-
dispersion (k) of the number of new infections (secondary cases gen-
erated by the index case plus any further subsequent infections) per
transmission cluster under each setting, and additionally estimate the
realized mean generation interval under each setting.

Results
Cluster identification and observed cluster size distribution
Fromdata on8647confirmedCOVID-19 cases inHongKongduring the
study period (23 January 2020 to 15 December 2021), we identified
2228 local transmission clusters involved at least two cases that fell
under eight transmission settings of interest (households; restaurants;
close-social indoor activities; retail and leisure activities; office work;
manual labour work; nosocomial setting; and residential care homes),
and 1582 single index cases regarded as clusters of size n = 1, resulting
in a total of 3810 clusters. Household setting involved the majority of
all discrete clusters identified (87.1%, 3318/3810), with the rest of the
other settings involved substantially fewer clusters: 365 clusters were
identified as office-work clusters, followed by 282 restaurant clusters,
253manual labourwork clusters, 108 retail and leisure activity clusters,
80 nosocomial clusters, 61 close-social indoor clusters and 59 care
home clusters. Figure 1 visualized the contact tracing process and how
cases were denoted as cluster members and entered into CHP’s line
list. When defining single index cases, we in principal identified these
cases as those who were initially denoted by CHP as local cases (no
recent travel history reported) with unknown source of infection (so
that could not be linked to any other reported case or cluster), but
provided valid information in at least one of the following: (i) residence
address; (ii) occupation; (iii) workplace; so that can be classified into
the transmission settings of our interest. Exceptions were made for
care home setting, that among the 1582 single index cases identified,
there were 12 cases who were not initially denoted as local cases with
unknown source of infection by CHP, but were household cluster
members. However, we included these cases as single index cases
under care home setting due to their occupation/workplace were
related with care homes, meaning they had been stayed in care homes

but did not spread infections in their related care homes. There were
716 out of 1582 single index cases classified into two transmission
settings, household and either of the remaining seven settings, due to
having valid information in residence plus workplace and/or occupa-
tion. Additional details can be found in method section, supplemen-
tary methods 1.1 and supplementary table 1. Moreover, among all the
8647 cases, 1934 were asymptomatic cases (22.37%), while the
asymptomatic proportion by transmission setting ranged from 12% to
39% (Supplementary Table 1).

Figure 2a, b showed the empirical distribution of cluster sizes and
the relative proportion of cluster sizes under different transmission
settings. For all settings, the median cluster size did not exceed two,
but themaximum cluster size differed substantially. Specific examples
included a large outbreak with n = 395 cases originating from a close-
social indoor activity. In contrast, care homes, manual labour work,
and retail & leisure settings, had a maximum observed cluster size
around 50,while officework setting did not have any clusterwithmore
than 10 cases.

Setting-specific transmission heterogeneity and mean
cluster size
Our cluster size model assuming an underlying negative binomial
distribution estimated an overall dispersion parameter kwas0.56 (95%
CI (Confidence Interval): 0.51, 0.61) with mean CZ (number of new
infections generated per cluster) of 1.29 (1.21, 1.37), based on observed
size distribution of all clusters. This means that an average of 1.29 new
infections were expected per transmission cluster at the population
level, but its variance is over three times larger than themean, due to a
relatively small value of k, such that large outbreaks were possible to
occur in the population. Household setting had the lowest degree of
overdispersion (k = 1.11, 95%CI: 0.94, 1.28) in number of new infections
per cluster, while retail and leisure setting had highest degree of
overdispersion (k =0.05, 95% CI: 0.01, 0.09). Estimates of k for other
settings ranged between 0.1 and 0.5. Estimates of CZ also varied
between settings: office work setting had the lowest CZ =0.38 (0.26,
0.50), followed by retail and leisure setting with an estimated CZ of
0.58 (0, 1.17). The point-estimates of CZ for manual labour work,
nosocomial and restaurant settings ranged between 1.0 and 1.5
(Fig. 3a), while for care homes and close-social indoor settings, CZ was
estimated to be more than 6 with wide confidence intervals. Com-
bining estimates of CZ and k, the upper 26% of clusters ranked by size
in descending order were responsible for 80% of all new infections
happened at the population level. However, we calculated that out-
breaks within retail and leisure setting had the highest transmission
heterogeneity, whereby the upper 5% clusters were responsible for
80% of the total number of cases infected within this setting. In other
words, the great majority of retail and leisure setting’s clusters (95%)
were responsible for only 20% of newly infected cases within this set-
ting. For manual labour, care homes and close-social indoor settings,
the ratio ofupper clusters rankedby size responsible for 80%of all new
infections within each setting was around 10%:80%, followed by office
and nosocomial settings with a ratio fell within the range of
15–20%:80%; while restaurants and household settings were less het-
erogenous with a ratio around 25%:80% and 30%:80%, respectively
(Fig. 3b, Table 1).

