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Enhanced role of the entorhinal cortex in
adapting to increased working memory load

Jiayi Yang 1, Dan Cao 1 , Chunyan Guo1, Lennart Stieglitz 2,
Debora Ledergerber3, Johannes Sarnthein 2,4 & Jin Li 1

In daily life, we frequently encounter varying demands on working memory
(WM), yet how the brain adapts to high WM load remains unclear. To address
this question, we recorded intracranial EEG from hippocampus, entorhinal
cortex (EC), and lateral temporal cortex (LTC) in humans performing a task
with varying WM loads (load 4, 6, and 8). Using multivariate machine learning
analysis, we decoded WM load using the power from each region as neural
features. The results showed that the EC exhibited both higher decoding
accuracy on medium-to-high load and superior cross-regional generalization.
Further analysis revealed that removing EC-related information significantly
reduced residual decoding accuracy in the hippocampus and LTC. Addition-
ally, we found that WM maintenance was associated with enhanced phase
synchronization between the EC and other regions. This inter-regional com-
munication increased as WM load rose. These results suggest that under
higherWM load, the brain reliesmore on the EC, a key connector that links and
shares information with the hippocampus and LTC.

Working memory (WM) is a fundamental cognitive function that
enables the temporary storage and manipulation of information1. It
plays a critical role in everyday life, supporting a range of cognitive
activities from basic tasks to complex problem-solving2. WM demands
vary significantly depending on the amount of information to be
managed. For instance, maintaining a few appointments requires
minimal cognitive effort, whereasmanaging multiple tasks, times, and
details places greater demands on WM. This raises an important
question: how does the brain flexibly adapt to different levels of
WM load?

Previous research has explored how neural activity changes
across different load levels3–5. Findings are mixed, with some studies
suggesting a linear increase in neural activity with increasing load6,
others indicating an initial increase followed by a plateau7, and still
others proposing an inverted U-shaped response8. These findings
indicated that the transition from low tomedium load shows relatively
consistent patterns of increased activity across WM regions. However,
the response from medium-to-high load is less consistent, suggesting

the need for more nuanced investigations that separately examine
changes from low-to-medium load and from medium-to-high load.
Furthermore, previous studies have primarily focused on the rela-
tionship between neural activity in individual brain regions and WM
load, examining each region separately. Here, we examine how the
contributions of different brain regions vary with increasing load and
assess the role of inter-regional connectivity.

Recent studies have begun to explore the involvement of non-
traditional WM areas, such as the medial temporal lobe (MTL), in WM
maintenance9. However, the precise role of MTL regions, particularly
in relation to WM load, remains unclear. Within the MTL, the hippo-
campus has received considerable attention. Studies have shown that
hippocampal neural activity allows accurate decoding ofWMcontent10

and stably maintains information in the absence of the stimulus11.
Interestingly, hippocampal neural activity increases from low-to-
medium load but plateaus from medium-to-high load, suggesting the
involvement of alternative mechanisms at higher demands12. Beyond
the hippocampus, other MTL regions, such as the entorhinal cortex
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(EC), have also been reported to play a role in WM processing. EC
neurons exhibit persistent firing during WM task delays12,13, and both
firing rates in the EC13 and inter-regional communication between the
EC and the hippocampus14 tend to increase with WM load. Beyond the
MTL, the lateral temporal cortex (LTC) has also been implicated in
WM-related gamma activity changes15 and exhibits bidirectional
oscillatory interactions with the hippocampus16 during WM proces-
sing. Despite these findings, direct studies simultaneously investigat-
ing activity in the EC, hippocampus, and LTC are lacking, leaving open
questions about how these regions coordinate to maintain the
increased WM content.

To address these gaps, we simultaneously recorded intracranial
EEG (iEEG) from the EC, hippocampus, and LTC in 13 epilepsy patients
performing a WM task (Fig. 1A). We investigated neural adaptations to
WM load by machine learning decoding analyses under low-to-
medium and medium-to-high load conditions separately. Decoding
analyses were conducted using single-regional power features
(Fig. 1B), cross-regional decoding generalization (Fig. 1C), and residual-
based decoding to remove EC-shared activity (Fig. 1D). In addition,
functional connectivity analysis (Fig. 1E) was used to assess load-
dependent changes in inter-regional connectivity. Our findings indi-
cate that the EC exhibits superior decoding performance on medium-
to-high WM load, shares load-related information with other regions,
and displays load-dependent increases in its functional connectivity
with the hippocampus and LTC.

Results
Behavioral Results
Thirteen patients with drug-resistant epilepsy (6 females) participated
in the WM task. The average memory accuracy across all participants
was 92.04 ± 3.35% (median 92.5% correct trials), indicating that all
patients scored well in the task. Across all participants, the median
memory capacity was 6.5 (range: 5.6–7.5) based on Pashler’s KP, which
indicates that the participants were able to maintain about 6 letters
in memory and that load exceeded capacity in high load trials (load 8).
In sum, these results show that all participants were able to perform
the task.

Higher decoding accuracy of EC under medium-to-high
demands
Next, we examined the roles of different brain regions in adapting to
varying loads at a fine-grained scale. Compared to univariate analysis,
multivariate decoding approaches can capture information that is lost
when averaging signals, providing greater sensitivity for detecting
differences between conditions17. Therefore, we used multivariate
analysis to decode load 4 vs load 6 and load 6 vs load 8 in the sub-
sequent analyses separately. The maintenance of WM information
elicited z-scored power changes in the 1–40Hz frequency range.
Accordingly, neural activity within this range was included in the
subsequent multivariate decoding analyses.

