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Mapping previously undetected trees reveals
overlooked changes in pan-tropical
tree cover
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Detecting tree cover is crucial for sustainable land management and climate
mitigation. Here we develop an automatic detection algorithm using high-
resolution satellite data (<5 m) to map pan-tropical tree cover (2015-2022),
enabling identification and change analysis for previously undetected tree
cover (PUTC). Our findings reveal that neglecting PUTC represents

17.31 £1.78% of the total pan-tropical tree cover. Tree cover net decreased by
61.05 +2.36 Mha in both forested areas (63.93%) and non-forested areas
(36.07%) between 2015 and 2022. Intense changes in tree cover are primarily
observed in regions with PUTC, where the World Cover dataset with a reso-
lution of 10 m often fails to accurately detect tree cover. We also conduct a
sensitivity analysis to quantify the contributions f climate factors and
anthropogenic impacts (including human activities and land use cover
change) to tree cover dynamics. Our findings indicate that 43.98% of tree cover
gain is linked to increased precipitation, while 56.03% of tree cover loss is
associated with anthropogenic impacts. These findings highlight the need to
include undetected tree cover in strategies combating degradation, climate
change, and promoting sustainability. Fine-scale mapping can improve bio-
geochemical cycles modeling and vegetation-climate interactions, improving
global change understanding.

Climate change and human activities are increasingly affecting tree  exceeding 25% and spanning more than 0.5 hectares’. However, trees
dynamics, with profound implications for global carbon stocks. Pan-  outside of forests, such as individual urban trees and those in wood-
tropical trees play a crucial role in global biodiversity, hydrology, cli- lands and arid regions, provide obvious ecological benefits for climate
mate, and carbon cycling'™*. Previous studies have mainly focused on  mitigation and ecosystem services®. For instance, trees in croplands,
forests, which are typically defined as areas with a crown closure rate  grasslands, and deserts constitute an important but highly variable
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carbon pool’. Unlike densely packed forest trees, isolated trees are less
sensitive to resource competition, potentially resulting in distinct
growth responses to environmental changes’’. Despite the increas-
ingly critical role in carbon sequestration and the provision of eco-
system services, trees outside forests remain poorly quantified.
Furthermore, tracking tree cover change represents a fundamental
aspect of environmental science and policy™.

The quantitative assessment of trees both inside and outside
forests has gained increasing attention'®". However, global forest
monitoring systems remain inadequate in quantifying non-forest
trees”™, with most non-forest land cover areas in pan-tropical
regions being depicted as 0% tree cover™’. These classifications
exclude alarge proportion of scattered trees and their contributions to
carbon stocks at large scales. The driver factors of tree cover dynamics
remain incompletely understood, particularly for human activities’
disturbance affecting trees outside forests''$, where anthropogenic
losses are systematically underestimated'®*°. Climate change further
threatens the stability of tropical forests** >, Existing research identi-
fied population density and precipitation as key indicators of human
activities (planting or cutting)** and climate change (drought or
humidity)*?°. Therefore, a critical gap remains in mapping pan-
tropical trees, hindering the analysis of ongoing changes and their
drivers, thereby impeding the precise formulation and implementa-
tion of global forest management policies.

Recent advancements in deep learning have enabled more precise
detection of high-resolution tree cover”, particularly in regions such as
Africa'®”, Southeast Asian island nations®®, and India. However,
quantifying large-scale changes in tree cover remains a considerable
challenge'. The selection of samples has high adaptability limitations
in terms of location and image, that is, different spatial locations,
remote sensing image shooting times, and image qualities all require
the re-selection of samples™. Variability in global climatic zones,
ecosystem types, and human management practices, coupled with the
spatiotemporal heterogeneity of remote sensing images, limits the
transferability of deep learning models developed in specific contexts
for global applications (see Supplementary Note 1). The instability of
images and samples hinders the identification and mapping of high-
resolution tree cover change on a large scale™. Unlike conventional
deep learning approaches, which heavily rely on manual sample
selection and require substantial resources, there is an urgent need to
develop an automated sampling machine learning model that levera-
ges the inherent features of tree crowns across diverse environments.

Here, we address these limitations by mapping tree cover and its
dynamics across pan-tropical regions with a resolution of <5 meters.
We integrate modern decision tree classification techniques® and
machine learning techniques' to segment tree canopy cover from the
global Planet images, capturing both forests and individual trees,
including plantations and afforestation. We redefine identifiable tree
cover as woody plants with crown sizes greater than 5 m'. Based on the
tree cover map, we aggregate tree cover into 500 m x 500 m grid cells
for statistical analysis, with land cover attributes assigned based on the
MODIS MCD12Q1 Global Land Cover Products®. Additionally, we cal-
culate the proportion of previously undetected tree cover (PUTC), by
comparing our high-resolution tree cover data with existing tree cover
recorded in the World Cover dataset (10 m resolution)®’. We evaluate
how tree cover changes correlate with human activities, climate
change, and land use cover change (LUCC) at fine spatial scales.

Results

High-resolution map of pan-tropical tree cover

We conducted validation of the tree cover by selecting over 1,50,000
sample points based on Google imagery in the Google Earth Engine
(GEE) platform (see Supplementary Fig. 1). The validation results
indicate that the overall accuracy of tree cover in the pan-tropical
region reaches 97.31%. This includes accuracy rates of 99.03% in

forests, 96.29% in built-up areas, 96.74% in croplands, 96.93% in shrub/
grassland grides, and 99.48% in bare land/deserts, across various grid
types. Additionally, we computed a precision of 96.64%, a recall of
98.82%, and an F1 score of 0.9772 for both tree and non-tree regions.
These accuracy metrics reflect the performance of the final mapping
results of the entire model. We obtained similar validation results
based on a 10 m land cover as the classification criterion for sample
points (see Supplementary Table 1). The user’s accuracy of tree cover
identification under different grid types or land cover exceeds 95% (see
Supplementary Table 2). By contrast, tree cover has a lower producer’s
accuracy of 95.17%, and the lowest producer’s accuracy is mainly in
Built-up area (86.12%) and grassland/shrubs (89.63%, see Supplemen-
tary Table 3). This accuracy is relative to images with a resolution of
5m, and some tree canopies that are smaller and visible on Google
imagery but not visible to the Planet imagery are not within the scope
of this study.