Note that the cluster size model estimated CZ and k based on
given values of the probability of a case being reported (q1) and the
probability of a reported case being classified to cluster events by
contact tracing (q2). For the main analyses we assumed all COVID-19
cases were being detected and appeared in the line list during the
study period inHongKong (such that q1 = 1), but they hada probability
of q2 to be successfully linked to their related transmission clusters
(cluster ascertainment), otherwise they would be missed from the
identified clusters in the line list. Based on Hong Kong’s COVID-19
surveillance archive15, we assumed q2 varied between 0.5 and 0.9 in
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different settings, with close-social indoor setting having the lowest q2
(0.5) and household setting the highest (0.9), because of differences in
contact tracing efficiency. Table 1 shows the exact values proposed for
q2 in each setting. While in sensitivity analyses we tested the other two
types of ascertainments, (a) the individual ascertainment, assuming all
detected cases were linked to their related clusters successfully (such
that q2 = 1), but cases had a probability of q1 to be detected and
reported; and (b) the double ascertainment, assuming that cases first
had a probability of q1 to be detected and reported, followed by
another probability of q2 to be successfully traced to their
related clusters. See supplementary methods 1.2 for more details, and
the results of these two alternative ascertainment models can be
found in supplementary table 2. We also tested combinations of
different q1 and q2, and found the estimated degree of overdispersion
decreased (i.e. k increased) as either cases being more likely to be
reported (q1 increased) or cases being more likely to be successfully
traced to their corresponding clusters (q2 increased, see Supplemen-
tary Fig. 1). In contrast, we observed CZ increased as q2 increased, but
decreased when q1 increased (Supplementary Fig. 2).

Setting-specific infection-to-report delay and generation
intervals
To infer the setting-specific generation intervals, we first inferred the
setting-specific delay distribution from infection to report (as during
the process of imputing infection times for each case, see method
section for more details). We found differences in the average delay
interval between settings. Specifically, care home setting had the
shortestmeandelay interval of 9.1 dayswith standarddeviation (SD) of
3.2 days, while retail and leisure setting had the longest mean delay
interval of 12.5 days with SD of 3.8 days. For all other settings themean
delay intervals were within 10–12 days (Supplementary Table 3, Sup-
plementary Fig. 3).

Upon obtaining each case’s infection times, we used a Gamma
mixture model to estimate the generation interval (GI) distribution
considering four possible paths underlying the infection time intervals

between earliest case and the rest of the cases in a cluster (Supple-
mentary Fig. 4). Setting-specific estimates of the generation interval
were similar overall with overlapping confidence intervals inmean and
standard deviation (Table 2, Fig. 4). In terms of pooled mean GI esti-
mates, restaurants, close-social indoor and retail & leisure settings had
similar mean GIs around 5.5 days, while themean GI formanual labour
setting was about one day longer. The longest mean GIs were found in
care home and nosocomial settings, both with a pooled mean around
7 days, while office work setting had the shortest GI with pooledmean
around 4.4 days. We also visualized the density of different transmis-
sion paths estimated from first to successive cases under each trans-
mission setting in Supplementary Fig. 5. Additional sensitivity analyses
of the GI distributions by setting found little differences compared
with the main results, when applying an alternative delay interval dis-
tribution based on Pei et al.16 (Supplementary Methods 1.3, Supple-
mentary Table 4, Supplementary Fig. 3). More technical details can be
found in Supplementary Methods 1.4.

Sensitivity result on individual-level mean offspring size and
overdispersion by setting
To further explore individual level transmissibility and transmission
heterogeneity, and to check whether that should be consistent with
cluster level findings under specified settings, we divided the total
cluster size into offspring size in each transmission generation relative
to the cluster index case, assuming up to quaternary transmission was
possible, based on the setting-specific GI estimates. We then fitted the
samenegative binomialmodel on theseoffspring sizes, thus to directly
obtain the mean and dispersion parameter of the setting-specific off-
spring distribution, where the mean offspring size by setting equals to
the setting-specific reproduction number (denoted as RC). Methodol-
ogy details were presented in method section and supplementary
methods 1.5. Basedon themainmodel (as in cluster ascertainment),we
estimated the setting-specific reproduction number varied from 0.34
(in office setting) to 5.32 (in close-social indoor setting), and the dis-
persion parameter varied from 0.1 (most heterogeneous, in retail and

Fig. 1 | Visualization of contact tracing and returned line list data when an outbreak happened in a specific venue in Hong Kong. The figure describes an outbreak
was first occurred in a bar, with cases A to E (as indicated by pink dots) identified, then contact tracing found subsequent household infectees (cases F to H, indicated by
green dots) generated by case E, and subsequent infectees (cases I and J, indicated by orange dots) generated by case C in a restaurant. The table at right side showed how
these cases were entered into the line list with transmission cluster information presented.
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leisure setting) to above 100 (least heterogeneous, in household
setting) (Table 3). Further on these estimates, the proportion of
infectors that were responsible for 80% of the infectees under each
setting varied from 8.20% (as in retail and leisure setting) to 39.23% (as
in household setting). The estimates remained consistent when con-
sidering both individual ascertainment and double ascertainment
scenarios for the negative binomial model (Supplementary Table 5).

Association between realized generation interval and cluster
size based on simulation
We found that more truncation on the realized generation interval (as
in lower threshold of amaximum length of the generation interval that
an infectious contact could have) would result in smaller maximum
offspring size an infector could generate, holding initial settings of
dispersion parameter k and mean number of infectious contact con-
stant. Such impact was more obvious when the initial setting for the
number of infectious contacts was more heterogeneous: Given same
truncation threshold on realized generation interval, simulated epi-
demics with smaller k in the initial setting for the number of infectious
contacts would have more reduced maximum offspring size than
simulated epidemics with larger k in the initial setting. Details can be
found in Supplementary Methods 1.6, Supplementary Fig. 6.

Discussion
Using detailed clustering data from Hong Kong, this study quantified
and compared the transmission heterogeneity of SARS-CoV-2 across
eight distinct transmission settings and inferred the generation inter-
val distributions within these settings. At the population level, the
estimated dispersion parameter (k = 0.56) andmean (CZ = 1.29) for the
number of new infections per cluster over all transmission settings
(Fig. 3a) indicated amoderate degreeof transmissionheterogeneity, as
we estimated 26% of upper clusters ranked by size in descending order
were responsible for 80% of all new infections (Fig. 3b), which was
consistent with previous study of overall transmission heterogeneity
reported in Hong Kong4.