We first investigated how the neural activity of the hippo-
campus, EC, and LTC adapts to increasing cognitive demands during
WM maintenance. We applied a linear SVM classifier to decode WM
load (load 4 vs load 6, load 6 vs load 8), using power features from
the hippocampus, EC, and LTC separately (Fig. 2C). To assess the
statistical significance of the decoding results, we created a null
distribution of the decoding accuracy by shuffling the relationship
between labels and data 100 times. Decoding accuracy exceeding the
95% threshold of this null distribution was considered statistically
significant. The results showed that the decoding accuracies on low-
to-medium and medium-to-high load conditions using power fea-
tures from the hippocampus, EC, and LTC were significantly above
chance level. The detailed 95% threshold values are provided in
Supplementary Table S2. Next, to assess differences in decoding
accuracy among regions, we performed permutation t-tests. As

shown in Fig. 2D, there were no significant differences in decoding
accuracy on low-to-medium load condition among the hippocampus
(mean ± S.D.: 56.33 ± 3.94%), EC (56.44 ± 1.10%), and LTC
(56.08 ± 3.84%; permutation t test: EC vs hippocampus: t = 0.29,
p = 0.768; EC vs LTC: t = 0.90, p = 0.379; LTC vs hippocampus:
t = −0.42, p = 0.690). However, under medium-to-high load condi-
tion, the EC exhibited the highest decoding accuracy (55.49 ± 1.72%),
and the decoding accuracy from the LTC power features
(53.82 ± 2.10%) was significantly higher than the hippocampus power
features (52.84 ± 1.67%; EC vs hippocampus: t = 11.16, p < 0.001; EC vs
LTC: t = 6.86, p < 0.001; LTC vs hippocampus: t = 3.96, p < 0.001). We
further calculated the difference in decoding accuracy between
medium-to-high and low-to-medium load conditions. As shown in
Fig. 2E, the EC exhibited the smallest change in decoding accuracy
(0.96 ± 2.17%; hippocampus vs EC: t = 5.58, p < 0.001; LTC vs EC:
t = 2.82, p = 0.005), while the hippocampus (3.48 ± 4.15%) showed a
greater change than the LTC (2.26 ± 4.20%; hippocampus vs LTC:
t = 2.02, p = 0.047). These findings suggest that neural activity from
the EC exhibits a greater capacity to adapt to increasing load.

As noted in previous studies, the EC bridges the information
transfer between the hippocampus and cortex18. Therefore, we hypo-
thesize that the EC, sharing information from both the hippocampus
and the LTC, is consequentlymore sensitive to increasingWM load. To
test this hypothesis, we employed two approaches: cross-regional
decoding and residual-based decoding.

Higher cross-regional generalization of EC under medium-to-
high demands
We first conducted a cross-regional decoding analysis to assess infor-
mation sharing between brain regions (schematic in Fig. 3A). Our
hypothesis was that if two regions share load-sensitive information, a
decoding model trained on one region should perform well when
tested on another. For example, to test the EC’s information sharing
with other regions, we trained a classifier using power features from
the EC and tested its performance on hippocampal features. We sys-
tematically assessed cross-regional generalization by applying EC-
trained models to the hippocampus and LTC and, as a control, testing
hippocampus- and LTC-trained models on the other regions. This
analysis was conducted separately for low-to-medium andmedium-to-
high load conditions. Permutation t-tests were used to assess whether
cross-regional generalization significantly differed among the three
brain regions.

The cross-regional decoding accuracies on low-to-medium and
medium-to-high load conditions across hippocampus, EC, and LTC
were significantly above chance level (see Supplementary Table S2 for
details). Under low-to-medium load condition, therewas no significant
difference in cross-regional decoding accuracy among the hippo-
campus (Fig. 3C; 57.14 ± 1.83%), EC (57.25 ± 1.14%), and LTC
(57.51 ± 1.47%; EC vs hippocampus: t =0.47, p =0.637; EC vs LTC:
t = −1.54, p =0.128; LTC vs hippocampus: t = 1.44, p =0.141). However,
under medium-to-high load conditions, the EC exhibited significantly
higher cross-regional decoding accuracy (53.13 ± 2.61%) compared to
the hippocampus (50.45 ± 2.25%; EC vs hippocampus: t = 8.34,
p <0.001) and the LTC (51.97 ± 1.97%; EC vs LTC: t = 3.47, p =0.002). In
addition, the LTC showed significantly greater generalization than the
hippocampus (t = 5.47, p <0.001). These findings demonstrate that
under medium-to-high cognitive demands, the EC exhibits the highest
cross-regional generalization.

Significant decoding accuracy reduction after removing EC
information
Next, we conducted a residual-based decoding analysis. We hypothe-
sized that if the EC shares WM load-related information with other
regions, then removing EC-shared information from the hippocampus
and LTC would impact their decoding accuracy. Specifically, we
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constructed linear regression models using EC features as indepen-
dent variables (x) and the hippocampus and LTC features as depen-
dent variables (y), separately for each load. The residuals from these
models, representing hippocampus and LTC activity with EC con-
tributions removed, were then used as features to train and test the
SVM classifier (Fig. 4A).We expected a reduction in decoding accuracy
for the hippocampus and LTC when shared information from the EC
was excluded. The permutation t tests were employed to compare

decoding accuracies between the original and residual-based features.
As shown in Fig. 4B, the residual-based decoding accuracies were
significantly higher than chance level for the hippocampus
(50.34 ± 1.33%) and the LTC (50.31 ± 1.41%; see Supplementary Table S2
for details). Moreover, the residual-based decoding accuracies were
significantly lower than those obtainedusing theoriginal features from
the hippocampus (t = 11.10, p < 0.001) and LTC (t = 14.01, p < 0.001),
confirming our hypothesis.
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Fig. 1 | Overview of the analysis pipeline. A Schematic illustration of the WM task
and intracranial EEG (iEEG) recording sites in the entorhinal cortex (EC), hippo-
campus (Hipp), and lateral temporal cortex (LTC). B Under medium-to-high load
conditions, decoding accuracy based on EC power features was higher than that
derived from the hippocampus or LTC. C Cross-regional decoding, in which
decoders trained on one region’s data were tested on another, revealed that EC-
based decoders demonstrated the highest generalization under medium-to-high

load conditions.DResidualdecoding analysis showed that removing neural activity
shared with the EC significantly reduced decoding accuracy in the hippocampus
and LTC under medium-to-high load conditions. E Functional connectivity analysis
indicated that the phase locking value (PLV) between the EC and other regions
increased with enhanced WM load. The brain (A, C) was visualized by the BrainNet
Viewer toolbox (www.nitrc.org/projects/bnv/)43.