The concentration of the tree cover is predominantly in forest
grids dominated by tropical rainforests. However, the trees in other
land cover types cannot be ignored (see Fig. 1). The total pan-tropical
tree cover area reaches 2286.74 Mha, with 53.37% of the crown dis-
tributed in non-forest grids. The average tree cover ratios for each grid
type from 2018 to 2020 were 88.73% in forest grids, 42.13% in shrub/
grassland grids, 40.58% in built-up area grids, 29.37% in cropland grids,
and 2.00% in bare land/desert grids (see Fig. 1a, b). The average tree
covers in different tropical continents follow this pattern: America
(63.08%) > Asia (59.13%) > Africa (34.61%). For forest grids, the average
tree cover in the Americas is the largest, exceeding 90.28%, far greater
than in Asia (87.65%) and Africa (85.87%) (see Fig. 1c). Cropland grids
(36.35% in the Americas > 28.70% in Asia > 26.81% in Africa) and built-
up area grids (45.78% in the Americas > 38.18% in Asia > 35.45% in
Africa) exhibit similar characteristics. The average tree cover in
grassland/shrub grids in Asia (67.92%) and that in deserts/bare land
(15.26%) are much higher than that in the Americas and Africa.

Distribution of high-resolution PUTC

We obtained the proportion of PUTC by overlaying our data with the
tree cover product of the World Cover dataset (see Fig. 2a, b). PUTC
accounts for 17.31+1.78% of all tree cover in pan-tropical (see Supple-
mentary Fig. 2). Notably, statistics on PUTC show that the World Cover
dataset in forest grids has an overestimation of 0.43% tree cover, indi-
cating that existing forest with tree cover of 100% in World cover has a
large number of ignored non-tree patches. Meanwhile, the World Cover
dataset in non-forest grids has left out 17.74% of tree cover. The grid type
with the highest proportion of PUTC is shrub/grassland grid (15.11%),
followed by cropland (2.15%), bare land/desert (0.40%), and built-up area
grid (0.08%). For forest grids, the previous dataset mislabeled non-tree
cover as tree cover (Asia: 0.88%, Africa: 0.52%, America: 0.19%).

At the continental scale, Africa has the highest PUTC percentage
in shrub/grassland grids, reaching 26.27%. Asia shows the highest
PUTC percentage in agricultural grids, specifically 4.41%. Among non-
forest grids, 5.63% in Asia, 30.03% in Africa, and 13.78% in the Americas
are not accurately represented as tree cover in the previous map.
Notably, Africa exhibits a higher PUTC percentage in bare land/desert
grids at 0.69%. Asia’s PUTC percentage in built-up area grids, at 0.69%,
exceeds the pan-tropical average (see Supplementary Fig 2). The PUTC
we detected is consistent with the current high-resolution trees out-
side forests recognized in Africa (see Supplementary Fig. 4).

The spatiotemporal change of tree cover

From 2015 to 2022, the average tree cover density in the pan-tropical
area decreased by 0.01%, with that in cropland grid, forest grid, shrub/
grassland grid, bare land/desert grid, and built-up area grid changing
by —0.163%,, —0.113%0, —0.108%o, 0.0352%o, and —0.147%o., respectively
(see Fig. 3a, b). The accuracy analysis report shows that the mapping
accuracy of our tree cover change is as high as 92.47% (see
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Fig. 1| pan-tropical tree cover. a and b represent the spatial distribution of pan-tropical tree cover and that in different grid types, respectively. ¢ is the proportion of pan-
tropical tree cover in different grid types in different regions. Data for this figure are available at Zenodo (https://doi.org/10.5281/zenodo.14892757).

Supplementary Note 2). The pan-tropical tree cover gross lost by
2.94 £ 0.09% (67.24 + 2.05 Mha). However, during the same period, the
pan-tropical tree cover only gross gained by 0.27+0.11%
(6.19 £ 2.56 Mha), which is less than one-tenth of the loss. The area of
tree cover in the pan-tropical net decreased by 2.67%+0.10%
(61.05+2.36 Mha), with forest and non-forest grids contributing
63.93% and 36.07%, respectively (see Fig. 3c, d). Compared to the
Global Forest Resources Assessment 2020 (FRA 2020) with a net loss
of 4.32% (the pan-tropical total forest cover area reaches 1799Mha and
decreases by an average of 7.61 Mha per year**) of forest in 2010-2020
(see Supplementary Table 4 and 5), the proportion of tree cover net
loss of 39.03 Mha is 3.66% in the forest grid in 2015-2022, which is
consistent with the FRA2020. This small difference mainly comes from
the difference in the definition of trees and the difference in periods.
The area of tree cover in Asia, Africa, and the Americas also decreased
by 0.83%, 2.18%, and 1.54%, respectively. Interestingly, the decrease in
tree cover in non-forest grids contributed 83.81% and 58.21% to the net
decrease in tree cover in Africa and the Americas, respectively.
Although the area of tree cover in non-forest grids in Asia has slightly
increased (0.08%), this has not changed the overall trend of declining
tree cover in Asia.

The degraded areas of tree cover in space are mainly distributed
around tropical rainforests and forests in Southeast Asia (see Fig. 3b).
Areas with massive tree cover loss, such as Matto Grosso, Laos, and
Congo, match well the Global Forest Change dataset’. The increased
areas of tree cover in space are mainly distributed within non-forest
grids or forest edge areas.

Contribution of driving factors for changes in tree cover

Notably, regions experiencing the most significant shifts in tree cover
proportion, encompassing both substantial increases and decreases,
are primarily located within non-forest grids exhibiting higher PUTC

ratios or forest grids characterized by a greater presence of non-tree
patches (see Fig. 4 and Supplementary Fig. 7). To elucidate this rela-
tionship between PUTC ratio and tree cover changes from 2015 to
2022, we conducted a coupling analysis (see Fig. 4a). Based on their
positions within the coordinate system, all changing pixels have been
categorized into four groups: higher growth area (quadrant I, where
PUTC higher than O and tree cover growth), lower growth area
(quadrant II, where PUTC lower than O and tree cover growth) lower
reduction areas (quadrant Ill, where PUTC lower than O and tree cover
reduction) and higher reduction areas (quadrant IV, where PUTC
higher than 0 and tree cover reduction). The proportions of changing
pixels from Quadrant I to Quadrant IV are 19.26%, 1.73%, 35.04%, and
43.97%, respectively. Over 95% of grids in areas with negative PUTC
ratios are concentrated in the overestimated reduction area (see
Fig. 4a). Conversely, for areas with a positive PUTC ratio, 70% of grids
are situated in undervalued reduction areas, with percentages reach-
ing 76.73%, 71.85%, and 62.16% in cropland grids, built-up area grids,
and shrub/grasslands grids, respectively (see Fig. 4b-f). It's noteworthy
that over 91.73% of the areas exhibiting increased tree cover are
located in the undervalued growth area. Additionally, the proportion
of PUTC in bare/desert grids surpasses 99%, with more than 71.28% of
these grids falling within undervalued growth areas.

