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Genetic risk predicts adolescent mood
pathology via sexual differentiation of brain
function and physiological aging

Raluca Petrican 1 , Alex Fornito 2, Christopher Murgatroyd 3,
Emma Boyland1 & Charlotte A. Hardman1

Recent evidence challenged the traditional, categorical approach to sex dif-
ferences, indicating that each human brain comprises a mosaic of features,
some of which are more common among males, others, among females,
whereas the remaining are equally common between sexes. Thus, a focus on
regional sexual differentiation of brain function, instead of holistic sex-based
categorization, could be more useful for understanding psychiatric condi-
tions, such asmood andbehavioural disorders, towhichmales and females are
differentially vulnerable. To probe this untested hypothesis, we estimate
sexual differentiation within each brain in a longitudinal (N = 199) and cross-
sectional (N = 277) sample of male and female adolescents. Greater feminiza-
tion of association networks, involved in higher-order cognition, compared to
sensory networks, at ages 9-10 correlates with earlier puberty and greater
immune/metabolic dysregulation at ages 11-12, particularly among girls.
Greater masculinization of association networks relates to later puberty and
reduced immune/metabolic dysregulation, especially among boys. The brain
and physiological profiles sequentially mediate the relationship between
genetic risk and risingmood/behavioural symptoms. These links are replicated
in the cross-sectional sample and shown to hold across sexes. Our study
emphasizes the importance of integrating assessments of regional sexual
differentiation and physiology in personalizing psychiatric intervention in
adolescence.

The high degree of neuroplasticity associated with adolescence ren-
ders it a key life stage for the onset of psychiatric disorders and the
emergence of sex differences in mental health trajectories1,2. Interac-
tions between social environmental factors and interconnected neu-
rophysiological processes spanning resolutions that range from the
molecular (e.g., gene expression3,4) to the systemic (e.g., the matura-
tion of large-scale brain networks5; inflammation6,7) are thought to
underpin the rising differential susceptibility of males and females to
mood disorders during this life stage8,9. The emergence of sex-

dependent risk for psychopathology broadly coincides with the onset
of puberty9. Accordingly, pubertal hormones have been implicated not
only in the development of typical sex differences in behavior and
neurophysiology10–15, but also in the emergence of those relevant to
internalizing disorders12,16–18. Specifically, with advancing sexual
maturation, female adolescents show increasingly stronger neu-
roimmune responses to stress relative to male youths. These findings
dovetail with evidence that inflammation andmetabolic dysregulation,
likely indicative of greater physiological wear-and-tear19,20, make a

Received: 12 November 2024

Accepted: 2 June 2025

Check for updates

1Institute of PopulationHealth, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool L69 7ZA, UK. 2The Turner Institute for Brain
and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia. 3Department of Life
Sciences, Manchester Metropolitan University, Manchester, UK. e-mail: raluca.petrican@liverpool.ac.uk

Nature Communications |         (2025) 16:5593 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1363-5553
http://orcid.org/0000-0002-1363-5553
http://orcid.org/0000-0002-1363-5553
http://orcid.org/0000-0002-1363-5553
http://orcid.org/0000-0002-1363-5553
http://orcid.org/0000-0003-0866-3477
http://orcid.org/0000-0003-0866-3477
http://orcid.org/0000-0003-0866-3477
http://orcid.org/0000-0003-0866-3477
http://orcid.org/0000-0003-0866-3477
http://orcid.org/0000-0002-6885-7794
http://orcid.org/0000-0002-6885-7794
http://orcid.org/0000-0002-6885-7794
http://orcid.org/0000-0002-6885-7794
http://orcid.org/0000-0002-6885-7794
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60686-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60686-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60686-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60686-5&domain=pdf
mailto:raluca.petrican@liverpool.ac.uk
www.nature.com/naturecommunications


particularly strong contribution to the pathology of depression and
anxiety disorders among female adolescents and young adults21,22.

Extant research on sex differences in risk for mood disorders and
their link to immune and metabolic dysregulation has traditionally
focused on differences between biological males and females. How-
ever, recent evidence suggests that categorizing individuals based on
their biological sex ignores considerablewithin-group variability, since
the human brainmay be better described along a continuum of sexual
differentiation (for an example, see ref. 23). Thus, continuous assess-
ments of the degree to which an individual’s brain is sexually differ-
entiated (i.e., the degree to which it shows brain features expressed
more strongly among healthy male, rather than female, adults, or vice
versa) may offer a more sensitive approach to personalizing psychia-
tric detection and intervention paradigms.

To examine this possibility, we leveraged two multimodal public
datasets, the Adolescent Brain and Cognitive Development (ABCD)
and the Human Connectome Project-Development (HCP-D) studies.
Our investigation was guided by evidence that adolescent neurode-
velopment and mental health are influenced by the interaction
between the immune system and the hypothalamic-pituitary-gonadal
(HPG) axis21,24–30. We therefore examined how sexual differentiation of
brain function may act in conjunction with reproductive maturation
and physiological aging (i.e., immune/metabolic dysregulation) pro-
cesses to impact vulnerability to disorders showing sex-biased
prevalence10,11,31 (i.e., internalizing vs externalizing psychopathology).
To this end, we first took advantage of cross-sectional and longitudinal
data in the ABCD study to test whether neural sexual differentiation,
reproductive maturation, and physiological wear-and-tear are

primarily markers of concurrent or future change in psychiatric
symptoms, and probe the extent to which any such relationships vary
by sex. Subsequently, we examined whether the link between genetic
risk and psychopathology could be sequentially explained via neural
sexual differentiation and reproductive maturation/physiological
wear-and-tear (i.e., immune/metabolic dysregulation). Put differently,
we tested whether genetic risk for psychiatric disorders with sex-
biased prevalence is linked to the emergence of brain features differ-
entially expressed among male vs female individuals, which, in turn,
predict sex-specific physiological maturation processes. This line of
inquiry complemented prior investigations on the role of reproductive
maturation in driving neural sexual differentiation, immune responses
to stress and sex-dependent risk for mood disorders9,12,16–18. Finally, we
leveraged the larger cross-sectional HCP-D sample available for our
present analyses to examine whether any of the effects detected in the
ABCD sample are apparent in an independent sample. Figure 1 depicts
the conceptual framework of the present study.

Our analytical strategy, shown in Fig. 2, was as follows. First, in the
ABCD sample, we investigated whether pubertal development (i.e.,
adrenarche and gonadarche, measured separately via self-reports and
hormonal assays) and immune/metabolic dysregulation (estimated
with the PhenoAge algorithm20) at ages 11-12 would show sex-
dependent relationships with contemporaneous variations in psy-
chiatric disorder symptoms (measured throughparental ratings on the
Child Behavior Checklist [CBCL]32) and/or changes in psychiatric
symptoms from ages 11-12 to 12-13 (Fig. 2: Analysis 1). Second, we used
functional magnetic resonance imaging (fMRI) to characterize
regionally specific patterns of sexual differentiation in brain function

A| Polygenic Risk B| Sexual Differentiation of Brain Function D| Psychopathology

Depression

Anxiety

ADHD

Somatic and Cognitive
Disorders

(ADHD, SCT)
i| Physiological wear-and-tear ii| Reproductive maturation

1. PhenoAge
(blood chemistry-based)

2. Behavioral correlates
• BMI
• Financial deprivation

1. Pubertal hormones

2. Self-reported pubertal
development (adrenarche,
gonadarche)

Accelerated maturation/aging

Decelerated
maturation/aging

C| Systemic Aging

iI Physiological Wear-and-Tear

ii| Reproductive Maturation

Fig. 1 | Schematic representation of our conceptual framework. In the ABCD
sample, we set out to test the causal sequence underpinning the relationship
between polygenic risk (panel A) and differential vulnerability to internalizing vs
externalizing spectrum disorders (panel D) via neurobiological maturation pro-
cesses: sexual differentiation of brain function (panelB), and systemic aging (panel
C), specifically, physiological wear-and-tear (i.e., immune and metabolic dysregu-
lation, assessed via the PhenoAge algorithm, panel C-i) and reproductive matura-
tion (specifically, pubertal hormone levels and self-reported adrenarche vs
gonadarche, panel C-ii). The PhenoAge algorithm (panel C–i) uses an exponential
function to predict mortality from a set of biomarkers in a reference group. An
individual’s PhenoAge biological age prediction corresponds to the chronological

age at which their mortality risk would be normal in the reference group. A Phe-
noAge estimate higher/lower than an individual’s chronological age indicates
advanced/delayed physiological aging, respectively. The longitudinal analyses
from the ABCD sample (as indicated through the dark blue arrows) were supple-
mented by an examination of the cross-sectional relationships among the same
variables (apart from genetic risk, PhenoAge, and pubertal hormones) in theHCP-D
sample (as indicated through the light blue arrows). ADHD attention deficit
hyperactivity disorder, BMI bodymass index, CD conduct disorder,OCDobsessive-
compulsive disorder, ODD Oppositional Defiant Disorder, PTSD post-traumatic
stress disorder, SCT slow cognitive tempo.
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at ages 9-10 and 11-12 for each individual adolescent in the ABCD
sample. Subsequently, in the ABCD sample, we tested the relevance of
neural sexual differentiation for concurrent and future pubertal
development/physiological aging and associated patterns of psychia-
tric susceptibility (as identified at point 1) (Fig. 2: Analysis 2). To con-
textualize our findings within the broader literature, we also probed
the extent to which the regionally specific patterns of neural sexual
differentiation thus identified tracked the sensorimotor-association (S-
A) axis defined by prior work as a key organizing principle of neuro-
development (i.e., association areas mature later than sensorimotor
areas)33,34 and of corresponding sex differences in functional brain
network organization (i.e., association network regions are most
effective at classifying youths based on sex)35. Third, in the ABCD
sample, we probed whether neural sexual differentiation in late
childhood (ages 9-10) and reproductive maturation/physiological
wear-and-tear in early adolescence (ages 11-12) sequentially mediate
the impact of genetic risk markers on liability to psychiatric disorders
(Fig. 2: Analysis 3). Fourth, in a subset of participants from the HCP-D
covering late childhood to late adolescence (ages 9–17), we sought to

replicate the links between psychiatric risk, sexual differentiation of
brain function, and physiology (i.e., self-reported pubertal develop-
ment [adrenarche, gonadarche] and behavioral correlates of Pheno-
Age), as observed in the ABCD sample (see point 2) (Fig. 2: Analysis 4).
Finally, in the same HCP-D participants, we examined whether the
patterns of neural sexual differentiation identified in the ABCD sample
can predict, in a sex-independent manner, variations in disorders that
show sex-biased prevalence (i.e., internalizing vs externalizing dis-
orders) and related physiology-relevant patterns (as detailed at point
5) (Fig. 2: Analysis 5). This analysis probes whether sex-biased pre-
valence of psychiatric disorders in adolescence is associated with
relative neural sexual differentiation alone, or whether this association
depends on its interactions with other sex-specific biological
processes.

Results
All the reported permutation- and bootstrap-based tests are based on
100,000 samples, with the exception of the mediational analysis
(Analysis 3), which featured 50,000 bootstrap samples.

T1 = ages 9-10; T2 = ages 11-12. T3 = ages 12-13. 