Article https://doi.org/10.1038/s41467-025-60681-w

Nature Communications |         (2025) 16:5798 3

http://www.nitrc.org/projects/bnv/
www.nature.com/naturecommunications


A B

D E

C Neural features

Time-frequency power

Tr
ial

s

       vectorized
time*frequency data

Trials SVM classifier

1. low-to-medium load (N1)

2. medium-to-high load (N2)

Single-regional decoding

load4 vs load6 load6 vs load8

Hipp
EC
LTC

ns ***
***

A
cc

ur
ac

y%

45

50

55

60

40

65 ***

Time

Fr
eq

ue
nc

y

Tr
ial

s

40

XBKZ RWSX

K

IN OUT

Fixation
1 s

Encoding
2 s

Maintenance
3 s

Retrival
(probe)

Hipp
EC
LTC

trial 1

trial 2

trial 3

·
·
·

trial N*

·
·

features vector (M)

Training Set

Test Set
30%N* × M

load4 load6

load6 load8

X 1

X 2

load4

load6

X 1

X 2

load6

load8

70%N* × M

di
ffe

re
nc

e 
in

 a
cc

ur
ac

y 
%

***

Hipp EC LTC

-20

-10

**
*

0

10

20

Fig. 2 | Experimental paradigm, recording sites, schematic, and results of
single-regional decoding analysis. A Each trial began with a 1 s fixation screen,
followed by a 2 s presentation of four, six, or eight letters. After letters disappeared,
there was a 3 s maintenance period with a black square shown. Participants
responded whether a probe letter was part of the original set by pressing “IN” or
“OUT”. B Channel locations of all participants included 91 channels in the hippo-
campus (Hipp; light red), 46 channels in the entorhinal cortex (EC; light blue), and
136 channels in the lateral temporal cortex (LTC; light green). The brain was
visualized by the BrainNet Viewer toolbox (www.nitrc.org/projects/bnv/)43. C We
conducted binary classification (load 4 vs load 6, load 6 vs load 8). Time-frequency
analysis was performed on each trial to obtain power spectra in the hippocampus,
EC, and LTC. For each classification task, 70% of the data was used for training and
30% for testing with a linear SVM classifier. D The decoding accuracy for load 4 vs
load 6 did not show significant differences among the hippocampus, EC, and LTC

across all cross-validations (n = 100, two-sided permutation t test: EC vs hippo-
campus: p =0.768; EC vs LTC: p =0.379; LTC vs hippocampus: p =0.690; see dis-
tributionwith 150 iterations in Supplementary Fig. S1). The EC exhibited the highest
decoding accuracy for load 6 vs load 8 (n = 100 cross-validations; two-sided per-
mutation t test: all ps<0.001). ***p <0.001. E Differences in decoding accuracy
between low-to-medium and medium-to-high load conditions were smallest in the
EC (n = 100 cross-validations; two-sided permutation t test: hippocampus vs EC:
p <0.001; LTC vs EC: p =0.005; hippocampus vs LTC: p =0.047). *p <0.05,
**p <0.01, ***p <0.001. In the box plots shown in (D, E), the center line represents
themedian, and the edges of the box correspond to the lower and upper quartiles,
respectively. The whiskers extend to the minimum and maximum data points at
most 1.5 times the interquartile range. Source data are provided as a Source
Data file.
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Although we observed a significant drop in decoding accuracy
after removing EC-shared information, this effect could potentially be
due to the residualizationmethod itself rather than the contribution of
the EC. To test whether the observed accuracy decreasewas specific to
the EC, we conducted a control analysis. Using the same method, we
regressed LTC activity from the hippocampus (LTC-residualed) and
hippocampus activity from the LTC (Hipp-residualed), then used the
resulting residuals for decoding. The analysis showed that decoding
accuracies remained significantly above chance level for LTC-
residualed (51.36 ± 1.22%) in the hippocampus and the Hipp-
residualed (50.78 ± 1.48%; Supplementary Table S2) in the LTC. We
then compared the reduction in decoding accuracy when EC infor-
mation was removed (Hippres-EC - Hipporig) with the reduction value
when LTC information was removed (Hippres-LTC - Hipporig) in the
hippocampus. Similarly, we compared the change in decoding accu-
racy based on EC-residuals (LTCres-EC - LTCorig) with that based on
Hipp-residuals (LTCres-Hipp - LTCorig) in the LTC. This comparison
allowed us to assess whether removing EC-shared information had a
uniquely strong impact on decoding performance. Results showed

that the Δ accuracy for EC-residualed was significantly lower than that
in LTC-residualed in hippocampus (Fig. 4C; Hippres-EC - Hipporig:
−2.50± 2.25%;Hippres-LTC -Hipporig:− 1.48 ± 1.90%; t = − 5.32,p <0.001).
Similarly, in the LTC, Δ accuracy in EC-residualed was also significantly
lower than that in Hipp-residualed (LTCres-EC - LTCorig: − 3.51 ± 2.51%;
LTCres-Hipp - LTCorig: − 3.04 ± 2.74%; t = − 2.21, p =0.029;). These find-
ings indicate that removing EC-shared information has a significantly
stronger impact on decoding accuracy in both the hippocampus
and LTC.

EC Activity Pattern Linked to Better Memory Performance
Finally, we examined whether EC properties have functional effects
on memory performance. We divided participants into two groups
based on their accuracy in recalling items at load 8, categorizing
them as either low-performing or high-performing (Fig. 5A). For each
group, we conducted single-regional decoding and cross-regional
decoding analyses under medium-to-high load conditions. The
specific procedures were consistent with those described in the
Methods section, with participants grouped according to
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Fig. 3 | Highest cross-regional generalization in the EC. A Schematic of cross-
regional decoding analysis. Using the entorhinal cortex (EC) as an example, we
trained classifiers using power features from EC for each trial and predicted the
load using power from the hippocampus (Hipp) for both low-to-medium and
medium-to-high load conditions. The specific decoding steps were the same as
shown in Fig. 2C. For all brain regions, models were trained using their own power
features and tested on data from the other two brain regions. The generalization of
each brain region was determined by averaging its accuracy when tested on data
from the other two brain regions (hippocampus: light red; EC: light blue; lateral
temporal cortex: LTC, light green). The brain was visualized by the BrainNet Viewer
toolbox (www.nitrc.org/projects/bnv/)43. B Accuracy matrix of cross-regional
decoding on low-to-medium load (left) and medium-to-high load (right). The rows
of thematrix represented the regions used for training, while the columns denoted