Within forest grids, tree cover is primarily decreasing (95.46%),
with 65.90% of grids located in the overestimated reduction area (see
Fig. 4a). Overall, as the PUTC proportion increases, the trend in tree
cover change gradually becomes positive (slope=0.0236). This
positive correlation holds across different grid types, following the
pattern: shrub/grassland grids (slope=0.0796) > cropland grids
(slope =0.0291) > forest grids (slope=0.0031) > built-up area grids
(slope=0.0028) = bare land/desert grids (slope=0.0028) (see
Fig. 4b-f). It's noteworthy that areas experiencing significant short-
term tree cover changes predominantly occur in forest grids at forest
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Fig. 2 | Distribution of high-resolution PUTC. a is the spatial distribution of the proportion of PUTC. b is the PUTC of a typical regional case. Data for this figure are

available at Zenodo (https://doi.org/10.5281/zenodo.14892757).

edges (PUTC<O; classified as forest grids, accounting for over
26.00% of total grid numbers. Figure 4d) and in non-forest grids with
high PUTC (PUTC > 0; classified as non-forest grids, accounting for
over 51.54% of total grid numbers. Figure 4b-f).

Given the spatial coherence between tree cover changes and
PUTC, we quantified the driving factors behind tree cover changes (see
Supplementary Fig. 3). Significant spatial disparities in tree cover are
evident under different human activities and climatic conditions (see
Supplementary Fig. 3a, b). Regarding spatial distribution, tree cover
initially increases and then decreases with rising population density,
peaking at a threshold population density of 23 per/km? (see Supple-
mentary Fig. 3a). As precipitation increases, tree cover exhibits a trend
of initial growth, stabilization, and subsequent growth across different
grid types (see Supplementary Fig. 3b). Notably, the relationship
between human activities, climate change, and tree cover varies (see
Supplementary Fig. 3c). Precipitation and its fluctuations demonstrate
a significant positive correlation with tree cover across all grid types.
However, population density and its fluctuations only exhibit a sig-
nificant positive correlation with tree cover in cropland grids and built-
up area grids.

Furthermore, we analyzed the driving contributions of climate
change, human activities, and LUCC to tree cover changes across
different grid types (see Fig. 4g). Considering the high complexity of
LUCC, including disturbances, we use the residual method to deter-
mine the contribution of LUCC (in Method section). From 2015 to
2022, LUCC played a dominant role in pan-tropical tree cover
dynamics. Specifically, 53.93% of tree cover loss was related to LUCC,
where lands have been continually modified throughout

deforestation. Meanwhile, climate change, represented by pre-
cipitation changes, is related to 43.98% of tree cover gain. Addi-
tionally, 2.10% of tree cover loss is linked to human activities. For
different grid types, human activities were linked to 60.43% of tree
cover loss in cropland grids and 53.22% of tree cover loss in built-up
areagrids. The increase in precipitation was related to tree cover gain
across all grid types: cropland (28.58%), forest (36.64%), shrub/
grassland (33.03%), bare land/desert (54.85%), and built-up area
(8.54%). The LUCC played a dominant role in tree cover changes in
built-up area grids and cropland grids, related to 38.25% and 10.99%
of tree cover gain respectively, where the cropland and built-up areas
expanded. Conversely, LUCC was related to tree cover loss in forest
grids (61.33%), shrub/grassland grids (64.48%), and bare land/desert
grids (44.51%). Anthropogenic impacts, including LUCC and human
activities, exhibit an inverse relationship with pan-tropical tree cover
changes compared to climate change. The increase in tree cover
associated with heightened precipitation is offset by anthropogenic
impacts.

Discussion

We have developed a high-resolution tree crown identification method
based on machine learning to identify a large number of overlooked
trees. In high-resolution satellite image identification of tree crowns,
some studies have shown that machine learning, including deep
learning, combined with very-high-spatial resolution satellite imagery
collectively represents a disruptive technology that delivers excellent
models for detecting isolated trees over large areas'®. Undeniable, the
transferability of the model across regions can be low, and had to use a
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Fig. 3 | The spatiotemporal change of tree cover. a is the change of tree cover in
different grid types from 2015 to 2022. b is the spatial distribution of tree cover
changes. cis the change in tree cover in different regions from 2015 to 2022. d is the

contribution of non-forest grids to the change of tree cover. Data for this figure are
available at Zenodo (https://doi.org/10.5281/zenodo.14892757).

very large number of training samples to achieve a high quality across
landscapes'®. Training samples also had to cover a range of different
satellite images: acquisition dates, dust, clouds, burned areas, solar
zenith and viewing angle, off-nadir, sensor systems and image
boundaries all affect the visibility of tree crowns. All of these variations
need to be taken into account when training the model, which requires
a vast amount of training data and makes training time-consuming.
Our combination of automatic sampling technology and machine
learning provides a solution to this problem. The automatic sampling
and cleaning of tree cover samples not only enhances the objectivity,
but greatly saves human resources and time consumption. Due to our
use of grid-by-grid stratified sampling, and the feature indicators used
for cleaning samples are based on the prominent background features
of the tree crown within each grid, our model has good transferability
throughout the entire pan-tropical region (see Supplementary Note 1).
Meanwhile, the combination of this solution with existing cloud
computing platforms provides a path for achieving large-scale and fast
high-resolution tree cover mapping. By comparison, it was found that
our PUTC mapping results are highly consistent with Reiner’s 1 m high-

resolution tree outer forest maps based on deep learning” (see Sup-
plementary Fig. 4). Through error tracing analysis, although the error
is small, nearly 90% of the error mainly occurs within the shrub/
grassland grid (see Supplementary Fig. 6). It is undeniable that dis-
tinguishing tree crowns from a large number of sparse shrubs in Africa
is difficult for remote sensing images with a resolution of 5 m, which is
also the reason why our tree cover recognition results are higher in
shrubs/grasslands (r = 0.58, rmse = 9.49%, bias =-3.96%) (see Supple-
mentary Fig. 5). On a continental scale, the PUTC we detected is con-
sistent with the current high-resolution trees outside forests
recognized in Africa (see Supplementary Fig. 4). Notice that essentially,
the limitation and challenge of this method in large-scale tree crown
mapping is the need for global free and available high-resolution
remote sensing images. This study was conducted with the support of
Norway’s International Climate and Forests Initiative Satellite Data
Program, obtaining images with a resolution of < 5 meters covering the
entire pan-tropical region. If free, high-quality global images can be
obtained in the future, this method can provide technical support for
the global rapid tree cover mapping.
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Fig. 4 | The contribution of driving factors for changes in tree cover. a is the
relationship between the change of tree cover and the proportion of PUTC in pan-
tropical, where the directions of the arrows represent the offset direction of the
average coordinates of the samples in a specific grid type relative to the coordinate
origin (0, 0), representing the main location of the samples of that type.
b-frepresents the relationship between the proportion of tree cover changes and

the proportion of PUTC within different types of grids. g shows the contributions of
human activities, climate change, and LUCC to the changes in tree cover in the pan-
tropical region. This result was calculated from 61 independent samples selected at
different spatial locations in the tropics. Data are presented as mean values + SD.
Data for this figure are available at Zenodo (https://doi.org/10.5281/zenodo.
14892757).