Fig. 2 | Outline of our workflow. Analysis 1: In the ABCD sample, CCA related
psychiatric disorder symptoms assessed with CBCL scores at Time 2 and change in
CBCL scores from Time 2 to Time 3 to sex-dependent patterns of pubertal devel-
opment (i.e., self-reported and hormonally derived adrenarche/gonadarche) and
physiological aging (i.e., PhenoAge) assessed atTime2. Analysis 2: A PLScorrelation
analysis related the psychopathology and physiology CCA variates from Analysis 1
to the ROI-specific sexual differentiation indices estimated in reference to the
intrinsic functional coupling profiles observed in the HCP-Young Adult sample.
Analysis 3: A serial mediation analysis probed the temporal sequence in which the
sexualdifferentiation of brain function LV (fromAnalysis 2) and thephysiologyCCA
variate (from Analysis 1) mediated the impact of genetic risk markers (PRS) on the
psychopathology CCA variate (from Analysis 1). Black arrows indicate our indirect
path of interest, whose specificity was tested by including alternate mediation
paths depicted through colored arrows. All the contributing variables were

residualized by self-reported and hormonally related adrenarche/gonadarche at
Time 1. Analysis 4: In a subset of participants from the HCP-D covering late child-
hood to late adolescence, a CCA probed the cross-sectional replicability of the
longitudinal links among neural sexual differentiation (i.e., the brain LV from
Analysis 2 which was projected onto the HCP-D sample), psychopathology and
physiology, as established in the ABCD sample. Analysis 5: A CCA tested the overlap
between the neural sexual differentiation brain map identified in the ABCD sample
and neural sexual differentiation maps, characterized in the HCP-D sample and
tracking, in a sex-independent manner, psychopathology, correlates of PhenoAge
and self-reported pubertal development. HCP Human Connectome Project, CCA
canonical correlation analysis, PLS partial least squares correlation analysis, BMI
body mass index, CBCL Child Behavior Checklist, DHEA Dehydroepiandrosterone,
LV latent variable, PDS Pubertal Development Scale, PRS polygenic risk score, SD
sexual differentiation, T1 Time 1, T2 Time 2, T3 Time 3.
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Analysis 1: Advanced phenoage and pubertal maturation show
sex differential associations with anxiety, depression and
behavioral disorders (ABCD)
We first sought to establish whether, in early adolescence (ages 11-12),
pubertal maturation and physiological aging would show sex-
dependent associations with concurrent and/or future risk for spe-
cific psychiatric disorders (assessed through parental ratings on the
CBCL). Self-ratings on the Pubertal Development Scale [PDS]36 and
hormonal assays were used to estimate progression through the two
component processes of pubertywhich are linked to the emergenceof
secondary sex characteristics (i.e., adrenarche), aswell as reproductive
maturation and development of sex-specific characteristics (i.e.,
gonadarche)37,38. Hormonal markers of adrenarche and gonadarche
were computed separately for boys and girls. In girls, average stan-
dardized DHEA and testosterone levels indexed adrenarche37, whereas
standardized estradiol levels gauged gonadarche (cf.37,38). In boys,
standardized DHEA levels assessed adrenarche, while standardized
testosterone levels were used as an indicator for gonadarche (for a
review of supporting findings, see ref. 38).

Physiological wear-and-tear was estimated with the PhenoAge
algorithm39 which uses an exponential growth formula to predict
mortality from blood chemistry measures of metabolic and immune
system functioning in a reference group. The PhenoAge algorithm
yields a biological age prediction which corresponds to the chron-
ological age atwhich an individual’smortality riskwould benormal in a
reference group. A more advanced PhenoAge (relative to chron-
ological age) indicates greater physiological wear-and-tear and, thus,
greater than expected (by chronological age) risk for disease and
mortality39,40. Using the blood chemistry data available in the ABCD
sample, we trained and validated the PhenoAge algorithm in two
young adult (ages 20–40) samples from the National Health and
Nutrition Examination Survey (NHANES) (https://wwwn.cdc.gov/nchs/
nhanes/Default.aspx) (NHANES III: N = 6084; 2892 males; NHANES IV:
N = 14,782; 7421 males). We focused on young adults for whom, where
applicable, deaths were related to intrinsic causes (e.g., cardiac, can-
cers, kidney/lung-related, respiratory infections, diabetes) rather than
accidents, because we reasoned that they would best reflect physio-
logical wear and tear processes that are distinguishable from those
linked to typical aging and, thus, most likely to be observed among the
adolescents in the ABCD cohort. In both NHANES samples, more
advanced PhenoAge than expected based on chronological age, was
observed among poorer individuals (Spearman’s rho (5611) = 0.16, 95%
CI = [0.14; 19], p = 7.71 × 10−34 [NHANES III] and rho(14780) = 0.16, 95%
CI = [0.14; 0.18], p = 2.5 × 10−85 [NHANES IV]), was linked to higher body
mass index (BMI) (Spearman’s rho (6075) = 0.22, 95% CI = [0.20; 24],
p = 4.81 × 10−67 [NHANES III] and rho(14780) = 0.28, 95% CI = [0.27; 30],
p = 1.41 × 10−265 [NHANES IV]) and poorer overall health (Spearman’s
rho (6082) = 0.15, 95% CI = [0.13; 18], p = 2 × 10−32 [NHANES III] and
rho(12406) = 0.20, 95% CI = [0.18; 22], p = 1.8 × 10−113 [NHANES IV]).

We replicated these associations in the larger ABCD sample of
biologically unrelated youths with available blood chemistry, BMI,
financial deprivation, andmedical history data at the two- or three-year
follow-up (N = 922). Specifically, in these youths, a cross-validated
canonical correlation analysis (CCA) linked more advanced PhenoAge
(adjusted for chronological age and sex) to parental reports of finan-
cial deprivation, higher BMI and more serious medical problems, as
indicated by the number of emergency room visits and unplanned
medical visits, particularly those related to very severe headaches,
episodes of high fever, asthma, bronchitis, allergies and diabetes.
Importantly, the association between PhenoAge and the physical
health/deprivation variate was replicated in our target sample of 199
ABCD participants (see Methods for detailed analyses and Fig. S1 for a
representation of the pertinent CCA results).

After establishing that PhenoAge is a robust indicator of physiolo-
gical wear-and-tear in early adolescence, we proceeded to investigate its

relevance, together with pubertal development, to concurrent and
subsequent psychopathology. To this end, we conducted a CCA in our
target ABCD sample (N= 199). This analysis identified maximally corre-
lated latent factors (i.e., variates) linking the 18CBCL scores (i.e., 9 scores
from the two-year follow-up [ages 11–12] and 9 change scores estimated
as the difference between the corresponding standardized scores at the
two- and three-year follow-ups: ages 11–12 to 12–13]; hereafter called the
T2/ΔT2,T3 psychopathology CCA variate [variate 1]) to sex assigned at
birth (corroborated through single nucleotide polymorphism (SNP)
analysis and/or menstrual history), PhenoAge, pubertal hormone levels,
and self-reported adrenarche/gonadarche assessed at T2 (hereafter
called the T2 physiology CCA variate [variate 2]). In this analysis, the sex-
dependence of the psychopathology-physiology relationship is indi-
cated by a robust loading of the sex variable (coded “0” for male, “1” for
female) on variate 2. A preferential association between the physiology
variate and concurrent or future change in psychiatric symptoms is
implied by a robust loading of the T2 or ΔT2,T3 CBCL change scores on
variate 1. A robust loading of a T2 CBCL score, but not of the corre-
sponding ΔT2,T3 CBCL change score on variate 1 would indicate a link
between the physiology variate and consistently lower or higher
(depending on the canonical loading sign) disorder-specific scores from
the ages of 11–12 to the ages of 12–13.

Discovery CCAs unveiled a statistically significant physiology-
psychopathology variate pairwhichwas successfully cross-validated in
analyses adjusted for age, race, testing site, handedness, adoption
status (coded “1” for the 3 adoptees and “0” for the remaining sample),
ambiguous biological sex (coded “1” for the 2 participants with
ambiguous sex and “0” for the remaining sample) (rCV = 0.18,
permutation-based p =0.019, 95% CI = [0.02; 0.32], Fig. 3C). Thus,
female adolescents characterized by more advanced PhenoAge and
pubertal development, particularly, gonadarche, showed persistently
higher somatic disorder scores and increasing depression, anxiety,
OCD and PTSD scores from ages 11-12 to 12-13 (Fig. 3A, B). Conversely,
consistently lower somatic disorder scores but rising conduct and
oppositional defiant disorder scores were observed among male
adolescents characterized by a younger PhenoAge and delayed pub-
ertal development (Fig. 3A, B).

To shed further light on the results described above, we evaluated
whether sex, PhenoAge and the pubertal development variables, par-
ticularly gonadarche, make independent contributions to the phy-
siology variate. To this end, we conducted a regression analysis
predicting the z-scored physiology variate from sex, z-scored Pheno-
Age, z-scored pubertal development variables, and all the control
variables entered in the cross-validation of the Analysis 1 results. This
analysis is akin to estimating the standardized canonical coefficients,
which reflect the unique contribution of each observed variable to its
corresponding variate41. The results confirmed that the physiology
variate reflects the unique, additive contributions of sex (b =0.88,
t(171) = 17. 44, p = 8.64 × 10−40, 95% CI [0.79; 0.99]), PhenoAge (b = 0.55,
t(171) = 19.56, p = 1.74 × 10−45, 95% CI [0.50; 0.61], and gonadarche,
based on hormone levels (b =0.14, t(171) = 4.39, p = 2.02 × 10−5, 95% CI
[0.08; 0.21]) and self-reports (b = 0.33, t(171) = 10.57, p = 2.10 × 10−20,
95%CI [0.27; 0.39]). Hormonally indexed and self-reported adrenarche
did not show robust unique associations with the physiology variate in
themultiple linear regression analysis. The results remainunchanged if
the z-scored physiology variate is regressed only on its corresponding
observed variables. These findings indicate that the physiology variate
does not merely reflect earlier reproductive maturation and more
advanced PhenoAge in girls relative to boys.

Analysis 2: Sexual differentiationof regional functional coupling
(fc) predicts advanced phenoage and pubertal
maturation (ABCD)
Having established the sex differential and primarily longitudinal
relationship between physiology and psychopathology in the ABCD
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sample, we next sought to shed light on its relevance to patterns of
neural sexual differentiation. We thus entered the T2/ΔT2,T3 psycho-
pathology andT2physiology CCA variates from analysis 1 into a partial
least squares (PLS) correlation (Analysis 2) to examine their associa-
tions with ROI-specific measures of sexual differentiation in FC, as
identified at T1 (ages 9-10) and T2 (ages 11-12). Sexual differentiation in
the ABCD sample was characterized in reference to the functional
connectivity (FC) patterns observed among the young healthy adult
participants (ages 22–30) in the Human Connectome Project (HCP).
These individuals have reached reproductive maturity and are thus
expected to show maximal differentiation of brain function related to
their biological sex (as assigned at birth [self-reported] and confirmed
through menstruation history12,16–18,42,43). ROI-to-ROI FC estimates
based on two widely used functional atlases44,45 were extracted inde-
pendently from the ABCD and HCP samples, respectively.

The discovery PLS analysis uncovered a single brain-behavior
latent variable (LV)pair (p = 2 × 10−5, shared varianceof 65.35%) relating
T1 and T2 regional sexual differentiation to T2 physiology and T2/
ΔT2,T3 psychopathology scores (Fig. 4A; see Fig. S2 for the replication
of these results with the Gordon atlas, and Fig. S3, S4, for the replica-
tion of these results using more stringent motion controls). Cross-
validation tests, which controlled for participant motion (i.e., average
frame-wise displacement46), age, race, testing site, handedness,

adoption status, ambiguous biological sex, suggested that the brain-
behavior LV relationship is robust (permutation-based p =0.001,
shared variance of 65.30%) and mostly captures the link between
neural sexual differentiation at ages 9-10 and physiology at ages 11-12
(rCV = 0.19, 95% CI = [0.05; 0.34]; see Fig. 4B). Of note, the association
between concurrent neural sexual differentiation and physiology at
ages 11-12 failed to reach conventional reliability levels (rCV = 0.05, 95%
CI = [−0.08; 0.20]; see Fig. 4B). Testifying to its specificity, the corre-
lation between T1 neural sexual differentiation and T2 Physiology was
left virtually unchanged after additionally controlling for the available
T1 Physiology measures (i.e., pubertal hormones, self-reported adre-
narche and gonadarche) (rCV = 0.18, 95% CI = [0.04; 0.34]).