the regions employed for testing, with the values representing the average accu-
racy. C The averaged cross-regional decoding accuracy for load 4 vs load 6 did not
differ significantly among hippocampus, EC, and LTC across all cross-validations
(n = 100; two-sided permutation t tests: EC vs hippocampus: p =0.637; EC vs LTC:
p =0.128; LTC vs hippocampus: p =0.141). The EC showed the highest cross-
regional decoding accuracy for load6 vs load 8 across all cross-validations (n = 100;
two-sided permutation t tests: EC vs hippocampus: p < 0.001; EC vs LTC: p =0.002;
LTC vs hippocampus: p <0.001). **p <0.01, ***p <0.001. The center line represents
themedian, and the edges of the box correspond to the lower and upper quartiles,
respectively. The whiskers extend to the minimum and maximum data points at
most 1.5 times the interquartile range. Source data are provided as a Source
Data file.
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performance. Permutation tests were used to compare decoding
accuracy between the two groups.

The single-regional and cross-regional decoding accuracies were
significantly above chance level in both the high- and low-performing
groups for the EC (low-group: single-regional 53.21 ± 3.24%, cross-
regional 52.57 ± 2.17%; high-group: single-regional 56.22 ± 2.87%, cross-
regional 54.39 ± 2.33%), hippocampus (low-group: single-regional
53.89 ± 3.16%, cross-regional 51.53 ± 2.81%; high-group: single-regional
54.12 ± 3.32%, cross-regional 51.95 ± 2.46%), and LTC (low-group:
single-regional 52.18 ± 3.47%, cross-regional 51.64 ± 2.72%; high-group:
single-regional 51.76 ± 4.60%, cross-regional 51.36 ± 2.13%; Supple-
mentary Table S2). The further comparison revealed that single-
regional (Fig. 5B) and cross-regional (Fig. 5C)decoding accuracieswere
significantly higher for the high-performing group compared to the
low-performing group in the EC (single-regional: t = 7.15, p < 0.001;
cross-regional: t = 5.94, p <0.001), whereas decoding accuracies did
not differ significantly between performance groups in the hippo-
campus (single-regional: t =0.49, p = 0.621; cross-regional: t = 1.14,

p =0.264) or LTC (single-regional: t = −0.74, p = 0.457; cross-regional:
t = −0.84, p = 0.406). These findings further underscore the specific
functional role of the EC in WM performance.

Increased EC Connectivity with Load
Building on these findings, we hypothesized that the EC shares more
information with the hippocampus and LTC under medium-to-high
load conditions. To test this, we investigated whether connectivity
between the EC and these regions increases with WM load. We calcu-
lated the PLV for loads 4, 6, and 8 across each channel pair connecting
the regions. PLVs up to 40Hz were computed in the time-frequency
domain to capture dynamic fluctuations in functional connectivity. To
assess the effect of load on PLV, we conducted repeated-measures
ANOVAs with load as a within-subject factor. The results revealed a
significant main effect of load on PLV between the EC and hippo-
campus (Fig. 5D; F(2,24) = 11.95, p <0.001; post-hoc tests: load 4 vs
load 6, p =0.01; load 4 vs load 8, p =0.002; load 6 vs load 8, p >0.05),
as well as between the EC and LTC (Fig. 5E; F(2,24) = 8.21, p = 0.002;

Time-frequency power Regression analysis

Residual-based decoding

A

B LTC

Fr
eq

ue
nc

y

Tr
ial

s

40

Time

Tr
ial

s

       vectorized
time*frequency data

Hipp LTC

A
cc

ur
ac

y%

45

50

55

60

40

*** ***

EC-residualoriginal EC-residualoriginal
-15

-10

-5

0

5

*

EC-residual Hipp-residual

Δ
  A

cc
ur

ac
y%

Ve
ct

or
-H

ip
p/

LT
C

output
y

x 

 residual

vector-EC

Residual features

residual vector (Hipp/LTC)

trial 1

trial 2

trial 3

·

·

·

trial N*

C Hipp

Δ
  A

cc
ur

ac
y%

-15

-10

-5

0

5

***

EC-residual LTC-residual

10 1065

Fig. 4 | Residual-based decoding analysis. A Schematic of residual-based
decoding analysis. We first transformed the time-frequency power features of each
trial across three brain regions into vectors. Then, we used the feature vector of the
hippocampus (Hipp) and lateral temporal cortex (LTC) as dependent variables (y)
separately, with the features of the entorhinal cortex (EC) as independent variables
(x), to construct linear regression models for each trial. The resulting residuals of
the hippocampus and LTC were retained as features for training and testing the
classifier. The specific decoding stepswere the same as shown in Fig. 2C.BOriginal
features (dark colors) represented decoding accuracy using the original power
features from the hippocampus (red) and LTC (green). EC-residual (light colors)
indicated decoding accuracy using residuals after removing EC-shared information
from the hippocampus (red) and LTC (green). The EC-residual decoding accuracies
were significantly lower than those obtained using the original features from the
hippocampus and LTC (n = 100 cross-validations; two-sided permutation t tests: all

ps<0.001). ***p <0.001. C Left panel: the change in decoding accuracy after
removing shared information from EC (EC-residual =Hippres-EC - Hipporig; light red)
and LTC (LTC-residual =Hippres-LTC - Hipporig; dark red) in the hippocampus. The
decrease in decoding accuracy was significantly greater for EC-residual than for
LTC-residual (n = 100 cross-validations; two-sided permutation t tests: p <0.001).
Right panel: the change in decoding accuracy after removing shared information
from EC (EC-residual = LTCres-EC - LTCorig; light green) and hippocampus (Hipp-
residual = LTCres-Hipp - LTCorig; dark green) in the LTC. The decrease in decoding
accuracy was significantly greater for EC-residual than for Hipp-residual (n = 100
cross-validations; two-sided permutation t tests: p =0.029). *p <0.05, ***p <0.001.
In the box plots shown in (B, C), the center line represents the median, and the
edges of the box correspond to the lower and upper quartiles, respectively. The
whiskers extend to the minimum and maximum data points at most 1.5 times the
interquartile range. Source data are provided as a Source Data file.
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post-hoc tests: load 4 vs load 6, p =0.10; load 4 vs load 8, p =0.005;
load 6 vs load 8, p = 0.79). These results indicate a load-dependent
increase in connectivity between the EC and the other two regions.