When specified by setting, substantial transmission heterogeneity
was observed in three particular settings: (i) retail and leisure setting
such as shopping malls and supermarkets; (ii) care homes for elders
and disabled persons; and (iii) close-social indoor setting such as bars
and clubs; where less than 10% of the upper clusters were responsible
for 80% of all new infections within these settings. However, there was
large difference in point-estimates of CZ between these settings, with
care home and close-social indoor settings hadCZ above 6, while retail
setting had CZ less than 1. Looking into k and CZ together, controlling
SARS-CoV-2 outbreaks in close-social indoor setting and care homes
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Fig. 2 | Empirical transmission cluster size distribution and cluster category
frequencyduringCOVID−19pandemic inHongKong from23 January 2020and
15 December 2021. a Boxplots of cluster size distribution overall and stratified by
transmission setting, single index case was counted as size of 1 in each setting. Box
showed the inter-quartile range (IQR), bold line within box showed the median,
whisker showed upper quartile plus 1.5 times IQR, dots showed the empirical
values. The y-axis shows the cluster size, the numbers under the labels of x-axis
indicate number of clusters identified in each transmission setting. Number of

clusters involved at least 2 cases in each setting sum together equals to 2228 as in all
clusters, while number of single index cases in each setting sum together equals to
2298, but number of single index cases in all clusters is 1582, due to single index
cases could belong to more than one setting. b Histogram of empirical cluster size
distribution in each setting. Colors in green, grey, orange, blue, teal, purple, pink
and brown represent all clusters, households, office work, restaurants, manual
labour work, retail & leisure, nosocomial, close-social indoor and care homes
respectively.
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should be prioritized than retail and leisure setting, because although
they all had very small value of k (≤0.1) indicating high degree of
overdispersion, much larger CZ in care homes and close-social indoor
settings suggested transmission events were much more sustainable
than retail and leisure setting if without effective interventions. While
for retail and leisure setting, although it had the smallest k (0.05) over
all settings, a CZ lower than 1 suggested on average the outbreaks
within this setting were unsustainable despite occasional super-
spreading events. As the variance of the number of new infections per
cluster is dependent onboth k andCZ , it explains that althoughmanual
labour setting had slightly less transmission heterogeneity than
retail setting (kretail = 0.05 <kmanual labour = 0.13), we observed similar
maximum cluster size in these two settings due to the fact that
manual labour setting had CZ higher than retail setting

ðCmanual labour
Z = 1:04>Cretail

Z =0:58Þ. Restaurant, nosocomial, manual
labour, and household settings had similar point-estimates of CZ

within the range of 1 – 1.5, but k for households was a unique
outlier (k > 1). This phenomenon could be explained by the phy-
sical constraints of households, where clusters were limited by
household size. In Hong Kong, the average household size is 2.7
persons (statistics from year 202317), which is smaller than the
capacity of most of the other settings investigated in this study,
which naturally limits superspreading potential within house-
holds. In all, these results were consistent with early observational
studies on COVID-19, showing some particular settings such as
care homes, social and manual labour settings had considerable
superspreading potential4,8,9,18. Note that traditional epidemiolo-
gical studies usually focus on the effective reproduction number
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Fig. 3 | Jointly estimated dispersion parameter k andmean cluster size 1+CZ in
all clusters and in each transmission setting, and visualization of transmission
heterogeneity. a 95% confidence ellipse of jointly estimated k and 1 + CZ and the
central estimates (as shown by points), for all clusters and in each specific setting;
b Proportion of top clusters ranked by size in descending order that accounted for
80% of all new infections identified in each specific setting based on the central
estimates of k and 1 + CZ (as shown by points), colors in red from light to dark

represent proportion in descending order. Note both the x and y-axis are on
a logarithmic scale. Lower values of the dispersion parameter k indicate a more
heterogeneous distribution of number of new infections per cluster. Colors in
green, grey, orange, blue, teal, purple, pink and brown represent all clusters,
households, office work, restaurants, manual labour work, retail & leisure, noso-
comial, close-social indoor and care homes respectively.

Table 1 | Estimation results of k, CZ and proportion of upper clusters ranked by size responsible for 80% of all new infections
based on cluster ascertainment model

Transmission setting Proposed q2
a Dispersion k (95% CIb) Expected number of new

infections per cluster CZ (95%CI)
Prop_80%c (95% CI)

All settings 0.8 0.56 (0.51, 0.61) 1.29 (1.21, 1.37) 25.92% (24.82%, 26.96%)

Households 0.9 1.11 (0.94, 1.28) 1.00 (0.94, 1.05) 30.98% (29.38%, 32.29%)

Restaurants 0.8 0.52 (0.36, 0.68) 1.47 (1.14, 1.81) 26.01% (21.43%, 29.53%)

Care homes 0.7 0.09 (0.03, 0.16) 6.17 (0, 20.81) 9.12% (3.00%, 13.68%)

Nosocomial 0.9 0.29 (0.1, 0.48) 1.28 (0.52, 2.03) 18.65% (8.77%, 24.81%)

Manual labour work 0.8 0.13 (0.08, 0.17) 1.04 (0.60, 1.49) 10.42% (7.13%, 13.17%)

Office work 0.9 0.34 (0.14, 0.55) 0.38 (0.26, 0.50) 14.93% (9.03%, 18.29%)

Close-social indoor activities 0.5 0.10 (0.05, 0.16) 7.09 (1.18, 13.00) 9.82% (4.99%, 13.95%)

Retail and leisure activities 0.7 0.05 (0.01, 0.09) 0.58 (0, 1.17) 4.57% (0.20%, 7.40%)
a: q2 stands for the probability of cluster member being successfully traced to the related cluster.
b: CI stands for confidence interval.
c: Prop_80% stands for the proportion of top clusters ranked by size in descending order that accounts for 80% of all new infections.
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over time at population level, but rare studies provided detailed
investigation by setting10 as shown in this study.