Cross-validated ROI loadings on the brain LV tracked the cano-
nical S-A axis (Spearman’s rho = −0.47, pspin = 10−5, 95% CI = [−0.38;
−0.55]), along which typical neurodevelopmental processes, including
those associated with sex differences in functional brain architecture,
have been shown to unfold33–35. Thus, greater feminization along the
S-A axis (i.e., greater feminization of association, relative to sensor-
imotor, regions) at T1 was observed among female adolescents
showing more advanced PhenoAge and pubertal development (parti-
cularly, gonadarche) at T2 (Fig. 4C–F). Complementarily, greater
masculinization along the S-A axis (i.e., greater masculinization of
association, relative to sensorimotor, regions) typified male

Analysis 1: Sex, Physiological Age, Pubertal Development, Pubertal Hormones, and Internalizing vs Externalizing 
Psychopathology

C|

A| T2 (ages 11-12)/∆T2,T3 (ages 11-12 to 12-13) 
Psychopathology Variate 

B| T2 (ages 11-12) Physiology Variate 

r = .18, 95% CI = [.02; .32], 
permutation-based two-sided p = .019

Cross-validated canonical loadings Cross-validated canonical loadings

Fig. 3 | Disorder-specific two-year follow-up (“_T2) and two- to three-year fol-
low-upchange (“_T2_T3”) scores linkedbyCCAto sex, PhenoAge, aswell as self-
reported and hormonally based indices of adrenarche and gonadarche in the
ABCD sample. Panel A The horizontal graph shows the partial correlation coeffi-
cients describing the relationship between the observed disorder-specific scores
and the predicted value of their corresponding canonical variate across all test CCA
folds from the cross-validation procedure. Panel B The horizontal graph shows the
partial correlation coefficients describing the relationship between the observed
values of the sex (female = 1, male = 0), PhenoAge, as well as self-reported and
hormonally based indices of adrenarche and gonadarche with the predicted value
of their corresponding canonical variate across all test CCA folds from the cross-

validation procedure. The shaded areaswith non-zero color coding (see “Loadings”
legend) in panelsA andB correspond to robust correlations basedon99%CIs from
the cross-validation procedure. The violin plots in panels A and B depict the dis-
tribution of partial correlation coefficients across the 100,000 bootstrap samples
from the cross-validation procedure. Panel C contains the scatter plot describing
the linear relationship between the two CCA variates pictured in panels A and B.
CCA= canonical correlation analysis. ADHD= attention deficit hyperactivity dis-
order. Anx anxiety, CD conduct disorder, Dep depression, OCD obsessive-
compulsive disorder. ODD oppositional defiant disorder, PTSD post-traumatic
stress disorder, SCT slow cognitive tempo, SOM somatic disorder, SR self-report, H
hormonally based.
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adolescents characterized by a younger PhenoAge and delayed pub-
ertal development at T2.

Analysis 3: Feminization of FC, PhenoAge, and Pubertal
Maturation Sequentially Mediate the Link between Genetic Risk
for Anxiety and Anxiety Symptoms
Our first two analyses provided evidence that physiology at ages 11-12
years shows longitudinal associations with earlier (but not concurrent)
neural sexual differentiation (Fig. 4B) and increases in psychopathology,
rather thanconcurrentpsychiatric symptoms (Fig. 3A). Buildingon these
findings, we next examined whether sexual differentiation in brain
function and physiology sequentially mediate the relationship between
genetic risk and psychopathology in the ABCD sample. To this end, we
specified the serial mediation model depicted in Fig. 2 (Analysis 3) and
tested with PROCESS 4.2, which is an ordinary least squares (OLS) and
logistic regression path analysis modeling tool based on observable
variables47 (SI 7.3). In line with existing guidelines for probing causal
chains48, the serial mediators were sampled from different time points.
Based on the results from our first two analyses, we were primarily

interested in whether the T1 neural sexual differentiation LV from Ana-
lysis 2 (mediator 1) and the sex-dependent physiology CCA variate from
Analysis 1 (mediator 2) would constitute a viable causal chain linking
polygenic risk scores (PRS) for anxiety and, potentially, depression to
rising internalizing symptoms (cf Fig. 3A). In testing this sequence, we
simultaneously accounted for alternate models involving serial (T1 and
T2 neural sexual differentiation from Analysis 2) and parallel (T2 Phy-
siology from Analysis 1 and T2 neural sexual differentiation from Ana-
lysis 2) mediation, respectively (see Fig. 2-Analysis 3). The absence of
bloodchemistrydata atT1preventedus fromcomputingPhenoAgeand,
thus, estimating the alternate serial and parallel mediation models
involving T1 Physiology. However, prior to mediation analysis, all vari-
ables were adjusted for T1 pubertal hormone levels and self-reported
adrenarche/gonadarche based on the PDS (in addition to participant
motion, age, race, testing site, handedness, adoption status, ambiguous
biological sex). Additionally, inclusion of the PRS-T2 Physiology-Psy-
chopathology path allowed us to estimate indirect effects of physiology
that are independentofT1/T2neural sexual differentiation and therefore
uniquely related to T1 PhenoAge.

Analysis 2: Sexual Differentiation of Brain Function, Physiological Age, Pubertal Hormones and Sex 
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Fig. 4 | The brain LV from the behavioral-PLS analysis linking the psycho-
pathology and physiology variates from CCA 1 (cf. Figure 3) to neural sexual
differentiation in the ABCD sample. Panel A shows the correlations of the two
CCA 1 variates with the Time 1 and Time 2 brain LV scores in the discovery PLS
analysis. PanelB shows the correlations of the twoCCA 1 variateswith the predicted
Time 1 and Time 2 brain LV scores (based on the 10-fold cross-validation proce-
dure). A red asterisk indicates a robust correlation between the respective CCA 1
variate and the discovery (panelA) or predicted (panelB) brain LV scores across all
participants. The violin plots in panels A and B depict the distribution of these
correlation coefficients across the 100,000 bootstrap samples from the discovery
(panelA) or cross-validated (panel B) PLS analysis. Panel C depicts the ROI-specific
weights/loadings on the brain LV identified with the discovery PLS analysis with a
bootstrap ratio greater than 2.75 in absolute value (equivalent to a 99% CI). Panel
D depicts the Schaefer ROIs robustly correlated (based on cross-validated 99%
confidence intervals) with the predicted value of the brain LV from the cross-

validation procedure. These are partial correlations controlling for the con-
founders listed under “Control variables”. To facilitate interpretation, panels E and
F present Schaefer network-based distributions of PLS weights (panel E) or partial
correlations (panelF) summarizing the ROI-specific results frompanels (C) and (D),
respectively. The subnetworks from the Schaefer 17-network atlas (e.g., Control A/
B/C) have been combined into one to increase comparability with theGordon atlas.
In panels C–F, positive values indicate masculinization, whereas negative values
indicate feminization of the connectivity patterns associated with a specific ROI. As
stated in the main text, sexual differentiation was estimated in reference to resting
state connectivity data from the Human Connectome Project. BSR = bootstrap
ratio. PLS = partial least squares. LV= latent variable. T1 Time 1, T2 Time 2, Schaefer
networks: TP temporo-parietal, SAL-VAN salience/ventral attention, LB limbic, DMN
default mode, DAN dorsal attention, SM-A somatomotor-A, SM-B somatomotor-B.
VIS visual.
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PRSs for anxiety, depression, and ADHD were computed using
summary statistics from large and independent disorder-focused gen-
ome-wide association studies (GWASs), featuring case/patient-control
comparisons (i.e., MDD49, anxiety disorders50, ADHD51). We did not
include PRSs for ODD or CD because we could not locate relevant case-
control GWASs. Based on the results from Analyses 1 and 2, robust
indirect effects via neural sexual differentiation and physiology were
expected for mediational models anchored in the anxiety PRS and,
potentially, the depression PRS, whereas models anchored in the ADHD
PRS were included for specificity analysis since ADHD did not have a
robust loading on the psychopathology variate in Analysis 1 (Fig. 3A).

As expected, we observed a robust indirect effect of the anxiety
PRS on the T2/ΔT2,T3 psychopathology variate via the cross-validated
T1 brain LV (mediator 1) and the cross-validated T2 physiology CCA
variate (mediator 2) (total standardized indirect effect: 0.007, SE =
0.005, 95%CI = [0.001; 0.019]) (Fig. 5A). No additional indirect effects
were detected, which implies that any association between T1 Pheno-
Age and later psychopathology, independent of T1 pubertal develop-
ment (for which we controlled), would most likely be explained by its
overlap with T1 neural sexual differentiation (for a replication of these
results using different significance thresholds for the contributing
SNPs and with Gordon atlas, see Figs. S5, S8).

The mediational analysis anchored in the MDD PRS yielded no
robust indirect effects, but instead yielded a reliable direct effect
(Fig. 5B,S6). This pattern of results implies that genetic risk for MDD
predicts worsening depression and anxiety disorder-related symp-
toms fromages 11-12 to ages 12-13.However, this link between theMDD
PRS and affective problems is not mediated by the neural sexual

differentiation and physiology patterns herein identified. Finally, we
confirmed the specificity of the sequence anchored in the anxiety PRS
by re-running the serial mediation analysis with ADHD PRS as the
predictor, which revealed no significant indirect effect (Fig. S7).

Analysis 4: The link between regional FC feminization, advanced
phenoage, pubertal maturation, and anxiety disorders repli-
cates in an independent cross-sectional sample
In our final set of analyses, we tested whether the sex-dependent links
between brain function, psychiatric risk, and physiologicalmaturation,
as established in the ABCD sample (Analyses 1–3) would extend cross-
sectionally in the larger HCP-D sample. InAnalysis 4, we therefore used
CCA to probe whether individual differences in sexual differentiation
of regional FC profiles (as defined using the PLS-extracted latent
variable fromAnalysis 2) (variate 1) relate to scores on the CBCL scales,
pubertal development, and markers of physiological aging (BMI,
exposure to poverty) in a sex-dependent manner (variate 2). Of note,
BMI, which hadbeen robustly linked to PhenoAge in the ABCD sample,
was also independently correlated with more advanced adrenarche/
gonadarche in the ABCD (Spearman’s rho = 0.29, 95% CI = [0.15; 0.40],
permutation-based p = 8 × 10–5 [adrenarche] and Spearman’s rho =
0.33, 95% CI = [0.15; 0.41], permutation-based p = 10−5 [gonadarche]),
as well as the HCP-D (Spearman’s rho =0.19, 95% CI = [0.06; 0.30],
permutation-based p =0.002 [adrenarche] and Spearman’s rho =0.32,
95% CI = [0.20; 0.42], permutation-based p = 10−5 [gonadarche]) (cor-
relations adjusted for sex and chronological age, similar to the CCA
cross-validation analyses described below). Conversely, financial
deprivation, which had been linked to PhenoAge in the ABCD sample

Analysis 3: Sequential Effect of Genetic Risk on Increasing Psychopathology via Neural Sexual Differentiation and 
Physiological Aging
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Fig. 5 | Serial mediational model testing the roles of Time 1 neural sexual
differentiation (cf Fig. 4) and the Time 2 CCA Physiology variate (cf. Fig. 3B), in
mediating the impact of genetic risk on psychopathology (cf. Fig 3A) in the
ABCD sample. Themediationmodel anchored in the ANX PRS is depicted in panel
A, whereas panel B shows the mediation model anchored in the MDD PRS. In both
panels, the indirect effect path of interest is indicated by black arrows, whereas the
alternate paths, included as controls, are indicated by colored arrows. ANX =
anxiety disorder. LV = latent variable. MDD=major depressive disorder. PRS =

polygenic risk score. T1 = Time 1. T2 = Time 2. T3 = Time 3. 95% confidence intervals
for the indirect effects were estimated using percentile bootstrap with 50,000
bootstrap samples. All p-values of the t-statistic associated with each path are two-
tailed. ap =0.008 [degrees-of-freedom= 197]. bp = 10−8 [degrees-of-freedom= 196].
cp =0.004 [degrees-of-freedom= 196]. dp =0.013 [degrees-of-freedom= 194].
ep =0.008 [degrees-of-freedom= 196]. fp = 10−8 [degrees-of-freedom= 196].
gp =0.006 [degrees-of-freedom= 196]. hp =0.030 [degrees-of-freedom= 194]. ip =
0.018 [degrees-of-freedom= 194].
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was not robustly correlatedwith adrenarche/gonadarche in the HCP-D
(Spearman’s rho = −0.12, 95% CI = [.−0.37; 0.05], permutation-based
p =0.05 [adrenarche] and Spearman’s rho = −0.04, 95% CI = [−0.12;
0.10], permutation-based p =0.49 [gonadarche]). In the ABCD sample,
after controlling for PhenoAge, financial deprivation showed amodest
correlation with adrenarche (Spearman’s rho = 0.16, 95% CI = [0.01;
0.26], permutation-based p =0.028), but not gonadarche (Spearman’s
rho =0.13, 95% CI = [−0.12; 0.20], permutation-based p =0.074).
Hence, while BMI is a likely correlate of global aging processes,
financial deprivation seems to bemore specifically associated with the
immune/metabolic dysregulation indexed by PhenoAge.