We find that 17.31% of tree cover is found outside of land classified
as ‘tree cover’. These trees play a crucial role in ecological stability,
local economies, livelihoods, and food security®*. Consequently,
underestimating tree cover hampers our understanding of global

water, carbon, and energy cycles®”*®. Mapping of tree cover down to
the level of individual trees can resolve ambiguities in forest defini-
tions, providing a basis for international comparison and coordination
of forest resources. Major international conventions depend on
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accurate forest data, but the diversity of national forest definitions
complicates the implementation of these conventions®. The primary
challenge is consistently assessing all tree and forest resources across
countries and over time. However, shifting the focus to individual trees
could offer a more accurate and universally applicable framework for
assessing forest resources. Furthermore, our results differ from pre-
vious studies by including the full range of trees located in farmlands,
urban areas, and fragmented landscapes, which may constitute the
missing carbon sink*®*. This expanded perspective offers an oppor-
tunity to maximize the socioecological advantages derived from trees,
transcending the boundaries of conventional forests. These benefits
comprise enhanced agricultural sustainability, contributions to cli-
mate change mitigation, and biodiversity conservation*>**. Addition-
ally, as spatial resolution in tree cover and individual tree mapping
improves, a precise assessment of all tree-based ecosystems is possible
at the continental scale. Fine-scale changes in tree cover (gains and
losses) within established forests, although not constituting land cover
conversion, can still impact biogeochemical and biophysical
feedback***. These changes should be considered in climate-smart
forest management strategies. Quantifying trees outside traditional
forests also has implications for open ecosystems, enabling assess-
ments of woody encroachment and identifying areas where biodi-
versity is threatened by increasing woody cover*e.

Variations in tree cover among different states based on land use,
for forest, cropland, and built-up area grids, with America having the
highest tree cover, followed by Asia and Africa. Climate, specifically
rainfall and its seasonal distribution, is a key determinant of tree
cover®. In South America, tree cover in arid regions is higher in areas
with high year-to-year variability in rainfall*®. Conversely, Africa typi-
cally shows lower tree cover in regions with low rainfall and/or high
seasonality of rainfall*®. The diversity of vegetation types is also related
to tree cover. Large-sized trees, predominantly found in warm and wet
environments, are generally assumed to be older™. However, tropical
forests have progressively lost old-growth areas, evidence from
2015 shows that wood harvest is a major driver of the age distribution
in tropical forests™. Regions with more fragmented and younger tree
populations generally have lower overall tree cover. Additionally,
sustainable agricultural practices in some parts of the Americas and
Asia, such as retaining trees in croplands for shelterbelts or ecological
balance, are emphasized™. In contrast, African drylands primarily use
cropland trees for food, fodder, shade, and fuelwood, these trees are
usually widely spaced, resulting in lower tree cover in croplands®.

In the 26th UN Climate Change Conference of the Parties (COP26)
in Glasgow in 2021, 141 countries committed to halt and reverse forest
loss and land degradation by 2030, Our results detected a tree
cover gross loss of over 2.94% (67.24 Mha) in the pan-tropical region,
which seriously hinders the implementation of the Glasgow Pledge.
For example, some tropical rainforest countries such as Brazil, Indo-
nesia, and the Democratic Republic of Congo suffered gross losses of
11.42 Mha, 2.15 Mha, and 3.34 Mha, respectively. However, the progress
of another project promoting forest growth, Bonn Challenge Pledges,
seems to have not been as smooth either. The Bonn Challenge is a
global goal to bring 150 Mha of degraded and deforested landscapes
into restoration by 2020 and 350 Mha by 2030°. In fact, between 2015
and 2022, the tree cover only gross gained by 6.19 Mha. Among the
pan-tropical forest powers that have made commitments, Brazil has
the largest gross gain in tree cover at only 1.36 Mha which is much
lower than Brazil's commitment of 4.28 Mha*. In addition, in Africa
and Southeast Asia, a lot of tree cover gain occurs in plantations and
fallow areas of shifting cultivation. Therefore, it is urgent to strengthen
the monitoring and management of global tree cover.

Interestingly, our results show that areas with the most drastic
changes in tree cover are associated with PUTC. Compared to previous
forest change detection methods that can only detect large-scale for-
est patch changes, our research reveals the important role of neglected

processes such as planting, logging, death, and regeneration of indi-
vidual trees in the process of tree cover changes. Tree cutting and
planting mainly occur in small areas, which cannot be detected in low-
resolution remote sensing images'>”. In fact, the changes in tree
crowns within most cities and farmland are single or small-scale. Some
regional studies using higher-resolution satellite images have dis-
covered the death of individual trees in forests®, confirming the pat-
tern we observed. This discovery likely proposes new requirements for
future land and forest management. Meanwhile, the decrease in forest
tree density caused by the logging and death of scattered individual
trees does not change the forest area but can substantially impact
regional ecology, carbon storage, and climate change.

Our results also show that there is a threshold effect between
climate and human influence on tree crown distribution. For the
population density threshold (PT: 23 people/km?), when the popula-
tion density is below the threshold, the population density is related to
the livability of natural conditions. Humans tend to choose superior
habitats, so areas with higher population densities generally indicate
better living conditions®, which are more suitable for tree growth,
resulting in larger tree cover. When the population density equals the
threshold, human disturbance and tree growth reach a balance,
meaning the loss and gain of tree cover balance each other. When
population density surpasses a certain threshold, the balance is dis-
rupted, and increased human activities are associated with greater tree
disturbance and decreased tree cover.