In Hong Kong, routine testing and active surveillance were
implemented in care homes. Despite these efforts, we found care
homes had both strong superspreading potential and larger than
average cluster sizes, and also had the longest pooled mean GI

(7.0 days), suggesting difficulties in outbreak control were experi-
enced. However, it should be noted that given the small number of
care home clusters reported, confidence intervals were relatively wide
in care home setting’s estimated parameters (3.7–10.3 days for mean
GI,0–20.81 forCcare home

Z , 0.03–0.16 for kcare home). Taken together, the
small number of care home clusters observed in our study may also

Table 2 | Inferred mean and standard deviation of generation interval in each setting

Transmission setting Mean (95% CIa) Standard deviation (95% CI)

Households 5.46 (4.01, 6.22) 1.74 (1.58, 2.33)

Care homes 7.03 (3.74, 10.32) 2.06 (1.09, 4.35)

Restaurants 5.28 (3.52, 7.39) 1.94 (1.24, 3.34)

Nosocomial 6.89 (3.85, 11.74) 2.52 (1.01, 5.00)

Manual labour work 6.45 (3.97, 9.02) 2.00 (1.18, 4.04)

Office work 4.39 (2.03, 7.43) 2.25 (0.94, 3.67)

Close-social and indoor activities 5.79 (3.14, 8.46) 1.81 (0.91, 3.47)

Retail and leisure activities 5.67 (2.80, 9.99) 2.12 (0.72, 4.43)
a: CI stands for confidence interval
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Fig. 4 | Estimated generation interval distribution in each transmission setting.
a Estimatedmeangeneration interval (as shown in points, which is thepooledmean
of point-estimated mean generation interval over 100 sample sets of each cluster’s
index-case-to-case infection intervals in each setting) with 95% bootstrap con-
fidence interval (as shown in error bars, which is the 2.5% to 97.5% quantile of
estimated mean generation interval over 100× 100 bootstrap resampled data) in
each transmission setting, horizontal dashed line indicate pooledmean generation
interval of all clusters;b Estimated standard deviation of the generation interval (as
shown inpoints, which is thepooledmeanofpoint-estimated standarddeviationof
the generation interval over 100 sample sets of each cluster’s index-case-to-case

infection intervals in each setting) with 95% bootstrap confidence interval (as
shown in error bars, which is the 2.5% to 97.5% quantile of estimated standard
deviation of the generation interval over 100× 100 bootstrap resampled data) in
each transmission setting, horizontal dashed line indicate pooled standard devia-
tion of all clusters; c, Probability density of inferred generation interval distribution
based on central estimates in each transmission setting, density plotted by dashed
line indicate inferred distribution based on pooledmean and standard deviation of
all clusters. Colors in green, grey, orange, blue, teal, purple, pink and brown
represent all clusters, households, office work, restaurants, manual labour work,
retail & leisure, nosocomial, close-social indoor and care homes respectively.
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indicate the specific effectiveness of interventions preventing infec-
tion introductions into care homes, compared to interventions
designed to control transmission within care homes, meaning out-
breaks were large, but infrequent. Although we inferred that care
homes had the shortest average delay interval from infection to report
than other settings (Supplementary Table 3) (likely due to proactive
routine testing), it was insufficient to prevent widespread within-
setting transmission.

The overall pooled mean generation interval (GI) across all set-
tings was 5.5 days, which was similar to many population-level esti-
mates of the generation interval14. When specified by settings, office
work setting had the shortest pooled mean GI of 4.4 days, while care
home setting had the longest pooled mean GI at 7.0 days. Despite
differences in age and underlying conditions between office work
cases and care home cases that could contribute to different GIs19, a
2.6-day shorter mean GI in office setting might also suggest forward
transmissions in offices were more likely to be prevented than that
in care homes, thus resulted inmuch smaller cluster size (in bothmean
and maximum numbers) in office setting than in care home setting.

The sensitivity results of setting-specificmean andoverdispersion
of offspring distribution were generally in line with the main results
based on total cluster sizes (Tables 1 and 3). The values of estimated k
in offspring distribution were larger than that in main results (i.e. less
overdispersion), which was expected as dividing total cluster size into
offspring sizes reduced the extreme values. Note that at individual
offspring level, household and retail settings still represent the least
and most heterogenous transmission setting respectively. The esti-
mates of mean offspring size RC were slightly smaller than the esti-
mates of CZ in general for each setting, suggesting transmissions
within clusters identified in this study were mainly primary to sec-
ondary transmissions, despite the differences between offspring size
and cluster size by definition. Social setting had the largest RC while
office setting had the smallest, and the descending order of estimated
RC by setting was the same as based on main estimates of CZ . Yet, RC

for care home setting was much smaller than Ccare home
Z (2.64 v.s. 6.17),

indicating more sustainable transmissions, which could possibly be
primary to tertiary or quaternary transmissions, were more likely to
occur in care homes than other settings. Although this sensitivity
analyses relied on the assumptions of underlying transmission paths,
and there could be some bias in these estimates (details in Supple-
mentary Notes 2.4), the results showed the consistency of the model
outcome and provided a feasible approach to assess individual level
transmission heterogeneity based on cluster level data.