As in Analysis 1, sex-dependencewas indicatedby a robust loading
of the sex variable on variate 2. Unavailability of pubertal hormone and
blood chemistry data relevant to PhenoAge prevented us from
including these variables in the HCP-D analyses. However, the main
purpose of the cross-sectional HCP-D analyses was to probe the via-
bility of neural sexual differentiation as a potential psychiatric vul-
nerability marker linked to observable individual characteristics such
as BMI, and environmental variables, such as exposure to poverty.

For eachHCP-Dparticipant,we thus computed scores on theneural
sexual differentiation LV linked to physiology and psychopathology in

the ABCD sample. The HCP-D discovery CCAs, linking these brain LV
scores to the 9 DSM-oriented CBCL scores, sex assigned at birth, self-
reported adrenarche/gonadarche, BMI, and financial deprivation
unveiled a sole cross-validated variate pair (rCV =0.32, 95% CI = [0.21;
0.42], permutation-based p= 10−5, Fig. 6B, adjusted for age, handedness,
testing site, participant motion, and adoption status). In line with the
longitudinal ABCD results, theCCAmode identified in theHCP-D sample
indicated that greater feminization along the S-A axis was primarily
detected among female youth showing more advanced pubertal devel-
opment, particularly, gonadarche, higher BMI, greater exposure to
financial deprivation, and more severe depression and anxiety disorder
symptoms (Fig. 6A; for a replication of these effects with the Gordon
atlas, see Fig. S9A, B).

Analysis 5: FC feminization along the S-A axis distinguishes
exposure to poverty and anxiety from behavioral, somatic and
attentional disorders, regardless of biological sex
Finally, in Analysis 5, we tested whether the ABCD profile of neural
sexual differentiation could predict psychiatric risk not only in a sex-
dependent manner (cf. Analysis 4), but also independently of the
effects of sex. This analysis thus tests the utility of a continuous

Analysis 4: Feminization of Brain Function, Psychopathology, Pubertal Development and Physiological Aging Markers: 
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B|

D|

Analysis 5: Feminization of Brain Function, Psychopathology and Physiological Aging Markers across Sexes (HCP -D)

A|

Disorder correlationsC|

r = .65, 95% CI = [.57; .71], 
[two-sided] pspin = 10-5

r = .32, 95% CI = [.21; .42], 
permutation-based two-sided p = 10-5

Cross-validated canonical loadings

Cross-validated canonical loadings

Canonical 
Loadings

< -.15
.20-.40
> .40

Fig. 6 | The sexual differentiationbrain LV fromAnalysis 2 linkedbyCCA to sex,
individual differences in psychiatric disorder risk and maturation-relevant
factors (panels A, B), as well as psychiatric disorder- and maturation-relevant
neural sexual differentiation patterns in the HCP-D sample (panels C, D). The
horizontal graph in panel (A) contains the correlation coefficients describing the
relationship between the observed disorder- and maturation-relevant scores and
the predicted value of their corresponding canonical variate across all test CCAs.
Panel (B) contains the scatter plot describing the linear relationship between the
sexual differentiation brain LV (identified inAnalysis 2 and projected onto the HCP-
D sample) and the predicted values of the CCA variate from panel (A). The hor-
izontal graph in panel (C) contains the correlation coefficients describing the
relationship between the observed disorder- and maturation-relevant sexual dif-
ferentiation scores and the predicted value of their corresponding canonical vari-
ate across all test CCAs. The shadedareason thebrain images reflect the strength of
the partial correlation between the sexual differentiation scores and the disorder-

or maturation-relevant scores (see the Method for the confounders controlled for
in the partial correlation). Panel (D) contains the scatter plot describing the linear
relationship between thepredictedvaluesof theCCAvariate frompanel (C) and the
unthresholded sexual differentiation brain map estimated in the ABCD sample
(Analysis 2). In panels (A) and (C), the shaded areas correspond to robust corre-
lations observed in cross-validated CCAs based on both the Schaefer and Gordon
atlas data (based on the bootstrapping-derived 99% confidence intervals). In the
same panels, the violin plots depict the distribution of partial correlation coeffi-
cients across the 100,000 bootstrap samples from the corresponding cross-
validation procedures. ADHD attention deficit hyperactivity disorder. ANX anxiety,
CCA canonical correlation analysis, CD conduct disorder, DEP depression, LV
latent variable, OCD obsessive-compulsive disorder, ODD oppositional defiant
disorder, PLS partial least squares, PTSD post-traumatic stress disorder, SCT slow
cognitive tempo, SOM somatic disorder, DEPRIV financial deprivation, BMI body
mass index.
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approach to conceptualizing sex differences in brain function by
shedding light on whether individual variability in relative brain fem-
inization (or masculinization) can predict the same psychiatric symp-
toms across sexes.

Our final analysis linked the cross-validated sexual differentiation
brain LV from the ABCD (Analysis 2, Fig. 4D) to the partial correlation
maps quantifying the relationship between neural sexual differentia-
tion and the DSM-oriented CBCL scores, pubertal development (i.e.,
adrenarche, gonadarche), and markers of physiological aging as
identified in the ABCD (BMI, financial deprivation) (adjusted for sex,
age, handedness, testing site, participantmotion and adoption status).
To account for similarity in neural sexual differentiation based on
anatomical proximity, the correlation between the two cross-validated
CCA variates was probed for significance using spatial null maps gen-
erated with a so-called spin permutation test52–55: (https://github.com/
frantisekvasa/rotate_parcellation/commit/bb8b0ef10980f162793cc
180cef371e83655c505).

The cross-validated CCA mode emerging from Analysis 5
(rCV = 0.65, 95% CI = [0.57; 0.71], pspin = 10−5, Fig. 6D), indicated that,
regardless of biological sex, greater feminization along the S-A axis
correlated positively with exposure to poverty and mood problems,
particularly, anxiety, whereas greater masculinization related to more
advanced adrenarche, as well as increased behavioral and somatic
disorder scores (Fig. 6C; for a replication of these effects with the
Gordon atlas, see Fig. S9C, D).

Discussion
Our analysis sheds light onhowsexual differentiation of brain function
mediates the relationship between genetic risk, physiology, and rising
psychiatric symptoms in late childhood/early adolescence. Prior evi-
dence implicated pubertal hormones and metabolic dysregulation in
structural neurodevelopment56,57 and mental health, particularly
internalizing symptoms among female youth21,22,27,28,58–62. Here, we
demonstrate that sexual differentiation along a previously identified
sensorimotor-to-association (S-A) functional hierarchy63, an alleged
key organizing principle of neurodevelopment and sex differences in
brain organization33–35, shows distinct relationships with physiological
age, reproductive maturation and affective vs behavioral symptoms
among male vs female adolescents. Our results thus imply that
regionally specific patterns of relative sexual differentiation could help
elucidate the contribution of sensorimotor systems to anxiety
disorders64, and of transmodal systems to both anxiety65, particularly
threat learning andgeneralization66, andmetabolic dysregulation (e.g.,
insulin resistance67; gut microbiota composition and diversity68).

Leveraging the longitudinal ABCD dataset, we also characterized
the temporal sequence underlying the sex differential links among
neurodevelopment, physiology, and rising psychiatric symptoms.
Specifically, we related reduced genetic risk for anxiety disorders to
greater masculinization along the S-A axis at T1, as well as slower
reproductive maturation and younger PhenoAge at T2 among boys.
This event chain culminated in rising oppositional defiant and conduct
disorder symptoms between T2 and T3. Conversely, we found that
greater feminization along the S-A axis at T1 mediated the impact of
genetic risk on faster pubertal development and more advanced Phe-
noAge at T2 among girls, a sequence leading to persistently greater
somatic complaints, aswell as rising anxiety and depression symptoms
between T2 and T3. Together, these findings dovetail with cross-
species reports of sex differences in the neurobiological circuits
underpinning aggression69 and internalizing disorders70, as well as
evidence on the robust neural signature of externalizing, but not
internalizing, disorders in males71. The absence of robust indirect
effects for the models anchored in the depression PRS (Fig. 5B) and
ADHD PRS (Fig. S7) speak to the specificity of the mediational
sequence linking genetic risk for anxiety disorders to worsening
internalizing symptoms in early adolescence (Figs. 3A, 5A).

The sex differential event chain linking genetic risk to rising affec-
tive symptoms parallels evidence that sex differences in MDD pre-
valence stem from functional differences in the expression of MDD-
relevant alleles, particularly in transmodal areas such as the
hippocampus72. In our case (Fig. 5A), sex differences in anxiety symp-
toms may reflect functional differences in the expression of anxiety-
relevant alleles, which yield distinct inter-relationships among brain,
peripheral physiology, and pubertal development in males vs females.
More broadly, our results echo cross-species findings that activity
changes in threat-relevant neural circuits precede the immune/meta-
bolic alterations predictive of subsequent anxiety symptoms73,74. Our
mediational model, which included controls for alternate indirect effect
paths (Fig. 5A), provides suggestive evidence on the interdependence of
the neural sexual differentiation and later physiological/pubertal devel-
opment in mediating the relationship between genetic risk for anxiety
and rising internalizing symptoms in early adolescence. Given the cor-
relational design of our study, our present results cannot shed light on
underlying causal mechanisms. Cross-species experimental manipula-
tions are needed to elucidate this matter.

The longitudinal ABCD results were replicated cross-sectionally in
the HCP-D sample, where feminization along the S-A axis was observed
among faster-developing females, with greater exposure to poverty, at
risk for faster physiological aging (higher BMI) and showingmore severe
mood (particularly, anxiety) symptoms. Considering these findings in
light of the Analysis 3 outputs, there emerges the possibility that neural
sexual differentiationmay constitute amarker of concurrent psychiatric
vulnerability (cf. Analyses 4 and 5) which may also identify individuals
most likely to show a trajectory of worsening depression and anxiety
disorder-related symptoms. This line of inquiry is beyond the scope of
the present analysis, but certainly warranting further study.

Underscoring the importance of a continuous approach to neural
sexual differentiation23, we further found that, regardless of biological
sex, greater feminization along the S-A axis correlated with prior
exposure to poverty, anxiety and, to a lesser extent, depression
symptoms, whereas greater masculinization was related to more
advanced adrenarche, as well as more severe somatic and behavioral
problems. The results of Analyses 4 and 5 fit well with the broader
literature on the associations among physiological aging, deprivation,
BMI (e.g., via maladaptive stress coping mechanisms, such as emo-
tional eating75,76), and health77. They further dovetail with evidence on
the bidirectional relationship between BMI and internalizing symp-
toms that emerges in middle childhood78, as well as the stronger link
between BMI and deprivation observed in girls (relative to boys)79.

It is worth noting that substantial efforts have been channeled
towards characterizing the prototypical female vs male brain and
developing sex-based classification algorithms using structural or
functional neural features80–83. A complementary strand of research
views human brains as comprising amosaic of characteristics, someof
which are more common in females, some in males, and some occur-
ring equally between the sexes84. While more closely aligned with the
latter approach, our work diverges from both lines of research. Spe-
cifically, our focus is ondeterminingwhether the relative feminization/
masculinization of functional connectivity patterns observed in the
samebrain is independently related to sex and aging-relevant variables
(i.e., PhenoAge, pubertal development). Put differently, we sought to
elucidate whether differential susceptibility to internalizing vs exter-
nalizing disorders can be explained by patterns of within-brain sexual
differentiation, which are independently correlatedwith sex and aging
processes.