For climate thresholds, including the first (CT1: 750 mm) and
second thresholds (CT2: 1300 mm), precipitation in arid areas (below
CT1) is the main ecosystem impact factor, and increased precipitation
is the core driving force for promoting tree growth. When precipita-
tion is between CT1 and CT2, the impact of precipitation on tree
growth balances with the impact of human activities on tree planting/
cutting. In such balanced areas, increased precipitation not only pro-
motes tree growth but also improves human livability, leading to
increased tree cutting and achieving a dynamic balance*. When pre-
cipitation exceeds CT2, a large number of trees grow in the pan-
tropical region, mainly forming large-scale forests.

Notably, the uncertainty of our results may arise from three
aspects: tree definition, tree cover identification, and the reference
map for tree cover during the PUTC mapping process. The current
definition of a tree is influenced by the size and height of the tree
crown and further by the resolution of satellite images. In our study, a
tree with a crown diameter greater than 5 meters was defined as a tree,
based on the maximum resolution of our satellite imagery. Some
studies using sub-meter-level satellite imagery or aerial imagery within
a small area define a tree crown size of 2 meters as the recognition
threshold™’. The difference in this definition results in differences.
Differences in these definitions result in variations in the area and
percentage of tree crowns detected at different resolutions. The
accuracy of tree cover change depends on the accuracy of the two
periods of tree cover before and after, and also depends on the
availability and quality of remote sensing images. Issues with clouds,
shadows, and missing images also introduce uncertainty, particularly
because leaf density and tree crown shape vary seasonally’. To
address this, we used the average tree crown percentages from the
adjacent four years to improve trend detection stability. Meanwhile,
we also adopted the widely recognized uncertainty analysis method
for land use change to evaluate the accuracy and uncertainty of tree
cover change®. In fact, the evaluation results are positive, with tree
cover change overall having high accuracy (92.47%) and low uncer-
tainty (+0.1031%). Future availability of satellite data at a sufficient
temporal frequency to derive seamless mosaics would eliminate this
source of bias from our method. Additionally, due to image resolution
limitations, crowns less than 5m apart cannot be distinguished,
resulting in slightly higher tree cover estimates in sparse forests and
shrubs. Compared to general 30 m resolution forest maps and 10 m
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tree cover maps, our tree cover estimates represent significant
progress®®. As high-resolution remote sensing images become more
available, this issue will no longer exist. It should be noted that
Northern Africa and half of South Africa are not mapped in our study
due to the lack of coverage in the NICFI PlantScope imagery.

Ultimately, a significant source of uncertainty in PUTC mapping
stems from the accuracy of the reference dataset. Taking the main
reference World Cover dataset in this study as an example, the
uncertainty of PUTC obtained by using the design-based area estima-
tion is only +1.33 Mha (+ 0.06% of the total tree cover) (see Supple-
mentary Note 3). Additionally, we employed CGLS-LC100 and MODIS
MCD12Q1 Global Land Cover Products at varying resolutions to assess
the consistency of PUTC and quantify its accuracy and uncertainty
(£ 1.78% of all tree cover). Obviously, the uncertainty of PUTC obtained
based on the consistency of different reference datasets is greater than
that calculated based on the design-based area estimation. This dif-
ference demonstrates that the term ‘previously undetected’ can be
challenging to define empirically. Ultimately, this study adopted
higher uncertainty calculation results to enhance the scientific validity
of the research. Indeed, PUTC may vary across different global tree
cover datasets due to differences in resolution and the accuracy of the
tree cover maps. The accuracy of the reference tree cover map directly
influences the mapping results of PUTC. To enhance the reliability of
the conclusions, we utilized the currently available World Cover
dataset, which has a relatively high resolution, for PUTC mapping.

The main contribution of this work is mapping high-resolution
PUTC and its changes, and quantifying the contrasting contributions
of human and climate factors to pan-tropical tree cover changes in
forests and non-forests. Our most advantageous finding is that the
proportion of PUTC is 17.31% in the pan-tropical tree cover. Notably,
statistics on PUTC show that the World Cover dataset in forest grids
has an overestimation of 0.43% tree cover, indicating that existing
forest or tree cover contains a large number of non-tree patches.
Meanwhile, the World Cover dataset in non-forest grids has left out
17.74% of tree cover. Statistical results show that the main PUTC exists
in non-forest grids. The grid type with the highest proportion of PUTC
is shrub/grassland (15.11%), followed by cropland (2.15%), bare land/
desert (0.40%), and built-up area (0.08%). Secondly, the average pro-
portion of tree cover in the pan-tropical region decreased by 0.01%
between 2015 and 2022, with forest grids and non-forest grids con-
tributing 63.93% and 36.07%, respectively. Notably, areas experiencing
evident short-term tree cover changes were primarily located in forest
edges grids with negative PUTC values (>26.00%) and in non-forest
grids with high PUTC values (>51.54%). Additionally, we found a
threshold effect of population distribution and climate characteristics
on tree cover distribution. LUCC plays a dominant role in the dynamics
of pan-tropical tree cover, accounting for 53.93% of total tree cover
loss. In contrast, climate change, represented by precipitation, is
associated with 43.98% of total tree cover gain. While increased pre-
cipitation promotes tree cover gain, anthropogenic impacts counter-
act this trend, ultimately linking to net loss of tree cover.

Methods

Overview

This study establishes a framework for the detection of tree crowns
using high spatial resolution remote sensing images. We employed an
automated machine learning approach to identify pan-tropical tree
crowns in Planet images with a 5 m spatial resolution. This approach
differs from the typical Automated Machine Learning (AutoML)
methods often referenced in computer science, as it focuses on
achieving automatic sampling to reduce manual labor. Due to the
unique vegetation features of pan-tropical trees, their crowns stand
out as objects with a high NDVI and low brightness and wetness values,
in contrast to their surroundings, which exhibit low NDVI and high
brightness and wetness values. The significant differences in spectral

characteristics between tree crowns and non-tree crowns on the same
plot will not rapidly weaken with differences in spatial location, remote
sensing image capture time, and image quality (at least visually
recognizable tree crowns) (see Supplementary Note 4). This study fully
utilizes this feature to assist in identifying potential tree covers. We
only need to focus on the differentiation between trees and non-trees
within each plot (grid 500 x 500 m), without considering the con-
sistency of tree crowns between different regions. This makes it pos-
sible for computers to automatically produce high-quality training
samples based on each plot. Visually, it is straightforward to identify
tree crowns in the satellite images, and we automatically delineated
potential tree crowns. The strict cleaning and screening of a large
number of automatically generated samples enable machine learning
models to achieve high-quality learning.