Our simulation study showed that truncation on infectious
period led to shorter realized generation intervals and fewer off-
spring. This effect was especially pronounced when k was small
(Supplementary Notes 2.5, Supplementary Fig. 6), like with our

estimates of k in office work setting. Relating observational and
simulation results together, the shorter generation interval and
smaller cluster size found in office work setting could be explained
by the strict control measures implemented in this setting during
the study period in Hong Kong. Interventions in offices included
mask wearing, temperature screening and mandatory symptom
monitoring in periods outside of work from home policies; self-
isolation and contact tracingwould be quickly implementedwhen a
test positive case was reported in the office. Thus, potential out-
breaks within offices might have been controlled more easily
compared with other settings. For outbreaks within retail and lei-
sure setting, close-social indoor venues, andmanual labour setting,
logistic delays in contact tracing might explain the slightly longer
mean GIs (as in pooled mean estimates) and therefore larger max-
imum cluster sizes observed.

This study is a unique extension of previous studies on super-
spreading events and generation interval estimation4,20, at both data
level and methodology level, although limitations should be noted.
First, categorization of the transmission clusters in this study was
specific to the observed outbreaks in Hong Kong and may therefore
not be generalizable to other locations. Second, small sample sizes for
some settings have reduced the precision of setting-specific estimates
of k,CZ and thegeneration interval. Third, our cluster sizemodel relied
on given information of the success rates in case detection and cluster
identification. Our results would be biased if detection rates were
inconsistent across cluster members or identification rates were
inconsistent across clusters. Although we did test multiple realistic
ascertainment scenarios in our sensitivity analysis, and found sensi-
tivity results did not differ significantly from main results. Fourth, the
infection times were imputed based on fixed delay distributions, while
detailed exposure time data would allow us to conduct more accurate
inference of the infection times in a temporal manner13,21, if available.
Fifth, our analyses strongly relied on contact tracingdata, but potential
bias in data collection in different settings and atdifferent timesduring
the epidemic might have influenced the primary data source in
unknown ways. Moreover, although our line list data recorded symp-
toms for each case if applicable, these symptom records contained
recall bias and were not limited to typical respiratory symptoms, thus
could not be used to infer the underreporting rate as the study con-
ducted by Poletti et al.22, otherwise could be helpful to improve our
model inference. Lastly, our data was limited to the ancestral SARS-
CoV-2 (Wuhan) strain, as no variants of concern sustained circulation
inHongKongduring the studyperiod. Future studies could investigate
whether setting-specific transmission heterogeneities in k, CZ and the
generation interval differ by variants if data allows.

In conclusion, we conducted a unique analysis of setting-specific
transmission characteristics of COVID-19 in terms of superspreading

Table 3 | Estimation results of setting-specific mean and dispersion parameter of individual level offspring distribution and
proportion of infectors responsible for 80% of all offspring cases based on cluster ascertainment model

Transmission setting Proposed q2
a Dispersion k (95% CIb) Mean offspring sizec (95%CI) Prop_80%d (95% CI)

Households 0.9 126.18 (18.01, 279.54) 0.81 (0.79, 0.84) 39.23% (38.82%, 39.48%)

Restaurants 0.8 1.35 (0.92, 3.40) 1.18 (0.98, 1.37) 33.53% (32.11%, 34.62%)

Care homes 0.7 0.27 (0.19, 0.41) 2.64 (1.63, 4.75) 19.61% (17.72%, 21.14%)

Nosocomial 0.9 0.76 (0.40, 3.41) 1.03 (0.73, 1.47) 27.35% (24.46%, 30.28%)

Manual labour 0.8 0.25 (0.18, 0.49) 0.92 (0.63, 1.31) 16.29% (15.39%, 17.15%)

Office work 0.9 9.12 (0.84, 123.76) 0.34 (0.30, 0.40) 20.77% (19.50%, 21.73%)

Close-social indoor activities 0.5 0.17 (0.12, 0.47) 5.32 (1.37, 11.67) 14.51% (13.79%, 15.05%)

Retail and leisure activities 0.7 0.1 (0.05, 0.35) 0.55 (0.24, 1.82) 8.20% (6.67%, 9.26%)
a: q2 stands for the probability of cluster member being successfully traced to the related cluster.
b: CI stands for bootstrap confidence interval.
c: Here mean offspring size equals to the setting-specific reproduction number.
d: Prop_80% stands for the proportion of infectors responsible for 80% of all offspring cases.
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potential and generation interval, and explored the relationship
between the generation interval and the maximum cluster size a
transmission event could achieve, in the context of targeted inter-
ventions and varying superspreading potential within different set-
tings. Tailored intervention strategies should consider three aspects to
control setting-specific outbreaks: (1) reducing superspreading
potential (e.g. limiting the number of exposures), (2) reducing average
transmission potential (e.g. physical distancing, masking, and ventila-
tion), and (3) reducing the average infectious period (e.g. rapid case
detection and isolation).

Methods
Our study received ethical approval from the Institutional Review
Board of the University of Hong Kong (HKU/HAHKW IRB Ref. No.: UW
20-341).