Limitations and future directions
Our analysis featured sex-independent genetic risk markers. Future
studies incorporating sex-specific markers, which are reportedly better
at predicting complex traits (e.g., immune/metabolic dysregulation85,
psychiatric disorders86) may further illuminate the effects herein
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documented. We focused on global PhenoAge estimates based on
organ-level measures of immune and metabolic functioning. Examina-
tion of specific inflammatory markers, derived from different tissues,
cell types (e.g., mitochondria87,88, microglia29) and focusing on different
life stages (cf.89) could improve themonitoring of stability and change in
mood symptoms. Furthermore, development of personalized, sex- and
age-specific, multimodal systemic aging markers, combining physiolo-
gical (e.g., peripheral and central inflammation90) and epigenetic (e.g.,
DNA methylation)91 measures could help fine-tune predictions of func-
tional outcomes following exposure to different types of stressors
across the life course92. Relatedly, understanding the mechanisms
underpinning physiological wear-and-tear among youth raised in
adverse environments, including sex differences in the intergenerational
transmission of adversity sequelae (e.g., via parental gut microbiota93 or
maternal placenta in the final stages of pregnancy94) and the potential
moderating effect of psychosocial factors, such as parenting95 are
important goals for future investigations. Indeed, Analysis 5 suggested
that our identified patterns of neural sexual differentiation covary with
financial deprivation across both male and female individuals. Conse-
quently, the sex-dependent associations among brain function, phy-
siology, and psychopathology described in this reportmay partly reflect
sex differences in adversity exposure, including intergenerational
transmission of adversity sequelae (cf.96,97), a possibility that would
certainly warrant further study. Lastly, our three samples rated their sex
in a binary manner, and only one participant in each of the two ado-
lescent cohorts indicated that their gender is different from the sex
assigned at birth (no information on gender—as distinct from biological
sex– was collected in the HCP). Therefore, some of the sex differences
herein reported98may stem fromgendered experiences, including those
resulting from gender differences in societal expectations that may
extend to potential biases in psychiatric diagnosis. Future studies fea-
turing samples that allow for meaningful dissociations between sex and
gender99 and which probe the interactive impact of multiple social
identities100 would provide further insights into the effects herein
documented.

In sum, we characterized regionally specific patterns of sexual
differentiation in brain function along a canonical unimodal-to-
transmodal functional hierarchy. We demonstrated that individual
differences in such differentiation mediate the association between
genetic risk and rising internalizing vs externalizing symptoms in
adolescence, via their effect on physiological aging. The identified
patterns of FC sexual differentiation also tracked the cross-sectional
severity of internalizing symptoms in a sex-dependent and sex-
independent manner in an unrelated sample. By characterizing
cross-sectional and longitudinal relationships between sexual differ-
entiation of the S-A axis, sex differential patterns of pubertal and
physiological aging, and psychiatric vulnerability, this study sheds
light on a potential path towards more personalized interventions
targeting affective and behavioral pathology across sexes.

Methods
Participants
Our samples were selected from three publicly available datasets. All
participants contributed data on all scrutinised variables. The partici-
pant selection process for the twodevelopmental samples is described
in Fig. 7. The studywas approved by the local ethics committee of each
dataset, and written informed consent was obtained from each parti-
cipant or their authorized legal representative/guardian (the latter for
ABCD and HCP-D youth). For the ABCD study, the research ethics
boards were Children’s Hospital Los Angeles, Florida International
University, Laureate Institute for Brain Research, Medical University of
South Carolina, Oregon Health & Science University, SRI International,
University of California SanDiego, University of California LosAngeles,
University of Colorado Boulder, University of Florida, University of
Maryland at Baltimore, University of Michigan, University of

Minnesota, University of Pittsburgh, University of Rochester, Uni-
versity of Utah, University of Vermont, University of Wisconsin-Mil-
waukee, Virginia Commonwealth University, Washington University in
St. Louis and Yale university. For the HCP-D study, the ethics boards
were Harvard University, University of California Los Angeles, Uni-
versity of Minnesota, and Washington University in St. Louis. For the
HCP study, the ethics board was Washington University in St. Louis.
Participants in all three samples were compensated for time and travel
(e.g., parking, mileage, cab to and from the study site) expenses. The
children in the HCP-D study also received gift cards for their
participation.

Target developmental groups
Adolescent Brain and Cognitive Development (ABCD). The sample
included biological parents and offspring who participated in the
ongoing Adolescent Brain Cognitive Development (ABCD) study (for a
detailed sample description, see ref. 101). The present research uses
baseline, two-, and three-year follow-up data downloaded inMay 2024
as part of the ABCD Study Curated Annual Release 5.1. For the resting
state data, we downloaded the package recommended for use by the
ABCD study team (as flagged on the NDA site).

Our sample included 199 adolescents (88 biological females), the
majority of whom were predominantly right-handed (N = 152) and
identifiedby their parents asbeingWhite (82.4%), althoughother racial
backgrounds were also represented (3% Native American Indian, 1%
Asian Indian, 13.6% Black, 1% Chinese, 2% Filipino/Filipina, 0.5% Japa-
nese, 0.5% Korean, 0.5% Pacific Islander, 0.5% Vietnamese, 6.5% other
or not reported racial background). The parents could select multiple
racial backgrounds for their child. Biological sexwas based onparental
reports of sex assigned at birth, which were corroborated with men-
struation history data (youth and parental reports) from the two-year
follow-up and SNP analysis (yielding the SNPSEX variable) using the
PLINK command “plink –bfile data –check-sex”. A dummy-coded
variable was created to account for the two youths for which sex
assigned at birth was not corroborated through menstruation history
or SNP analysis. Participants were aged 9-10 years at baseline
(Mbase = 118.74 months, SDbase = 7.81 months; M2-yr = 143.10 months,
SD2-yr = 8.05 months; M3-yr = 154.65 months, SD3-yr = 8.01 months).

Human connectome project-development (HCP-D). We included
data from 277 HCP-D participants (145 females, 90.3% predominantly
right-handed, ranging in age from 8 to 17 years (M= 171.78 months,
SD=22.53 months). Sex was determined from parental reports of sex
assigned at birth and corroborated through menstruation history for
108 of the 137 female participants aged 12 and older. Based on parental
reports of the participants’ racial background, the sample was pre-
dominantly White (66.8%), although other racial backgrounds were also
represented (0.4% American Indian/Alaska Native, 4.7% Asian, 8.3%
Black, 18.4% mixed race, 1.4% other or not reported racial background).
A detailed description of the HCP-D sample is available in ref. 102.

Adult reference group
Human connectome project (HCP). Sexual differentiation in brain
function was characterized in reference to the FC patterns observed
among the young healthy adult participants in the HCP who were
expected to showpeak levels of neural sexual differentiation related to
reproductive maturity12,16–18. Sex assignments were based on self-
reported sex assigned at birth which was also corroborated through
self-reported menstruation history (cf 42,43).

We only included individuals aged 22–30 years (22–25 years:
N= 141, 63 females; 26–30 years:N= 195, 96 females) in light of evidence
that neurocognitive performance starts showing subtle signs of decline
following the age of 3095,96. The sample, who was predominantly right-
handed (N= 300), had the following racial composition: 7.7%Asian, 13.1%
Black, 3.3 % more than one race, 73.5% White and 2.4% not reported.
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Pubertal development
ABCD. In line with prior work37,103, pubertal maturation was assessed
via self-ratings on the Pubertal Development Scale (PDS36) and hor-
monal assays, specifically, dehydroepiandrosterone (DHEA), testos-
terone and, for female youth only, estradiol. Based on self-reports and
hormonalmeasures,we independently estimatedprogression through
the two component processes of puberty, adrenarche and gona-
darche. Adrenarche is the earlier onset process, which starts around
ages 5–7 and is characterizedby release of adrenal hormones,which, in
turn, support the development of secondary sex characteristics, such
as pubic hair growth and acne, in both male and female youth (for
review of relevant findings, see refs. 37,38). Maturation of the
hypothalamic-pituitary-gonadal (HPG) axis marks the onset of gona-
darche, in which the release of sex hormones (i.e., estradiol in girls,
testosterone in boys) leads to reproductive maturation and the
development of sex-specific characteristics38. Following prior
studies37,38,104, in the PDS, adrenarche was estimated via self-reported
skin changes and body hair growth for both boys and girls, whereas
gonadarche was estimated via self-reported growth spurt, breast
development and menarche in girls, and self-reported growth spurt,
deepening of the voice, and facial hair growth in boys. At Time 1 only
(ages 9-10), 9 youths failed to complete any of the adrenarche-relevant
items, and 5 youths failed to complete any of the gonadarche-relevant
items on the PDS. For these participants, at Time 1 only, we used the
corresponding parental ratings.

Pubertal hormone levels were extracted from saliva samples,
which had been collected using the passive drool method. Upon col-
lection, saliva samples were stored at −20 to −80 °C before being
shipped on dry ice to Salimetrics, which evaluated the quality of all the
samples and extracted pubertal hormone levels using replicate ana-
lyses (for details, see https://salimetrics.com/ and reference105). For
each pubertal hormone, we analysed its mean level across all the

replicate analyses. Hormonal markers of adrenarche and gonadarche
were estimated separately for boys and girls. In boys, z-scored DHEA
levels were used as a marker of adrenarche, whereas in girls, adre-
narchewas estimated as the average of the standardized (i.e., z-scored)
DHEA and testosterone levels, because existing evidence links testos-
terone more strongly to adrenarche, rather than gonadarche, among
female youth37. Gonadal hormone scores were computed based on
hormones that had been directly implicated in sex-specific reproduc-
tive maturation processes. Thus, z-scored estradiol levels indexed
female gonadarche, whereas z-scored testosterone levels indexed
male gonadarche (for a review of supporting findings, see refs. 37,38).

Using the information available in the “ph_y_sal_horm.csv” file
from the ABCD data release 5.1, hormonal indices of adrenarche and
gonadarche were residualized separately within each sex for saliva
quality-related concerns (i.e., low quantity, discoloration, excessive
bubbles, potential contamination, other concerns), activity levels and
caffeine quantity in the 12 h preceding saliva collection and the delay
between waking time and saliva collection (cf.105). The saliva quality
variable was dummy-coded as “1” (”no concerns”) or “0” (“concerns
present”) since only 4 youths at T1 and 2 youths at T2 showed more
than one saliva quality-related issue. Across the full sample, concerns
for the saliva samples were noted for 20 youths at T1 and 12 youths at
T2. For female youths, the hormonal indices were further residualized
by self-reported age at menarche since, in samples as young as ours
who had recently experienced menarche, age at menarche relates to
regularity of the menstrual cycle and associated hormonal
fluctuations106, days since the start of the last menstrual cycle, and
whether the menstrual cycles are regular (based on self- and parental
reports as a subjective complement to the cycle regularity information
gauged via self-reported age at menarche) (cf.105). None of the female
participants reported taking birth control pills. The hormonal indices
of adrenarche and gonadarche, residualized and standardized (i.e., z-

Potentially Eligible
N = 11, 878 l

Examined for Eligibility
N = 11,878

Confirmed Eligible
N = 199

Analyzed
N = 199

1. Unavailability of blood chemistry data (Time 
2) (N = 11,174)l

2. Unavailability of pubertal hormone data  
(Time 1 and Time 2) (N = 118)

3. Raw fMRI data (Time 1: 3 runs; Time 2: 3 
runs) unavailability/poor quality (N = 118)

4.      Different longitudinal sites (Time 1/Time 2) 
          (N = 4)
5.    Biologically related (N = 38)
6.    Preprocessed fMRI data (Time 1: 3 runs; 
         Time 2: 3 runs) unavailability (N = 227)

STROBE Flow Diagram

ABCD HCP-D
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Fig. 7 | STROBE flowchart describing sample selection for the ABCD andHCP-D
cohorts. For the resting state fMRI data from the ABCD study, “good quality” was
defined based on the “_pc_score” (corresponding to each of the 3 runs analyzed)

and the “iqc_rsfmri_ok_ser “ variable in the “mri_y_qc_raw_rsfmr.csv” file from the
data release 5.1 asparticipantswhohad at least 3 complete protocol compliant time
series who passed quality control at both Time 1/ages 9–10 and Time 2/ages 11−12.
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scored) separately within each sex, were combined across the full
sample and entered in the reported analyses. Table 1 contains sum-
mary statistics for hormonal indices, as well as youth and parental
ratings of pubertal development. At Time 2, partial correlation ana-
lyses controlling for sex revealed a robust association between self-
reported adrenarche and the adrenal hormonal index (DHEA[boys]/
DHEA/testosterone [girls], Spearman’s rho of r of 0.27, 95% CI = [0.12;
0.39], permutation-based p = 1.5 × 10−4), as well as the gonadal hor-
monal index (testosterone [boys]/estradiol [girls], Spearman’s rho of r
of 0.35, 95%CI = [0.21; 0.47], permutation-based p = 10−5). At the same
time point, a robust correlation (adjusted for sex) was detected
between self-reported gonadarche and the gonadal hormone index
(Spearman’s rho of r of 0.29, 95% CI = [0.13; 0.39], permutation-based
p = 10−4) as well as the adrenal hormone index (Spearman’s rho of r of
0.24, 95% CI = [0.10; 0.35], permutation-based p =0.001). In contrast,
at Time 1, while self-reported adrenarche was robustly correlated with
both the adrenal hormone index (Spearman’s rho of 0.17, 95% CI =
[0.01; 0.29], permutation-based p =0.015) and the gonadal hormone
index (Spearman’s rho of 0.19, 95% CI = [0.03; 0.30], permutation-
based p = 0.009), self-reported gonadarche showed a statistically sig-
nificant correlation only with the adrenal hormone index (Spearman’s
rho of 0.19, 95% CI = [0.02; 0.30], permutation-based p =0.006).