To assess whether the load-dependent connectivity increase is
specific to the EC, we first examined the effect of WM load on
hippocampus-LTC connectivity and observed a significant main effect
(F(2,24) = 7.26, p =0.02; post-hoc tests: load4 vs load 6, p =0.12; load4
vs load 8, p =0.01; load 6 vs load 8, p >0.05). Next, we removed the
EC’s influence by using EC-residualized PLV as the dependent variable;
under this analysis, hippocampus-LTC connectivity was no longer
significantly associated with WM load (Fig. 5F; all ps> 0.05). These
results indicate that the load-dependent increase in connectivity is
specific to the EC.

Control Analyses
Effect of iteration count and cross-validation on decoding
accuracy
To evaluate the stability of the statistical results, we also performed all
statistical tests with 50 and 150 iterations/cross-validations. Our

findings were replicated with these parameters, confirming the stabi-
lity of the results. The detailed results were provided in Supplementary
Tables S3.

Decoding results based on balanced trial count
To rule out the potential impact of trial count on classification per-
formance, we randomly selected 747 trials from load 4 and load 6 to
match the number of trials in load 8. This resampling procedure was
repeated 10 times, and all decoding analyses were re-executed with
balanced trial counts. For each resampling, statistical comparisons
between brain regions were conducted separately. Our results
revealed no significant differences in decoding accuracy (Supple-
mentary Fig. S2A) or cross-region generalization (Supplementary
Fig. S2C) among brain regions under low-to-medium load conditions.
Under medium-to-high load conditions, the EC demonstrated the
highest decoding accuracy (Supplementary Fig. S2B) and cross-region
generalization (Supplementary Fig. S2D). Moreover, removing EC-
shared information significantly reduced the decoding accuracy of the
hippocampus and LTC (Supplementary Fig. S2E). In summary, these
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Fig. 5 | Decoding performance of high and low behavioral groups and phase
synchronization.AParticipantsweredivided into high-performing (7participants)
and low-performing (6 participants) groups based on median recall accuracy for
load 8. B Single-regional decoding accuracy was significantly higher in the high-
performing group (dark color) than in the low-performing group (light color) for
the entorhinal cortex (EC, blue; two-sided permutation t tests: p <0.001), but not
for the hippocampus (Hipp, red; two-sided permutation t tests: p =0.621) or lateral
temporal cortex (LTC, green; two-sided permutation t tests: p =0.457) across all
cross-validations (n = 100). ***p <0.001. ( C) Cross-regional decoding accuracy was
significantly higher in the high-performing group than in the low-performing group
for the EC (two-sided permutation t-tests: p <0.001), but not for the hippocampus
(two-sided permutation t tests: p =0.264) or LTC (two-sided permutation t-tests:
p =0.406) across all cross-validations (n = 100). ***p <0.001.D Phase locking value

(PLV) between EC and hippocampus increased significantly from load 4 (purple) to
load 6 (yellow) and from load 4 to load 8 (orange) (n = 13 participants; repeated-
measures ANOVA: load 4 vs load 6, p =0.01; load 4 vs load 8, p =0.002; load 6 vs
load 8, p >0.05). **p <0.01, *p <0.05. E PLV between EC and LTC increased sig-
nificantly from load 4 to load 8 (n = 13 participants; repeated-measures ANOVA:
load 4 vs load 6, p =0.10; load 4 vs load 8, p =0.005; load 6 vs load 8, p =0.79).
**p <0.01. F The average EC-residualed PLV did not differ significantly across load
conditions (n = 13 participants; repeated-measures ANOVA: all ps>0.05). In the box
plots shown in (B–F), the center line represents the median, and the edges of the
boxcorrespond to the lower andupperquartiles, respectively. Thewhiskers extend
to theminimumandmaximumdata points atmost 1.5 times the interquartile range.
Source data are provided as a Source Data file.
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results are consistentwith theoriginalfindings, demonstrating that the
EC exhibits enhanced decoding performance and shares load-related
information with other regions under medium-to-high load
conditions.

Power and connectivity in SOZ channels
To assess the potential effects of the SOZ on our findings, we com-
pared power and PLV between channels within and outside the SOZ,
since our decoding analyses rely on power. The analysis revealed no
significant differences in power between the SOZ and non-SOZ chan-
nels in the EC (linear mixed-effects model: p =0.24), hippocampus
(p = 0.36), and LTC (p = 0.86). Similarly, we examined the PLV between
SOZ (defined as at least one SOZ channel) and non-SOZ channel pairs
and found no significant differences in PLV between these channel
pairs (EC-hippocampus: p =0.31; EC-LTC: p = 0.37; hippocampus-
LTC: p =0.09).

Hemispheric effects on decoding, power, and connectivity
To examine the impact of hemisphere on our findings, we performed
additional analyses on the participants with bilateral electrode
implantation in the hippocampus, EC, and LTC (n = 10). We conducted
single-regional decoding analysis using the power features from the
left and right hemispheres separately. The results revealed no sig-
nificant differences in decoding accuracy on low-to-medium load
among the three brain regions in either the left hemisphere (hippo-
campus: 59.06%, EC: 59.22%, LTC: 59.29%; all ps > 0.05) or the right
hemisphere (hippocampus: 59.32%, EC: 59.39%, LTC: 59.40%; all ps >
0.05). Under medium-to-high load condition, decoding accuracy
using EC power features was significantly higher in both the left
hemisphere (hippocampus: 51.92%, EC: 54.93%, LTC: 52.46%; all ps <
0.001) and the right hemisphere (hippocampus: 50.72%, EC: 53.09%,
LTC: 51.47%; all ps <0.001). We thus did not find the hemispheric
lateralization in the adaptation to WM load in these brain regions.