Data collection and event setting categorization
We compiled a line list of all SARS-CoV-2 infected individuals con-
firmed in Hong Kong by polymerase chain reaction (PCR) between 23
January 2020 and 15December 2021 using data provided by the Centre
for Health Protection (CHP), Department of Health of Hong Kong. The
initial contact tracing information are available from CHP’s press
release archive23, previous studies also used such data to conduct
updated analyses of COVID-19 transmission dynamics in Hong
Kong4,24–26. Note that before the Omicron wave, Hong Kong imple-
mented strict containment measures and managed to keep the local
transmission of SARS-CoV-2 at very low level27,28, thus the public health
officers were able to conduct detailed and intense contact tracing. The
contact tracing findings resulted in a line list data that recorded
demographics of age, sex, address, workplace and occupation where
available, and complete dates of symptom onset (if symptomatic and
reported), confirmation, and admission to hospital and discharge (or
death), for each SARS-CoV-2 infected individual confirmed by CHP.
These individuals were treated as the COVID-19 cases by the CHP and
were sent to designated hospitals or healthcare institutes to complete
at least 14-day quarantine and/or treatment until PCR negative,
regardless of symptom status29. All cases were classified as either
locally infected or infected overseas if reported onset dates over-
lapped a recent history of overseas travel given a maximum 14-day
incubationperiod. All cases reportedduring the studyperiodoccurred
before the importation and spread of the Omicron subvariant in Hong
Kong. A previous study had used this line list data to explore the
unique time-varying pattern of the serial interval distribution in
Hong Kong24, while based on the same data, this study focused on
the local transmission clusters instead of one-to-one local
transmission pairs.

Suspected local transmission clusters were initially identified by
the CHP if at least two cases were found to have common source of
exposure in time and space, e.g. recent patronage at a restaurant; or
had a clear epidemiological linkage, e.g. living in the same household;
and at least one case in the cluster was identified as being locally
infected. In this way, these discrete clusters consist of index case and
all subsequent infections/generations directly involved within each
cluster, e.g. secondary cases, as well as potential tertiary and qua-
ternary cases. Figure 1 illustrated an example of the cluster sourcing
and contact tracing conducted by CHP. Furthermore, this study
focused on local transmission clusters only, therefore clusters of cases
solely comprising imported cases were excluded from the analysis;
however, clusters where the primary case was infected overseas but
linked to local transmission, i.e., an introduction event, were included.
Moreover, we further checked the cluster size that each identified
transmission cluster involved, clusters that were complete subsets of
larger clusters were removed from the analyses; cluster size would be
subtracted if a cluster hadmore than one casewith exposurehistory to
another cluster thatwas linked to an earlier transmission event; cluster

size would also be reduced if there was more than one imported case
involved. Details can be found in Supplementary Methods 1.1.

Clusters were classified into eight aggregate and distinct event
settings: (i) households, (ii) restaurants, (iii) close-social indoor activ-
ities, (iv) retail and leisure activities, (v) office work, (vi) manual labour
work, (vii) nosocomial, and (viii) residential care homes. Close-social
indoor setting other than restaurants included cases related to bars,
gyms, clubs, beauty salons, or similar indoor venues unrelated to pri-
mary food service; while retail and leisure activities included cases
related to malls, supermarkets, or other similar venues unrelated to
primary food service. Manual labour setting included workplaces at
construction sites, container terminals, slaughterhouses; or work
types as cleaning works and other similar work types unrelated to
office work or food service (who were included in restaurants). In the
line list, there were some cases identified by the CHP as local cases due
to no overseas travel history, but were denoted as with unknown
source of infection as they could not be linked to any known trans-
mission cluster or any other detected case by CHP’s manual contact
tracing. We therefore defined these cases as single index cases and
classified them into settings using available residence address, occu-
pation, and workplace information. For example, a single index case
who reported his/her occupation as ‘cleaner’but could not be linked to
any known clusters through contact tracing would be identified as a
cluster with only one infected individual under the manual labour
setting, and this case would also be regarded as a single index case in
household setting if residence address was also available and no other
reported cases had the same residence address. Also note that a cluster
member in a particular setting could also be an index case in another
setting (i.e. an infectee in a bar cluster could be an infector in a
household cluster), thus this case would be counted in each of the
setting involved. Complete details of cluster setting classification and
the composition of clusters under each specified transmission setting
can be found in Supplementary Table 1.

Joint estimation of k and CZ based on cluster size distribution
Using a Negative Binomial cluster size model that considered the
ascertainments of case detection and cluster identification as pro-
posed by Tupper et al.10, we jointly estimated the mean (CZ ) and dis-
persion parameter (k) of total number of new infections per infection
cluster under each transmission setting. We first denote n as the total
size of each cluster and assumed one index case per cluster, and
denote Z as number of secondary cases as well as any subsequent
infections linked to the index whereby Z = n–1. As such, under a spe-
cified setting, the average of Z is the setting-specific CZ . Based on that,
CZ is not directly comparable to setting-specific estimates of the
reproduction number (denote as RC)

11, which represents the mean
offspring size for each infected individual under a particular trans-
mission setting. Furthermore, it follows that any setting-specificRC can
be no larger than CZ , and these two properties can only be equal when
all cases ofZ are secondary infections of the index case in each discrete
cluster within a setting category.

Assuming Z is a random variable following Poisson distribution
with a rate ν following Gamma distribution with parameters k and θ
standing for shape and scale respectively, Z actually follows the
Negative-Binomial distribution as Z ~ NB (r, p), where r = k and
p= 1= 1 +θð Þ, so that mean of Z can be expressed as CZ = k·θ, and var-
iance of Z can be expressed as σ2

Z =CZ +C
2
Z=k. Denote parameter set

Θ= k,θð Þ, the probability mass function of Z is expressed as follows:

VΘ jð Þ=P Z = jð Þ= Γ j + rð Þ
j!Γ rð Þ p

r 1� pð Þ j = Γ j + kð Þ
j!Γ kð Þ

1
1 +θð Þk

θ j

1 +θð Þ j

= Γ j + kð Þ
j!Γ kð Þ

θ j

1 +θð Þk + j
ð1Þ

We then considered two types of ascertainment. If each SARS-
CoV-2 infected individual had a probability of q1 to be detected and
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appeared in the line list, this is the individual ascertainment and thus
observing number of X cases follows a binomial distribution
X � Binðsize =Z + 1, prob=q1Þ, note Z itself has the probability mass
functiondescribed above. Further, supposeuponbeingdetected, each
case had a probability of q2 to be correctly traced to this case’s related
cluster, given valid information of residence address, occupation and
workplace. Otherwise there was a probability of 1 - q2 that a case only
appeared in the line list but could notbe linked to any known cluster or
classified into a single index case under any of the transmission setting
of our research interest, this is the cluster ascertainment and thus
observing a cluster with m cases is 1� 1� q2

� �m. Therefore, the
resulting probability that m cases were observed in an identified
transmission cluster is given as:

WΘ,q1 , q2
mð Þ=

X1

j =0

j + 1

m

� �
VΘ jð Þqm1 1� q1

� �j + 1�m 1� 1� q2
� �mh i

ð2Þ

Where VΘ jð Þ represents the probability of the identified cluster gen-
erated j number of subsequent infections given parameter set
Θ= ðk,θÞ. But the “true” value of j is unknown, observingm cases linked
to this cluster is therefore a subset of the underlying “true” cluster size
ðm≤ j + 1Þ, where j + 1mð Þqm1 1� q1

� �j + 1�m is the probability from the
binomial distribution that represents individual ascertainment, and
½1� ð1� q2Þm� is the probability that represents cluster ascertainment.
Since j is unknown, this probability function sums over the possible
values of j from 0 to infinity. But note for m = 0, 1, …. we cannot
observe a cluster of size 0, thus the above expressed probability
should be further modified into

P X =mð Þ=U�1
Θ, q1 ,q2

WΘ,q1 , q2
mð Þ, f or m= 1, 2, . . . , ð3Þ

WhereX represent the observed cluster size,U�1
Θ,q1 , q2

is the denominator
to adjust for probability WΘ, q1 ,q2

mð Þ that UΘ,q1 , q2
=
P1

m= 1WΘ, q1 ,q2
ðmÞ.

For a vectorX that consists of theobserved total size numbersofn
clusters, the final log-likelihood function for parameter set Θ is:

Xn

i= 1

log U�1
Θ, q1 ,q2

WΘ,q1 , q2
Xi

� �h i
ð4Þ

Note if q1 = 1 and q2 < 1, the model only considers cluster ascertain-
ment, which means it is assumed all cases have been detected but not
all cases have been successfully linked to their related clusters; if q1 < 1
and q2 = 1, the model only considers individual ascertainment, which
means it is assumed not all cases have been detected but all detected
cases have been successfully linked to their related clusters; if q1 < 1
and q2 < 1, the model considers double ascertainment.

For our main analyses, we adopted the cluster ascertainment
model (set q1 = 1), because Hong Kong implemented strict contain-
ment measures and active case surveillance including community-
wide testing schemes during the COVID-19 pandemic before the
Omicronwave, it can be assumed that almost every infected individual
hadbeendetected. But due to the limitation ofmanual contact tracing,
not all detected cases hadbeen correctly linked to their clusters. While
for sensitivity analyses, we tested the individual ascertainment model
(set q2 = 1) and double ascertainment model given different combina-
tions of q1 and q2, with more details of the sensitivity analyses
described in Supplementary Methods 1.2.

Furthermore, given the estimates of k and CZ , we calculated the
proportion of top clusters ranked by size in descending order that
accounted for 80% of all new infections identified in each specific
setting, which was generalized from Adam et al.4:

1� P80%=
Z Z

0
NBðbzc; k, k

CZ + k
Þdz ð5Þ

Where Z (the number of new infections per cluster) satisfies

1� 0:8=
1
CZ

Z Z

0
bzcNB bzc; k, k

CZ + k

� �
dz ð6Þ

And

1
CZ

Z Z

0
bzcNB bzc; k, k

CZ + k

� �
dz =

Z Z�1

0
bzcNB bzc; k + 1, k

CZ + k

� �
dz

ð7Þ

Inferring infection times for all cases
We inferred infection times for symptomatic and asymptomatic cases
in each cluster setting based on their symptom onset dates and report
dates respectively. First, we inferred the infection times for sympto-
matic cases by using their symptom onset dates minus random draws
from an assumed Gamma distributed incubation period with mean of
6.5 days and standard deviation (SD) of 2.6 days. Upon obtaining the
infection times of the symptomatic cases, we then fitted the resulting
infection-to-report delay interval distribution of symptomatic cases.
We further assumed that under Hong Kong’s active case surveillance
and effective contact tracing, the asymptomatic cases followed the
same infection-to-report distribution as the symptomatic cases, thus
we inferred the infection times for asymptomatic cases using their
report dates minus random draws from the infection-to-report dis-
tribution fitted in previous step. This procedure was repeated 100
times so that each case would have 100 samples of the inferred
infection times. See SupplementaryMethods 1.3 formoredetails in the
sampling procedure for inferring the infection times.