HCP-D. Hormonal measures of pubertal development are unavailable
in the latest existing data release (2.0) from theHCP-D. Hence, to index
reproductive maturation, we relied on self-reports of adrenarche
(Female youth: M= 2.87, SD = 0.70; Male youth: M= 2.47, SD =0.67;
score range: 1–4) and gonadarche (Female youth: M= 3.09, SD =0.87;
Male youth: M = 2.19, SD =0.72; score range: 1–4) which were strongly
correlated (Spearman’s rho of r of 0.71, 95% CI = [0.60; 0.77],
permutation-based p = 10−5 [female youth] and Spearman’s rho of r of
0.54, 95% CI = [0.37; 0.66], permutation-based p = 10−5 [male youth])
(parental reports were not available for the full sample).

Physiological aging
ABCD. Physiological wear-and-tear was quantified with the BioAge R
(https://github.com/dayoonkwon/BioAge) implementation of the
PhenoAge algorithm39. This algorithm has been validated as a pre-
dictor of mortality, morbidity, and healthspan in younger and older
adults19,20,39,107–109. The PhenoAge algorithmuses anexponential growth
formula to predict mortality from blood chemistry measures of
metabolic and immune system functioning in a reference group. An
individual’s PhenoAge biological age prediction corresponds to the
chronological age at which their mortality risk would be normal in the
reference group. Following existing guidelines in the literature20,39,40,
the PhenoAge algorithm was applied to a training set of young adults
(N = 6084; aged 20–40 years; 2892males; tested in 1991),whohaddata
on all the biomarkers of interest (see below) and had been selected
from the 18,825 participants (aged 20–90 years) in the National Health

and Nutrition Examination Survey (NHANES) III (https://wwwn.cdc.
gov/nchs/nhanes/Default.aspx) included in the BioAgeR package. The
predictions of the PhenoAge algorithm were validated in a test set of
young adult (N = 14,782; aged 20–40 years; 7421 males; tested from
1999 to 2017) participants in the National Health and Nutrition Exam-
ination Survey (NHANES) IV who are also available in the BioAge R
package. We focused on young adult subsamples for whom, where
applicable, death was related to intrinsic causes (e.g., cardiac, cere-
brovascular, pulmonary, kidney-linked, diabetes-linked), rather than
accidents because we reasoned that they would best reflect physiolo-
gical wear and tear processes that are distinguishable from those
linked to typical aging and, thus, most likely to be observed among the
adolescents in the ABCD cohort.

Based on availability in the ABCD sample, the biomarker set for
PhenoAge included 8 blood chemistry variables (i.e., mean cell volume
[mcv], red blood cell count [rbc], red cell distribution width [rdw],
white blood cell count [wbc], lymphocyte percent, monocyte percent,
glycohemoglobin [hba1c], and total cholesterol). These biomarkers
reflect metabolic and immune function, and had been used before to
quantify physiological aging across the adult lifespan19,20,39,107,108,110. In
the NHANES III and IV samples, we verified that the original and our
modified biomarker set yielded nearly identical age predictions with
PhenoAge (rs of 0.92 and 0.93, respectively). Moreover, in both
NHANES samples, more advanced PhenoAge than expected based on
chronological age, which tended to be observed among poorer indi-
viduals (Spearman’s rho (5611) = 0.16, 95%CI = [0.14; 19], p = 7.71 × 10−34

[NHANES III] and rho(14780) = 0.16, 95% CI = [0.14; 0.18], p = 2.5 × 10−85

[NHANES IV]),was linked tohigher bodymass index (BMI) (Spearman’s
rho (6075) = 0.22, 95% CI = [0.20; 24], p = 4.81 × 10−67 [NHANES III] and
rho(14780) = 0.28, 95% CI = [0.27; 30], p = 1.41 × 10−265 [NHANES IV])
andpoorer overall health (Spearman’s rho (6082) = 0.15, 95%CI = [0.13;
18], p = 2 × 10−32 [NHANES III] and rho(12406) = 0.20, 95%CI = [0.18; 22],
p = 1.8 × 10−113 [NHANES IV]).

Validationof PhenoAge in theABCDsample. To showthatPhenoAge
is similarly predictive of physiological wear and tear in early adoles-
cence and young adulthood, we used the largest ABCD sample of
biologically unrelated youths with available data on blood chemistry,
BMI, financial deprivation at the two- or three-year follow-up (N = 922).
In this subsample, we ran a CCA with 10-fold cross-validation linking
PhenoAge (based on themodel estimated in the NHANES III sample) to
concurrent BMI, parental reports offinancialdeprivation (i.e., difficulty
providing for basic needs assessed with the 7-item scale developed
by111) in the preceding year and parental reports of medical history
covering the study period (i.e., from the 1-year follow-up reports that
extended back to the start of the study [i.e., when participants were
aged 9-10] to 3-year follow-up reports). We included medical history
items gauging serious physical health problems, such as number of
emergency room visits and unplanned medical visits related to high

Table 1 | Summary Statistics for the Pubertal Development Measures Collected at Time 1 and Time 2

ABCD (N = 199)

Variable Time 1 (Ages 9-10) FemaleM (SD, range)/Male
M (SD, range)

Time 2 (Ages 11-12) FemaleM (SD, range)/Male
M (SD, range)

DHEA*(pg/mL) 77.20 (43.14, 5.09-188.09)/61.08 (41.62,
8.00-215.65)

115.53 (67.74, 13.50-370.10)/84.44 (69.32,
3.12-314.47)

Testosterone* (pg/mL) Estradiol* (pg/mL) Adrenarche (self-report) 37.26 (16.06, 5.22-73.00)/36.97 (23.58, 8.41-
224.03)
1.01 (.45, .13-2.53)
1.61 (.62, 1-3.50)/1.60 (.61, 1-4)

51.71 (21.31, 14.68-112.35)/54.63 (33.51, 11.73-
168.58)
1.15 (.63, .34-5.29)
2.37 (.73, 1-4)/1.97 (.72, 1-4)

Gonadarche (self-report) Adrenarche (parental report) Gona-
darche (parental report)

1.62 (.55, 1-3)/1.66 (.53, 1-4)
1.56 (.60, 1-3)/1.36 (.53, 1-3)
1.78 (.39, 1-3)/1.58 (.42, 1-3)

2.26 (.75, 1-4)/1.83 (.52, 1-3)
2.35 (.76, 1-4)/2.04 (.77, 1-4)
2.47 (.68, 1-3.67)/1.84 (.61, 1-4)

Mmean, SD standard deviation, DHEADehydroepiandrosterone. *These are the raw values before residualization by the confounds listed in the text.
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fever, very bad headaches, head injuries, having been knocked
unconscious, asthma, allergies, bronchitis, cancer, cerebral palsy,
diabetes, seizures, hearing problems, kidney disease, lead poisoning,
muscular dystrophy, multiple sclerosis, vision problems, heart pro-
blems, and anemia. The cross-validated CCAmode emerging from this
analysis (Spearman’s rho =0.35, 95% CI = [0.29; 0.41], permutation-
based p = 10−5, adjusting for sex and chronological age) linked more
advanced PhenoAge to higher BMI, greater financial deprivation, a
higher number of emergency room visits and unplanned medical vis-
its, particularly those related to high fever, very bad headaches,
asthma, allergies, bronchitis and diabetes (see Fig. S1A for a repre-
sentation of the physical health CCA variate). Because not all partici-
pants had medical history data at all 3 time points, we re-ran the CCA
using the 916 youths who had complete medical history data from the
year preceding the collection of the blood chemistry data for Pheno-
Age (i.e., medical history data from the 1-year follow-up for those with
PhenoAge data at the 2-year follow-up and medical history data from
the 2-year follow-up for those with PhenoAge data at the 3-year follow-
up). The findings from the first CCA on physical health were replicated
(see Fig. S1D for a representation of the physical health CCA variate).
Finally, we projected the two physical health CCA variates (Fig. S1A, B,
D, E) onto our target sample of 199 ABCD participants and replicated
their association with PhenoAge observed in the larger samples of 922
and 916 participants, respectively (Spearman’s rhos of 0.28, 95% CI =
[0.14; 0.41], and 0.29, 95% CI = [0.14; 0.41], respectively, both ps =
0.0001, see Fig. S1C, F).

HCP-D. Blood biomarkers are not included in the latest existing data
release (2.0) from the HCP-D. Therefore, capitalizing on their robust
correlations with PhenoAge in the ABCD sample, we used estimates of
financial deprivation (assessed identically as in the ABCD study111) and
BMI as markers of (likely) greater systemic wear-and-tear.

Psychological Functioning
In both developmental samples, psychological functioning was asses-
sed through parental responses on the Child Behavior Checklist
(CBCL32). The analyses featured scores on all the DSM-oriented scales
that are part of the default CBCL output and quantify variations in
Depression (DEP), Anxiety (ANX), Attention Deficit Hyperactivity Dis-
order (ADHD), Somatic Disorder (SD), Oppositional Defiant Disorder
(ODD), Conduct Disorder, (CD) Sluggish Cognitive Tempo (SCT),
Obsessive-Compulsive Disorder (OCD) and Post-traumatic Stress Dis-
order (PTSD) (see Table 2 for summary statistics). To provide a more
fine-grained description of brain-psychopathology relationships, we
focused on disorder-specific, rather the composite Internalizing vs
Externalizing scores which are also part of the CBCL output. Parental
responses collected concurrently with brain and physiology-relevant
measures (ABCD: T2/two-year follow-up; HCP-D: one time point)
assessed each adolescent’s standing on mental health relative to the
remaining sample. In the longitudinal ABCD dataset we also assessed
rise/decline in a participant’s standing on each DSM-oriented scale
from the two- to the three-year follow-up (i.e., ΔT2, T3). The scales
showed acceptable to very good reliability (ABCD: Cronbach’s alphas
from 0.56 to 0.83 across both the two- and three-year follow-up
assessments; HCP-D: Cronbach’s alphas from 0.51 to 0.74).

Sexual differentiation in brain function
Resting state scans. Four resting state fMRI scans (eyes open with
passive crosshair viewing), each lasting approximately 15min (HCP),
6min (HCP-D) and 5min (ABCD), respectively, were collected from all
three samples (ABCD: baseline/2-year follow-up; HCP/HCP-D: 1 time-
point). For theABCDparticipants, due todata availability, weusedonly
3 scans fromeach timepoint (6 resting state scans in total) for a total of
approximately 15min at each timepoint. Analyses were conducted on

the same number of volumes/similar duration data for all three sam-
ples at each available time point (see below for details).

fMRI data acquisition
ABCD. Participants were scanned across 21 US sites, with a protocol
harmonized for Siemens Prisma, Philips, and GE 3T scanners. Scanner
type was controlled for in all analyses by using site id as a covariate to
account for magnet and sociodemographic differences among sites.
The fMRI data were acquired with a multiband EPI sequence (TR =
800ms, TE = 30ms, flip angle = 52°, FOV = 216 × 216mm, 60 slices of
2.4 × 2.4mm in-plane resolution, 2.4mm thick,multiband acceleration
factor of 6).