As a further test, we compared the power between the left and
right hemispheres for each brain region, since our decoding analyses
are based on power. The analysis revealed no significant hemispheric
differences in power across the hippocampus (p = 0.33), EC (p =0.06),
or LTC (p =0.35). Finally, we examined inter-regional connectivity
between the left and right hemispheres and found no significant dif-
ferences in the connectivity of EC-hippocampus (p = 0.94), EC-LTC
(p = 0.21), or hippocampus-LTC (p =0.29). In summary, the current
study did not find the influence of hemisphere.

Discussion
Together, the present findings highlight the EC’s critical role in
adapting to WM load. Specifically, the EC is more sensitive to load
changes compared to the hippocampus and LTC. Cross-regional and
residual-based decoding analyses indicated that the EC shares more
WM-relevant information compared with the other two regions under
medium-to-high load conditions. Consistent with this, the connectivity
between the EC and these regions increased as cognitive demands
increased. Finally, decoding performance and cross-regional general-
ization of the EC were strongly associated with WM performance
under medium-to-high load conditions.

A key issue to address is why the EC contributes more to WM
maintenance than the hippocampus or LTC under medium-to-high
load conditions. One possible explanation is that the EC serves as a
gateway to the hippocampus, receiving information from the neo-
cortex anddirecting input to the hippocampus19,20. Thus, the EC acts as
the initial processing station where information is processed before
entering the hippocampus. Consistent with this, our cross-regional
and residual-based decoding analyses suggested that the EC plays a
central role in integrating and sharing information with the hippo-
campus and LTC, thereby enabling more efficient adaptation to
increased cognitive demands. In addition, Recent rodent findings

indicated that beyond acting as an information gateway, the EC also
modulates both the neocortex and hippocampus. For example, elec-
trical stimulation targeting the EC strongly suppresses neocortical
pyramidal neuron activity21, while optogenetic perturbation of EC
gamma oscillations impairs hippocampal gamma oscillations and
learning processes22. In addition, EC neurons have been shown to
modulate neocortex-hippocampus interactions in vivo23. Therefore,
whileourfindings highlight the EC’s integrative role in adapting to high
cognitive demands, further research is needed to understand its
broader modulatory functions.

Previous studies have examined the relationship between brain
activation, connectivity, and varying WM loads using single-unit
recordings, intracranial and scalp EEG, and fMRI. Specifically, single-
unit recordings have shown that hippocampal firing during WM
maintenance increases from low-to-medium load but does not con-
tinue to rise frommedium-to-high load12. fMRI studies have observed a
progressive increase in executive control network activation6 and an
inverted-U-shaped activation pattern24 across multiple brain regions
with higher WM load. In addition, electrophysiological studies have
reported enhanced fronto-parietal connectivity5 and stronger theta/
alpha band hippocampus-EC connectivity14 as WM load increases. Our
study introduces an alternative approach by integrating between-
region comparisons and inter-regional connectivity within a unified
framework. The results suggest that the brain reallocates neural
resources to meet varying cognitive demands. The EC, acting as a
primary gateway between the hippocampus and neocortex and exhi-
biting load-dependent increases in connectivity, contributes more
than the other two regions under higher cognitive demands.

The current results show that decoding accuracy on WM load,
derived from power features in the hippocampus, EC, or LTC, was
significantly above chance, indicating that these regions contribute to
WM processing. These findings are consistent with previous reports
linking WM processing to elevated activity in the hippocampus12,25,
EC26, and LTC27. A resulting question is: how do these regions coordi-
nate to support WM, and what distinct roles do they play? Despite the
lack of direct evidence, we attempt to draw insights from long-term
memory (LTM) research. Previous studies have primarily focused on
LTM, suggesting that memory relies on circuits in the EC that connect
the hippocampus with the neocortex28. One theory proposes that the
EC processes “general” information before passing it to the hippo-
campus, which refines it through pattern separation and pattern
completion processes29. Moreover, the EC recodes hippocampal out-
puts into a form suitable for LTM storage in the neocortex30. Then,
during recall, a reduced memory representation stored in the hippo-
campus reinstates the uncompressed neocortical representations via
EC connections31. We hypothesize that inWM, these three regionsmay
operate via similar mechanisms. Specifically, the EC may process
object-related information from the neocortex and transfer it to the
hippocampus for further refinement, while hippocampal outputs are
relayed back to the neocortex for further processing.

The left hemisphere of the brain is generally considered to play a
dominant role in verbalmemory processing32. As onewould expect for
this language-related task, a previous analysis of scalp EEG data for the
same task found a clear lateralization to the left cortical hemisphere16.
However, there was no left-hemispheric predominance in the MTL12,16.
Since we record from patients with MTL epilepsy, we cannot rule out
plastic reorganization resulting inbilateralMTLprocessing of this task.

It should be noted that our data were recorded in patients with
epilepsy, which could affect our results. To mitigate this confounding
factor, we carefully screened all trials and excluded those with signs of
epileptiform activity before analysis. Still, the lack of left-hemispheric
dominance might result from plastic reorganization of the MTL.
However, several of our other observations seem to be independent of
epilepsy. First, the low-frequency power dynamics in these regions
reflect cognitive processes: they increase during encoding, remain
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stable during maintenance, and decline during retrieval, consistent
with previous reports12,16,33 and are unlikely to result from epileptiform
patterns34. Second, both power and PLV are modulated by WM load:
power from all three regions successfully decoded WM load, and
connectivity exhibited a load-dependent increase, effects that speak
for association with cognitive brain function. Third, comparisons of
power and PLV between electrodes within and outside the SOZ
revealed no significant differences, indicating that this brain tissuewas
associated with brain function even though the tissue was subse-
quently resected. Together, these functional associations suggest that
our findings might be generalizable to the general population.

In summary, the brain is not static but dynamically adapts to
cognitive load and behavioral demands, with the EC playing a crucial
role in this process. Future research incorporating widespread
recordings across the brain35 and finer subregional resolution29,36

would contribute to a more precise understanding of how neural
resource allocation facilitates adaptive responses to varying cognitive
demands.