For transferability, some studies acknowledge that the accuracy
of deep learning heavily relies on samples'*?°, Due to the influence of
the selected samples, deep learning models may experience errors in
training the model due to regional or remote sensing image differ-
ences, thereby limiting its transferability?’ (see Supplementary Note 1).
Although research cases in India have shown that this error can be
reduced by increasing the sample size, it will significantly increase
labor and computational costs'. Therefore, improving the large-scale
applicability and transferability of the model is also an important
prerequisite for achieving rapid global tree cover mapping. This study
fully considers the significant differences in climate regions, ecosys-
tem types, and human management, as well as the spatiotemporal
heterogeneity of remote sensing images. A sufficient number of sam-
ples were automatically generated in different grids to improve the
model’s adaptability, transferability, and accuracy in mapping results
across a large geographic range.

To achieve the above functions, this study considers model
deployment on GEE and adopts the most widely used random forest
algorithm as the core machine learning model. Considering the
regional differences of the samples, we have developed an automatic
sampling and sample cleaning method based on the potential crown to
generate 500 almost accurate sample points within each 500 x 500 m
grid. These samples were used to train the machine learning model,
which was subsequently used to predict crowns for the entire pan-
tropical region, capturing the full spatial variation and temporal
change from 2015 to 2022. Finally, we investigated the contribution of
factors such as precipitation, population, and land use to the spatio-
temporal change of tropical tree cover.

Satellite images
We assembled all NICFI mosaics available on the GEE platform from
2015 to 2022. These images were obtained through the GEE license
from the Norwegian Agency for Development Cooperation. All multi-
spectral bands associated with the images were preprocessed on the
GEE platform, including calibration and splicing. We formed the NDVI
and NDWI from every image in the traditional way, from the pan-
sharpened red and near-infrared bands, and formed the Brightness,
Greenness, Wetness and Angle from every image in the improved
Kirchhoff transform (KT). For Landsat satellite TM images, the KT band
can effectively identify trees and forests, and its calculation requires
B1-B6 and B7 (see Supplementary Note 4). Here, all KT bands are used
from RGB, N (see Supplementary Eq.(7)). We also associated the mul-
tispectral bands with the NDVI band and KT bands, and ensured these
basic feature bands were highly co-registered. These basic features
were used to distinguish tree crowns from non-vegetated
backgrounds.

A set of decision rules was applied to select images for the mosaic.
The dry season is the season when tree crowns are most clearly dis-
tinguished. We used imagery collected all year, because of significant
dry differences in the pan-tropical region. The first round of scoring
considered the percentage of cloud cover, giving preference to
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Fig. 5 | Automatic detection algorithm for tree crown. Data for this figure are available at Zenodo (https://doi.org/10.5281/zenod0.14892757).

imagery with lower cloud cover percentages. Image mosaics were
necessary to eliminate the multiple counting of trees. For different
time images of the same region within a year, to ensure the best
selection of dry season images, we adopted a fusion method based on
the minimum NDVI value. This resulted in images each year that were
used for the study. Overall, 1% of the study area has been masked
owing to insufficient data quality. Because most of these areas are
located in the desert with very low tree cover, we do not expect any
effect on the statistics presented.

Automatic detection algorithm

Our interactive tree cover automatic detection framework is based on
the fusion of three technologies: decision tree classification, automatic
clustering of random sample points, and machine learning (see Fig. 5).

Decision tree classification

We tentatively set a 20 x20 convolutional kernel with weights of
1/400, and calculate the background values for each KT band sepa-
rately. This is equivalent to calculating the mean within a range of
100 x 100 m around each pixel. Due to the spatial distribution of trees
in non-forest areas, the background, and mean values of each band,
differ significantly from the characteristic parameters of the tree
crown pixels. So, we reflect the prominent position of tree crowns in
the surrounding background vegetation by using the difference
between background values and corresponding KT band values, which
includes two environmental indicators: KT Brightness (Envi-KTB) and
KT Wellness (Envi-KTW). Obviously, the Envi-KTB and Envi-KTW in the
tree crown area are negative and lower than the pixel values of the
surrounding background. We associated the multispectral bands with

the NDVI band, KT bands, Envi-KTB and Envi-KTW, and formed these
basic feature bands to distinguish tree crowns from non-vegetated
background (see Supplementary Note 4).

We have set decision tree identification rules for single tree areas
and dense tree areas respectively. It needs to be declared that the
decision tree classification not align with the typical machine learning,
as it involves a series of rules and conditions for categorization rather
than traditional supervised learning for classification. In areas domi-
nated by single/row trees, to ensure that almost all tree crowns are
identified as potential tree crowns, we tentatively set two parallel
judgment conditions. We determined the tree crown threshold under
different conditions by analyzing the distribution characteristics of
band information from 1,50,000 sample points (see Supplementary
Note 5). Condition 1: Envi-KTB is less than 5% of the maximum
Brightness value within each grid; Envi-KTW is less than 5% of the
maximum Wetness value within each grid; NDVI value greater than 0.3;
NDWI is less than —-0.2 (excluding water). Condition 2: Envi-KTB is less
than 10% of the maximum Brightness value within each grid; Envi-KTW
is less than 10% of the maximum Wetness value within each grid; NDVI
value greater than 0.15 (minimum identified NDVI of tree crowns in
desert areas); NDWI is less than —0.2. When either condition 1 or
condition 2 is met, the algorithm automatically determines that the
pixel belongs to the potential crown.

For the dense tree area, we first divide it into different coverage
areas using the World Cover land cover dataset (10 m). Due to the
inconsistent characteristics of tree crowns and background in different
land types. Within the existing tree cover areas, all are assumed to be
potential tree crowns. Within the cropland areas, the rule requires KT-
Angle to be greater than the sum of KT-Greenness and KT-Brightness,
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and NDVI to be greater than 0.75 (3/4 percentile of the total NDVI
range). In built-up areas, NDVI is required to be greater than 0.7. In
grasslands/shrubs, NDVI is required to be greater than 0.35. In bare
land/deserts, NDVI is required to be greater than 0.25. Finally, by
merging the distribution of different types of potential tree crowns, a
potential tree crown dataset for the entire pan-tropical region is
obtained.