HCP-D. Scanning was performed across 4 US sites on Siemens Prisma
3 T scanners (32-channel coil; for details, see ref. 112). The fMRI data
were acquired with a multi-band gradient-recalled (GRE) EPI sequence
(TR= 800ms, TE = 37ms, flip angle = 52°, FOV = 208mm, 104 × 90
matrix, 72 oblique axial slices, 2mm isotropic voxels, multiband
acceleration factor of 8).

HCP. Participants were scanned with a customized Siemens 3 T Con-
nectome Skyra scanner housed at Washington University in St. Louis.
Functional images were acquired with a multiband EPI sequence
(TR= 720ms,TE = 33.1ms,flip angle = 52°, FOV= 208mm,104 × 90
matrix, 72 slices of 2 × 2mm in-plane resolution, 2mm thick, no gap;
multiband acceleration factor of 8). Two runswere acquiredwith a left-
to-right (LR) and the other two with a right-to-left (RL) phase encoding
sequence113.

fMRI data preprocessing
ABCD. Analyses were conducted on minimally preprocessed resting
state fMRI data, which was available as part of the ABCD Study Curated
Annual Release 5.0. Using a Multi-Modal Processing Stream114, which
primarily combinesMATLAB, Freesurfer115, FSL116 and AFNI117 functions,
these data had been corrected for head motion, spatial and gradient
distortions, bias field removal, and the cleaned functional images had
been co-registered to the participant’s T1– weighted structural image.
Using FSL and MATLAB, we further applied the following steps: (1)
elimination of initial volumes (8 volumes [Siemens, Philips], 5 volumes
[GEDV25], 16 volumes [GEDV26] to allow theMRsignal to reach steady
state equilibrium, (2) linear regression-based removal of themean time
courses of cerebral white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF), as well as the quadratic trends and 24 motion
terms (i.e., the six motion parameters, their first derivatives, and
squares) from the time course of each parcel. Prior to being regressed,
the motion terms had been filtered to eliminate signals within the
respiratory effect range, a step that had been shown to lead to more
effective removal of head motion-related artifacts (i.e., 0.31-0.43Hz,
cf.118). To verify the effectiveness of the denoising pipeline, we esti-
mated QC-FC correlations (i.e., correlations between participant-level
framewise displacement and each ROI-to-ROI functional connectivity
index, see “ROI definition and correlations” below). The distribution of
the QC-FC correlations and the scatterplots describing the distance-
dependence of the motion artifacts are included in Fig. S10. The
observed metrics for the QC-FC correlations paralleled those of the
best performing pipelines described in ref. 119 (see also120). To remove
any potential lingering artifacts, all group-level analyses controlled for
average framewise displacement per participant (see section titled
“Control variables” which also contains details on additional motion
control analyses).

HCP-D and HCP. We analyzed data already preprocessed by the
respective study teams using the HCP Preprocessing Pipelines, speci-
fically, the Generic fMRI Volume and Surface Processing Pipelines,
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multi-run independent component analysis (ICA) FIX denoising and
multimodal surface matching registration (cf.121,122).

ROI definition and correlations
To characterize similarity between adolescent and adult male vs
female FC patterns, we estimated pairwise Pearson correlations
between regional time series extracted from the Schaefer 300 parcel/
17-network functional atlas44 for each HCP, ABCD and HCP-D partici-
pant, respectively. The correlation analyses were conducted in Matlab
(version 2024a) and the resulting coefficients were Fisher’s
z-transformed. In each sample, the correlationswere run separately for
each run using a duration of approximately 5min (417 volumes for
HCP; 375 volumes for ABCD/HCP-D). The resulting ROI-to-ROI
(300 × 300) matrices, each estimated over a roughly 5-min interval
for all three samples, were averaged across the 3 (ABCD) or 4 (HCP/
HCP-D) runs available at each time point.

Gradient of sexual differentiation in brain function
In theHCP sample,we regressed each FCestimate against sex (coded for
1 for male, −1 for female), age in years, income, years of education,
employment status, race (coded 0 for White, 1 for non-White), hand-
edness (coded 0 for predominantly right-handed, 1 for not pre-
dominantly right-handed), psychopathology (i.e., scores on the DSM-
oriented scales of depression, anxiety, ADHD, antisocial personality
disorder, somatic disorder, avoidant personality disorder from theAdult
Self-Report [ASR]32), average framewise displacement during the resting
state scans as a proxy for individual differences in headmotion together
with scores on fluid and crystallized/verbal intelligence (i.e., Progressive
Matrices and Picture Vocabulary Test, respectively123). This analysis
resulted in a t-statistic quantifying the degree to which individual dif-
ferences in each FC estimate are associatedwith biological sex, such that
positive values represent stronger FC in males and negative values
represent stronger FC in females. The absolute value of the t-statistic
quantifies themagnitude of sexual differentiation for each FC index and,
as such, it implicitly accounts for individual differences in sexual dif-
ferentiation in the young adult group. A low absolute t-value denotes an
FC index that shows greater between-individual, rather than between-
sex, variability, whereas a high absolute t-value denotes an FC index that
is consistently higher (positive t-value) or lower (negative t-value) across
most males relative to females. The resulting matrix of t-values thus
represents a reference of the degree to which FC estimates are sexually
differentiated in healthy young adults.

We then computed, for each adolescent in the ABCD and HCP-D
cohorts, the Spearman correlation between each row of their own FC

matrix (i.e., each regional FC profile) and the corresponding row of the
template sexual differentiation t-statistic matrix estimated in the HCP
sample. A positive corelation coefficient indicates that the regional FC
profile identified in the ABCD or HCP-D participant resembles a more
masculine pattern, as identified in HCP individuals, whereas a negative
coefficient indicates a more feminine profile.

Sensorimotor-Association (S-A) axis
To shed light on whether patterns of sexual differentiation in brain
function align with the unimodal-to-transmodal hierarchy identified in
prior research63, we downloaded the corresponding gradient map
characterized in63 from neuromaps124. Using the “cifti-parcellate”
(MEAN function) from theConnectomeWorkbench, we extracted ROI-
specific gradient coefficients for the Schaefer and Gordon atlases.
Subsequently, for each of the two functional atlases, we conducted a
Spearman’s rank correlation between the cross-validated ROI loadings
extractedwith PLS from the ABCD sample in Analysis 2 (for details, see
Fig. 2-Analysis 2 and the Analysis 2 section in the Results) and the S-A
axis ranks.

To account for correlated sexual differentiation and S-A gradient
coefficients based on anatomical proximity125 we used Vasa’s “rotate_-
parcellation” function in Matlab (https://github.com/frantisekvasa/
rotate_parcellation/commit/bb8b0ef10980f162793cc180cef371e8365
5c505) in order to generate 100,000 spatially constrained permuta-
tions of the Schaefer and Gordon brain latent variables (LV), as iden-
tified in the behavioral PLS analyses for the ABCD sample. These
spatially constrained permuted functional brain LVs were used to
assess the significance of the correlation between the Schaefer or
Gordon brain LV and the S-A axis coefficients.

Psychiatric disorder-related maps of sexual differentiation in
brain function in HCP-D
To characterize patterns of neural sexual differentiation tracking var-
iations in psychiatric disorder symptoms andphysiologicalmaturation
in HCP-D, we computed partial Spearman’s correlation coefficients
between the ROI-specific sexual differentiation index described above
and three sets ofmeasures: (1) scores on reproductivematuration (i.e.,
youth ratings of adrenarche and gonadarche, respectively); (2) mar-
kers of PhenoAge, as identified in the ABCD (i.e., BMI, financial depri-
vation); and (3) each of the nine DSM-oriented CBCL scales (identical
to the ABCD sample). These partial correlations controlled for chron-
ological age, handedness, race, sex, testing site and average modality-
specific scan-to-scan displacement (see “Control variables” below).
These analyses resulted in 13 different brain maps (i.e., 9 related to
CBCL scales, 2 related to aging and 2 related to pubertal development
[i.e., adrenarche and gonadarche]). In these maps, positive and nega-
tive coefficients respectively indicate that either a more masculine or
feminine FC pattern within a given ROI is related to (1) more advanced
reproductive maturation; (2) higher BMI or exposure to poverty; and/
or (3) higher CBCL-related symptom severity.

Polygenic Risk Scores (PRSs) for Psychiatric Disorders Linked to
Sexual Differentiation in Brain Function
To shed light on whether patterns of sexual differentiation in brain
function mediate the link between genetic risk and psychopathology,
we used summary statistics from large disorder-focused GWASs, fea-
turing case-control comparisons, in order to compute polygenic risk
scores (PRS) for three neuropsychiatric conditions assessed in the
ABCD sample via parental responses on the CBCL, specifically, MDD49,
anxiety disorders50, and ADHD51. We did not include PRSs for ODD and
CD because we could not locate relevant case-control GWASs. Similar
to the ABCD sample herein used, the GWAS samples contributing to
the PRSs were predominantly, but not exclusively, White. However,
race was used as a covariate in all our analyses (see “Control vari-
ables” below).

Table 2 | Descriptive Statistics for the CBCL Subscales Ana-
lyzed in the Two Developmental Samples

DSM Disorder ABCD (N = 199) HCP-
D (N = 277)

Time 2 (Ages
11–12) M (SD)

Time 3 (Ages
12–13) M (SD)

M (SD)

Depression 0.11 (0.16) 0.13 (0.18) 0.10 (0.14)

Anxiety 0.18 (0.23) 0.21 (0.27) 0.17 (0.21)

Somatic 0.14 (0.19) 0.14 (0.19) 0.12 (0.17)

ADHD 0.30 (0.38) 0.30 (0.37) 0.20 (0.27)

ODD 0.25 (0.35) 0.25 (0.32) 0.30 (0.35)

CD 0.05 (0.11) 0.05(0.12) 0.06 (0.10)

SCT 0.13 (0.23) 0.13 (0.23) 0.16 (0.26)

OCD 0.15 (0.20) 0.18 (0.23) 0.15 (0.17)

PTSD 0.17 (0.20) 0.20 (0.24) 0.18 (0.19)

Mmean, SD standard deviation, ADHD attention deficit hyperactivity disorder, CD conduct dis-
order, OCDobsessive compulsive disorder, ODD oppositional defiant disorder, PTSDpost-
traumatic stress disorder. SCT slow cognitive tempo.
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The disorder-specific PRSs were each computed as the weighted
sum of risk alleles based on the summary statistics of large GWASs
focused on each disorder, which had been made available by the ori-
ginal authors via the “Public Results” tabon the FUMAwebsite (https://
fuma.ctglab.nl/browse126, MDD, ADHD) or on the Psychiatric Genetics
Consortium webpage (https://pgc.unc.edu/for-researchers/download-
results/) (anxiety). For MDD, we used the top 10k most informative
variants, based on approximately 76k patients and 230k, which have
been made publicly available by ref. 49. These variants were obtained
by clumping the corresponding GWAS statistics with the following
parameters p1 = p2 = 1, window size <500 kb, and r2 > 0.1.

To compute PRSs for each disorder based on the *.genotype ABCD
data, we used the PLINK genetic analysis toolset127 with SNPs significant
at GWAS level p≤ 10−5 since this was the lowest p-value for which all
scrutinised disorders had contributing SNPs. However, in supplemental
analyses, we confirmed that all the effects hold when usingmore lenient
p-thresholds, including the MHC region (see Figs. S5–8).

Prior to PRS computation, the following preprocessing steps were
implemented: (1) genes with a minor allele frequency (MAF) < 0.05,
insertion/deletion and ambiguous single nucleotide polymorphisms
(SNPs) (i.e., A/T and G/C pairs) were excluded; (2) highly correlated
SNPs (r2 >0.10) within a 500 kb window were eliminated. In line with
extant PRS-related practices and related investigations (e.g.128), the
major histocompability complex (MHC) region has been excluded (but
in Supplemental Analyseswe verified that its inclusion does not impact
the reported effects). The SNPs which survived the preprocessing and
had an associated GWAS level p ≤ 10−5 contributed to the computation
of the disorder-specific PRSs (MDD PRS: N = 7 SNPs; ANX PRS: N = 3
SNPs; ADHD PRS: N = 12 SNPs).