Methods
Participants
Thirteen epilepsy patients (six females; mean age ± SD: 36 ± 13 years)
participated in this study.We listed the patients’pathology and seizure
onset zone (SOZ) in Supplementary Table S1. All patients had their
normal anti-seizure medication at the time of testing. Testing was
performed at least 3 h before or after a seizure. Trials with signs of
epileptiform activity were excluded from further analysis. Recordings
were performed at the Swiss Epilepsy Center, Klinik Lengg, Switzer-
land. The study was approved by the local ethics committee (Kanto-
nale Ethikkommission Zürich, PB 2016-02055), and all patients gave
written informed consent. The data are freely available37.

Task design and behavioral metrics
We adopted amodified Sternberg task (Fig. 2A). Each trial started with
a 1-second fixation screen, followed by a 2-second stimulus presenta-
tion at the center of the display, comprising a set of four, six, or eight
letters. Participants were indicated tomemorize these letters, with the
set size defining the memory load (load 4/6/8). We define loads 4, 6,
and 8 as low, medium, and high loads, respectively. After a delay
(maintenance) period of 3 s, a probe letter prompted the subjects to
retrieve their memory (retrieval) and to indicate by button press (“IN”
or “OUT”) whether or not the probe letter was a member of the letter
set held in memory. Each session comprised 50 trials, approximately
totaling 10min. Each participant conducted multiple sessions across
several recording days, with an average of 4.8 ± 1.9 sessions (ranging
from 2 to 8).

TheWMcapacity of eachparticipantwasevaluatedusingPashler’s
K, defined as KP = (hit rate - false alarm rate) ×N / (1 - false alarm rate),
whereN is the number of letters presented. Thismeasure is considered
a reliable estimator of capacity in whole-display tasks38. Themaximum
memory capacity Kmax was defined as the highest K value observed
across load conditions.

Electrode contact localization and selection
Electrodes had 8 contacts of 1.6mm length, with a center-to-center
distance between adjacent contacts of 5mm and a diameter of 1.3mm
(Ad-Tech, Racine, WI, www.adtechmedical.com). Channel localization
was performed through post-implantation computed tomography
(CT) scans and structural T1-weighted MRI scans. The CT scans were
co-registered with post-implantation MRI for each patient with Field-
Trip software39, following which channels were visually identified on
the merged CT-MRI images. These channel locations were subse-
quently projected onto the standard Montreal Neurological Institute
(MNI) 152 space and assigned to specific brain regions based on the
Brainnetome Atlas40.

Electrode target regions and hemispheres varied across partici-
pants for clinical reasons. Eachparticipant had 3-4 electrodes targeting
the hippocampus and 1-2 electrodes targeting the EC. Specifically, all
thirteen participants had electrodes implanted in the hippocampus of
both the left and right hemispheres. Ten participants had electrodes in
the EC of both hemispheres, while two participants had one electrode
implanted in the left EC, and one participant had one electrode in the
right EC (Supplementary Fig. S3). Across all our participants, LTC
contacts were selected from the same electrode as the hippocampus
and EC contacts. As a result, all thirteenparticipants had LTC recording
sites in both the left and right hemispheres. From each electrode, we
selected only one or two most medial contacts targeting the hippo-
campus, two most medial contacts targeting the EC, and two of three
most distal contacts located centrally in the gray matter targeting the
LTC41,42. The final dataset included a total of 91 channels situated in the
hippocampus, 46 channels in the EC, and 136 channels in the LTC
across all patients, averaging approximately 7.0 ± 1.2 channels per
patient in the hippocampus (ranging from 6 to 8), 3.5 ± 0.8 channels
per participant in the EC (with a rangeof 2 to 4), and 10.5 ± 2.0 channels
per participant in the LTC (with a range of 6 to 12).WeutilizedBrainNet
Viewer43 inMATLAB (MathWorks) to visualize all the recording sites, as
depicted in Fig. 2B.

Data acquisition and preprocessing
Intracranial data were recorded using a Neuralynx ATLAS system with
4 kHz sampling rate, analog-filtered above 0.5Hz, and downsampled
offline to 1 kHz. Neural signals were filtered with 1 Hz high-pass and
200Hz low-pass finite impulse response filters with a Hamming win-
dow, and line noise harmonics were removed via discrete Fourier
transform. Each electrode contact was then re-referenced to the
average signal across all contacts. The data were segmented into 4
epochs per trial: 1 s baseline during the fixation period; 2 s encoding
period during the presentation of the stimulus; 3 s maintenance per-
iod; and 2 s retrieval period after probe onset. We focused on the
maintenance period. We systematically inspected the raw data to
identify and exclude trials with residual artifacts, including signal drift
or large singular artifacts typically caused by cable movement. As a
result, 65 trials were excluded for load 4 (5.5%), 36 trials for load 6
(3.9%), and 39 trials for load8 (5.1%) across all participants. Subsequent
analyses were performed on the correct trials (1054 trials for load 4,
777 trials for load 6, and 747 trials for load 8). Preprocessing routines
were performed using FieldTrip39 and customized scripts in MATLAB.

Time-frequency analysis
Time-frequency power was computed separately for each channel in
the hippocampus, EC, and LTC for each participant and correct trial.
The signal was convolved with complex-valued Morlet wavelets (six
cycles) to extract power information at each frequency from 1 to
100Hz (in steps of 1 Hz) with a time resolution of 1ms. The task-
induced power was analyzed per trial using a statistical bootstrapping
procedure, following previous studies33. Specifically, we created a null
distribution by randomly selecting and averaging several data points
from the baseline power (500ms pretrial) 1000 times. The raw power
at each time point during the taskwas then z-scored by comparing it to
the null distribution to generate the z-scored power.