Automatic clustering of random sample points

From the potential crown dataset, a stratified sampling method auto-
matically extracts 500 sample points in each 500 x 500 m grid, con-
sisting of 200 crown types and 300 non-crown types. Given the
possible errors in tree crown identification, thorough cleaning of
samples is necessary. This involves calculating the distribution of
various eigenvalues for 300 tree samples and applying rigorous cri-
teria to exclude uncertain samples: NDVI greater than Mean-0.5 stan-
dard deviation; Envi-KTB less than Mean+0.5 standard deviation; and
Envi-KTW less than Mean+0.5 standard deviation (Supplementary
Note 6). Only tree crown samples satisfying all these conditions are
retained. For non-crown samples, the study excludes those with NDVI
greater than Mean+3 standard deviations due to their heterogeneity.
Cleaned non-crown samples are categorized into three types: non-
vegetation (NDVI less than Mean+1 standard deviation) and non-tree
vegetation (Mean+1 standard deviation < NDVI < Mean+3 standard
deviations) (see Supplementary Note 6). Ultimately, three types of
cleaned samples are identified: tree crown, non-tree vegetation, and
non-vegetation. Through manual interpretation of 7500 real labels via
Google Images, we’ve confirmed the automated labeling accuracy is
consistently near 100%, with a sensitivity of zero (see Supplemen-
tary Note 7).

Mapping crown cover with machine learning
We used the most common supervised classification method in ran-
dom forest algorithm, to detect tree crowns in the input images. The
mapped areas were then converted to 0-1 images for counting the
percentage of tree crowns in each 500 x 500 m grid. Machine learning
has been the main driver of progress in artificial intelligence over the
past decades. It emerged from research in artificial neural networks
and refers to building models organized in layers of computational
units, which develop more and more abstract representations of the
underlying input data. After solving the problem of automatic precise
sampling, we expect disruptive progress in remote sensing.

For data preparation, we assembled all NICFI mosaics available on
the GEE platform into high-quality annual images from 2015 to 2022.
For the labeling of the sample set, we adopt a computer automatic
labeling method based on the combination of potential tree crown
recognition results and sample cleaning methods. The method auto-
matically generates 500 samples within each grid based on the pro-
portion of potential tree cover, and labels them as tree crown and non-
tree crown. In the sample cleaning stage, to improve the accuracy of
the model and reduce the impact of non-tree vegetation on the tree
crown, we reclassified high NDVI samples (greater than 3 Std) in non-
tree samples as non-tree samples in vegetation. After strict sample
cleaning, three types of labels are finally formed: tree crown samples,
non-tree samples in vegetation, and non-tree samples in non-vegeta-
tion, which are then input into a random forest model for learning and
classification. The automatically generated samples here are 100%
used for model training. In determining the decision variables for the
random forest model, we selected several spectral and environmental
indices with the most distinct crown features and the greatest differ-
ences compared to non-trees, mainly including image bands (R, G, B,
N), transformed features (NDVI, NDWI, brightness, wellness, angle),
environmental features (envi-KTB, envi-KTW), and potential tree.
Finally, we obtained high-resolution pan-tropical tree crown mapping
results.

The model testing dataset consists of an additional 15,000 ran-
domly selected validation points. We use visual interpretation to
ensure the high accuracy of the test dataset by comparing it with
Google Images. The validation process involves three remote sensing
science interpreters who have worked continuously for over 500 h. To
ensure consistency of the validation results throughout the entire
study area, the same sample type was completed by the same inter-
preter. Three interpreters respectively validated samples with changes
in tree crown, samples without changes in tree crown, and samples
without tree crown. For the sample of a single tree, we used Google
imagery that was as consistent as possible with the study date for
validation. If there are no available Google images, we mark the sample
as -1, indicating that the sample cannot be verified. For large-scale tree
crowns, such as forests, we prioritize using Google imagery for vali-
dation. If no Google imagery is available, we will use contemporaneous
Sentinel-2 imagery or Landsat imagery for validation. If both the
Sentinel-2 image and the Landsat image are obscured by clouds or
cannot be determined, the sample is marked as -1. Out of
~15,000 samples, 10% were marked as -1 and discarded.

Meanwhile, each grid is assigned land type attributes based on
MCD12Q1 Global Land Cover Products®. We also collected and coun-
ted the percentage of tree covers that have been detected within each
grid in the World Cover dataset (10 m). We then obtained the pro-
portion of PUTC, by overlaying the existing tree cover. Noteworthy,
some grids have negative PUTC values, especially in forest edge areas,
indicating the presence of certain non-tree patches in forests detected
by previous mid to low-resolution remote sensing images.

Overall, the model of this study has higher accuracy (see Sup-
plementary Table 1). Meanwhile, the comprehensive sensitivity eva-
luation of the entire model shows that the mapping results have high
stability (see Supplementary Note 7) under the current parameter
settings. The detailed sensitivity and accuracy analysis of the first stage
shows that the accuracy of potential crown recognition has a high
stability (sensitivity of 0), which maintains the accuracy and stability of
the overall model mapping results at over 95% (see Supplementary
Note 7). For the sample cleaning stage and the tree crown mapping
stage based on the random forest model, we evaluated the accuracy
and sensitivity of the final tree crown mapping results for different
samples under different cleaning intensities by adjusting the sample
cleaning indicators (the degree to which the sample deviates from the
mean, measured in standard deviation). The sensitivity analysis results
in the final stage show that the mapping accuracy of the tree crown
also has high stability (see Supplementary Note 7). These sensitivity
assessment conclusions demonstrate the high reliability of our model
for crown recognition.

Mapping crown cover change and PUTC

It is crucial to ensure the stability and comparability of tree cover
datasets from different years when exploring the trend of tree cover
changes in pan-tropical trees between 2015 and 2022. To improve
comparability, we used the same algorithm to calculate the tree cover
dataset for these years. To improve the accuracy of the change trend,
we calculated the average tree cover percentage for each grid for 4
consecutive years, including early tree cover: 2015-2018 and later tree
cover: 2019-2022. Determine the trend of change by calculating the
difference between the early tree cover and the later tree cover. The
entire process was completed jointly on the ArcGIS 10.2 and GEE.
Meanwhile, we referred to the general accuracy, uncertainty, and bias
analysis methods of forest change detection to calculate the accuracy
and uncertainty of tree cover changes in this study 6. The uncertainty
analysis shows that the uncertainty areas of Tree loss and Tree gain are
+2.05Mha and £ 2.56 Mha, respectively, accounting for + 0.0896% and
+0.1118% of the total tree cover area, respectively. The uncertainty of
net change in tree cover is + 2.36 Mha, accounting for + 0.1031% of the
total tree cover (see Supplementary Note 2).
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Then, we plotted the pan-tropical tree cover, and then mapped
the proportion PUTC. It is important to acknowledge that the term
‘previously undetected’ can be challenging to define empirically.
Notably, PUTC may differ across various global tree cover datasets due
to variations in resolution and accuracy. To verify the accuracy and
uncertainty of the PUTC identified based on the World Cover dataset in
this study, we used existing tree cover datasets of different resolutions
as references, including World Cover (10 m resolution), CGLS-LC100
(100 m resolution), MODIS MCD12Q1 Global Land Cover Products
(500 m resolution), conducted consistency checks on the recognition
results of PUTC. Meanwhile, we used the standard deviation of the
consistency of PUTC under different references as the uncertainty of
the PUTC mapping results in this study. The comprehensive verifica-
tion results reveal that the accuracy of PUTC is 87.34%, and the
uncertainty of the PUTC mapping results is +1.78% (see Supplemen-
tary Note 8).