Statistical analysis
We examined associations among physiological age, pubertal devel-
opment, psychopathology, and sexual differentiation in brain function
by combining canonical correlation analysis (CCA) with partial least
squares (PLS), twomultivariate techniques that explain commonalities
in two sets of variables by creating linear combinations from the
variables in each set41,129. All CCA and PLSmodels were estimated using
a 10-fold cross-validation procedure. 99% confidence intervals (CI) for
each correlation coefficient (CCA) and loading/salience (PLS) were
obtained via the ‘bootci’ function in Matlab (with default settings and
100,000 bootstrap samples).

Canonical correlation analysis (CCA)
To probe the relationship of psychopathology with sex, physiological
age and pubertal development in the ABCD (see Fig. 2, Analysis 1), as
well as the relevance of sexual differentiation in brain function, as
estimated in the ABCD sample to psychopathology and factors rele-
vant to physiological aging in the HCP-D (see Fig. 2, Analyses 4 and 5),
we conducted a series of CCAs with cross-validation (cf.41). CCA was
selected for these analyses because of its greater sensitivity to cross-
set relationships relative to PLS130. CCA was implemented in Matlab
using the ‘canoncorr’ module. A 10-fold cross-validation procedure
tested the performance of our CCA-derived models. Discovery ana-
lyses were conducted on nine folds of data and the resulting CCA
weights were employed to derive predicted values of the relevant
variates in the left-out (test) fold. This procedure was repeated until
each of the ten folds served as test data once. The ten test folds were
concatenated and the correlation between the predicted variates
across the full sample was evaluated using a permutation test with
100,000 samples.

Relationships between measured variables and their corre-
sponding CCA-derived variate are described via correlations between
the observed value of a given variable and the predicted value of its
corresponding variate. We did not include standardized coefficients
since the unique association between a given variable and its

corresponding variate was of limited value in the case of our present
analyses (with the exception of Analysis 1, as noted in the main text).
99% confidence intervals (CI) for each correlation coefficient were
obtained by using the ‘bootci’ function inMatlab (with default settings
and 100,000 bootstrap samples). The aforementioned correlation
coefficients are a more conservative estimate of the traditional cano-
nical loadings41 as they are estimated in the test, rather than
discovery, folds.

Partial least squares (PLS) analysis
In the ABCD, patterns of sexual differentiation in brain function linked
to psychopathology, physiological age and pubertal development
were identified in a data-driven manner with PLS, which was selected
for these analyses due to its better performance in datasets containing
highly correlatedwithin-set variables, forwhichCCAyields less reliable
and reproducible solutions130,131. PLSwas implemented using a series of
Matlab scripts, whichare available for download athttps://github.com/
McIntosh-Lab/PLS/. In this analysis, the behavioral set included the
psychopathology and physiology variates extracted in Analysis 1. The
brain matrix contained the ROI-specific correlation coefficients with
the sexual differentiation gradient characterized in the HCP sample.

Significance and generalizability testing. The significance of the
extracted brain-behavioral LV pair was estimated through permutation
testing (i.e., 100000 permutations, 200 times larger than the guidelines
provided by ref. 132) in the discovery PLS analysis conducted in the
ABCD sample. The generalisability of our PLSmodels was tested using a
10-fold cross-validation procedure, similar to the one implemented for
the CCAs. Specifically, the PLS analysis was run on nine folds of data and
the weights associated with the identified brain LVs were used to com-
pute the predicted value of the brain and behavioral LVs in the test fold.
This procedure was repeated until each of the ten folds served as test
data once. The significance of the extracted brain-behavioral LV corre-
lation was estimated in the test fold using a procedure similar to the one
described in ref. 133. Specifically, in the test folds,

(1) we multiplied each ROI-specific index of sexual differentiation
in each condition (i.e., T1 vs T2, Fig. 4A, B) by its corresponding weight
(as extracted in the training folds);

(2) wemultiplied the physiology/psychopathology scores by their
corresponding condition-wise weights (as extracted in the train-
ing folds);

(3) we applied singular value decomposition (SVD) to the
condition-wise correlation between the ROI and physiology/psycho-
pathology matrix, computed as described at (1) and (2) (cf129);

(4) we generated 100,000 null distributions by within-condition
permutation of the physiology/psychopathology scores (i.e., we used
the same permutation order in both condition 1 and condition 2) which
preserved the interdependence of the T1/T2 brain scores (e.g., in the
permuted sample, participant 10’s physiology/psychopathology scores
were paired with participant 89’s T1 and T2 brain data) and applied SVD
to each pair of brain- physiology/psychopathology matrices.

Reliability testing. In the discovery PLS analyses, we used 100,000
bootstrap samples (i.e., 1000 times larger than the guidelines provided
by ref. 132) to (a) identify ROIs making a reliable contribution to the
extracted LV (i.e., bootstrap ratios [BSRs], ROI weight/standard
deviation, greater than 2.75 in absolute value, similar to a 99% CI), and
(b) estimate 95% confidence intervals (CIs) for the correlation between
the behavioral variables and the extracted brain LV132. In the cross-
validation procedure, we used the “bootci” function in MATLAB (with
default settings and 100,000 bootstraps) to characterize the (a) 99%
CIs of the correlation coefficient corresponding to each ROI and the
predicted brain LV (estimated in the test fold); (b) 95% CIs for the
correlations between the predicted value of the brain LV and each
variable in the behavioral set.
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Serial mediation model
To probe the temporal sequence in which patterns of sexual differ-
entiation in brain function together with physiological age and pubertal
development mediate the link between genetic risk and psychopathol-
ogy in the ABCD sample, we conducted one serial mediation analysis
using model 81 in Hayes’ PROCESS 4.2 macro for SPSS47. PROCESS is an
ordinary least squares (OLS) and logistic regression path analysis mod-
eling tool based on observable variables. Serial mediation is used to test
the viability of the causal chain (mediator 1-to-mediator 2…-to mediator
n) through which an independent variable impacts the outcome vari-
able. The specificity of our mediation sequence of interest was estab-
lished by testing for alternate paths involving parallel or serialmediation
(see Fig. 2, Analysis 3). The mediation model was tested with 95% CIs
estimated with 50000 bootstrapping samples. In line with extant
guidelines on balancing Type I and Type II errors in mediation
analyses134, the CIs for indirect effects was estimated using percentile
bootstrap, which is the default option in PROCESS 4.2. As recommended
by ref. 135, a heteroscedasticity-consistent standard error and covar-
iance matrix estimator were used. Bootstrapping-based 95% CIs for the
indirect effects (cf.136), as outputted by PROCESS, were used as effect
size estimates.

Control variables
In order tomaximize the interpretability of the model estimates, the
discovery CCA and PLS analyses were conducted on data that had
not been residualized for the confounders listed below. To
demonstrate the robustness of our results, the CCA and PLS cross-
validation, as well as the mediation analyses controlled though for
the following variables which were of no interest in the present
study: (1) chronological age (for ABCD, at each wave contributing to
the respective analysis) to ensure the reported inter-relationships
hold irrespective of the participants’ chronological age; (2) hand-
edness (coded as “0” for right-handedness and “1” for non-right-
handedness) to control for potential differences in the lateralization
of the observed effects, e.g.137,138; (3) scanner site to account for
scanner-related differences, as well as broad differences in family
education and socio-economic status across site139; (4) race because
the genetic architecture of some risk loci may show some racial
variations140–142 and to ensure that any associations with psycho-
pathology hold irrespective of potential experiences of discrimina-
tion, (5) adoption status (dummy coded “0”/”1” for the 3 ABCD
adoptees and the 5 HCP-D adoptees), (6) (ABCD sample only) sex
assigned at birth not corroborated by menstruation history at ages
11-12 or SNP analysis (dummy-coded 0”/”1” for 2 youths) and (7)
average framewise displacement (FD) per participant as a proxy of
individual differences in head motion (cf 46,143) which can adversely
impact functional connectivity metrics46. For the ABCD participants,
average FD was computed in reference to the 3 runs contributing to
the analyses at each time point (6 runs in total across Time 1 and
Time 2). Thus, via linear regression, we removed average framewise
displacement from all neural outcomes of interest (i.e., ROI-to-ROI
indices of sexual differentiation and the sexual differentiation latent
variable [Analyses 2-5]) to address any residual motion-related
confounds not addressed by our pre-processing pipeline119. As an
additional control, we re-ran the discovery PLS analyses after resi-
dualizing the behavioral set for the same confounds entered in the
cross-validation analyses (since motion may interact with these
other confounds to bias the ROI-to-ROI indices of sexual differ-
entiation in FC). We only residualized the behavioral set because
residualization of both variable sets for multivariate analyses, such
as PLS, which use permutation-based significance testing, has been
found to bias results144. These additional analyses replicated those
reported in the main text. The unthresholded brain LV from the
discovery PLS analysis described in the main text diverged only
slightly from the one extracted from the residualized data (rs of 0.93

and 0.92 with the Schaefer and Gordon atlas, respectively, Fig. S4A,
D). The brain LV identified in these additional analyses (Fig. S3, 4)
was robustly correlated, based on 95% CIs, with the physiology
variate at Time 1 (rs from to 0.27 to 0.49 across both atlases) and
the psychopathology variate at both time points (rs from to 0.18 to
0.62 across both atlases). The relevant brain maps are presented in
Fig. S3, 4.

As an additional control, we re-ran the PLS analysis in a sub-
sample of 89 participants passing the stringent motion elimination
criteria outlined in reference120. Specifically, these criteria were:
average participant FD <0.20mm, 80% of all collected volumes
having an FD <0.20mm, and maximum motion under 5mm.
Reference120 found that more aggressive motion controls (e.g.,
censoring) had no additional benefit beyond the exclusion of such
high motion participants. We therefore favored this approach to
avoid analysizing data with different numbers of timepoints in each
participant, which can arise if some form of censoring/scrubbing is
applied. Similar to the full sample of 199 youths, these 89 low-
motion youths showed a distribution of QC-FC correlations and
associatedmedians that matched themetrics of the best performing
denoising pipelines depicted in reference119 (see Fig. S10). However,
the low motion sample showed QC-FC/distance correlations lower
than those observed in the full sample of 199 youths. Of note, the
QC-FC/distance correlations in the low motion sample matched the
top 3 or top 6 (depending on the atlas119) best performing pipelines
out of the 14 pipelines tested in reference119. The PLS brain LV
identified in the full sample of 199 youths was replicated in the low-
motion sample (see Fig. S3, 4). In sum, the brain LV identified with
the discovery PLS analysis (Fig. 4C) was replicated in the low-motion
sample and after residualizing for confounds, includingmotion (Fig.
S3, 4). All the other reported analyses that featured the sexual dif-
ferentiation indices controlled for average participant FD. Given all
these controls, we think it is unlikely that our reported results are
substantially contaminated by motion artifacts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data used in this report is available to researchers working at
institutions recognized by NIMH at https://nda.nih.gov/abcd (ABCD)
and at https://nda.nih.gov/ccf/lifespan-studies (HCP-D) following com-
pletion of the relevant data-use agreements. Researchers with different
affiliations need to complete separate data-use agreements, signed by
an authorized signing official from their respective institutions prior to
submission to the NDA. Researchers need to create an account on
https://nda.nih.gov/. Access is typically granted within a month from
submitting the data-access request via theNDA site. Access to these data
is controlled due to the highly sensitive nature of the data. Researchers
need to apply for data access renewal on a yearly basis. Renewal
requests need to include a progress report and are reviewed by the data
access certification team. The ABCD data repository grows and changes
over time. TheABCDdata used in this report came fromData Release 5.1
(https://doi.org/10.15154/z563-zd24). The HCP-D data used in this report
came from Data Release 2.0 (https://doi.org/10.15154/1520708). With
regard to brain atlases, the Schaefer atlas can be downloaded from
https://github.com/ThomasYeoLab/CBIG and the Gordon atlas can be
downloaded from https://wustl.app.box.com/v/parcels-release. The
specific dataset (ABCD, HCP-D) used in this report can be accessed via
the NDA site at https://doi.org/10.15154/te4p-qr97.

Code availability
We used already existing code, as specified in the main text with links
for free download.
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