Decoding analysis
We used multivariate decoding analysis to explore how the neural
activity features of the hippocampus, EC, and LTC adapt to changes
in cognitive demands during maintenance. The support vector
machine (SVM) is widely utilized in decoding analysis in neuroima-
ging studies44, particularly due to its suitability for datasets with
relatively small sample sizes. Hence, our analysis was based on a
linear SVM as the classifier via the LIBSVM package in MATLAB45. To
examine the roles of various brain regions in adapting to varying
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loads under fine-grained scales, we conducted binary classification
using z-scored time-frequency power features, with “load 4 vs load 6”
indicating the transition from low-to-medium cognitive demand and
“load 6 vs load 8” indicating the transition from medium-to-high
demand. To increase the impact of the analysis on a larger
population44, for each load, the power at the trial level for all parti-
cipants was merged as the data (load 4: 1054 samples, load 6:
777 samples, load 8: 747 samples) used in the classification. The
details of all decoding analyses were as follows:
(A) Single-regional decoding: First, we decoded WM load using

power features from the hippocampus, EC, and LTC separately.
Taking the decoding of “load 4 vs load 6” as an example, the
power features for each trial included 40 × 3000= 120000
values (where 40 denotes the frequency range from 1 to 40Hz
and 3000 denotes the time range during maintenance), which
were then converted into a feature vector. Then, we split 70% of
the data from each load and merged them across both loads as
the training dataset. The remaining data were pooled across
both loads as the testing data set. Meanwhile, to reduce the
feature dimensionality, principal component analysis (PCA) was
applied to the training dataset to keep several principal
components (K components; 5.1 ± 6.8 components, ranging
from 1 to 25) that explained at least 99% of the variance in the
data. We also transformed the testing data set with the PCA
matrix thatwas already fitted to the training data set. In total, we
had the training data set with 70% × (load4 + load 6) samples × K
features and the testing data set with 30%× (load 4 + load 6)
samples × K features. We trained the SVM classifier with a linear
kernel with a cost equal to one. This procedure was replicated
100 times for the cross-validation, as was done in previous
studies46,47. The accuracy of the classifier as a performance
measures was averaged across 100 cross-validations. We
performed the single-regional decoding using power features
fromeachbrain region as described above. The schematic of the
single-regional decoding analysis steps is shown in Fig. 2C. In
addition, we also decoded “load 6 vs load 8” using power
features from the hippocampus, EC, and LTC. Aside from the
differences in sample size ((load 6 + load 8) samples), all other
steps were the same as described above.

(B) Cross-regional decoding analysis. To evaluatewhether onebrain
region shares information with another, we conducted cross-
regional decoding analysis. Taking the EC as an example, we first
applied PCA to the EC power data and retained principal
components that explained at least 99% of the variance. The
transformed EC data served as the training set to decode load 4
vs load 6. Next, we applied the same PCA transformationmatrix,
previously fitted to the EC training data, to the hippocampus
and LTC power data. The transformed hippocampus and LTC
data were then separately used as test sets to evaluate the
model. If the EC indeed shares information from the hippo-
campus or LTC, we should observe substantial decoding
accuracy when using the EC-trained model to decode data from
the other two regions. The schematic of the cross-regional
decoding analysis steps is shown in Fig. 3A. For each brain
region, we averaged the decoding accuracy achieved when
testing theother two regions, resulting in thefinal cross-regional
decoding accuracy. And we refer to each region’s capacity to
train on its own power features and subsequently test on the
remaining two regions as generalization. We used the same
method to decode load 6 vs load 8 across brain regions. In total,
we conducted cross-regional decoding analysis, encompassing
both load 4 vs load 6 and load 6 vs load 8 conditions, across the
EC, hippocampus, and LTC.

(C) Residuals-based decoding analysis. We carried out residuals-
based decoding analysis to further investigate the role of EC-

shared information in the hippocampus and LTC under
medium-to-high load conditions. For each trial, we first
converted the original power features across three regions to
feature vectors, and used the feature vectors of hippocampus
and LTC as dependent variables (y) separately, with features
vectors of EC as independent variables (x), to build linear
regression models, retaining the resulting residuals (120000
values) of the hippocampus and LTC as features (Fig. 4A). Then,
we used the residuals after regressing out the EC from the
hippocampus (HippEC-residual) and LTC (LTCEC-residual) as features
to decode load 6 vs load 8. The specificmethodwas the same as
the single-regional decoding analysis, except the original power
features were replaced by the residuals after removing the EC.
As a control, we applied the same method to regress LTC out of
hippocampus (hippocampus as dependent variables, LTC as
independent variables), and conversely, hippocampus out of
LTC (LTC as dependent variables, hippocampus as independent
variables), using the resulting residuals in each case for
decoding.

Interregional phase synchrony
To examine whether potential interactions between brain regions
increasewith higher cognitive demand,wecalculated the PLV. The PLV
quantifies the consistency of phase relationships between electrode
pairs. For each electrode pair (a, b), we calculated the average phaseφ
difference across trials for a given time point t and frequency f (as
defined by equation (1)). The signal was convolved with complex
Morlet wavelets (six cycles) across frequency from 1 to 40Hz (in 1 Hz
steps) with a time resolution of 1ms. This analysis was performed for
each channel pair within the same hemisphere (e.g., left EC-hippo-
campus, EC-LTC) during maintenance for trials of each WM load. PLV
values range from 0 to 1, with values approaching 1 indicatingminimal
phase differences over time.

PLVa,b t, fð Þ= 1
Ntrials

Xn=Ntrials

n = 1

exp i φn,a t, fð Þ � φn,b t, fð Þ� �� �
�����

����� ð1Þ

Statistical analysis
For each decoding analysis, we used a non-parametric permutation
test to assess significance. Specifically, we randomly shuffled the
relationship between labels and data 100 times to generate a null
distribution of decoding accuracies. The true decoding accuracy was
then compared to this null distribution, with values exceeding the 95th
percentile (p <0.05) considered significant. To compare the decoding
accuracy differences between pairs of conditions, including hippo-
campus vs EC vs LTC, residual vs original features, and low vs high
groups, we performed permutation t tests.

To evaluate the statistical significance of PLVs between two loads
(load 4 vs load 6, load 6 vs load 8, load 4 vs load 8), we performed
repeated-measures analyses of variance (ANOVAs)withWM loadas the
independent variable and PLV as the dependent variable.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study37 have been deposited in the
public database under accession link https://doi.org/10.12751/g-node.
d76994/. Source data are provided in this paper.

Code availability
The code supporting this study is available at https://doi.org/10.5281/
zenodo.1535576148.
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