Driving factors for changes in tree cover

Methodologically, land cover products were matched pixel by pixel
between the periods 2015-2018 and 2019-2022. Pixels exhibiting
changes in land cover were categorized as LUCC trajectories, while
those without changes were identified as stable land trajectories. The
tree cover change observed within stable land trajectories is inter-
preted as a compounded effect of climate change and human-induced
vegetation alterations. The human activities refers to the planting or
cutting of individual trees within a fixed land type, indicating shifts in
vegetation composition or structure, such as the alteration of indivi-
dual trees within stable farmland areas'*. Consequently, anthropogenic
impacts encompass both LUCC and human-induced tree cover chan-
ges (see Supplementary Note 9). Specifically, we identified precipita-
tion as the most critical factor influencing vegetation among climate
change variables'. As such, we used precipitation as a proxy for cli-
mate change. Additionally, population density reflects the impact of
human activities on vegetation®; therefore, we employed population
density as a proxy for human-induced tree cover change. Conse-
quently, we examined the contributions of various factors to changes
in pan-tropical tree cover from three perspectives: climate change,
LUCC, and human activities. We developed a contribution quantifica-
tion method based on sensitivity coefficients (Eq. (1)). This method has
been shown to effectively differentiate the contributions of climate
change and human activities to changes in land vegetation®>**>. Com-
pared to changes in precipitation and population density, LUCC
exhibits significant complexity and diversity, making it challenging to
quantify its contribution to tree cover changes. Therefore, using the
sensitivity coefficient method, we applied the residual method to
determine the contribution of LUCC (C, ), that is, the contribution
after removing the quantified impacts of climate (Cjjmaee) @and human
factors (Cyyman) from the total change (ATC). The calculation of sen-
sitivity coefficients for each variable is performed using a multiple
linear regression model in SPSS. Given the assumptions required for
multiple linear regression, we statistically examined the distribution
characteristics of ATC. The statistical results indicate that ATC follows
a normal distribution (see Supplementary Fig. 8).

ATC = Cjimate * Chuman * Cruce = Sclimate 8C + SpumanAM + Cryee (D

OATC

Climate = OAC (2)
O0ATC

SHuman = W (3)

Here, Scjimae aNd Syuman represent the sensitivity coefficients of the
tree crown change to climate change and human disturbance factors,
respectively. Using the changes in precipitation (AC) and population

density (AM) as independent variables, these sensitivity coefficients
and residual contributions, which is the contribution of LUCC (C,cc),
were calculated through regression analysis using SPSS software.

We estimate the influences of different factors on tree crown
changes by multiplying the sensitivity coefficient with the corre-
sponding factor change (Eq.(4) and (5)).

CClimate = SCIimate xAC (4’)

CHuman = SHuman xAM (5)

Based on the absolute influences of different factors on tree cover
changes, we calculate their relative contribution percentages sepa-
rately. It cannot be ignored that there is offsetting between the con-
tributions of different factors. For example, when the increase in
precipitation causes the tree gain (+100 Mha) to be equal to the tree
loss (-100 Mha) caused by human logging, the tree cover in the region
shows no change (0 Mha). However, in reality, the actual change in tree
crown is as high as 200 Mha (|+100 [+| —100 | =200), and the effects of
precipitation (+50% =+100/200) and human activities (-50% =-100/
200) on tree crown changes have been ignored. Therefore, it is
necessary to calculate the percentage contribution of different factors
to tree cover change, which is the proportion of the signed actual
contribution of a single factor to the absolute sum of the contributions
of all factors. In the actual calculation process, we separately con-
sidered the positive and negative attributes of different factors and
constructed the formula for calculating the absolute contribution rate
(Eq.(6)).

Cer
R = Climate x100%
Climate |CClima(e| + |CHuman| + |CLUCC| °
C
R = Human x100%
Human = €51 T TCouman] * [Crvec] ° ©)
C
R = Lucc x100%
Lucc [Catimate | * [Crtuman| + [Crucc| 0

Here, Rcjimater Riuman and Ryycc represents the impacts of climate
change, human interference, and LUCC on the tree crown changes of
pan-tropical regions.

Statistics & reproducibility

This study establishes a model for the detection of tree crowns using
high spatial resolution remote sensing images. This model was used to
predict crowns for the entire pan-tropical region, capturing the full
spatial variation and temporal change from 2015 to 2022. Finally, we
investigated the contribution of factors such as precipitation, popu-
lation, and land use to the spatiotemporal change of tropical tree
cover. All samples used for statistical analysis were randomly selected
within the tropical range. No data were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The tree cover in the World Cover dataset (10 m) used in this study can
be directly obtained by calling ID ESA/WorldCover/v100 in GEE. The
MODIS MCD12Q1 Global Land Cover Products in 500 m (LC_Typel) can
be directly obtained by calling ID MODIS/061/MCD12Ql in GEE. The
population density data set used in this study is obtained from the
Center for International Earth Science Information Network (https://
sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-revil),
and can be directly obtained by calling id CIESIN/GPWv411/GPW_Po-
pulation_Density in GEE. In terms of climate change, the precipitation
data set used in this study is obtained from the Climate hazards group
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infrared precipitation with station data (https://climatedataguide.ucar.
edu/climate-data/chirps-climate-hazards-infrared-precipitation-
station-data-version-2). The high-resolution tree cover and tree cover
change datasets can be viewed and obtained here (https://
nicegee20200601.users.earthengine.app/view/treecover-change-5m-
app). The tree cover change data generated in this study have been
deposited in the Figshare database through the following link https://
doi.org/10.6084/m9.figshare.26345623. Data for each figure are avail-
able at Zenodo (https://doi.org/10.5281/zenodo.14892757).

Code availability

All the code involved in this study can be obtained on the Zenodo
platform through the following link https://doi.org/10.5281/zenodo.
14892757¢,
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