Estimating the generation interval by mixture model
Based on the inferred infection dates, we constructed index case-to-
case (ICC) infection intervals for each cluster as the differencebetween
the date of infection of the earliest infected case and each successive
case. Extending upon previous work by Vink et al.30, we assumed the
ICC infection interval distribution within each cluster is a mixture of
the corresponding generation interval distribution given various
potential transmission paths and the underlying chain of infection. We
modeled this distribution as a Gamma mixture model with four com-
ponents corresponding to four paths: (i) co-primary; (ii) primary to
secondary (the natural generation interval); (iii) primary to tertiary,
and (iv) primary to quaternary. We considered up to quaternary
transmission as in line with Vink et al.30, because more intermediate
pathswould bringmore complicity in themodel and alsomore burden
on computing efficiency. Visualization and interpretation of the
assumed paths is shown in Supplementary Fig. 4. Therefore, we could
estimate the mean and standard deviation of the generation interval
given the ICC infection interval from the density function of the mix-
ture model formulated as:

f xjμ,σ2� �
=
X4

i = 1

wif i xjμ, σ2� � ð8Þ

Where f iðxÞ is the component density of the i’th transmission path, and
wi is this path’s corresponding weight. Note that for the first trans-
mission path (co-primary infection), infection intervals were assumed
to follow a folded Gamma distance distribution31,32, while infection
intervals in latter paths were assumed to each follow a Gamma dis-
tributionwithmean ði� 1Þμ and variance ði� 1Þσ2, for i = 2, 3, 4. Due to
limited number of transmission paths assumed, we set constraints on
number of cases to be sampled in large clusters, details can be found in
Supplementary Methods 1.4.

As we obtained 100 samples of infection times for each case, we
therefore could obtain 100 sample sets of the ICC infection intervals
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for each cluster under each setting. We then fitted our generation
intervalmixturemodel to each sample set of the ICC infection intervals
specified by setting, and estimated the mean and SD by cluster setting
by the expectation-maximization algorithm30. Uncertainty around
each of the 100 estimates of themean and SD was determined by non-
parametric bootstrap resampling of the ICC infection intervals (n = 100
times). Final point-estimates of the mean and SD of the generation
interval were calculated as the pooled mean over 100 estimates based
on each ICC infection interval sample set, while confidence intervals
were calculated as the 2.5% and 97.5% quantiles of all bootstrap esti-
mates (nbootstrap = 100× 100= 10000) under each setting. Further
details of the Gamma mixture model estimation procedure can be
found in the Supplementary Methods 1.4.

Sensitivity analyses on individual-level mean offspring size and
overdispersion by setting
To assess the transmission heterogeneity at the individual level,
rather than at the cluster level, we refined our method to divide total
cluster size that might contained multiple transmission generations
into offspring sizes in each assumed transmission generation. For a
given cluster member’s ICC infection interval, the likelihood of this
case belonging to each assumed transmission path from the index
case could be calculated based on the fitted generation interval
distribution. Thus, each cluster member was categorized into a
specified transmission generation counting from the index case, as in
one of the four assumed transmission paths (co-primary, primary-
secondary, primary-tertiary, primary-quaternary) in particular, based
on the highest likelihood assignment. We then re-defined clusters
corresponding to offspring cases assigned to each transmission
generation plus one assumed index case, and applied the cluster size
model on these clusters. This allowed us to estimate the individual-
level mean and dispersion parameter of the offspring distribution,
and the mean would be equal to the reproduction number specified
by setting (RC). Results based on cluster ascertainment model were
presented as the main result, while those based on individual and
double ascertainment models were included in Supplementary
Table 5. Details of carrying out this algorithm was described in
Supplementary Methods 1.5.

Simulation studyon exploring the relationshipbetween realized
generation intervals and maximum observed cluster size
We would like to know if there was potential association between
realized generation interval and maximum cluster size a transmission
cluster could have, as we assumed the impact of behavioural changes
and intense non-pharmaceutical control measures would shorten the
realized generation interval12,13, thus prevented further transmissions
and resulted in fewer subsequent infections. We tested this assump-
tion through a stochastic individual-based SIR (Susceptible-Infectious-
Recovered) simulation which has been used in previous studies13,21, we
checked how that would have impact on the resulting maximum
cluster size observed. For simplicity we defined each transmission
cluster in the simulated transmission as each infector plus the direct
secondary cases generated by this infector, and thus the cluster size is
one plus the offspring size.

We set the initial condition as a closed population with 1000
people, 10 infectors at the beginning, each infector would generate
random contact with infectees following a negative binomial dis-
tribution with dispersion parameter k and mean R (in such case the
mean can be regarded as a proxy of the basic reproduction number by
assuming 100% probability of infection through contact), and each
random contact was accompanied with a generation interval value
following a given generation interval distribution. Therefore, we set
different threshold of maximum generation interval that an infector
could generate during the simulated epidemic process, and thus
contacts with generation intervals beyond the threshold were

removed. We then recorded under such condition, the maximum
offspring size that one simulated epidemic could achieve, and repe-
ated for 1000 times. We also tested different combinations of given
initial settings in the negative binomial distribution for the number of
contacts and different choices of the generation interval threshold.
Details can be found in Supplementary Methods 1.5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All anonymized data for reproducing the results are publicly available
at https://github.com/DxChen0126/HK-setting-specific/tree/main/data.

Code availability
All code to analyse the anonymized data for reproducing the results
are publicly available at https://github.com/DxChen0126/HK-setting-
specific/tree/main/code. DOI for the data and code is available33:
https://doi.org/10.5281/zenodo.15355940. Statistical analyses were
conducted using R version 4.2.2 (R Foundation for Statistical Com-
puting, Vienna, Austria). R packages used for data processing and
visualization include readxl (version 1.4.2), openxlsx (version 4.2.5.2),
tidyverse (version 2.0.0), ggplot2 (version 3.5.1) and ggpubr (version
0.6.0); R packages for model building and estimation include fdrtool
(version 1.2.17), fitdistrplus (version 1.1-8) and mixdist (version 0.5-5);
software “GetDataGraphDigitizer” (version 2.25.0.32) was used to
obtain alternative distribution from another literature’s figure for
sensitivity analyses.
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